
  

 

Abstract— The application of Hybrid Brain-Computer 

Interfaces (BCI) for post-stroke hand motor rehabilitation 

requires the investigation of new electromyographic (EMG) 

features, potentially able to identify pathological synergies to be 

discouraged. Inter-muscular coherence (IMC) is gaining 

attention as a descriptor of the mechanisms behind abnormal 

motor control in stroke patients. With the ultimate goal to 

exploit IMC features to control BCIs, this work aims at (a) 

characterizing finger extension and grasping tasks by IMC 

features, (b) assessing IMC feature performance in classifying 

different conditions. Classification results (accuracy equal to 

0.81 ± 0.19) pave the way for IMC feature application in hybrid 

BCI control.  

 

I. INTRODUCTION 

Stroke is one of the leading causes of long-term disability 
[1]. Depending on the brain lesion location and extension, it 
can result in a wide range of motor deficits impacting on the 
ability of stroke survivors to carry out daily living activities 
[2]. The most common deficit remains hemiparesis of the 
upper limb. Muscle weakness, changes in muscle tone, and 
impaired motor control induce disabilities in common 
activities such as reaching and picking up objects [3], 
decreasing survivors’ quality of life. Technology-based 
approaches [4] have been proposed to return independence 
to stroke subjects, promoting the evidence-based, 
personalized rehabilitation and allowing also to increase 
therapy’s intensity whilst reducing time and resources 
allocated. Electroencephalographic (EEG) and 
electromyographic (EMG) techniques may reveal, 
respectively, brain and muscle patterns elicited by a given 
rehabilitative exercise, allowing to assess the post-stroke 
recovery by means quantitative and objective measures. 
EEG-based Brain-Computer Interfaces (BCI) which record, 
decode, and translate into a real-time feedback the brain 
activity, have already been demonstrated as contributing to 
significantly better motor functional outcomes in stroke 
patients with severe motor impairments of the upper limb 
[5]. Hybrid BCI approaches have been already explored 
combining residual EMG activity and motor-related brain 
activation in order to provide a contingent reward which 
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aims at re-establishing the link between the central nervous 
system and the periphery that is disrupted by the stroke [2]. 
From the muscular side, promoting the motor function 
recovery requires to reinforce muscular patterns that most 
resemble the physiological activation, that is to discourage 
pathological synergies, abnormal muscle activation, co-
activation [6], antagonist hyperactivity, spasticity and 
muscle weakness that patients often experience after stroke. 
To this aim, research efforts are still needed to identify 
potential EMG features that significantly encompass such 
pathological changes. Inter-muscular coherence (IMC) is 
gaining attention as descriptor of the mechanisms behind  
abnormal motor overflow in stroke patients [7]. At the state 
of the art tasks such as reaching [8] and elbow flexion [7] 
have been characterized by IMC features in stroke 
population. In this work, we investigated IMC on simple 
hand tasks, most commonly employed within BCI contexts 
(e.g. hand opening and closing). Before addressing the issue 
in stroke patients, we analyzed EMG data from healthy 
subjects from multiple muscles in a wide frequency range. 
This study aims at exploring simple tasks (i.e. hand finger 
extension and grasping) in a population of healthy subjects 
in order to a) characterize the relevant frequency and spatial 
IMC features extracted from EMG data collected by twelve 
upper limb muscles and b) investigate IMC ability in 
discriminating between task (i.e. finger extension and 
grasping) and rest conditions.  

II. MATERIALS AND METHODS  

A. Participants   

Twenty healthy volunteers (9 females/11 males, age 27.8 
± 2.4 years), all right-handed and with no previous history of 
neuromuscular disorders, have been enrolled in the study. All 
subjects were informed of the experimental protocol and gave 
their informed consent to the study, conducted in agreement 
with the principles outlined in the Declaration of Helsinki.  

