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Active-elastic instabilities are common phenomena
in the natural world where they have the aspect
of sudden mechanical morphings. Frequently, the
driving force of the instability mechanisms has a
chemo-mechanical nature, which makes the instabilities
very different from the standard elastic instabilities.
In this paper, we describe and study the active-
elastic instability occurring in a swollen spherical
closed shell, confining a water filled cavity, during
a de-hydration process. We set up a few numerical
experiments based on a stress-diffusion model to
glance at the phenomenon. Then, we present a study,
which looks at the chemo-mechanical problem and,
through a few simplifying assumptions, allows us to
derive a semi-analytical model of the phenomenon. It
takes into account both the stress state and the water
concentration into the walls of the shell at the onset
of the instability. Moreover, it considers the invariance
of the cavity volume at the onset of instability, which
is due to the impossibility to instantaneously change
the cavity volume filled with water. Eventually, it
is shown as the semi-analytic model matches very
well the outcomes of the numerical experiments far
from the initial regime; the ranges of validity of the
approximated analytical model are also discussed.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and
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1. Introduction
Soft capsules confining microscopic cavities are common in Nature. Cavities can be water-filled,
as is the case of the Fern Sporangium [1,2], or not, as is the case of Sphagnum Moss [3], just to cite
a few. In both cases, capsules undergo a dehydration process which determines the conditions
to produce spores dispersion. The working principles of these mechanisms have been classified
and studied in terms of the specific functional demands that these mechanisms fulfill [4]. On the
contrary, analyzing the possibility to reproduce them in soft polymers, which requires an accurate
modeling and the identification of the determinants of the key mechanism, is still lacking.
Inspired by these observations, we investigate dehydration processes in spherical gel capsules
going from a fully wet state with the cavities filled with water towards a dry state when exposed
to air. The analysis starts from numerical experiments based on a multi-physics three-dimensional
model of stress-diffusion [5–9], which shows the onset of mechanical instabilities during the
dehydration process. Then, it continues with a study, which is set within the chemo-mechanical
context and, through a few simplifying assumptions, defines a semi-analytical model which takes
into account both the stress state and the water concentration into the walls of the shell at the
onset of the instability.
Mechanical instabilities in polymer gels have been extensively studied in the recent years with
reference to swelling-induced surface instability of confined hydrogel layers on substrates [10–13]
and to transient instabilities occurring during swelling processes [6,14–18]. The phenomenon we
aim to describe is different and resembles the classical mechanical instabilities of pressurized
spherical shells, which have been largely investigating since ′50 [19–22], and have been recently
having a new exciting life [23,24]. However, our problem presents a few aspects, which make it
distinguishable from the classical ones and motivate our study.
Firstly, in our problem the external pressure, which is the control parameter in the classical
stability analyses, is low and insignificant. On the contrary, dehydration processes make spherical
shells subject to a negative inner pressure, called suction pressure, which is an unknown of the
stress-diffusion problem, changes in time and can be considered as a live more than a dead load.
Hence, load conditions are quite different from those considered in the Literature above.
Secondly, the driving force of the instability is the drying process which is controlled by the
chemical potential of the environment, that is, the control parameter of the process is not
the mechanical pressure. Similar conditions have been studied in [23], where the effect of
spontaneous curvature, driven by differential growth, on the instability of spherical shells have
been investigated, within the context of the non-euclidean theory of shells, through a rational
approach which allows to reduce the spontaneous curvature to an effective pressure-like dead
load. In [23], it has also been shown as a positive curvature corresponds to a positive external
pressure (or, equivalently, to a negative inner pressure), causes a compression of the shell and
possibly also a change in the cavity volume. For dehydrating spherical shells, as those studied
in the present paper, a spontaneous curvature may be identified in terms of the change of
dehydration degree across the thickness of the shell. It would result in a positive curvature for
outer layers which are less hydrated than inner layers, as the dehydration process starts from
the outer layers. However, during the dehydration processes the cavity is filled with liquid, that
is, the cavity volume is constrained, and it is expected that the buckling strategy of the shell is
affected by the impossibility to change the cavity volume.
The buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration
of the exterior solution as a control parameter has been studied in [25]. Therein, the Authors
presented a quantitative model aimed to capture the influence of shell elasticity on the onset of
instability. Interestingly, they applied their model under cavity volume control assuming that the
capsule volume can be considered as fixed when it is filled with an incompressible liquid that can
leave the cavity on a very slow time scale like in drying mechanism. That is the characteristic
of our problem where the instability occurs instantaneously with respect to the times of the
diffusion, which only can induce a change in the liquid content of the cavity. However, our model
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goes beyond as we present an instability study that is based on the incremental analysis of both
the mechanical and chemical equations, which rule stress-diffusion in polymer gels, and also
includes the analysis of the cavity volume constraint.
In particular, after the description of the de-hydration process which affects a closed spherical
shell in terms of the three-dimensional stress-diffusion model, we evidence and numerically
investigate the onset of mechanical instabilities which are driven by the de-hydration process.
As already discussed, even if instabilities occur when a critical pressure is attained, that pressure
is not a control parameter of the instability process, which is driven by the de-hydration that is
controlled by the chemical potential of the external environment i.e. the actual control parameter
of the de-hydration and instability processes. It motivates our choice to analyse the instability
problem from a chemo-mechanical perspective through a semi-analytical model, which considers
the time evolution of the system state due to diffusion as a sequence of equilibrium problems; the
ranges of validity of the approximation are discussed in the Appendix A. The stress state and the
water concentration into the walls of the shell at the onset of the instability has also evidenced.
Specifically, our stability analysis is borrowed from the study of elastic thick-walled spherical
shells loaded by external pressure presented in [20]. This analysis was also used in a pair of
papers in order to characterize growth-induced instabilities in spherical shells [26,27]. However,
we extended that analysis to include the effects of water diffusion across the walls of the shell
and the invariance of the cavity volume at the onset of instability. We show how the semi-analytic
model matches the outcome of the numerical experiments, based on the implementation of the
stress-diffusion model, and allows to have a fast glance at mechanical instabilities of the shells
numerically investigated and discussed in Section 3.

