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Abstract

In this paper, we consider the task of automatically identifying whether differ-

ent parts of medieval and modern manuscripts can be traced back to the same

copyist/scribe, a problem of significant interest in paleography. Currently, the

application of deep learning techniques in the context of scribe recognition has

been hindered by the lack of a sufficiently large, labeled dataset, since the la-

beling process is incredibly complex and time-consuming. Here, we propose the

first successful application of the recent framework of self-supervised learning

to the field of digital paleography, wherein we pretrain a convolutional neural

network by leveraging large amounts of unlabeled manuscripts. To this end,

we build a novel dataset consisting of both labeled and unlabeled manuscripts

for copyist identification extracted from the Vatican Apostolic Library. We

show that fine-tuning this model to the task of interest significantly outper-

forms other baselines, including the common setup of initializing the network
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from general-domain features, or training the model from scratch, also in terms

of generalization power. Overall, our results reveal the strong potential of self-

supervised techniques in the field of digital paleography, where unlabeled data

(i.e., digitized manuscripts) is nowadays available, while labeled data is scarcer.

Keywords: Self-Supervised Learning, Manuscripts, Handwriting Identification

1. Introduction

The automatic analysis of medieval and modern manuscripts based on deep

learning techniques is attracting more and more attention in recent years, as it

promises to significantly simplify and improve the work of paleographers and

other domain experts [1, 2]. Among the many tasks that can be addressed in5

such a way, the subdivision of the texts into parts belonging to distinct scribes,

on the basis of the respective handwriting style, stands out for interest and im-

portance in the overall interpretation of such documents. This operation, also

referred to as handwriting identification, relies on the possibility to create a

one-to-one correspondence handwriting style-author, which is confirmed by the10

fact that handwriting – a behavioral and distinctive biometric characteristic of

each human being [3, 4] – essentially depends on class and individual factors

(respectively, the products of prescribed writing systems and the idiosyncrasies

of the individual) [5]. Hence, we can reliably establish a relationship between

a handwriting style and an individual when the same distinctive personal writ-15

ing characteristics are found in multiple writings in sufficient number that the

likelihood of accidental coincidence is eliminated [5, 6]. In other words, we can

cluster the inscriptions of different scribes, or assess the unique authorship of

a group of handwritten texts, based on a set of discriminating elements or fea-

tures, that is “discrete elements of writing or lettering that vary observably or20

measurably with its author” [5], which can be mainly gathered into elements of

style (text arrangement, dimension, slant, spacing etc.) and execution (abbre-

viations, alignment, embellishments etc.) [5].

At present, the handwriting identification task for medieval and modern
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manuscripts continues to be carried out with traditional methods (and a sig-25

nificant amount of time, costs, and expertise required) by paleographers, which

precisely search for such discriminating features across the document to identify

the scribes who participated in its realization. Notwithstanding, this operation

– which essentially consists of an instance discrimination task – naturally lends

itself to the application of computational methods, as proven by the flourish-30

ing number of deep learning approaches [7, 8, 9] – based on learnable features

instead of the previously mentioned “discriminating elements” – as well as stan-

dard pattern recognition methods [10, 11] for handwriting identification pro-

posed in recent years. However, the application of data-driven strategies has

found a major obstacle in the lack of structured data, due to the costs, time35

and expertise required for data labeling.

The present work is placed exactly in the context of the application of

deep learning methods to handwriting identification on medieval and modern

manuscripts (more precisely, a set of 24 digitized medieval manuscripts selected

from the Vatican Apostolic Library [12]). Specifically, the goal of this contribu-40

tion is to demonstrate for the first time the benefits of using a self-supervised

learning approach for the task of handwriting identification on such kind of data.

The vastness of the collections of manuscripts examined (and consequently the

amount of data available), in fact, is considerable, but most of them are not

labeled, i.e., they are devoid of annotations at the level of the single page (or of45

the single paragraph) about the copyist, i.e., the person who physically wrote it.

This is indeed the perfect condition for applying self-supervised learning meth-

ods, because they learn effective visual representations from a large amount of

unlabeled data [13]. These features or representations can then be transferred

to the vision task of actual interest (in this case, handwriting identification),50

which can be performed based on just a few labeled samples [14, 15, 16].

In practice, the proposed methodology consists of two main stages. At first,

all the pages contained in the manuscripts – previously preprocessed – are in-

volved in a pretext task (i.e., an ancillary task solved only for the purpose of

learning good data representations [16]), according to the reconstruction-based55
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self-supervised approach described in [15, 17]. This approach is particularly

targeted to contextual reasoning, and essentially consists of a teacher-student

scheme to train a backbone Convolutional Neural Network (CNN) to recon-

struct a Bag of Visual Words (BoW) representation of an image, given as input

a perturbed version of that same image. At a later stage, the task of actual60

interest is faced. In this case, the data we rely on consists of the manuscript

pages annotated with the respective copyists only; the available copyists are

then split into a background set and an evaluation set (whose samples are never

seen during training nor validation). According to the linear evaluation protocol

commonly used to assess the learned representations [13, 18, 19, 20, 21], a linear65

layer is trained on top of the frozen base encoder, with the aim of minimizing a

triplet margin loss [22, 23]. Such kind of loss was chosen because it allows us to

perform end-to-end learning between the input (which consists of a perturbed

version of the original page, according to a given set of transformations) and

the desired embedding space [24], to build a distance function able to generalize70

to never seen classes, and to produce well-separated clusters.

1.1. Contributions

We can sum up the main results and contributions of this work as follows:

1. an original dataset was produced starting from 24 sufficiently homoge-

neous manuscripts of the Vatican Apostolic Library; it is worth recalling75

that the examined documents are particularly complex, due to the ten-

dency of copyists to standardize the handwriting style as much as possible

while working on the same manuscript;

2. this is the first study that demonstrates the effectiveness of a self-supervised

approach for this task, from a performance point of view (evaluated through80

the Mean Average Precision): indeed, the visual representations learned

in a self-supervised fashion outperform the ImageNet [25] ones, as well as

the features learned after training the backbone model from scratch (that

is, initializing the encoder with random weights);
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3. the proposed methodology is able to generalize to scribes not included in85

the training stage of the downstream task.

The remainder of this paper is divided into the following Sections: Section 2

reviews the most relevant works in the literature, as far as both the application of

deep learning methodologies to paleography and handwriting identification and

self-supervised learning are concerned; Section 3 presents the dataset, together90

with the data preprocessing stage; Section 4 covers the proposed methodology

and the selected data augmentations; Section 5 includes a presentation of the

main aspects and details of the experiments, and a discussion on the obtained

results; finally, Section 6 sums up the most relevant outcomes, plus making some

conclusive remarks and giving an outlook on future works.95

2. Related works

This Section aims at contextualizing the proposed approach for handwrit-

ing identification by introducing some relevant works available in the literature:

first, the application of deep learning methodologies to paleography and hand-

writing identification will be treated; then, the most popular self-supervised100

learning frameworks will be discussed, mainly focusing on the contrastive ones.

