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Abstract
It is well established that unreinforced masonry (URM) buildings develop
damage-forming collapse mechanisms during high-intensity earthquakes, with
thesemechanisms exhibiting large rocking displacements before collapsing. The
Discrete ElementMethod (DEM) of analysis can realistically capture phenomena
that involve large movements of elements, resulting in the technique being ideal
for simulating the collapse of URM building elements. Consequently, extensive
research usingDEM to analyse the seismic response ofURMbuildings and build-
ing components has recently been published. However, the variety of reported
damping approaches that have apparently led to DEM results that successfully
replicate physical observations underscores the need for consistent guidance
related to the assignment of damping factors. The Rayleigh damping distribution
model implemented in theDEMsoftware 3DECwas used to study the differences
between mass proportional (MP) and stiffness proportional (SP) damping con-
figurations. After reviewing phenomena that need to be damped and previous
works where damping was implemented, the capabilities and drawbacks of the
time-efficientMP damping configuration were studied and the results compared
to simulations with SP damping. When considering numerical simulations that
incorporated MP damping and led to results that were seemingly well-matched
to experimental tests, it was found that the apparent robustness of decisions per-
taining to the adopted input parameters was deceptive in most cases. Conse-
quently, SP damping was recommended for all DEM rocking simulations, even
though MP damping could be used with satisfactory accuracy in certain situa-
tions discussed herein. A pragmatic relationship between both damping strate-
gies was proposed.
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1 INTRODUCTION

It has been demonstrated that the discrete element method (DEM) is a suitable strategy to investigate and predict the
complex dynamic behaviour of rocking structures such as bridge piers, nuclear reactors, hospital cabinets, soil-
foundation-structure interaction, historic monuments, and unreinforced masonry (URM) parts when subjected to
earthquake-induced shaking.1–7 DEM was first presented by Cundall8 and later extended using a 3D version9 originally
conceived for jointed rock simulations. One of the principal strengths of using DEM is the ability to simulate large relative
displacements between elements. Complete separation between elements that were previously in contact may happen
and new contacts can be formed, allowing the modelling of the dynamic collapse behaviour of complex structures.
Explicit time-stepping algorithms are commonly used for DEM where the equations of motion are integrated using a

central-difference scheme.10,11 The same algorithm is often used for quasistatic and dynamic simulations, overdamping
the kinetic energy of the system in the quasistatic case by applying viscous damping forces to each element. Rayleigh
damping is commonly used to account for energy losses in dynamic simulations and is described by two components, being
damping proportional to mass (MP) and damping proportional to stiffness (SP).12 MP damping consists of the application
of a force resulting from the product of absolute velocity of the block, mass of the block, damping ratio and rotational
frequency, with direction opposite to the velocity vector. This type of damping decreases non-linearly with increasing
frequency, resulting in plausible damping ratios for higher frequency motions but producing an overdamped response
at low frequencies that potentially leads to artificially restricted motion of the blocks. Thus, MP damping is generally
not recommended for problems that involve large displacements of blocks, which implies low-frequency oscillations.11,13
Alternatively, when the phenomena to be modelled imply high-frequency oscillations, the SP component of Rayleigh
damping is desirable in order to avoid non-realistic behaviour.14 However, the computational time of certain problems
may then become impractically long because the application of SP damping requires a time step that is smaller than that
required by the conditionally stable explicit scheme. Another factor that makes for lengthy computation time when using
SP damping is the required number and size of the discrete elements.
In the presented study URM was used as a representative material for elements that rock when subjected to earth-

quakes. It was not until the 1990s when DEM was first used to simulate URM structural performance when considering
the dynamic response of columns and arches of Greek classical temples subjected to strong earthquake motions.13,15–17
Since then, several authors have successfully simulated the dynamic behaviour of URM buildings when subjected to
earthquake-induced shaking.12,18–22 In a DEM simulation each masonry unit can be individually represented as a rigid
or deformable element and the joints between the units are modelled as interfaces (referred to as a meso-modelling
approach as per Lourenço23). Alternatively, a set of adjacent units are combined into a single element in order to reduce
the computational burden.
For the case when simulating the behaviour of URMwalls using discretised strategies tomodel every real unit (or brick)