2. Chemo-mechanical states of gels
The analysis of de-hydration processes starts from swollen gel bodies; however, it is convenient
to introduce the dry state Bd of such bodies, use it as reference state and describe the chemo-
mechanical state of gel bodies by a displacement field ud from the dry state and a water
concentration cd per unit dry volume. The displacement ud gives the actual position x = Xd +

ud(Xd, t) of a point Xd ∈Bd at time t, whereas the water concentration cd gives the moles of
water per unit dry volume at x.
We assume that the free energy ψ per unit dry-volume depends on the deformation gradient
Fd = I +∇ud from Bd through an elastic component ψe, and on water concentration cd through
a polymer–water mixing energy ψm and write ψ=ψe + ψm, as prescribed by the Flory–Rehner
thermodynamic model [28,29]. As usual, we assume that any change in volume of the gel is
accompanied by an equivalent uptake or release of water content, that is,

Jd = detFd = Ĵd(cd) = 1 +Ωcd , (2.1)

withΩ (m3/mol) the molar volume of the water. Equation (2.1) introduces a coupling between the
state variables of the problem and is usually known as volumetric or incompressibility constraint.
The volumetric constraint contributes to the definition of a relaxed free–energy ψr . This latter
takes into account the volumetric constraint through the Lagrangian multiplier p identifying
the reaction to the volumetric constraint which maintains the volume change Jd due to the
displacement equal to Ĵd(cd) due to solvent absorption or release:

ψr(Fd, cd, p) =
Gd
2

(Fd · Fd − 3) +
RT
Ω

h(cd)− p(Jd − Ĵd(cd)) , (2.2)

with
h(cd) =Ω cd log

Ω cd
1 +Ω cd

+ χ
Ω cd

1 +Ω cd
, (2.3)

where Gd denotes the shear modulus of the dry polymer and χ the Flory-Rehner parameter
whereasR (J/Kmol) and T (K) denotes the universal gas constant and the ambient temperature.
Standard thermodynamical issues allow us to derive the constitutive equations for the dry-
reference stress Sd (J/m3) (that is the so-called first Piola-Kirchhoff stress) and for the chemical
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potential µ (J/mol):

Sd = Ŝd(Fd)− pF?d =Gd Fd − pF?d , F?d = Jd F
−T
d ,

µ = µ̂(cd) + pΩ =RT
(

log
Jd − 1

Jd
+

1

Jd
+

χ

J2
d

)
+ pΩ , (2.4)

where, with a light abuse of notation, we wrote the relation µ̂(cd) for the chemical potential as
µ̂(Jd), by exploiting the volumetric constraint (2.1). Both stress and chemical potential consist of
a constitutively determined component and a reactive component, which couples the two main
dynamical subjects of the theory. The components µ̂(cd) and pΩ are the mixing and mechanical
contribution to the chemical potential.1

With these choices, the dissipation principle is reduced to the following inequality:

hd(Fd, cd, p) · ∇µ(cd, p)≤ 0 , µ(cd, p) = µ̂(cd) + pΩ , (2.5)

being hd (mol/(m2 s)) the reference solvent flux, and is satisfied by assuming that

hd = hd(Fd, cd, p) =−M(Fd, cd)∇(µ̂(cd) + pΩ) , (2.6)

where the diffusion tensor M(Fd, cd)(mol2/(s m J)) is a symmetric positive-definite strain-
dependent tensor. In particular, we also assume that M is isotropic and linearly dependent on
cd, and diffusion always remains isotropic during any process [5,30–32]. These assumptions
determine the representation of the diffusion tensor in terms of the inverse of the Cauchy–Green
strain tensor Cd = FTd Fd as

M(Fd, cd) =
D

RT cdC
−1
d , (2.7)

with D (m2/s) the diffusivity. Finally, the balance equations of the model are:

0 = div Sd and ċd =−div hd , (2.8)

on Bd × T . Therein, a dot denotes the time derivative and div the divergence operator. The
boundary conditions corresponding to the balance of forces (2.8)1 involve assigned displacements
ū on ∂uBd × T and/or boundary pressure p̄ on ∂tBd × T and take the form

Sdm =−p̄F?dm and ud = ū , (2.9)

respectively, with m the unit normal to ∂Bd. On the other hand, the boundary conditions
corresponding to the balance of liquid mass (2.8)2 involve the boundary flux qs on ∂qBd × T
and/or the concentration field cs on ∂cBd × T which is implicitly assigned by controlling the
external chemical potential µe on ∂cBd × T ; they take the form

− hd ·m = qs and µ̂(cs) + pΩ = µe . (2.10)

The initial conditions
ud = udo and cd = cdo , (2.11)

on Bd × {0} make the problem doable: udo and cdo are the initial values of the fields ud and cd,
respectively.

(a) De-hydration of gel capsules
We discuss de-hydration of spherical shells confining spherical cavities. The dry system Bd is
a spherical shell of external radius Rd and thickness Hd =Rd −Rc, with Rc the radius of the
cavity Cd; the ratioHd/Rc is a measure of the thinness of the shell. When the capsule is immersed
1The term µ̂(cd)/Ω (J/m3) is a pressure that is usually called the osmotic pressure in contrast with the p term, which is called
the mechanical contribution to the chemical potential as evidenced by rewriting equation (2.4)2 in the form

µ

Ω
=
RT
Ω

(log
Jd − 1

Jd
+

1

Jd
+

χ

J2
d

) + p .

.
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Figure 1: A sketch of the de-hydration process. Dry state of the spherical capsule (left). Initial
steady stress-free swollen state of the spherical capsule: water fills the cavity and the external
environment (center). After exposition to air, the de-hydration process starts and water is expelled
from both the walls and the cavity (right).

in water, the shell size increases to accomodate an amount of water which is determined by the
ratio m between the shear modulus Gd and the chemical energy density per unit volumeRT/Ω,
if the Flory parameter χ has been fixed, through the equation

log
λ3o − 1

λ3o
+

1

λ3o
+

χ

λ6o
+
m

λo
= µ̄o , with m=

GdΩ

RT and µ̄o =
µo
RT . (2.12)

Equation (2.12) corresponds to the equilibrium conditions Sd = 0 and µ= µe with µe equal to
an initial value µo. With this, the balance equations (2.8) are trivially satisfied and we denote
this steady and stress-free swollen state as Bo. At Bo, the shell has radius λoRd whereas the
cavity Co, assumed to be completely filled with water, has radius λoRc and the shell has thickness
Ho = λo(Rd −Rc).
We assume that this state represents the initial state of the system under a de-hydration process
which starts from the fully swollen state Bo and proceeds by de-hydrating the body from the
outside. It corresponds to pull out the swollen spherical shells, with its cavity filled with water,
from the bath and to expose it to air (see cartoon in figure 1). Diffusion starts and water is expelled
from both the gel and the cavity. Being water incompressible, the cavity volume must always be
equal to the volume of the water it contains; thus, when water is pumped out of the cavity, the
cavity volume reduces and the cavity wall ∂iBd = ∂Cd may be pulled by an increasing negative
pressure.
From the modelling point of view, exposing the capsule to air means changing the chemical
potential at the external boundary ∂eBd from µo to µe <µo. If it is the case, equations (2.8)-(2.11)
allow to follow the dynamics of the process. We assume that all along the process the cavity stays
always filled with solvent2 and the chemical potential on ∂iBd is determined by the value it has in
pure water that is µi = µo +Ω pi(t) with the pressure term pi representing the suction pressure.
On the other side, we assume that the outer environment is filled with air, that is, an ideal gas
whose content in water determines the value of the chemical potential which can be related to the
relative humidity of the air, and set µe = µ̂e(t) + pe with µ̂e(t) the control law of the problem and
the base atmospheric pressure pe = 0. Figure 2 (c) shows the control law µ̂e(t) which starts from
an initial value µo = 0 and takes a final value µf in a prescribed time. So, in the end, we write
down:

µe = µ̂e(t) on ∂eBd and µi =Ω pi(t) on ∂Cd , (2.13)

2It corresponds to assume that no delamination of liquid from cavity walls can occur, or equivalently, that surface energy per
unit area of the cavity is much higher than stretching modulusGλo(Rd − Rc).
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and

Sdm =−pe F?dm = 0 on ∂eBd × T and Sdm =−pi F?dm on ∂Cd × T , (2.14)

where F?d = JdF
−T
d denotes the adjugate of the deformation gradient. A new equilibrium state

is attained when µ= µe = µi across the thickness of the shell and the field hd = 0. The time τe
required to get the new steady state depends on the diffusivity constant D of the system or,
equivalently, on the characteristic diffusion time τd =H2

o/D: higher is D, smaller is τe.
The suction pressure pi = pi(t), a key ingredient in the onset of instabilities, is modelled as the
reaction to the volumetric coupling relating the volume vcs = vcs(t) of the solvent in the cavity to
the volume of the cavity vc = vc(t): at each instant t∈ T as solvent flows out of the cavity, it holds

vc(t) = vcs(t) . (2.15)

It is worth noting that the global constraint (2.15) adds a further coupling between the state
variables of the multiphysics problem other than the common local volumetric constraint (2.1).
Constraint (2.15) can be enforced by considering the augmented total free-energy defined by∫

Bd
ψr dVd − pi (vc − vcs) , (2.16)

so that the cavity pressure pi can be viewed as the Lagrange multiplier enforcing the constraint.
The cavity volume vc depends on the actual configuration Ct of the cavity at time t, and can be
computed via Nanson’s formula by evaluating the following integral

vc(t) =

∫
Ct
dv=−1

3

∫
∂iB(t)

x · n da=−1

3

∫
∂iBd

(Xd + ud) · F?dm dAd , (2.17)

with n the normal to the actual boundary ∂iB(t) = f(∂Cd).3 The water volume at time t is the sum
of the initial water content vcs(0) of the cavity, plus the water volume Qi(t) that crosses the cavity
boundary during the time interval (0, t), that is, vcs(t) = vcs(0) +Qi(t). The initial water content
equals the initial cavity volume vco = vc(0), that is, from (2.17), it holds

vcs(0) = vc(0) =−1

3

∫
∂iBd

(Xd + uo) · F?om dAd , (2.18)

with F?o = Jo F
−T
o and Jo the adjugate and the Jacobian determinant of the initial swollen

deformation gradient Fo = λoI. The water volume Qi(t) that crosses the cavity boundary and
is absorbed by the gel can be evaluated by:

Qi(t) =

∫ t
0
Q̇i(τ) dτ =Ω

∫ t
0

( ∫
∂iBd

q dAd

)
dτ =−Ω

∫ t
0

( ∫
∂iBd

hd ·m dAd

)
dτ . (2.19)

Equations (2.17)-(2.19) allow us to follow the de-hydration process of the spherical capsule. It
is worth noting that the effects of the process on the mechanics of the shell are very different
depending on the shear modulus of the polymer. High or low shear moduli Gd identify the
initial state Bo as a poorly or highly swollen state and, fixed D, can determine a very different
dynamics [8,33]. For highly swollen gels, due to the great amount of liquid inside shell walls,
the de-hydration process starts with the liquid firstly released from the shell rather than from the
cavity. As a consequence, suction effect does not become immediately apparent and the inner
pressure pi takes non-negative values. By contrast, for poorly swollen gels, liquid is mainly
released from the cavity and the inner pressure quickly attains negative values [33], a condition
which is determinant for the onset of mechanical instabilities, as we’ll discuss in the rest of the
paper.

3We note that the internal boundary of the gel ∂iBd coincides with the boundary of the cavity ∂Cd, proviso an opposite
orientation of the normal.
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3. A glance at active elastic instabilities
The effects of the de-hydration process on shell shape is numerically studied and the onset of the
so-called active elastic instabilities is investigated.
We set up a series of numerical experiments based on a finite element model successfully tested
in different situations [5–9]. Our finite element model solves the balance equations in integral
form (weak form) together with the volumetric constraints and boundary conditions. Then, the
full problem can be reformulated as follows: find ud, cd, p, pi and cs (an auxiliary concentration
variable used in the chemical boundary conditions) such that, for any test functions ũd, c̃d, p̃, p̃i
and c̃s balance equations (2.8), volumetric constraints (2.1, 2.15), boundary conditions (2.13, 2.14)
and initial conditions (2.11) in weak formulation hold. We used tetrahedral elements to discretize
the three-dimensional body and more specifically around 500 domain elements are used with
20000 degrees of freedom. The convergence of the model is obtained with cubic order Lagrange
shape functions for the balance of forces, a quartic order Lagrange shape function for balance of
solvent mass and a quadratic Nodal serendipity shape function for the Lagrangian multiplier of
the volumetric constraint equation. It is worth noting that high orders of shape functions are also
mandatory to obtain a good accuracy as both the dependent variables ud and cd in the balance
laws have second spatial derivatives.
We fixed the set of material parameters listed in Table 1. With these choices, the dimensionless
parameter m=GdΩ/RT is around 0.37. The value of m& 10−1 and of the affinity parameter
χ. 0.8 allows to infer that the gel is poorly swollen. Indeed, fixed µo = 0 J/mol, equation (2.12)

Shear modulus Gd = 5 · 107 Pa;

Flory parameter χ= 0.2;

Water molar volume Ω = 1.8× 10−5 m3/mol;

Water diffusivity D= 10−9m2/s;

Temperature T = 293K;

Table 1: Values of parameters used in numerical experiments; the particular values for χ and Gd
correspond to assume a good affinity between polymer and solvent, which is standard for gels
and water, and a quite stiff gel [34].

yields the value λo = 1.152 of the swelling ratio. It corresponds to a 15% increase of the capsule
thickness and radius which change from the dry values Hd = 1.25 · 10−3 m and Rd = 1 · 10−2

m to the swollen values Ho = 1.44 · 10−3 m and Ro = 1.152 · 10−2 m. The corresponding initial
values for the displacement and pressure field are uo = (λo − 1)Xd and po = 4.338 · 107 Pa. From
the value µo, the chemical potential is made to change following a time law µ̂e(t), which brings the
value of the external chemical potential from the initial value µ0 to the final value µf =−2 · 103