2.1. Deep learning applications to paleography and handwriting identification

Digital paleography, intended as the application of computer-based methods

for paleography, has highly benefited from the recent development of machine

learning and deep learning approaches, as proven by the wide range of case105

studies and applications of these methodologies. This relatively recent research

field covers several areas, going from the development of database systems for

manuscript research and editing [26, 27] and solutions for querying large sets

of handwritten document images [28, 29], up to the automatic identification

of inter-script, inter-scribal, intra-script and intra-scribal variations as well as110

cultural and textual relevant features [30]. Just to mention the long-established
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topic of optical character recognition (OCR) for ancient manuscripts, the au-

thors of [31] realized a comprehensive survey on the application stages of this

technique for different writing systems, such as Devanagari [32], Persian [33],

and Bengali [34], and, most importantly, for ancient text documents, includ-115

ing Hanja [35], Gurmukhi [36], and Devanagari [37] writing systems. The task

of one-shot handwritten character recognition, instead, in which the prediction

is made given only a single example of each new character, was accomplished

through the successful application of Siamese Convolutional Neural Networks

(CNNs) by [38], for the Omniglot dataset [39], and by [40], for the CASIA120

HWDB1.1 dataset of Chinese handwritten characters [41]. Siamese CNNs have

been exploited to tackle the fragment retrieval task too: the authors of [42]

propose a fragment matching approach based on 2D Siamese Networks to re-

assemble pottery pieces (ostraca) covered with textual inscriptions; in [43], a

self-supervised deep metric learning solution for the association of ancient pa-125

pyri fragments is proposed, without human intervention for annotating images.

The same Siamese Networks strategy was also successfully applied to other pa-

leographic tasks, such as manuscript alignment [44] (which aims at determining

the similarities and differences between two versions of a given manuscript),

offline [45] and online [46] signature verification.130

Coming to the most relevant contributions on the long-standing issue of au-

tomatic handwriting identification, which is the task of interest for this work,

many studies have been carried out in recent years, aimed both at the concep-

tualization and theoretical modeling of the problem, and at the application of

new methodologies. From a theoretical perspective, in [47] a conceptual model135

for the description and retrieval of handwriting features in Western medieval

script is presented; moreover, the authors of [48] and [49] describe the problem

as relatively agnostic with respect to the writing system [48], and essentially

overlapping with script classification [49]. On the other hand, if we focus on

the solutions proposed over the years for the handwriting identification task,140

we can list many different case studies and approaches, not always based on

machine learning. The authors of [50] propose a handwriting matching tool
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based on sparse representation to join fragments of the same scribe, and a pa-

leographic classification tool that matches a given document to a large set of

paleographic samples. In [51], a dataset of handwriting on papyri for the task of145

writer identification is proposed; moreover, a preliminary evaluation is carried

out, based on a Normalised local Näıve Bayes nearest-neighbour classifier [52]

as a learning- and segmentation-free method for writer identification. The au-

thors of [11], instead, continuing the work of [53], demonstrate through standard

pattern recognition methods and statistical tools that two main scribes, each150

showing different writing patterns, were responsible for the Great Isaiah Scroll.

The authors deliberately avoid the extensive use of parameter-dense methods

for the classification stage, due to the data scarcity and limited explainability

of transfer learning approaches [11], while using deep learning at the level of

image processing for manuscript binarization [54]. Furthermore, in [55] two al-155

gorithms for writer identification – also based on pattern recognition techniques

– were tested on the Arad corpus (consisting of 18 different texts inscribed over

16 Hebrew ostraca and dated to ca. 600 BCE), and systematically compared to

an independent forensic examination. The authors of [56] applied a three-step

solution for line detection, line classification, and page writer identification on160

the Avila Bible (a medieval manuscript of the XII century). This approach,

which is based on deep neural networks trained with transfer learning, proved

successful even with a relatively small training dataset. Finally, also for the task

of handwriting identification the framework of Siamese Networks provided high

accuracy: in [7], an automatic system based on Siamese Networks for dividing165

a manuscript into similar parts, according to their similarity in writing style, is

presented; in [8], the same approach is used to build a writer independent deep

learning model, which is trained on several writing styles, and able to achieve

high detection accuracy when tested on writing styles not present in training

data. The methodology assessment was carried out through cross-validation,170

based on a set of seven manuscripts (five used as training ones, two as test-

ing ones). In conclusion, the authors of [9] presented a deep learning model,

called Papy-S-Net for Papyrus-Siamese-Network, for papyri fragment matching
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(that is, an expert uses a fragment as a request element and gets fragments that

belong to the same papyrus).175

2.2. Self-supervised learning

In recent years, deep learning methods have achieved excellent performances

in several computer vision tasks under supervised settings, that is for bench-

mark datasets or application domains where it is possible (in terms of resources

and competence required) to easily gather huge corpora of manually annotated180

data. However, this is not always the case for many research fields: when deal-

ing with medieval and modern manuscripts, for example, the expertise required

for image and text annotation is highly expensive and the process is very de-

manding and time-consuming. Because of this, one of the key challenges for

the computer vision community is to find suitable strategies for learning good185

image representations from a few labeled examples while making best use of

many unlabeled instances [57, 58], which would minimize the dependence on

potentially costly corpora of manually annotated data [20].

One possible solution is provided by generative methods to representation

learning [59, 60], which typically operate in pixel space and try to build a distri-190

bution over data and latent embedding, then using the learned embeddings as

image representations [58]. However, pixel-level generation is computationally

expensive and may not be necessary for representation learning [13].

Another strategy, which is gradually taking hold, consists of the so-called

self-supervised representation learning, which precisely aims to pretrain a deep195

learning model to extract useful and effective representations of the input data

without relying on human annotations [19, 15, 61, 62]; such representations

or features can then be transferred to other vision tasks of actual interest (the

“downstream tasks”, such as image classification or object detection, which often

have only a few labeled instances [14]) by fine-tuning the pretrained model [15,200

16]. To do so, self-supervised learning methods generally try to solve a pretext

task (that is, a task which is not of genuine interest) which creates different types

of supervision signals from unlabeled instances based on careful inspection of
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underlying regularities in the data [14, 16]. Many solutions have been proposed

in this sense, showing that it is possible to learn self-supervised representations205

that are competitive with supervised ones [62], at least for standard datasets –

such as CIFAR10, CIFAR100, STL10 [63], ImageNet [25], Places205 [64], and

VOC07 [65] – and for many learning problems – such as few-shot [66, 67] and

semi-supervised [68, 69] learning, or training generative adversarial networks

[70].210

One of the most widespread self-supervised learning approaches, which builds

upon the instance discrimination task, considers each image of the dataset (or

“instance”) and its transformations (resulting from a given set of perturba-

tions or “data augmentations”) as a separate class [61], and aims to learn

low-dimensional image embeddings that are invariant under the selected per-215

turbations while being discriminative among different classes [61, 62, 17]. Most

of the discriminative methods are implemented in a contrastive learning frame-

work: the similarity of representations obtained from different transformations

of the same image (positive pairs) is maximized, while spreading representa-

tions of views from different images (negative pairs) apart [58, 62, 14, 71]. The220

similarity of sample pairs is measured by a distance function or contrastive loss