as a single block, several authors have encouraged the use of no viscous damping, instead relying on the frictional energy
dissipation effect and bond breakage21,24 to obtain reasonable results. Another possible option is to damp the fundamental
frequencies of the structure by applying the desired damping ratio (generally 5%) at these frequencies, whilst havingmini-
mal impact on the rocking frequencies. In the presented study a discretised non-damped strategy for rocking was included
and the influence of joint properties on the rocking motion was discussed. This non-damped strategy was implemented
by Forgács et al.6 for complex configurations using DEM, where soil-structure interaction was also included. When sim-
ulating structures built with large blocks, and with no cohesive layer between them, multiple authors21,25–27 have relied
on frictional energy dissipation while others1,3,28,29 have used viscous damping to damp high-frequency impacts. DEM
can also be applied to simulate in-plane loading in discretised URM walls as done by Malomo et al.,30 where interfaces
within the blocks were included to allow for brick cracking. Research has been undertaken on the effects of interface
material on the performance of free rocking blocks29,31,32 representing façades or mechanisms that have contact with the
foundation, with the conclusion being that damping parameters can be estimated based on the material properties of the
rocking block, and that changing the stiffness of the interface between the foundation and block will suffice to capture
soil-structure interaction effects.
Considering the numerous options for the application of damping and the multiple factors that influence the results

described above, one can find it challenging to choose a correct damping approach with sufficient confidence. It was
found that several authors have previously assigned damping values without a thorough discussion when using DEM
dynamic simulations, probably due to a lack of explanatory literature available on the topic. In some cases, authors gen-
erated fragility curves that most likely contained errors because the damping option chosen was not appropriate for the
phenomena being modelled, instead validating their models by fitting values using trial and error iterations that gave
artificial support of good correlations.
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F IGURE 1 Block geometries and variations of discretisation for measurement of rattling (Light coloured block represents fixity)

In an attempt to establish guidance to support future modelling research, a comprehensive literature review of previ-
ously adopted damping strategies applied to DEM simulations of URM buildings and building parts was included herein.
This review serves as an aid to allow the reader to gain an awareness of the problems that will be encountered when
attempting to model rocking using DEM. Rayleigh damping applied to dynamic DEM simulations for rocking blocks was
comprehensively studied. Such rocking blocks represent collapse mechanisms triggered by out-of-plane forces, where
damage through the bricks that form the wall is unlikely to occur and only mortar crushing at the bottom edges is
expected.29 After studying common issues to be aware of when using Rayleigh damping in DEM, experimental testing
results reported in the literature were compared to the results of a DEMmodel reported herein. Sources of error and issues
that were identified in the application of viscous damping are reported, together with lessons learnt and recommenda-
tions for future studies. The various issues encountered when applying MP damping were investigated by performing
parametric analyses and simulating laboratory tests. In the reported study only rigid elements were used, with deforma-
tions localized at the interface joints. The numerical and physical phenomena that need to be damped to avoid errors
when computing the rocking motion of blocks in DEM were also studied.

2 PHENOMENA TO DAMP IN SIMULATED ROCKINGMOTION

Incorrectly damping high frequencies causes motion that is not compliant with the mechanics of rocking blocks, poten-
tially resulting in undesired sliding, loss of solution accuracy,33–35 or premature collapse as studied empirically and numer-
ically by Meyer et al.36 Two types of undesired high-frequency displacements must be damped in DEM rocking simula-
tions: (1) high-frequency numerical noise, known as the “rattling effect”26,37–39; and (2) the rebound effect caused by a
block impacting the ground or other blocks.