J/mol in a time τµ = 1000 s through a smoothed step function; then, the final value µf is kept
fixed (see panel d of figure 2).
The dimensionless pressure-volume pi/Gd vs vc/vco curves shown in figure 2 (panel a) allow

us to highlight the observed dynamics in spherical capsules (blue line) and to evidence the onset
of a mechanical instability that is, on the contrary, not observed in cubic capsules of similar size
(green line). At the beginning of the de-hydration process from the swollen shell, liquid is mainly
expelled from the cavity walls and pressure changes at almost unchanged cavity volume, as the
initial deep slope of the blue line shows. As diffusion goes on, water is released from both the
shells and the cavity and the cavity volume reduces; we follow it until a decrease of about 30% is
attained, corresponding to vc/vco ' 0.7. In a first phase (pink background), inner pressure takes
positive values which, at the same vc/vco, are higher for spherical than for cubic capsules, and
breathing modes can be observed in both the situations [8]. In a second phase (grey background),
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Figure 2: Pressure–volume curves for spherical (blue) and cubic (green) gel capsules: pink (grey)
background identifies the phase of the process when inner pressure takes positive (negative)
values (a). Pattern of the external chemical potential µe versus vc/vco (b). Shapes of the spherical
capsules at different values of vc/vco = 1, 0.68, 0.65 (c). Pattern of the external chemical potential
µe versus time: it decreases from the initial value µo = 0 J/mol to the final value µf =−2 · 103

J/mol, which is attained in about 103 s (d).

inner pressure takes negative values, so realizing the so-called suction effect on the walls of the
capsules. Whereas the walls of cubic capsules bend under negative pressure, spherical capsules,
made stiffer by the geometrical symmetry, do not bend, as it is shown in figure 2 (panel b) by
the cartoon corresponding to number 2. Moreover, as it is energetically very expensive reducing
cavity volume in spherical capsules, we also observe higher values of the negative pressure at the
same value of the ratio vc/vco in spherical than in cubic capsules.
The numerical analysis identifies the critical value of the inner pressure at which the mechanical
instability, which allows the shell to release the elastic energy stored during the process, is
observed. The onset of the mechanical instability changes the shape of the sphere very sharply
and the pressure-volume curve shows an almost vertical slope at the critical point, as it is
evidenced in figure 2 (panel a) corresponding to the ramp of the external chemical potential
shown in panel (b). Indeed, as the cavity is still filled with water, and diffusion is slow (here, the
characteristic diffusion time τd =H2

o/D' 2 · 103 s), instability occurs at almost constant volume.
Figure 2 (panel b) also shows the spherical capsule at different values of vc/vco = 1, 0.68, 0.65,
corresponding to the points 1, 2, 3 evidenced in the pressure-volume diagram. At the value
vc/vco = 0.65 (point 3), the spherical capsule has attained a sombrero shape. Key determinants
of the mechanical instability are the cavity volume ratio vc/vco and the inner pressure pi.
In particular, we observe that the onset of instability corresponds to a pair vc/vco = 0.68 and
pi =−4.2 · 106 Pa. These values will be used as benchmark values in the following section where
a semi-analytical study of the instability is presented.

4. Study of the chemo-mechanical instability
The key aspects of the instability problem, which affect spherical shells during de-hydration
processes, can be described from a mechanics perspective through a few simplifying assumptions
which allow us to derive a semi-analytical model. The proposed stability analysis is borrowed
from the study of elastic thick-walled spherical shells loaded by external pressure presented
in [20], and is extended to consider the diffusion equation (2.8)2 and the global constraint equation
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(2.15).
As diffusivity is small and we look at the solution for t� τe and t > τµ, we approximate the
dynamical process as a sequence of equilibrium states over sufficiently small time intervals
∆t� τd. Over each interval, the volume cavity and the flux do not change with time and allows
us to solve the problem as a quasi-static problem where the cavity volume is prescribed. In
other words, as the cavity is still filled with water and diffusion is typically a slow process,
instability occurs at almost constant volume, that is, as if diffusion was frozen. More details of
this approximation are discussed in the Appendix A.

(a) Spherical solution
Before instability occurs, the shell is spherical and the chemo-mechanical state variables are
determined as solutions of equations (2.8) within the quasi-static approximation. Assuming the
dry configuration as the reference configuration, we consider purely radial deformations of the
thick shell and represent them as

r= r(R) , θ=Θ , φ=Φ , (4.1)

where (R,Θ,Φ) and (r, θ, φ) are the spherical coordinates of a point in the reference and current
configuration, respectively. We denote all the chemo-mechanical variables corresponding to the
spherical solution with the subscript ‘0’; so F0 = diag(r′, r/R, r/R) is the deformation gradient
corresponding to the deformation (4.1), with a prime denoting differentiation with respect to the
radial coordinate R. The equilibrium configurations have to satisfy the volumetric constraint
(2.1): detF0 = J0(R), with J0(R) = 1 +Ωc0(R), where c0 denotes the solvent concentration in
the spherical solution. When we substitute (4.1) into the constraint, we get

r2r′ =R2J0. (4.2)

Notice that, unlike the classical analysis [20,35], where J0 = 1, here J0 is an unknown function
of the radial coordinate. When J0 = 1, equation (4.2) can be easily solved and yields the classical
result r(R) = (a0 +R3)1/3, where a0 is an integration constant. By contrast, in our case, equation
(4.2) has to be solved together with the chemo-mechanical balance equations.

Let us introduce Q0(R) :=R/r(R) so that the deformation gradient of the spherical solution
can be cast in the form

F0 = diag(Q2
0J0, Q

−1
0 , Q−10 ) . (4.3)

Then, according to the neo-Hookean hyperelastic model, the Piola-Kirchhooff stress tensor can be
written as

S0 = diag(−p0Q−20 +GdJ0Q
2
0,−p0J0Q0 +GdQ

−1
0 ,−p0J0Q0 +GdQ

−1
0 ) , (4.4)

where p0(R) is the Lagrangian multiplier related to the constraint J0 = 1 +Ωc0. On the other
hand, the representation formula of the chemical potential is unchanged by the spherical
symmetry and it holds

µ0 =RT
(

log
J0 − 1

J0
+

1

J0
+

χ

J2
0

)
+ p0Ω . (4.5)

Once observed that Q′0 =Q0(1− J0Q3
0)R−1, the balance of forces divS0 = 0 (in spherical

coordinates, R∂RS0RR + 2S0RR − S0ΘΘ − S0φφ = 0) reduces to:

p′0R+ 2GdQ0(−1 + J0Q
3
0)2 −GdQ4

0J
′
0R= 0 . (4.6)