[72], which directly operates in the representation space [61]. As previously

anticipated, the input is not provided to the network with a specific target;

for contrastive losses, the target can vary during training and can be defined

in terms of the data representation computed by the network [16, 72]. Since225

computing all the pairwise comparisons on a large dataset is not practical, most

implementations approximate the loss by reducing the number of comparisons to

random subsets of images during training [61]. Different solutions were proposed

under the contrastive self-supervised learning framework: in [19], context fea-

tures are constructed as a summary of past input segments, and then contrasted230

with local features from a future time step [68, 73]. The approach proposed in

[74], instead, learns a representation that maximizes the mutual information

(MI) among various views of the same scene, with the aim of maximizing the

good information while minimizing the noise. In a similar way, [20] introduces a
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methodology based on maximizing MI between features extracted – also across235

multiple scales – from independently-augmented versions of each input. The au-

thors of [57, 13] claim that contrastive learning of visual representations benefits

from the composition of multiple data augmentation operations, the introduc-

tion of a learnable nonlinear transformation between the representation and the

contrastive loss, the application of embedding normalization and temperature240

parameter before the contrastive cross-entropy loss, large batch sizes, deep and

wide networks, and long training. Finally, [16] (later improved in [75] through

the expedients contained in [13]) proposes to view contrastive learning as a form

of dictionary lookup (maintaining the dictionary as a queue of data samples, to

decouple the dictionary size from the batch size) and relies on an online network245

and a momentum-updated offline network to maintain consistency. Although

contrastive methods manage to achieve impressive results, they focus less on

other important aspects in representation learning, such as contextual reason-

ing [17]. Moreover, they often require comparing each example with many other

examples to work well, prompting the question of whether using negative pairs250

is necessary [58].

Among the other self-supervised learning solutions available in the literature,

we can mention approaches based on clustering [61, 76, 77, 78] and redundancy-

reduction – where the objective function tries to make the cross-correlation

matrix computed from twin representations as close to the identity matrix as255

possible [62]; another line of research was also indicated by [58], whose algo-

rithm iteratively bootstraps the outputs of a momentum-updated offline net-

work to serve as targets for the prediction of an online network. Finally, some

self-supervised methods rely on auxiliary handcrafted tasks to learn their rep-

resentation [79, 80, 18, 81, 82, 83, 84, 85, 86]. In this work, we focused on the260

reconstruction-based methodology described in [15, 17], which belongs to the

latter group of approaches, and is more targeted to contextual reasoning. In

particular, this solution relies on a teacher-student scheme to train a CNN to

reconstruct a Bag of Visual Words (BoW) representation of an image, given as

input a perturbed version of that same image. More details on this methodology265
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will be provided, however, in Section 4.

3. Case study

The validation of the proposed methodology went through the definition of

a relevant dataset with respect to the task of interest. Indeed, we selected 24

manuscripts among the tables for Latin paleography exercises published by the270

Vatican Apostolic Library in 2004 [87], which collect very recognizable graphic

types [88, 89]; in particular, we focused on the documents available in digital

format and at high resolution on the Vatican Apostolic Library website [12].

21 manuscripts out of the 24 selected can be gathered into 3 macro-groups,

according to the categorization identified by [87]:275

• 7 manuscripts characterized by a variety of regional styles (graphic par-

ticularism), namely Vatt. latt. 3313, 5951, 9882 (IX century), 3317 (X

century), 4958, 12910 (XI century), and 4939 (XII century);

• 11 manuscripts characterized by a more uniform style (Carolingian mi-

nuscule and Gothic minuscule), namely Vatt. latt. 43, 3868, 4965, 5775280

(IX century), 378, 579, 653, 8487 (XI century), 42, 620, and 3833 (XII

century);

• 3 later manuscripts written using the Gothic minuscule, namely Vatt. latt.

907, 2669 (XIII century), and 588 (XIV century).

In addition to the previous list, 3 manuscripts from the Atlantic Bibles [90]285

were included – Vatt. latt. 4217 (XI century), 4220, 4221 (XVI century) – whose

scribes are clearly identified. Although not particularly extensive, the corpus

has both elements of variety (very different scripts) and homogeneity (there are

clusters with increasing difficulty, such as the Gothic script one and the Atlantic

Bibles one) that allow us to carry out different levels of analysis. In the following290

Table 1, the number of pages per manuscript is recalled, after the removal of

the unnecessary pages (for example, unwritten pages, pages containing too many
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drawings, or pictures of the manuscript cover). The final corpus amounts to 8745

pages. It is worth highlighting that the manuscripts are quite heterogeneous in

terms of handwriting style and state of conservation, which is convenient for295

representation learning in terms of generalization power. A critical issue of the

corpus consists of the class imbalance, instead, both at the level of samples per

manuscript and samples per copyist.

3.1. Data Preprocessing

To prevent the unwritten borders of the pages from being included in the300

training stage, a coarse cropping region for each manuscript was identified, given

that the lines of text are placed approximately in the same position across

the manuscript (so, more precisely, two cropping regions were identified per

manuscript, one for the left pages – verso – and one for the right pages – recto).

After this first cropping, each page xm
i was further cropped to match the size305

(wm
min, h

m
min) of the smallest image in the manuscript m, obtaining the result x̃m

i

visible in Figure 1. This second cropping was done to prevent different resizing

distortions for pages belonging to the same manuscript1. The final sizes for the

pages of each document are recalled in Table 1.

3.2. Datasets310

Starting from the overall group of selected pages, two different datasets were

created and involved in the first and the second phase of the workflow (that is,

the pretext task and the downstream one) respectively.

3.2.1. Pretext task dataset

As to the first stage of the process, indeed, the 8745 samples – organized315

in 24 classes corresponding to the available manuscripts – were randomly split

into training, validation and test sets according to the ratio 0.8-0.15-0.05 (equal

to 6986, 1302, and 457 pages respectively).

1Due to copyright issues on the original images, the preprocessed dataset is only available

upon request.
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Table 1: Number of useful pages, number of copyists, and final image size per manuscript.