B. Data Collection and Experimental Protocol  

EMG data were collected, sampled at 2400 Hz and 
recorded by the g.HIamp amplifier (g.tec medical 
engineering GmbH Austria). EMG signals were recorded 
from twelve muscles (six for each side): extensor digitorum 
(ED), flexor digitorum superficialis (FD), triceps (TRI), 
biceps brachii (BIC), lateral deltoid (DELT), pectoralis major 
(PEC). Three maximum voluntary contractions were 
recorded for each muscle before the session. During the 
acquisition all subjects were seated in a comfortable chair 
with their forearms on the armrests. Visual cues were 
presented on a screen in front of the subject. Subjects were 
instructed to perform two tasks: finger extension (Ext) and 
grasping (Grasp), separately executed in a randomized order 
with both right and left hand. Each task was repeated twice 
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for a total of eight recordings. Each recording comprised 
thirty repetitions (trials) of the task. The total trial duration 
was 7s with an inter-trial interval of 3.5 s. For each trial, in 
the first 3s subjects were invited to rest, then after the visual 
stimulus they had to gradually extend their fingers or grasp 
taking all remaining 4s.  

C. Data Analysis  

EMG data were down-sampled at 1000 Hz, band-passed 
filtered [3 500]Hz with a Butterworth zero phase filter and 
notch filtered at 50Hz to remove the power-line interference. 
Data were segmented in trials lasting 7s (3s of rest and 4s of 
task) and for each trial the windows [0 2]s and [4 6]s were 
defined as windows representing rest and task conditions, 
respectively. For each muscle, all trials (separately for task 
and rest conditions) were concatenated, resulting in a matrix 
[(2s x 60 trials) x 12 muscles]. For each condition and 
possible couple of muscles, the IMC was computed using 
the Matlab R2019b (The MathWorks, Inc., Natick, 
Massachusetts, USA) built-in function mscohere (1s window 
length and no overlap).  IMC values were filtered by the 
chance level defined according to the equation in [9] (α 
=0.01, False Discovery Rate (FDR) correction). Frequency 
bands were defined according to the literature until 60 Hz 
and in steps of 50 Hz until 500 Hz: [6 12]Hz, [13 30]Hz, [31 
60]Hz, [61 100]Hz, [101 150]Hz, [151 200]Hz, [201 
250]Hz, [251 300]Hz, [301 350]Hz, [351 400]Hz, [401 
450]Hz, [451 500]Hz. For each frequency band, the 
maximum IMC value and its frequency (Hz) were extracted 
from data of task condition. For the rest condition, the IMC 
value at the peak frequency of task condition was 
considered.  

Seventeen subjects were included in the following 
analysis. Three subjects were excluded due to artefacts. 
Moreover, signals recorded from the pectoralis major 
muscles (both left and right side) were excluded because of 
the electrocardiographic signal contamination.   

D. IMC pattern characterization  

For each task (Ext with the left hand, ExtL; Ext with the 
right hand, ExtR; Grasp with the left hand, GraspL; Grasp 
with the right hand, GraspR), couple of muscles and 
frequency band, IMC weights were compared across 
subjects between task and rest conditions (paired t-test, 
α=0.01 FDR correction). The outcomes in form of patterns 
of significant t-values were visualized (see following 
figures). 

E. IMC Classification 

For each task (ExtL, ExtR, GraspL, GraspR) a classification 
model based on IMC features was built to evaluate the 
ability of IMC features in discriminating task and rest 
condition (binary classification), relevant in view of 
targeting the stroke population. For each subject the feature 
vector consisted of the IMC values computed for each 
couple of muscles and frequency band [792 features=66 
muscle couples x 12 bands]. Since the feature vector 
included IMC values for (i) couples of muscles belonging to 
the upper limb involved in the movement, to the 
contralateral upper limb and couples of muscles belonging to 
right and left upper limb, (ii) all frequency bands in the 
EMG spectrum, different types of spatial and frequency 