As far as the diffusion problem is concerned, we assume that it holds the quasi-static version of
(2.8)2, that is, divh0 = 0.
Due to the spherical symmetry, the solvent flux h0 is purely radial, that is, h0(R) = (h0R(R), 0, 0),
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and that balance equation, after a first integration, reduces to

R2h0R =C0, (4.7)

where C0 is an integration constant while the constitutive equations (2.6)-(2.7), reduced by the
spherical symmetry, deliver

h0R =− D

Q4
0J

2
0

[
−2χ(J0 − 1) + J0

ΩJ3
0

J ′0 +
(J0 − 1)

RT p′0

]
. (4.8)

Finally, by using the boundary conditions (2.13) and (2.14), we obtain the boundary conditions
for the spherical problem:

S0RR(Rd) = 0, µ(Rd) = µf , (4.9a)

µ(Rc) +ΩQ2
0(Rc)S0RR(Rc) = 0 . (4.9b)

Equations (4.9a) express the conditions of vanishing pressure and assigned chemical potential at
the external boundary equal to the final value µf attained by µe. Equation (4.9b) is derived from
(2.13)2 that relates the chemical potential µ(Rc) and the pressure pi on the inner boundary, where
the boundary condition (2.14)2 has been used to express pi in terms of the radial stress component
as pi =−Q2

0(Rc)S0RR(Rc).
Finally, it is worth noting that, at any time before instability occurs, the enclosed volume vc is
determined by the liquid filling the cavity and the relationship between the radius rc of the cavity
and the volume vc is

rc =

(
3vc
4π

)1/3

. (4.10)

Hence, as the cavity volume is assigned, equation (4.10) delivers the fourth boundary condition

r(Rc) = rc. (4.11)

If µe = 0 J/mol and the cavity volume is not constrained, this spherical problem admits the stress-

free swollen solution discussed in §2 which leads to the uniform deformation λo =Q−10 = J
1
3
0 ,

where λo satisfies equation (2.12). The corresponding enclosed volume is then vco = 4
3πR

3
cJ0.

For any cavity volume vc different from the initial value vco, the solution (p0(R), J0(R), r(R)) of
the spherical problem and the integration constantC0 are determined by the equations (4.2), (4.6),
(4.7)-(4.8), with the boundary conditions (4.9) and (4.11).
Let us introduce the symbol

β :=
vc
vco

, (4.12)

that is, the ratio between the current and the initial volume of the cavity which is a key parameter
of the successive stability analysis. The solution above allows us to draw the relationship between
the inner pressure pi and β and to evaluate the concentration and the chemical potential fields
across the shell thickness. Figure 3 (panel a) shows the dimensionless inner pressure pi/Gd versus
β lines from analytics (black) and from numerics (blue) for τd = 2 · 103 s. It is worth noting that
the black line excellently matches the numerical line apart from the initial transient when the
pressure-β slope is high and β ' 1, corresponding to water released from the external walls.
During that transient the external chemical potential takes values between µo and µf (see figure
2, a,b) and the analytical model can’t reproduce that transient, as it solves the problem under the
boundary condition (4.9a)2. Panels (b) and (c) compare the pattern of cd and µ at β = 0.68 and
show that the quasi-static solution satisfactorily matches the numerical solution coming out from
the dynamical analysis even if we are far from the thermodynamical equilibrium state, as the
chemical potential is not uniform across the shell thickness. Finally, panel (d) shows local volume
changes across the shell thickness as obtained from analytics for different values of the parameter
m. We observe that as m increases, the change in volume, and hence the absorption capacity of
the shell, decreases. The purely elastic limit can be obtained for larger and larger values of m.
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Figure 3: Dimensionless inner pressure pi/Gd versus β lines from analytics (black) and numerics
(blue) for τd = 2 · 103 s and Rc/Rd = 0.87 (a). Water concentration and dimensionless chemical
potential across the shell thickness from analytics and from numerics at β = 0.68 (b,c). Local
volume change J0 across the shell thickness for several values of m=GdΩ/RT (d).

(b) The linearized problem
In order to find the critical values of β at which the instability occurs, we consider the incremental
fields u, v, p1, J1 and write

x(R,Θ) = r(R)eR + ε(u(R,Θ)eR + v(R,Θ)eΘ) , (4.13a)

p(R,Θ) = p0(R) + εp1(R,Θ) , (4.13b)

Jd(R,Θ) = J0(R) + εJ1(R,Θ) . (4.13c)

This ansatz takes into account axisymmetric perturbations and neglects possible displacements in
the azimuthal direction. However, as shown in [20,27], this is not restrictive since the incremental
equations are independent on the azimuthal wavenumber.
Therefore, the incremental deformation gradient is

F1 =

∂Ru R−1(∂Ru− v) 0

∂Rv R−1(u+ ∂Θv) 0

0 0 R−1(u+ v cotΘ)

 , (4.14)

and the unknown fields u and v have to satisfy the volumetric constraint which at the first order
is J0 tr(F−10 F1) = J1 and can be written as

Q−20 ∂Ru+ J0Q0R
−1(2u+ ∂Θv + v cotΘ)− J1 = 0 . (4.15)

This equation has to be coupled with the incremental equilibrium equations

div S1 = 0 and div h1 = 0, (4.16)

where S1 and h1 represent the linearized Piola-Kirchhoff stress tensor and solvent flux,
respectively. According to the neo-Hookean model, the nonvanishing components of the
incremental stress tensor S1 =−J0p1F−T0 − J1p0F−T0 + J0p0F

−T
0 FT1 F

−T
0 +GdF1 are:

S1RR = p0J
−1
0 Q−40 (∂Ru−Q2J1)− p1Q−20 +Gd∂Ru , (4.17a)

S1RΘ = p0Q
−1
0 ∂Rv +GdR

−1(∂Ru− v) , (4.17b)

S1ΘR = p0Q
−1
0 R−1(∂Ru− v) +Gd∂Rv , (4.17c)

S1ΘΘ =−Q0(p1J0 + p0J1) +R−1(Gd + J0p0Q
2
0)(u+ ∂Θv) , (4.17d)

S1ΦΦ =−Q0(p1J0 + p0J1) +R−1(Gd + J0p0Q
2
0)(u+ v cotΘ) . (4.17e)
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Similarly, we consider the first order perturbation h1(R,Θ) of the water flux which, from
equation (2.6), is h1 =−M0∇µ1 −M1∇µ0 where

M0 =
D

RT
J0 − 1

Ω
F−20 , (4.18)

M1 =
D

RTΩF−10

[
J1I− (J0 − 1)(F1F

−1
0 + F−10 FT1 )