Manuscript ID Number of pages Number of copyists Final image size

Vat. lat. 12910 69 0 510× 370

Vat. lat. 2669 132 0 1303× 894

Vat. lat. 3313 701 0 909× 609

Vat. lat. 3317 178 0 1061× 787

Vat. lat. 378 256 6 909× 565

Vat. lat. 3833 288 0 806× 627

Vat. lat. 3868 45 0 1098× 975

Vat. lat. 42 228 0 1441× 932

Vat. lat. 4217 873 3 1917× 1219

Vat. lat. 4220 411 8* 2054× 1302

Vat. lat. 4221 367 8* 2020× 1270

Vat. lat. 43 406 0 731× 400

Vat. lat. 4939 369 0 905× 468

Vat. lat. 4958 189 0 1008× 672

Vat. lat. 4965 304 2 1152× 809

Vat. lat. 5775 308 0 1170× 854

Vat. lat. 579 296 0 1666× 1006

Vat. lat. 588 261 0 654× 453

Vat. lat. 5951 310 3 1043× 682

Vat. lat. 620 240 0 998× 647

Vat. lat. 653 538 4 1279× 902

Vat. lat. 8487 1000 3 1260× 835

Vat. lat. 907 380 2 920× 626

Vat. lat. 9882 596 0 754× 386
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Figure 1: Preprocessing to remove unwritten borders.

3.2.2. Downstream task dataset

For the second and last phase of the workflow, only the annotated pages320

were selected from the overall corpus. As indicated in Table 1, 31 scribes were

identified in 9 manuscripts (Vat. lat. 4220 and Vat. lat. 4221 share the same

set of 8 copyists), even though 4 of them were not included in the experiments,

because only few lines (3 copyists from Vat. lat. 378) or corrupted pages (1

copyist from Vat. lat. 8487) were attributed to them. Therefore, the final325

dataset consists of 27 copyists and 3730 annotated pages (each one attributed

to a single scribe).

Having defined a subset of the initial corpus for the downstream task, the

available copyists were then split into an evaluation set (consisting of the 4

scribes from Vat. lat. 653, completely excluded from the training and validation330

stages of this task) and a background set (including the 23 remaining scribes).

The number of pages per scribe is recalled in Tables 2 and 3. The choice fell on

this partition both to preserve a sufficiently high number of scribes and a good

level of variability for the training stage, and to guarantee a meaningful subset

for the evaluation stage (thus containing a suitable number of copyists from the335
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Table 2: Number of pages per copyist (background set).

Copyist ID Number of pages

Vat. lat. 378 – 1 0 38

Vat. lat. 378 – 2 1 33

Vat. lat. 378 – 3 2 177

Vat. lat. 907 – 1 3 356

Vat. lat. 907 – 2 4 24

Vat. lat. 4217 – 1 5 97

Vat. lat. 4217 – 2 6 80

Vat. lat. 4217 – 3 7 160

Vatt. latt. 4220-4221 – 1 8 466

Vat. lat. 4220 – 2 9 44

Vat. lat. 4221 – 3 10 24

Vat. lat. 4221 – 4 11 75

Vat. lat. 4221 – 5 12 12

Vat. lat. 4221 – 6 13 84

Vat. lat. 4221 – 7 14 11

Vat. lat. 4221 – 8 15 61

Vat. lat. 4965 – 1 16 66

Vat. lat. 4965 – 2 17 94

Vat. lat. 5951 – 1 18 100

Vat. lat. 5951 – 2 19 96

Vat. lat. 5951 – 3 20 114

Vat. lat. 8487 – 1 21 854

Vat. lat. 8487 – 2 22 142

Total 3208
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Table 3: Number of pages per copyist (evaluation set).

Copyist ID Number of pages

Vat. lat. 653 – 1 0 42

Vat. lat. 653 – 2 1 58

Vat. lat. 653 – 3 2 202

Vat. lat. 653 – 4 3 220

Total 522

same manuscript). Finally, the background set was further randomly split into

training and validation sets – for hyperparameter optimization – according to

the ratio 0.8-0.2.

4. Proposed methodology

In this Section, the two main stages of the proposed methodology are pre-340

sented, alongside the different sets of perturbations or data augmentations ap-

plied to the images. The core idea of our work can be summarized as follows: as

far as the pretext task (the ancillary and preliminary task useful to learn good

data representations from unlabeled samples [16]) is concerned, a CNN-based

feature extractor (or encoder) is optimized to generate a representation of an345

instance, which should depend as much as possible on the invariant properties

of the instance with respect to a set of random perturbations. The above frame-

work is common to any self-supervised learning approach. The specificity of the

self-supervised learning strategy adopted in this work consists in training (with

unlabeled data only) the feature extractor to predict the Bag of Visual Words350

representation of an image given as input a perturbed version of that image [17].

It is worth pointing out that this framework is highly convenient in terms of gen-

eralization power, since it relies on a huge corpus of unlabeled data (which could

be increased indefinitely) and remains invariant to non-semantically important

perturbations of the data. Once self-supervised pretraining is completed, the355
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Figure 2: Online Bag of Visual Words (OBoW) reconstruction task.

encoder is involved in the downstream task, that is the real task of interest,

which corresponds, in our case, to handwriting identification, and is based on

the minimization of a triplet margin loss.

4.1. Pretext task

The BoW reconstruction task, shown in Figure 2, follows the essential lines360

described in [17]. In particular, a student encoder CNN S(·) – parameterized

by θS – learns image representations based on the BoW targets generated by a

teacher encoder T (·) – parameterized by θT (which are an exponential moving

average of θS [16], being updated at each training iteration according to θT ←

α · θT + (1 − α) · θS , where α is a momentum coefficient set to 0.99 in our365

experiments). Since the two networks share the same architecture, for both of

them a ResNet18-based model [91] was chosen.

4.1.1. Teacher encoder and vocabulary update

Differently from [17], in this case the teacher receives as input x′ a relatively

small portion of the whole sample x, that is a 380 × 380 random crop of the370

image (normalized through the mean and standard deviation of the training
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set), and extracts a feature map T l(x′) ∈ Rcl×hl×wl , of spatial size hl×wl with

cl channels, from its lth layer. The hl × wl cl-dimensional feature vectors are

then quantized over a continuously evolving vocabulary V = [v1, ...,vK ] of K

visual words of dimension cl, obtaining a hl×wl×K quantized feature map (in375

this work, K = 8192). The quantization process, indeed, assigns each feature

vector to the K words based on the respective squared Euclidean distances and

through soft-assignment codes, computed via Sinkhorn optimization [92], which

is a suitable strategy for facing the continuous update of the vocabulary of visual

words [17]. The soft-assignment operation depends on a temperature parameter380

δbase, which was set to 1
15 in our experiments. Then, the quantized feature map

is reduced to a K-dimensional BoW ỹT (x
′) by channel-wise max-pooling, and,

ultimately, converted into a probability distribution over the visual words yT (x
′)

by L1-normalization. The sequence of feature map quantization, channel-wise

max-pooling and L1-normalization is summarized by the BoW generator block385

in Figure 2. As far as the evolution of the vocabulary of visual words V is

concerned, the dictionary is treated as a K-sized queue of random features. In

particular, V is updated at each training step by replacing the B < K oldest

items in the queue with B feature vectors, each of which selected from an image

of the B-sized current mini-batch. As to the feature vector sampling strategy,390

the “local averaging” approach was chosen: given a feature map T l(x′), first it

is locally averaged with a 3× 3 kernel, then a feature vector is sampled from it

with uniform distribution.