constraints were tested. Concerning spatial constraints, two 
scenarios were considered: (1) all couples of muscles and (2) 
couples of muscles belonging to the upper arm involved in 
the movement (e.g. right side muscles if the movement was 
ExtR or GraspR). Concerning the frequency constraints, 
three scenarios were considered: (1) features belonging to all 
(twelve) frequency bands, (2) features belonging to the low 
frequency bands [6 150]Hz, (3) features belonging to the 
high frequency bands [151 500] Hz. For each of the possible 
feature domains (6 scenarios = 2 types of spatial constraints 
x 3 types of frequency constrains), in order to further reduce 
the feature domain dimension and identify significant 
features, a feature selection algorithm (stepwise linear 
discriminant analysis [10] with input model empty and 
maximum number of features set equal to 2 was applied 
before building the classification model. A support vector 
machine classifier with a linear kernel was implemented as 
classification model in the framework of a leave-one 
(subject) out cross-validation. Specifically, for each iteration 
(iterations equal to the number of participants) IMC weights 
of a single subject were the testing dataset, while the 
classifier was trained with data of all other subjects. For each 
iteration the classification accuracy was computed. To 
investigate differences among constraints (2 spatial 
constraints and 3 frequency constraints) imposed to the 
global feature matrix [num of subjects x 792 features], for 
each task (ExtL, ExtR, GraspL, GraspR) classification 
accuracies (dependent variables) were analyzed by the 
repeated measure two-way analysis of variance (ANOVA). 
Spatial constraint and frequency constrain were the two 
factors (independent variables) of the analysis. The Tukey 
HSD post hoc analysis was applied to assess pairwise 
differences. The threshold for statistical significance was set 
to p<0.05. Results are presented as mean ± standard error 
(SE) across subjects. 

III. RESULTS 

A.  IMC pattern characterization 

The results of the statistical comparison between task and 
rest conditions in the frequency band ranging from 101Hz to 
150Hz are shown in Fig.1 (ExtL panel a, GraspL panel b). 
For the task ExtL (Fig.1 panel a) significant connections 
(IMC higher in task than in rest condition) mainly involve the 
couples of muscles of the left upper limb as ED-FD, ED-TRI 
and FD-TRI. The statistical comparison points out significant 
connections also in the contralateral upper limb (i.e. right) for 
the couples ED-FD, ED-TRI, BIC-TRI. Significant 
connections mainly among muscles of the left upper limb are 
as well shown for the GraspL task (Fig.1 panel b). The 
couples of muscles ED-FD, FD-TRI, BIC-TRI and DELT-
BIC result as those having the highest t-values. As observed 
for the ExtL, contralateral connections involve ED-FD and 
FD-TRI. However, some connections could be false 
positives, as well-known in the using of bivariate estimators. 
Same characterizations were obtained for all frequency bands 
and tasks. All of them have three main common points: no 
connections are highlighted in the frequency band [6 12]Hz; 
the connection ED-FD of the upper limb involved in the 
movement is unvarying among tasks and bands; going up in 
the frequency bands the number of connections increases 
both between left and right muscles and among muscles of 
the contralateral side to that of the task. 



  

 

Figure 1. Inter-muscular coherence grand average patterns (17 healthy subjects) obtained from the statistical comparison (paired t-test, α=0.01, False 
Discovery Rate correction) between left hand finger extension and rest condition (panel a) and between left hand grasping and rest condition (panel b). 
Positive t-values describe inter-muscular coherence values higher in task than in rest condition. Negative t-values describe inter-muscular coherence values 
higher in rest than in task condition. Frequency band ranges from 101Hz to 150 Hz.  

B. IMC classification  

Fig. 2 shows for each task and scenario (combination 
among spatial and frequency constraints) the classification 
accuracies, presented in a bar chart as average and standard 
error across subjects. Results reveal the ability in 
discriminating task and rest conditions with performances 
higher than 75% even not considering any spatial or 
frequency constraint. However, applying the constraints 
increases performances. Statistical analysis results are 
presented in Table 1. The repeated measures two-way 
ANOVA highlights  significant differences for the factor 
frequency constraint in task GraspL and GraspR. The post-
hoc analysis applied to the significant factor points out 
differences (i) between low frequency bands and high 
frequency bands and between low frequency bands and no-
applied constraints for the task GraspL, showing poorer 
classification performance in low frequency bands (0.59) 
than in high frequency bands (0.90),  and (ii) between low 
frequency bands and high frequency bands for the task 
GraspR. Although not statistically significant, the trend of 
classification performances for Ext task seems to be opposite: 
poorer performance (0.79) in high frequency bands than in 
low frequency bands (0.88).  