]
F−10 , (4.19)

µ1 =− RT
(J0 − 1)J3

0

[2χ(J0 − 1)− J0]J1 +Ωp1 , (4.20)

while µ0(R) is given by eqn. (4.5). Consequently, the nonvanishing components of h1 are

h1R =− D

RTΩJ3
0Q

6
0

[
µ′0Q

2
0J0J1 + (J0 − 1)(−2µ′0∂Ru+ J0Q

2
0∂Rµ1)

]
, (4.21a)

h1Θ =
D(J0 − 1)

RTΩJ2
0Q

3
0R

[
−J2

0Q
5
0∂Θµ1 + µ′0(J0Q

3
0(∂Θu− v) +R∂Rv)

]
, (4.21b)

and the incremental diffusion equation reduces to:

1

R2
∂R(R2h1R) +

1

R sinΘ
∂Θ(h1Θ sinΘ) = 0 . (4.22)

The nonvanishing components of the incremental equilibrium equations (4.16) and the constraint
equation (4.15) provide a system of 4 coupled partial differential equations for u, v, p1 and J1 as a
function ofR andΘ, where the coefficients depend on the finite-strain solution obtained at zeroth
order.

To solve this problem, we expand the unknown fields in Legendre polynomials

u(R,Θ) =

∞∑
l=1

Ul(R)Pl(cosΘ) , v(R,Θ) =

∞∑
l=1

Vl(R)∂Θ[Pl(cosΘ)] , (4.23a)

p1(R,Θ) =

∞∑
l=1

Pl(R)Pl(cosΘ) , J1(R,Θ) =

∞∑
l=1

Jl(R)Pl(cosΘ) . (4.23b)

We do not consider the mode l= 0 in the expansions since it corresponds to a symmetric increase
in shell radius and its existence does not correspond to a true axisymmetric bifurcation. By
separation of variables, we obtain a system of ordinary differential equations for Ul, Vl, Pl and
Jl. This approach generalizes the classical ones for the stability of shells under pressure [20] and
of growing shells [35].
We now use equation (4.15) to obtain

Jl =R−1J0Q0[2Ul − l(l + 1)Vl] +Q−20 U
′
l , (4.24)

and, therefore, eliminate Jl in the differential equations. Furthermore, to deal with (4.22) it is
convenient, from a computational standpoint, to consider the following expansion for h1R

h1R(R,Θ) =

∞∑
l=1

Hl(R)Pl(cosΘ) , (4.25)

and solve the system of coupled equations in terms of {Ul,U ′l ,Vl,V
′
l ,Pl,Hl}. More precisely, we

introduce the vector ql = {Ul,U ′l ,Vl,V
′
l ,Pl,Hl} of the unknowns, so that our system of first order

linear differential equations is cast in the form

q′l = Al(R,Q0(R), J0(R), p0(R))ql, (4.26)

where Al is the 6× 6 coefficient matrix whose nonvanishing entries are reported in Appendix B.
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The linearized boundary conditions can be immediately derived by expanding (2.13), (2.14) to
order O(ε) and by using (4.17), (4.20), (4.23), (4.24) and (4.25). By defining the functions

g(R) :=ΩPl −
RT (2χ(J0 − 1)− J0)

J3
0 (J0 − 1)

[
Q0J0R

−1(2Ul − l(l + 1)Vl) +Q−20 U
′
l

]
, (4.27a)

fR(R) :=Pl +GdJ0Q
5
0R
−1[2Ul − l(l + 1)Vl]−GdQ2

0U ′l , (4.27b)

fΘ(R) :=−Gd(l + 1)R−1[J0Q
3
0(Ul − Vl) +RV ′l ], (4.27c)

the boundary conditions can be written in the form

g(Rd) = 0, fR(Rd) = 0, fΘ(Rd) = 0, (4.28a)

g(Rc)−ΩfR(Rc) = 0, fΘ(Rc) = 0. (4.28b)

Equations (4.28a) represent the vanishing of first-order chemical potential and the first-order
stress components at the external boundary. Similarly, (4.28b)2 states the vanishing of the stress
tangential component on the inner boundary. A more careful analysis is required for (4.28b)1
which is derived from (2.13)2. Actually, it comprises two separate boundary conditions, as we
now discuss. Let us compute the cavity volume perturbation due to the displacement field (4.23).
By using the equation (2.17) to compute the cavity volume via Nanson’s formula and using
(4.13a), up to O(ε), we get

vc =
4

3
πr3c + ε

2

3
πR2

c

∫π
0

[(3u+ ∂Θv) sinΘ + v cosΘ]dΘ . (4.29)

The substitution of (4.23) into (4.29) shows that to first order the perturbation of vc vanishes,
for any incremental displacement field. As a consequence the inner pressure (the Lagrangian
multiplier associated with the cavity volume constraint) also remains unchanged up to the first
order and implies fR(Rc) = 0. Thus (4.28b)1 can be replaced by the two conditions

g(Rc) = 0, fR(Rc) = 0. (4.30)

In so doing, the system of six first-order linear equations (4.26) is complemented with the six
boundary conditions (4.28a), (4.28b)2 and (4.30).

(c) Critical volumes and bifurcation modes
We now consider the deformation of the spherical shell, when subject to the suction pressure
due to the emptying of the inner cavity. When β = vc/vco is larger than a critical value βc < 1,
the shell remains spherical; at βc the shell buckles in a new state, and the spherical configuration
becomes unstable. In mathematical terms, βc is found by imposing that the equilibrium equations,
linearised about the spherical configuration, show nontrivial solutions.
It is important to remark that, as already described in §(b), the incremental equations are not
easy to solve (despite being linear), because the coefficients are complicated functions of the
zeroth-order solutions, which can only be found numerically. Furthermore, the critical parameter
β appears explicitly only in the boundary conditions of the zeroth-order problem, see (4.10),
(4.11) and (4.12). Therefore, the O(1) and the O(ε) problems are coupled so that, in order to find
the critical value βc, we need to solve the zeroth-order equations (4.2), (4.6), (4.7)-(4.8) in the
unknowns fields (r(R), p0(R), J0(R)) and the constant C0 together with the first-order equations
(4.26) in the unknowns (Ul,U ′l ,Vl,V

′
l ,Pl,Hl), simultaneously.