4.1.2. Student encoder and data augmentation schemes

As to the student network, it receives as input a set of perturbed versions x̃395

of the image x, and it is trained to reconstruct the BoW representation yT (x
′)

produced by the teacher. Following [17], the data augmentation scheme was

specifically designed to produce instances with small (and even no) regions in

common with the target image x′, thus forcing the student network to focus on

high-level statistics to reconstruct yT (x
′) and to understand and learn spatial400

dependency between visual parts. Because of this, two kinds of crops were ex-
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(a) Examples of crops extracted through t ∼ T.

(b) Examples of patches extracted through

t′ ∼ T′.

Figure 3: Examples of input data provided to the student network S(·).

tracted from the page x through the data augmentation operators t ∼ T and

t′ ∼ T′ respectively, where T and T′ are two different augmentation families. In

particular, the first operator extracts two 270×270 random crops from x (which

cover, at most, ∼ 50% of x′ [17]), and then applies the following set of pertur-405

bations: radiometric perturbations (such as color jittering, random grayscale

conversion, and random inversion), Gaussian blur, random erasing, and mild

geometric distortions (such as random affine and random perspective transfor-

mations), to preserve the most important geometric features of the handwriting

style. The second operator t′, instead, applies the same set of perturbations as410

t to a 256 × 256 region of x (but with slightly different parameters), and then

extracts from the obtained image five partially overlapping 150 × 150 patches

(each patch covering, at most, ∼ 16% of x′ [17]). All the obtained crops – which

can be referred to as x̃ = t(x)∪t′(x) – are then normalized according to the same

statistics as the target image x′. In Figure 3, some examples of crops obtained415

through the two augmentation schemes are shown (without normalization).

After the crop and patch generation stage, the student encoder extracts C

global vector representations S(t(x))[c] ∈ R512, c = 1, ..., C from the C crops,

and P global vector representations S(t′(x))[p] ∈ R512, p = 1, ..., P from the P
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patches. Then, a linear-plus-softmax layer is applied to S(x̃) = S(t(x))∪S(t′(x))420

to obtain the (C+P ) K-dimensional vectors yS(x̃) = yS(t(x))∪yS(t′(x)), which

are the predicted softmax probabilities of the target yT (x
′). Hence, the training

loss that is minimized for a single image x is obtained by composing the cross-

entropy losses between the softmax distributions yS(x̃) predicted by the student

from x̃ and the BoW distribution yT (x
′) according to Equation 1:425

CE(yS(x̃), yT (x
′)) = − 1

C

C∑
c=1

K∑
k=1

yT (x
′)[k] log(yS(t(x))[c][k])

− 1

P

P∑
p=1

K∑
k=1

yT (x
′)[k] log(yS(t

′(x))[p][k]) (1)

It is worth recalling that the weights of the linear-plus-softmax layer applied

to S(x̃) are not fixed, but they are updated following the vocabulary of visual

words V : a generation network G(·), indeed, takes as input V at each training

step and produces the prediction weights. This dynamic form of BoW predic-

tion depends on a parameter κ, which equally scales the magnitudes of all the430

predicted weights and was fixed to 8 in our experiments.

4.1.3. Multi-level feature extraction

With the aim of forcing the student encoder to learn richer and more pow-

erful representations, the previously exposed methodology includes multi-scale

BoW reconstruction targets, as explicitly suggested by [17]. Hence, two feature435

maps T l(x′), l = {L − 1, L} are extracted by the teacher encoder, with L − 1

corresponding to the penultimate layer of ResNet (conv4) and L to the last

layer (conv5). As a consequence, a separate vocabulary of size K = 8192 is

used for each layer, as well as two different weight generation networks. As to

the loss CE(yS(x̃), yT (x
′)), each of the two addends is obtained by averaging440

the two corresponding terms computed for layers L− 1 and L.
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4.2. Downstream task

As previously anticipated, the downstream task (represented in Figure 4)

consists in handwriting identification by minimizing a triplet margin loss [23],

which can be seen as learning a distance function useful for discriminating in-

stances belonging to different classes in the embedding space, and able to gen-

eralize to never seen copyists and to produce well-separated clusters [24]. For

this purpose, the frozen features of the pretrained student encoder Ŝ(·) (based

on a ResNet18 architecture, with an adaptive average pooling layer at the end

of the last convolutional block) are used; in other words, the backbone model

weights are not updated at this stage. In details, Ŝ(·) receives as input a batch

of B samples and, for each sample x′ (which is a perturbed version of the image

x, according to the augmentation scheme discussed below), it extracts a global

vector representation Ŝ(x′) ∈ R512. Thereafter, a linear layer L(·) – added

to the pretrained backbone encoder Ŝ(·) – is trained to extract more powerful

representations or embeddings L(Ŝ(x′)) ∈ Rk of x′ with respect to the task of

interest (k, that is the embedding width, is a hyperparameter of the problem).

The B embeddings obtained are normalized and finally combined into triplets.

A triplet consists of an anchor a, a positive p, and a negative n sample, where

the anchor belongs to the same class as the positive, and the negative to a dif-

ferent one [93, 94]. For some distance function d(·) on the embedding space, we

can define the triplet margin loss [22, 94] of the triplet (a,p,n) as:

TL(a,p,n) = max(d(a,p)− d(a,n) +m, 0) (2)

where m is a predefined margin (which is another hyperparameter of the opti-

mization problem). The triplet margin loss minimization is then equivalent to

making d(a,p) smaller than d(a,n) by a predefined margin m, or, alternatively,445

to pushing similar instances closer while dividing dissimilar ones as much as

possible.

According to the implementation of the triplet margin loss exploited in [93],

for each batch of B embeddings, the loss is computed as an average over just

a subset of all the possible triplets (which amount to B3), created through a450
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Figure 4: Handwriting identification downstream task, carried out both in mode A (with

random crops extracted from the pages) and B (fully convolutional neural network applied

to the whole pages).
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mining strategy (i.e., the process of finding the best triplets to train on [94]).

Indeed, using all the possible combinations can consume a lot of memory, and,

theoretically, has the tendency to include a large number of less informative

triplets, causing performance to plateau quickly [94]. To overcome this issue,

we opted for the online batch-hard triplet mining solution, represented through455

the corresponding block in Figure 4. According to this approach, the valid

triplets only (i.e., triplets where the first and the second element fall into the

same class, while the third one belongs to a different class) are first considered.

