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In the present paper, Mohosen et al. [1] reviewed the evidence of the interaction between virus-like
particles (VLPs) and the innate immune system. VLPs are molecules resembling viruses. VLPs do
not contain the genetic material of virus, and they are not infective. VLPs are an important class of
nanoparticles characterized by a number of noteworthy applications into research and clinical practice.
Generally, VLPs are adopted as vaccines. VLPs contain repetitive, high-density displays of viral surface
proteins that present conformational viral epitopes that can elicit strong T cell and B cell immune
responses [2]. Moreover, VLPs would be adopted for delivery of genes and other therapeutic agents [3].
As indicated by Mohosen et al. [1], size and surface geometry are the two main factors driving the
interaction between VLPs and the humoral immune system. Additionally, the highly repetitive surface
of VLPs is on the basis of the interaction with the innate immune system [4]. Another important feature
in the field of VLPs, was the adoption of lipoparticles. Lipoparticles are purified and homogeneous
VLPs that are engineered to contain the intact membrane proteins and are useful for delivering target
therapies [5]. Furthermore, VLPs displaying the alpha-Gal carbohydrate, a molecule eliciting protective
immune response against multiple pathogens [6], have shown protection against Leishmaniosis [7].
To date, there is an emerging need to develop and implement VLPs. Engineered VLPs have a role
in developing new, safe vaccines and delivering (as vector) components into the cells and their
membranes. Understanding the mechanisms of interaction between VLPs and the immune system
would be of paramount importance. Using tumor-associated antigens, the VLPs would also be adopted
for the design of anticancer vaccines (therapeutic vaccines). To date, the growing adoption of VLPs in
preclinical and clinical studies aimed to bridge the gap of preventing and treating diseases, including
cancer. Prophylactic vaccines against human papillomavirus (HPV) are based on VLPs. These vaccines
prevent preneoplastic lesions of the female and male lower genital tract and the head and neck
district [2]. Currently, some of the vaccine projects on phase I and phase II clinical trials for the control
of COVID-19 are based on VLPs [8,9], thus supporting the potential for these interventions. Similarly,
ongoing trials on therapeutic vaccines are based on VLPs. One of these therapeutic vaccines include
the use of VLP-encapsulated TLR9 agonist, CMP-001 [7]. CMP-001 is made up of a short piece of DNA
that is packaged in a VLP. The DNA contained in CMP-001 activates the immune system and recruits
cells of the immune system to the tumor. INCAGN01949 is an antibody—a type of protein—which
has been shown to stimulate the immune system. Injecting both CMP-001 and INCAGN01949 would
reduce tumor growth [10]. Further in vitro and in vivo studies are warranted in order to clarify the
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mechanism of interaction between VLPs and the humoral immune system, potentially with Human
Leucocyte Antigens.

(HLA) polymorphisms. Growing attempts are necessary to adopt emerging prophylactic and
therapeutic vaccines for the prevention and control of major infectious and noninfectious diseases.
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