DISCUSSION AND CONCLUSION 

This study takes place in the context of the exploration and 
designing of new EMG features to control a hybrid BCI 
system for hand rehabilitation after stroke. The target of that 
hybrid BCI system is to provide stroke subjects with a 
feedback based on the EMG patterns that most resemble 
physiological activations. Simple tasks, such as the finger 
extension and grasping, have been characterized by means of 
the inter-muscular coherence features. Results confirm the 
findings in [7] [11] [12] about the frequency bands 
characterized by significant IMC values. However, our 
results highlight also the relevance of IMC features in 
frequency bands over 60Hz, as expected basing on the 
characteristics of the EMG spectrum. Moreover, the analysis 

of the IMC patterns highlighted both common features for 
Ext and Grasp tasks such as the connection between FD and 
ED muscles and task-specific features, such as the couple 
BIC-DELT (flexor muscles of the upper limb) for the Grasp 
task. Connections observed among muscles of the 
contralateral upper limb (with respect to that involved in the 
movement) highlight the requirement of monitoring more 
muscles than just ED and FD muscles (as main 
agonist/antagonist of the explored tasks). This especially in 
view of the rehabilitative application for stroke subjects in 
which compensation mechanisms with the healthy upper limb 
may characterize the movement execution. From the 
classification point of view, results underline the IMC feature 
ability in discriminating between task (i.e. Grasp and Ext) 
and rest conditions with a global accuracy (mean ± SE across 
tasks and constraint scenarios) of 0.81 ± 0.19. Even though 
performance results are quite low as compared with 
classification models based on amplitude features (e.g. root 
mean square), they hold promise as they are based on 
features extracted from a bivariate analysis containing, 
therefore, the simultaneous information from two muscles. 
Although the promising results of this work, many issues are 
still open. Further investigations are required to refine the 
coherence estimator in order to assess the relevance of the 
observed connections (e.g. between right and left upper 
limbs) by means more advanced approaches, i.e. with lower 
false positive rate in coherence detections. Moreover, the 
peculiarities of the context require to get deeper knowledge 
in task relevant features before moving towards the designing 
of inter-muscular coherence-based BCIs to support post-
stroke rehabilitative protocols of the upper limb. Therefore, 
results need to be compared with those obtained from stroke 
subjects while they attempt to perform same movements (i.e. 
finger extension and grasping), even investigating the 
relationship with functional impairment level. 
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Figure 2. Classification accuracy, presented as mean ± standard error (17 healthy subjects), computed for each task, ExtL: left hand finger extension, 
GraspL: left hand grasping, ExtR: right hand finger extension, GraspR: right hand grasping, and scenario, i.e. combination among spatial and frequency 

constraints: NS-NF: no spatial and no frequency constraints; YS-NF: spatial constraints (IMC among muscles of the upper limb involved in the task) and no 

frequency constraints; NS-lowF: no spatial constraints and frequency constraints (frequency bands in the range 6-150Hz); YS-lowF: spatial constraints (IMC 
among muscles of the upper limb involved in the task) and frequency constraints (frequency bands in the range 6-150Hz); NS-highF: no spatial constraints 

and frequency constraints (frequency bands in the range 150-500Hz); YS-highF: spatial constraints (IMC among muscles of the upper limb involved in the 

task) and frequency constraints (frequency bands in the range 150-500Hz). A leave-one (subject) out cross-validation with a support vector machine 
classification model was implemented. Before training the classifier, the stepwise feature selection algorithm (num. of features set equal to 2) was applied to 

further reduce the dimension of the feature domain.  

 
Table  1.  For each task, results of the repeated measures two-way ANOVA. 
Significant comparisons have been marked (*).  

 
DEGREES OF 

FREEDOM 
P-VALUE F 

Ext L 

spatial constraint 1 0.24 1.52 

frequency constraint 2 0.13 2.18 

interaction 2 0.89 0.12 

GraspL 

spatial constraint 1 0.07 3.81 

frequency constraint 2 < 0.01* 10.82 

interaction 2 0.85 0.16 

ExtR 

spatial constraint 1 1.00 0 

frequency constraint 2 1.00 0 

interaction 2 0.09 2.60 

GraspR 

spatial constraint 1 0.26 1.36 

frequency constraint 2 0.04* 3.55 

interaction 2 0.85 0.16 
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