Then, for each anchor, the hardest positive and the hardest negative sample

(which provide, respectively, the highest distance d(a,p) and the lowest distance460

d(a,n) within the batch) are selected. This way, we rely essentially on moderate

triplets for the loss computation, since they are the hardest within a small subset

of the dataset, obtaining the optimal configuration for this kind of task [24, 93].

As to the pairwise distance function d(·) involved in the triplet margin loss

computation, the L2 norm was chosen.465

4.2.1. Data augmentation schemes – downstream task

In conclusion, the downstream task was carried out based on two mutually

exclusive data augmentation schemes – indicated as A) and B) in Figure 4. The

first scheme involves a transformation td ∼ Td, which first extracts a random

380 × 380 crop from the page x, and then applies the same set of perturba-470

tions as t ∼ T to the crop. Finally, the resulting images are normalized based

on the statistics computed for the downstream task training set, obtaining x′.

Scheme B), instead, incorporates from [95] the concept of “fully convolutional”

networks that take input of arbitrary size, and applies through the operator

t′d ∼ T′
d the same set of perturbations (plus normalization) as t ∼ T (but with475

different parameters) to the whole page x. Because pages coming from different

manuscripts have different sizes, however, the data augmentation chain is pre-

ceded by a central crop which equalizes the height and width of all images to the

minimum values of page height and width across the dataset. Notwithstanding,

the k-dimensional embedding L(Ŝ(x′)) is representative of a much wider portion480
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of the original page x than scheme A).

5. Experiments and results

The following Section deals, firstly, with the choice of the optimization hyper-

parameters, both for the pretext and for the downstream task, and with the for-

mal definition of a suitable performance metric. Secondly, the results obtained485

in terms of handwriting identification – through the proposed methodology and

the baselines, respectively – will be presented, with the aim of demonstrating

the benefits of self-supervised pretraining for the task of interest. Then, further

aspects related to the pretext task and the tests in general will be discussed.

5.1. Experimental setup490

All the experiments reported here were carried out using a Tesla V100 SXM2

32GB GPU, and involved a ResNet18-based architecture2.

As to the BoW reconstruction task, in addition to the parameters mentioned

in Subsection 4.1, the following choices were made in terms of optimization

(after the execution of preliminary tests): the student encoder was trained for495

100 epochs; the batch size (which affects the queue-based vocabulary update)

was fixed to 64; finally, we made use of Stochastic Gradient Descent (SGD)

with learning rate set to 0.03, and progressively adjusted up to the final value of

0.00003 through a cosine scheduler with an initial warmup of 5 epochs. Overall,

the pretraining stage lasted approximately 28 hours. At the end of each training500

epoch an online monitoring of the teacher features and an online validation were

also performed, both conceived as a linear classification over the 24 classes, and

quantified through the top-1 accuracy metric. Moreover, both the operations

involved the samples contained in the pretext task validation set (in this case,

the model just receives the 380×380 crops with no perturbations, but normalized505

according to the training set mean and standard deviation).

2At https://github.com/L9L4/HI-SSL the code used for the experiments is available.
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As to the handwriting identification task, it was faced based on both the

augmentation schemes A) and B), considering 3 different configurations and

thus ending up with 6 tests in total:

1. a linear layer was trained on top of the frozen backbone model pretrained510

with OBoW;

2. a linear layer was trained on top of the ImageNet frozen features (also in

this case, a ResNet18 backbone encoder – but pretrained on the ImageNet

dataset – was used);

3. a model initialized with random weights (but characterized by the same515

architecture as the other two cases) was fully trained from scratch directly

on the downstream task using the same setup as Subsection 4.2, without

self-supervised pretraining.

For all the 6 tests, the following experimental setup was adopted: the output

dimension of the linear layer (embedding width) was fixed to 1024, while the520

marginm of the triplet margin loss was set to 0.2, based on the value suggested in

[23]. The model was trained for 100 epochs with SGD optimization: the learning

rate, starting from 0.15, was increased up to 0.6 through a linear warmup for

the first 10 epochs, and then decayed with a cosine annealing up to 0.0015. As

to the batch size, it was set to 256 for the tests carried out under the data525

augmentation scheme A), and to 32 for scheme B). These choices correspond

to the maximum batch size values allowed for the two configurations and for the

single GPU specified above: ensuring a high value of this parameter is indeed of

great importance to generate many combinations and thus to identify significant

triplets to learn from. The whole set of tests lasted approximately 6 days and530

19 hours.

5.2. Performance evaluation

To quantitatively assess the performance of the models obtained, the Mean

Average Precision (MAP) was used. This metric, indeed, is characterized by

especially good discrimination and stability [96]. Specifically, for each test:535
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• the model corresponding to the minimum validation loss during training

was chosen;

• this model was used to extract the embeddings starting from the samples

contained in the evaluation set – more precisely, for case B) the model

receives the normalized pages as input, while for case A), for each sample,540

it receives ten normalized 380 × 380 random crops extracted from the

image (similarly to one of the augmentation protocols for evaluating the

performance at test time described in [97]), and produces ten embeddings

that are averaged to obtain a single vector, better suited to represent the

whole page and to minimize the variability of the single crops;545

• for the ith embedding from class j (j = 1, ..., J), the K-Average Precision

P (i,j)@K = 1
nj−1

∑K−1
k=1 P (Rik) was computed, where K is the number of

samples in the evaluation set, nj is the number of instances belonging to

class j, and P (Rik) =
∑k

p=1 1(R
(p)
ik =j)

k is the precision associated to Rik,

with Rik the set of ranked retrieval embeddings from the closest up to the550

kth closest to the ith embedding from class j [96], and 1(R
(p)
ik = j) the

indicator function computed for the pth element of Rik;

• the average of the K-Average Precision values was calculated, both by

class – MAPj = 1
nj

∑nj

i=1 P
(i,j)@K – and on the entire evaluation set –

MAP = 1
K

∑J
j=1 nj ·MAPj .555

5.3. Handwriting identification

In Table 4, the results obtained for each test in terms of Mean Average Preci-

sion are shown3. In particular, it is immediately evident that the self-supervised

learning based approach is far more effective for the task of interest than mak-

ing use of the representations learned from ImageNet, or training from scratch560

3As to the background scribes, the same accuracy assessment as the evaluation ones –

described in Subsection 5.2 – was carried out; this time, however, the model corresponding

to the minimum training loss was chosen, and the metric was computed based on half of the

training set images, to speed up the computation.
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Table 4: Performance obtained for the handwriting identification task for the 6 tests, with

respect to the Mean Average Precision metric.