2.1 “Rattling Effect”: High frequency numerical noise

With the aim of better understanding the rattling effect, vertical and horizontal displacements caused purely by numeri-
cal integration were investigated for a range of squat structures with cohesive connections, including a fixed block at the
ground, with the joint location and block shapes varied as seen in Figure 1. In order to measure the displacements occur-
ring due to rattling, the blocks were subjected to free vibration with no external input other than gravity. Frequencies of
vibration of between 300Hz and 1600Hz, calculated as the inverse of themeasured complete noise oscillations per second,
were observed for URM columnsmade out of two and seven blocks having block dimensions of L370×W250×H120mm3

in size (Figure 1A,B), with the number of blocks in the column altering the vertical amplitude of the rattling from 2e-4mm
(two blocks) to 22e-4 mm (seven blocks). Increasing the height of the blocks whilst maintaining a constant column height
and constant Young’s modulus of E = 1800 MPa (Figure 1B,C) led to a reduction of both amplitude and frequency of the
rattling. Horizontal rattling was also observed in models a, b and c but the amplitude was in the order of 1e-17 mm. Con-
versely, changing the length of the blocks did not change the rattling response (Figure 1B,D), leading to the conclusion
that the taller the structure, the greater the vertical rattling amplitude and the lower the rattling frequency. When vertical
joints (and hence additional integration points and additional degrees of freedom) were included in a wall having the
samematerial properties and characteristics as the columns (Figure 1D,E), rattling displacements increased in the vertical
direction (z) and in the direction perpendicular to the length of the wall (y). For a seven-block tall wall (Figure 1E) the
displacement reached 4e-3 mm in the y-direction and 1e-3 mm in the z-direction. Increasing the height of the wall from
0.84 to 3.00m increased the vertical rattling amplitude, confirming the phenomena reported above for the URM columns.
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However, after a few seconds of simulation, a joint at the bottom of the wall failed and thewall suffered a drift of 14e-3mm,
leading to the conclusion that the rattling effect can lead to unrealistic failure of joints, usually due to tensile failure of the
bottom bed-joint. When a cohesionless bottom bed-joint was used in the macroblocks the seven-block wall had a vertical
rattling displacement of 3e-4 mm, which was a lower value than that observed with a cohesive base (4e-3 mm) that con-
sisted of an interface with cohesion c = 1.4 MPa, tensile strength ft = 0.84 MPa, and friction coefficient μ = 0.7. Rattling
oscillations in the bricks happen because joints allow for movement of their nonlinear springs governed elastically by
normal and shear stiffness. Columns and walls with the same block configuration will experience higher rattling effect
with lower stiffness.

2.2 Impact frequency

At the onset of the rocking motion the block rotates about one edge until eventually impacting with the ground and
completing half of an oscillation, then rebounds and continues rocking around either the same or the opposite edge.
While bouncing is an expected high-frequency response of URM rocking motion, this response is generally damped in
nature.40–42 Therefore, the same damped bouncingmotion has to be considered when numerically simulating the rocking
problem and critically damping the impact frequencies by using SP damping. The application of SP damping to the critical
frequency was thoroughly studied by DeJong43 who described three types of impacts for a 2D rocking block, and defined
each type related to a 2D DEMmodel with spring-dashpot elements at each corner-edge or corner-corner contact.
The three types of impacts studied by DeJong43 were: corner (edges in 3D), edge (surface in 3D), and rotational impact,

with a circular frequency assigned to each impact type (𝜔𝑐, 𝜔𝑒, 𝜔𝑟, respectively) based on the stiffness and the mass
assigned to the sub-contact springs in the contact. The special case of rotational impact can only occur when the block is
subjected to external excitation, because this type of impact involves rotation about one corner, impact against the ground,
and finally, rotation about the same corner. Due to the stretch rule, the rocking motion of a block remains unchanged if
the block is stretched parallel to the axis of rotation such that the impact frequencies of a 2D and a 3D block remain the
same. The formulation is recalled herein as:

𝜔𝑐 =

√
𝑘𝑠
𝑚𝑏

𝜔𝑒 =

√
2 ⋅ 𝑘𝑠
𝑚𝑏

𝜔𝑟 =

√
3 ⋅ 𝑘𝑠 ⋅ 𝐵2

𝑚𝑏 (𝐵2 + 𝐻2)
(1)

where ks is the stiffness of a spring at the contact surface, mb is the mass of the block for 1 m length, B is the length of
the base of the block and H is the height. For rigid block simulations, all deformations are lumped at the contact surface.
Hence, the stiffness of the block (kj) can be related to a spring stiffness on the joint (ks) and to the material properties as:

𝑘𝑗 =
𝐸 ⋅ 𝐵

𝐻
𝑘𝑠 =

𝑘𝑗 ⋅ 𝐵

2
=

𝐸 ⋅ 𝐵2

2 ⋅ 𝐻
(2)

where ks was multiplied by B/2 as a consequence of having two springs positioned at the opposite ends of a joint. Substi-
tuting Equation 2 into Equation 1, the impact frequency relationships are:

𝜔𝑐 =

√
𝐸 ⋅ 𝐵2

𝑚𝑏 ⋅ 2 ⋅ 𝐻
𝜔𝑒 =

√
𝐸 ⋅ 𝐵2

𝑚𝑏 ⋅ 𝐻
𝜔𝑟 =

√
3 ⋅ 𝐸 ⋅ 𝐵3

2 ⋅ 𝐻 ⋅ 𝑚𝑏 (𝐵2 + 𝐻2)
(3)

DeJong43 observed little difference in the response of a rocking block when subjected to sinusoidal input when either
𝜔𝑐, 𝜔𝑒, or 𝜔𝑟 was selected as the critical frequency (𝜔𝑐𝑟𝑖𝑡) to define critical damping. Hence, the highest frequency should
be used to obtain β (stiffness-proportional damping parameter further defined in Section 3) in order to affect the timestep as
little as possible. Because DeJong43 demonstrated that the non-equivalence 𝜔𝑟 < 𝜔𝑐 < 𝜔e is true provided thatH/B>

√
2,

which is the case for most URM collapse mechanisms, 𝜔𝑒 was chosen herein as the critical damping frequency to ensure
a correctly damped simulation while still having the largest possible timestep. Recent work by Mehrotra and DeJong29
simulated multiple blocks in a post-and-lintel rocking frame configuration having multiple different 𝜔𝑟 and 𝜔𝑒 in the
system. The authors found that by choosing the highest𝜔𝑒 as the critical frequency the edge impacts and rotational impacts
of some blocks were excessively underdamped. Thus 𝜔𝑟 was chosen as the critical frequency for a better redistribution of
damping across the system.
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F IGURE 2 Diagram of rocking interacting blocks (Light coloured block represents fixity). (A) Single block, (B) (Vertically) Stacked
blocks and (C) (Horizontally stacked) One-sided block.

F IGURE 3 Block sub-contact representation and damping model distribution. (A) Block interface integration points with sub-contacts
represented as spheres and (B) Variation with frequency of the MP, SP and Rayleigh damping models (adapted from Chopra56).

When simulating the rocking interaction of various stacked blocks having coinciding corners (see Figure 2B), the stiff-
ness of the sub-contact at the corner of the blocks is effectively lumped into an equivalent spring with double the stiffness.
Applying this increment of stiffness into the frequency calculation, DeJong43 concluded that the critical frequency for
interacting blocks could be estimated as 𝜔𝑐𝑟𝑖𝑡 from Equation 3 times

√
2. In the special case of a one-sided rocking (1SR)

block (Figure 2C) the combination of interacting springs is equal to the single rocking block (Figure 2A) during most of
the rocking time except when the wall impacts the return walls, which corresponds to a horizontally stacked block con-
figuration (Figure 2B). For horizontally stacked blocks the same formulation can be used as for vertically stacked blocks,
except B would be H and vice versa, resulting in a significantly higher 𝜔𝑐𝑟𝑖𝑡 for H/B >