To this end, let yl = {r, p0, J0,Ul,U ′l ,Vl,V
′
l ,Pl,Hl} be the vector of the unknowns, with l the

order of the Legendre polynomials. TheO(1) andO(ε) system of ODEs can be written as a system
of first order equations of the form

y′l = f(yl, R), (4.31)

where R is the independent variable. The first three equations correspond to the spherical
problem, they are nonlinear and affect the problem at order O(ε). By contrast, the remaining
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Figure 4: Critical ratio βc versus µf . Each curve is associated with a bifurcation mode l: the order
of the mode is written along the lines whereas the insets show the shapes corresponding to
the modes. The vertical dashed line marks the value µf =−2000 J/mol used in the numerical
simulation (see Fig.2). The first bifurcation mode is given by the intersection of the vertical
line at µf =−2000 J/mol and the highest bifurcation curve corresponding to the highest critical
threshold βc, i.e., the critical value is the first met when emptying the cavity (a). Buckled
shape evidenced in the numerical simulation corresponding to β = 0.67; the shape profile can
be identified with the theoretical mode l= 6; the colour code refers to the ratio J = Jd/Jo (b).

six equations describe the linearized problem at order O(ε) and do not influence the zeroth-
order problem. Furthermore, there are two additional unknown constants, namely the integration
constant C0 and the critical parameter βc. Therefore, we need a total of eleven boundary
conditions. Ten of these are given by Eqs.(4.9), (4.11), (4.28a), (4.28b)2 and (4.30). The eleventh
boundary condition is Ul(Rc) = Ū , with Ū 6= 0, and imposes a non-trivial solution of the problem.
Since we deal with an eigenvalue problem, the particular choice of Ū does not affect the result of
the problem: the bifurcated solutions of the linearized problem are only known up to an arbitrary
multiplicative factor [36].
Numerical integration is performed using the Matlab function bvp4c which solves a boundary
value problem by collocation method. The critical thresholds βc for various values of the final
external chemical potential µf are computed by using the material parameter values from Table
1 and the shell radius and thickness as in the numerical experiments presented in Section 3:
Rd = 10−2m and Rc/Rd = 0.875.
Figure 4 (a) shows the critical ratio βc versus the external chemical potential µf . During the
emptying process β decreases from the initial value β = 1 and, as already observed, the shell
remains spherical until β reaches the critical value βc, at which buckling occurs. Hence, during
the emptying process, it is expected to observe the bifurcation mode with the highest βc, for the
given external chemical potential µf . It is interesting to notice that, for fixed µf , the critical value
βc is not a strictly increasing function of the mode l, but has a maximum for l= 4. By contrast,
for a given mode l, βc is an increasing function of µf . This means that whereas instability occurs
for values of µf closer to the initial value 0 J/mol , then the cavity volume vc will be closer to the
initial value vco.
It is worth noting that the linear analysis only qualitatively matches with the finite element
simulations. In fact, the predicted theoretical bifurcation mode (l= 4) at µf =−2000 J/mol does
not match with the numerical one (l= 6, see figure 4 b). However, the theoretical βc = 0.67 for
l= 6 is in excellent agreement with the value βc = 0.68 found in the numerical simulation (see
figure 2). The discrepancy between the predicted wavenumber might be due to the fact that the
critical thresholds reported in figure 4 are very close each other, and the system might be very
sensitive to imperfections or initial conditions. Hence, the stability and reliability of the numerical
scheme is very difficult to achieve in this situation. In particular, ad hoc numerical schemes must
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Figure 5: Critical ratio βc versus Rc/Rd for the l-th buckling mode for m≈ 0.37 (a), m≈ 0.55 (b)
and m≈ 1.1 (c). The inset in panel (b) shows the numerical buckled shape at β = 0.74; the colour
code in the inset refers to the ratio J = Jd/Jo.

be implemented to prevent the numerical algorithm from trying to follow the spherical solution
even when it is unstable, after the bifurcation has already taken place. Furthermore, it should
be noted that we obtained the buckled shape corresponding to the mode l= 4 in a numerical
simulation with m= 0.55 and β ≈ 0.74, which agrees with the theoretical βc, corresponding to
µf =−2000 J/mol, m= 0.55, by intersecting the vertical line at Rc/Rd = 0.875 with the curve
l= 4. The numerical shape is shown as inset in the figure 5 (b).
Figure 5 shows the critical vale βc versus the ratio Rc/Rd, for three values of m. It agrees with
the classic results showing that thinner shells develop bifurcations at higher modes [26]. When
m is sufficiently large, the capsules are relatively stiff and initially poorly swollen. In such a case,
the bifurcation diagram agrees with Fig. 9 in [26] (purely elastic case). By contrast, when m is
smaller, the shell is softer and the bifurcation occurs at smaller cavity volume as all the curves
shift downwards at m= 0.37 (figure 5, left). The observed behaviour is in agreement with that
shown in figure 3 (d), where it is shown thatfor increasing m the shell gets stiffer and volume
changes are reduced (in the purely elastic case incompressibility requires J = 1).

5. Conclusion and future directions
We considered the instabilities of an elastic spherical shell that, starting from a fully hydrated
state, shrinks during a dehydration process. A change in the external chemical potential
triggers the process and induces the emptying of the spherical cavity confined by the shell,
providing a negative pressure on the inner wall and, at the same time, the shrinking of the
shell. When the cavity volume reaches a critical value, the shell buckles and loses its spherical
shape. This phenomenon is captured by a finite element simulation, which solves the coupled
chemo-mechanical problem consisting in a stress–diffusion model based on the Flory-Rehner
thermodynamics.
In order to understand how material and geometrical parameters affect the instability, we
approximated the dynamical process as a sequence of equilibrium states over sufficiently small
time intervals ∆t� τd, which holds in small diffusivity regimes. Over each interval, the volume
cavity and the flux do not change with time and allows us to solve the problem as a quasi-static
problem where the cavity volume is prescribed.
Our analysis was inspired by other related works that dealt with the purely mechanical instability
of elastic shells under pressure [20] or due to the combined effect of pressure and differential
growth [35]. However, a key and necessary ingredient of our analysis, that makes it different
from previous studies, is the introduction of the diffusion equation. In fact, in our case, the
mechanical and chemical problems are strongly coupled and the bifurcation occurs when
the thermodynamical equilibrium has not been attained yet. Therefore, the chemo-mechanical
problem is challenging for several reasons: (i) there is a larger number of state variables; (ii) the
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solution with spherical symmetry cannot be determined analytically; (iii) the local volumetric
change in the spherical solution is not uniform in space and it is a-priori unknown. We observe
that a purely mechanical problem, with a neo-hookean incompressible shell with fixed cavity
volume, would lead to an overestimated critical value βc ≈ 0.85 as opposed to our βc ≈ 0.67 [26].
Despite the richness of the model, the perturbed solution still has a classical mathematical
structure in that it can be decomposed into the product of radial functions and an angular
functions written in terms of Legendre polynomials. The thresholds obtained from the
perturbative analysis successfully capture the instability observed in the FEM simulation. In
particular, the critical threshold of mode l= 6, which corresponds to the simulated post-buckling
shape, shows a good agreement between theoretical (βc ≈ 0.67) and numerical (βc ≈ 0.68) values.
We plan to perform a full exploration of the model parameters as a next step; in particular, the
analysis of the instability under extreme environmental conditions such as in-vacuum has also
been planned. Finally, a simplified reduced model based on shell models with natural curvature,
which would be related to the differential degree of hydration across the thickness of the shell,
might be useful to advance the analytical treatment of the problem.
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Figure 6: τd‖J̇‖∞ versus t lines for τd = 2 · 103 s (blue) and τd = 1.5 · 10−1 s (green); the blue
peak corresponds to the steep ramp of µe (a). Dimensionless pressure-volume curves pi/Gd vs β
from analytics (black) and numerics for τd = 2 · 103 s (blue) and τd = 1.5 · 10−1 s (green) (b).