Test
Pretraining Mode Scheme

MAP MAP

ID Background Set Evaluation Set

0 OBoW Transfer learning B) 74.8* 72.0

1 ImageNet Transfer learning B) 69.7 64.9

2 - Training from scratch B) 60.8 58.8

3 OBoW Transfer learning A) 71.7 79.0*

4 ImageNet Transfer learning A) 63.7 67.5

5 - Training from scratch A) 48.5 59.1

a new model initialized with random weights, under both the A) and B) data

augmentation schemes. This is true, indeed, both for the background scribes

and for the copyists used in the evaluation phase, to test the generalization ca-

pacity of the model, achieving, respectively, a MAP of 74.8% for the background

set – obtained under the B) scheme – and of 79.0% for the evaluation set – A)565

scheme4. It is worth noticing how, under the A) scheme, the obtained mod-

els seem to perform worse on the background set than on the evaluation one.

Moreover, despite under-performing on the same set of 23 scribes with respect

to scheme B), they seem to show a better generalization power (indicated by the

higher values of MAP for the evaluation set). This fact can be attributed to the570

great variability of new samples produced with the data augmentation of type

A), which, for each image, returns new 380× 380 random crops from epoch to

epoch, while, on the contrary, the other configuration allows the model to just

focus on perturbed versions of the same pages, which however keep constant the

invariant properties of the original instances.575

In Figures 5, 6, 7, 8, 9, and 10, it is possible to visualize the 2D projec-

tion of the embeddings of both the background and the evaluation set (together

4The best model with respect to the validation loss for test 3 – producing the

highest MAP for the evaluation set – is available at https://github.com/L9L4/HI-

SSL/blob/main/model/checkpoints 3/Test 3 TL val best model.pth.
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(a) Background set. (b) Evaluation set.

Figure 5: 2D t-SNE visualization of the embedding distribution for test 0 – OBoW

pretraining, augmentation scheme B).

with the respective cluster centroids), after dimensionality reduction through

the t-SNE technique [98]. In details, Figures 5 and 8 refer to the embeddings

produced after OBoW pretraining, under the augmentations schemes B) and580

A) respectively; Figures 6 – scheme B) – and 9 – scheme A) – refer to the

embeddings produced after ImageNet pretraining; finally, Figures 7 and 10 re-

fer to the embeddings produced after training the model from scratch – based,

also in this case, respectively on B) and A) schemes. The embedding 2D

projections further confirm the superiority – for the task of interest – of an ap-585

proach based on self-supervised learning over the baselines considered (transfer

learning from ImageNet features and training from scratch), since the clusters

obtained are more easily distinguishable.

More specifically, if we focus on the background set (Figures 5a, 6a, 7a, 8a,

9a, and 10a), we can notice some differences from manuscript to manuscript590

(apart from test 5, which performs clearly worse than any other test, as visible

in Figure 10a). Particularly, it is worth highlighting that, for Vat. lat. 378

– scribes 0-2 – and Vat. lat. 907 – scribes 3-4, the proposed methodology

(Figures 5a and 8a) is able to produce better clusters than the corresponding
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(a) Background set. (b) Evaluation set.

Figure 6: 2D t-SNE visualization of the embedding distribution for test 1 – ImageNet

pretraining, augmentation scheme B).

(a) Background set. (b) Evaluation set.

Figure 7: 2D t-SNE visualization of the embedding distribution for test 2 – training from

scratch, augmentation scheme B).
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(a) Background set. (b) Evaluation set.

Figure 8: 2D t-SNE visualization of the embedding distribution for test 3 – OBoW

pretraining, augmentation scheme A).

(a) Background set. (b) Evaluation set.

Figure 9: 2D t-SNE visualization of the embedding distribution for test 4 – ImageNet

pretraining, augmentation scheme A).
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(a) Background set. (b) Evaluation set.

Figure 10: 2D t-SNE visualization of the embedding distribution for test 5 – training from

scratch, augmentation scheme A).

baselines; for Vat. lat. 4965 (scribes 16-17), Vat. lat. 5951 (18-20), and Vat.595

lat. 8487 (21-22), instead, the performance between OBoW (Figures 5a and

8a) and ImageNet pretraining (Figures 6a and 9a) is comparable, but generally

higher than training from scratch (Figures 7a and 10a). Finally, the subset of

manuscripts including Vat. lat. 4217, Vat. lat. 4220, and Vat. lat. 4221 proved

difficult for all the approaches (even if, also in this case, the MAP computed600

for tests 0 and 3 is higher than the corresponding baselines); these particularly

complex cases will be discussed in Subsection 5.5.

If we consider, instead, the embedding projections for the evaluation set

obtained through scheme B) – Figures 5b, 6b, and 7b, we can say that self-

supervised pretrainig positively affects the generation of well-separated clusters605

with respect to both test 1 and (to a greater extent) 2; indeed, for test 2 (Figure

7b), it is possible to see a small overlap between scribes 1 and 3 (which are clearly

separated in the other two cases), and also between scribe 2, part of the samples

from scribe 3, and scribe 0 (which is practically indistinguishable from the other

two). The situation is almost identical for scheme A) – Figures 8b, 9b, and 10b:610

the only small difference emerges when comparing tests 0 and 3 (Figures 5b and
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8b), both resulting from OBoW pretraining, since scheme A) ensures a clearer

separation between scribes 2 and 3.

5.4. OBoW pretraining

For the OBoW reconstruction task, as anticipated at the beginning of Sub-615

section 5.1, an online monitoring of the teacher features and an online validation

were carried out during training, based on the top-1 accuracy metric. The evo-

lution of the top-1 accuracy is represented in Figure 11: the maximum top-1

accuracy for the teacher network (97.0%) was achieved at the 94th epoch, while

the maximum validation top-1 accuracy (96.9%) at the 88th epoch. In Figures620

12a and 12b, some examples of visual word members from the vocabularies in-

volved in the multi-level feature extraction are shown. In particular, each shown

line is associated to a visual word, and contains the 8 image patches (retrieved

from the pretext task dataset) with the highest assignment score for that word

(based on the state of the vocabulary at the end of training).625

5.5. Discussion

The main advantage of the proposed methodology consists of extracting

high-level visual representations from a large quantity of raw manuscripts to ul-

timately obtain a system capable of performing handwriting identification more

effectively, even for manuscripts excluded from training for this specific task.630

The importance of such a methodology is linked to the consideration that, at

the present time, one of the critical aspects in deep learning research is the def-

inition of strategies that minimize the costs of annotating data, and therefore,

essentially, the amount of data needed to train models on. With respect to the

issue of scarcity of annotated data, the validity of the workflow discussed in this635

contribution is highlighted by considering the difference in terms of Mean Av-

erage Precision from possible alternative solutions: as to the A) configuration,

OBoW pretraining outperforms the concurrent baselines (provided by tests 1

and 2) by ∼ 5% and 14% on the background set respectively, and by ∼ 7% and

∼ 13% on the evaluation set; as to the B) configuration, instead, it outperforms640
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Figure 11: Evolution of the training and validation top-1 accuracy for the OBoW

reconstruction task.
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(a) Visual word members from the vocabulary

associated with ResNet18 layer L − 1 (conv4).

(b) Visual word members from the vocabulary

associated with ResNet18 layer L (conv5).