√
2. In the DEM software 3DEC

only one damping-related value can be input for a simulation, which corresponds to a single critical frequency. The use of
𝜔𝑐𝑟𝑖𝑡 for horizontally stacked blocks results in underdamping for most of the simulation except for impact with the return
wall. On the contrary, the use of 𝜔𝑐𝑟𝑖𝑡 for a single rocking block overdamps the return wall impact. This damping issue is
further studied in Section 4.2.

3 DAMPING STRATEGIES FOR DEMAND INFLUENCE ON OUTCOMES

Several authors have suggested that MP damping could overdamp low frequencies due to the damping distribution, as
seen in Figure 3B for frequencies lower than 𝜔𝑖 . However, many authors have performed successful dynamic simula-
tions using an MP damping approach in 3D disregarding the drawbacks and achieving reasonably good matches with
experimental observations and with favourable computational time.16,19,44 Psycharis et al.45 and Çaktı et al.46 also used
MP damping to perform incremental dynamic analyses47 to study the specific behaviour of an URM part of a building.



940 GALVEZ et al.

In both studies45,46 the fact that high frequencies would be underdamped in order to reduce the computational effort
was acknowledged. Other authors decided to disregard damping in 2D21,25 and 3D7,26,27 problems when simulating
rocking motion, by instead relying purely on frictional dissipation. Zero damping was assumed during the first 20 s of
the excitation in Psycharis48 and Psycharis et al.,24 which was sufficient to capture the duration of significant shaking
of the earthquake. After twenty seconds of shaking MP damping was applied to attenuate free rocking oscillations and
adequately estimate the residual drift. The use of zero damping was justified by the observations of Psycharis et al.,25 who
demonstrated that the earthquake rocking response of free-standing blocks was independent of the value of damping
except for the case when free rocking oscillations occur. Other researchers sometimes used SP damping together with
MP damping for 2D simulations13,21 and 3D simulations,22,49 recognising the time-intensive nature of the problem. In
addition to the reviewed DEM simulations, FEM models that applied MP damping50 and SP damping51 were found
to correlate well with experimental rocking observations. Due to the high quantity and the variety of well-matched
simulations to experimental testing using MP (β = 0) damping, SP (α = 0) damping, a combination of both forms of
damping, or zero damping, one can find it challenging to choose a correct damping approach for an URM simulation.
The only references in the literature for assigning damping parameters to rocking blocks are DeJong,43 as described

in Section 2, and Peña et al.52 Both authors recommend using SP damping and leaving α as zero, but without exploring
the possibilities, advantages, and disadvantages of using MP damping. Peña et al.52 developed an empirical correlation
between the coefficient of restitution (e), as an impact velocity reduction coefficient, and β via a generalised damping factor
(GDF) where GPF is dependent on the stiffness of the block. If the formulation given by Peña et al.52 to calculate the block
stiffness is applied, then an extremely low contact stiffness is obtained which subsequently leads to numerical instability
in the simulations. Conversely, DeJong43 recommended that the contact stiffness be calculated as the relationship between
the distributed load applied normal to the interface (σn) and the displacement produced by the load (un). A relationship
between URMmechanical properties and the interface stiffness can be derived as 𝑘𝑛 = 𝜎𝑛∕𝑢𝑛 = 𝐸 ⋅ 𝜀𝑛∕𝑢𝑛 = 𝐸 ⋅ 𝑢𝑛∕𝑢𝑛 ⋅