A. Small and large diffusivity regimes
Given the system of equations (2.8)-(2.11), there are different characteristic times whose ratios
affect the different solution regimes and are: the diffusion time τd =H2

o/D, the time τµ, the time
τe needed to reach a thermodynamical equilibrium state. From the numerical solution of the
equations (2.8)-(2.11), we deduce that τdJ̇d =Ωτdċd ' 0, see figure 6 (a) where we represented
the behaviour of τd‖J̇d‖∞ versus time. Hence, the concentration field cd is nearly constant in
time and it can be assumed that divhd = 0. It allows us to approximate the dynamical process
as a sequence of equilibrium problems which have different characteristics in the small and large
diffusivity regimes, as we discuss below.
When we look at the solution for t' τe� τd, that is, for large diffusivity D, all the fields have
attained their thermodynamical equilibrium values. So, equation (2.19), under the spherical
symmetry assumptions, delivers h0R(Rc) = 0 so that equation (4.7) yields C0 = 0. Consequently,
h0R(R) = 0 and µ(R) = µe. The other unknown fields J0(R), p0(R) and r(R) can be determined
by integrating the equations (4.2), (4.6) and (4.7) with the boundary conditions (4.9a) at R=Rd
whereas at R=Rc we have

µ(Rc) = µe and
µe
Ω

+Q2
0(Rc)S0RR(Rc) = 0 , (A 1)

as pi = µe/Ω. The sequence of equilibrium problems we solve is controlled by µe. If µe depends
on time and its evolution is slow (τd/τµ� 1), the approximation above holds and we get a quasi-
steady solution of the problem; otherwise, if µe is constant, we get a steady solution.
The ratio β is determined as r(Rc)3/R3

o. The dimensionless pressure-volume curve pi/Gd vs β in
figure 6 (b) (bottom black) shows the excellent agreement with the numerical curve (green).
By contrast, in the opposite regime, that is, when the diffusivity is small and we look at the
solution for t� τe and t > τµ, which is the case we discussed in the paper, we approximate
the dynamical process as a sequence of equilibrium states over sufficiently small time intervals
∆t� τd. Over each interval, the volume cavity and the flux do not change with time and allows
us to solve the problem by integrating the equations (4.2), (4.6) and (4.7)-(4.8) with the boundary
conditions (4.9a), with µe = µf , and (4.9b). The sequence of equilibrium problems we solve is
controlled by β and, at variance with the previous case, the cavity pressure pi is an unknown
of the problem. Figure 6 shows the dimensionless pressure-volume curve pi/Gd vs β (top black)
which, also in this case, is in excellent agreement with the numerical solution (blue).
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B. Coefficients of the ODEs system
We define

G0 :=
dµ0
dJ0

the nonvanishng coefficients of the of the linear system to solve are

A12 = 1

A21 =
GdΩQ

3
0{(J0 − 1)[(2 + l + l2)Q0 + 2RT G0J2

0Q
3
0]− 2R[(J0 − 1)(RT (J0G0)′ −Ωp′0) + J0µ

′
0]}

(J0 − 1)(RT G0 +GdΩQ
4
0)R2

A22 =
−(J0 − 1)[RTJ0(−2G0 + 4G0Q3

0 + G′0R) + 2ΩGdJ0Q
4
0 − µ′0R]− µ′0R

J0(J0 − 1)(R TG0 +GdΩQ
4
0)R

A23 =
−l(l + 1)Q3

0{(J0 − 1)[RT (J2
0Q

3
0G0 − (J0G0)′R) + 2Ω(GdQ0 + p′0R)]− J0µ′0R}

(J0 − 1)(RT G0 +GdΩQ
4
0)R2

A24 =
l(l + 1)RT G0J0Q3

0

R(RT G0 +GdΩQ
4
0)
, A26 =− RT ΩJ2

0Q
6
0

D(J0 − 1)(RT G0 +GdΩQ
4
0)
,

A34 = 1,

A41 =− 2

R2
− p′0
GdQ0R

, A43 =
l(l + 1)

R2
+

p′0
GdQ0R

,

A44 =− 2

R
, A45 =

Q0J0
GdR

,

A51 =
(
(J0 − 1)(RT G0 +GdΩQ

4
0)R2)−1{RT G0Q0(J0 − 1)×

[−GdQ0(2 + l + l2 − 2J2
0Q

6
0 + 2RQ3

0J
′
0)− 2p′0R]− 2RGdJ0Q

5
0[RT (J0 − 1)G′0 + µ′0]},

A52 =
GdQ

2
0[−RT J0(J0 − 1)(4G0(−1 + J0Q

3
0) + G′0R) + (−2 + J0)µ′0R]

J0(J0 − 1)(RT G0 +GdΩQ
4
0)R

,

A53 =
(
(J0 − 1)(RT G0 +GdΩQ

4
0)R2)−1{l(l + 1)Q0[RT G0(J0 − 1)×

(GdQ0(2− J2
0Q

6
0 +Q3

0J
′
0R) + p′0R) +RGd J0Q

4
0(RT (J0 − 1)G′0 + µ′0)]},

A54 =
l(l + 1)RT Gd G0J0Q5

0

(RT G0 +GdΩQ
4
0)R

, A56 =− RT GdΩJ2
0Q

8
0

D(J0 − 1)(RT G0 +GdΩQ
4
0)
,

A61 =
D l(l + 1)(J0 − 1)(−2RTG0J2

0Q
3
0 + µ′0R)

ΩJ0RTR3
, A62 =−D G0 l(l + 1)(J0 − 1)

ΩR2
,

A63 =
D l(l + 1)(J0− 1)[l(l + 1)RT G0J2

0Q
3
0 − µ′0R]

ΩRTJ0R3
,

A64 =
D l(l + 1)(J0 − 1)µ′0

ΩRTJ2
0Q

3
0R

, A65 =−D l(l + 1)(J0 − 1)Q2
0

RTR2

Page 20 of 19

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