Figure 12: Examples of visual word members from the vocabularies involved in the

multi-level feature extraction.

the baselines (provided by tests 4 and 5) by 8% and 23% on the background

set, and by ∼ 11% and ∼ 20% on the evaluation set. These results are par-

ticularly encouraging in extending the proposed method to any non-annotated

manuscript which, once involved in the pretext task, can then be partitioned

through zero-shot learning.645

At present, however, an explainability analysis of the methodology has not

been executed, so it cannot be established with certainty whether the features

extracted from the image crops have any connection with those used by paleog-

raphers for handwriting identification. Consequently, this approach could not

constitute a tool of immediate use, but rather an input to direct the scholar’s650

work. In conclusion, a critical aspect that is worth considering in the analysis

of the results is certainly the class imbalance. If we consider Figures 13 and 14,

which compare the relative frequency of the copyists and the MAP per class

for test 3, however, we fail to observe a clear correlation between the class fre-

quency and the value of the metric. Rather, we observe lower values of MAP655
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Figure 13: Class frequency distribution compared to the Mean Average Precision computed

for the copyists of the background set (test 3).

for some scribes (5-7, 9-14) coming from very specific manuscripts (Vat. lat.

4217, Vat. lat. 4220, and Vat. lat. 4221). This could be explained by the fact

that these 3 manuscripts constitute a particularly complex subset, since the

copyists who realized them aimed for the maximum handwriting uniformity:

thus, the representations extracted from the model, generally sufficient for the660

other manuscripts, might have been unsuitable to grasp the set of discriminating

elements valid for this subgroup.

6. Conclusion

In this paper, we focused on the automatic handwriting identification task for

medieval manuscripts, that is the problem of partitioning a manuscript among665

the copyists who realized it, in the face of the scarcity of large and annotated

datasets due to the incredible complexity and amount of time of the labeling

process, one of the main factors which hindered the application of deep learn-

35



Figure 14: Class frequency distribution compared to the Mean Average Precision computed

for the copyists of the evaluation set (test 3).

ing techniques to this domain. Specifically, we provided, to the best of our

knowledge, the first empirical validation of the self-supervised framework in the670

medieval and modern manuscript domain, assessing its capability to learn effec-

tive visual representations from a large amount of raw data (that is, the large

number of unlabeled digitized manuscripts involved in this study) and then to

build a solid starting point for the task of interest, which can be performed

based on just a few (and even zero) labeled samples, and with higher preci-675

sion. The proposed approach was compared with two common setups, namely

the network initialization with general-domain (ImageNet) features, and train-

ing the full model from scratch, and it turned out to significantly outperform

both the baselines, also from a generalization power point of view (which is

encouraging in extending the method to other unlabeled manuscripts). Among680

the main results of this work, we can also mention the creation of an original

dataset consisting of 24 sufficiently homogeneous manuscripts from the Vatican
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Apostolic Library, including 31 different copyists. Lastly, even if the benefits

of self-supervised learning for digital paleography were assessed for the specific

task of handwriting identification only, this work naturally lends itself to be ex-685

tended to many other paleographic problems, such as automatic transcription

or text detection: the outlook in this regard is very promising, as suggested by

the success of self-supervised learning in a wide range of computer vision tasks

[99].

Regarding possible future developments, an explainability analysis of the690

methodology could be carried out, to try and understand whether the features

used to automatically distinguish different copyists have any connection with

those used by paleographers for the handwriting identification task. At present,

indeed, it is not possible to highlight which parts of a page contribute most to

the assignment of that page to a given scribe: the solution of this “black box”695

effect of our methodology is a key step in making it actually useful and usable

for scholars. Nonetheless, we must recall that this aspect might depend on the

fact that our self-supervised learning strategy is actually quite generic (i.e., task-

agnostic), which is, however, a big advantage from a computational/practical

point of view. Another potential analysis in terms of explainability includes700

testing the Visual Probing approach suggested by [100], where a simple classifier

verifies if the visual representations encode a particular property/concept, even

though this property was not a direct training objective. Moreover, the subset

of scribes whose identification was most difficult will be analyzed in depth, in

order to determine the necessary adjustments to the model to extract useful705

features even in complex cases like this, or to test the inclusion of linguistic

features (such as abbreviations) into the pipeline, alongside the visual ones. In

addition to these drawbacks (that is, the “black box” effect and the insufficient

representations obtainable for complex sets of scribes), it is worth highlighting

at least another limitation of the proposed methodology: currently, it is unable710

to tackle the problem of multigraphism, that is it cannot identify a single scribe

writing entirely different scripts [101]. Despite the complexity of this sub-task,

it is of considerable interest in the context of digital paleography, given the
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frequent attestations of multigraphism in ancient documents [101].

As far as future research opportunities are concerned, a wider experimental715

setup will be investigated, by considering different metric learning losses and

data augmentation schemes, as well as testing new sets of hyperparameters and

architectures – as an alternative to standard Computer Vision models we can

mention, for example, Vision Transformers (ViT, [102]) or MLP-Mixer [103],

which however require to significantly increase the dataset size with respect to720

the case study considered in this work. Another research topic which is worth

mentioning for future works is the so-called “model compression”, which consists

of the efficient compression and execution of deep neural networks, without

significantly compromising accuracy [104], allowing to transfer heavy models

to apps on smartphones but also to perform efficient on-device learning [105],725

thus making these tools even easier to use for paleographers. Several solutions

could be tested in this sense, such as tensor decomposition, data quantization,

network sparsification [104, 106], and even knowledge distillation [107], where

a small student model is trained to mimic (and thus to absorb the knowledge)

of a heavy (trained) model. In this regard, it is worth noticing that our self-730

supervised approach already employs a pair of student-teacher networks, which

are used, however, for a different purpose. Finally, it is known that powerful

scaling laws exist for self-supervised learning models. In this sense, leveraging

such techniques at larger scale (by creating wider corpora of unlabeled data)

could provide the starting point for a domain-specific “foundation model” (in the735

sense of [108]), similar to BERT [109] and GPT [110] models in NLP research,

freely exploitable by any researcher interested in solving a digital paleography

task with scarce labeled data.
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[11] M. Popović, M. A. Dhali, L. Schomaker, Artificial intelligence based writer

identification generates new evidence for the unknown scribes of the Dead

Sea Scrolls exemplified by the Great Isaiah Scroll (1QIsaa), PloS one 16 (4)

(2021) e0249769.805

[12] Biblioteca Apostolica Vaticana, Website of the Biblioteca Apostolica Vat-

icana, https://www.vaticanlibrary.va/en/.

[13] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for

contrastive learning of visual representations, in: International conference

on machine learning, PMLR, 2020, pp. 1597–1607.810

[14] W. Falcon, K. Cho, A framework for contrastive self-supervised learning

and designing a new approach, arXiv preprint arXiv:2009.00104.

[15] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, M. Cord, Learning rep-
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