𝑙 = 𝐸∕𝑙, where un is the normal displacement of the joint, εn is the normal strain of the block, and l is the joint spacing,
which for a single block representing an URM wall is equal to H and for a wall with nb blocks is l = H/nb. While in
Equation 2 the spring stiffness was computed with reference to the block stiffness to obtain the impact frequencies, here
the logic behind how to obtain the interface stiffness was recalled. Using elastic relations ks can be calculated from kn as
𝑘𝑠 = 𝑘𝑛∕2 ⋅ (1 + 𝑣), where v is the Poisson ratio which was taken in this study as 0.25, resulting in the equation ks = 0.4⋅kn.
In the following sections of the reported study, kn, ks and G were not included unless strictly necessary because E was
systematically stated and kn and ks can be computed based on the provided equations applying the chosen l. Stresses
calculated along the nonlinear joint interface were modelled using the Mohr-Coulomb failure criterion with tension cut-
off and a shear stress limit. The interface material model offers the option of including dilatancy, but variation of this
parameter does not influence the presented results because the simulated out-of-plane rocking motion does not include
overburden. Therefore, dilatancy was not reported.
Recent research has correlated the coefficient of restitution (e) of a two-sided rocking block and ζn in an analytical

viscous dampingmodel,53 based on the solution of the piece-wise formulation of the equation ofmotion of a SDOF spring-
mass model. Following this study, Vlachakis et al.51 expanded the correlation for two-sided and one-sided rocking blocks
using numerical finite element method models, which included contact surfaces between blocks and boundaries. The
correlation was suggested to be applicable to multiple numerical approaches provided that an accurate estimation of e is
achieved.
Because rocking problems cannot rely on hysteretic damping, a viscous approach already implemented in 3DEC was

used in order to damp the phenomena described in Section 2. Viscous damping forces that are proportional to relative
velocities simulate the effect of dashpot elements at each corner of blocks in contact (sub-contacts, see Figure 3A) following
the Rayleigh damping criteria. Rayleigh damping makes use of the constants α (MP) and β (SP) to construct the damping
matrix when performing dynamic analysis. The damping ratio ζn for any circular frequency 𝜔𝑛 that results from the
application of α and β can be found in Bathe and Wilson54 as:

𝜁𝑛 =
𝛼

2 ⋅ 𝜔𝑛
+

𝛽 ⋅ 𝜔𝑛

2
(4)

reaching a minimum at:

𝛽 =
𝜁𝑚𝑖𝑛

𝜔𝑚𝑖𝑛
𝛼 = 𝜁𝑚𝑖𝑛 ⋅ 𝜔𝑚𝑖𝑛 (5)
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F IGURE 4 Run times of simulations with seven different geometries and with SP and MP damping. (A) Comparison between α and β
and (B) Ratio between SP damping runtimes and MP damping runtimes.

Once the value of 𝜔𝑐𝑟𝑖𝑡 is selected, β can be easily calculated with Equation 5. If Equation 4 is plotted as in Figure 3B it
can be identified that the MP damping ratio distribution decreases hyperbolically with frequency and that the SP damp-
ing ratio increases linearly with frequency, with the final Rayleigh curve depicting a trough of damping ratios between
frequencies𝜔𝑖 and𝜔𝑗 (see Figure 3B). Experimental observations of a distribution of damping ratios that are similar to the
Rayleigh damping distribution in vertically spanning URM rocking walls can be found in Lam et al.,55 who successfully
implemented Rayleigh damping into a single degree of freedom analytical model to replicate experimental rocking tests.
As previously mentioned, when using MP damping there is a risk of overdamping low frequency motion associated

with high amplitude rocking. In a possible scenario where the MP damping parameters are adjusted such that low fre-
quency motions receive just the appropriate amount of damping, higher frequency motions would remain effectively
underdamped due to the shape of the MP damping distribution (Figure 3B). Taking into account this drawback, the MP
damping approach was studied in comparison with the SP damping approach because of the encouraging well-matched
results of some research studies where MP damping was adopted.
In order to achieve numerical stability of DEM simulations, the required timestep Δt is calculated in relation to the

mass of the smallest block (mmin) and the maximum contact stiffness of the model (kmax) as Δt = 0.2
√
𝑚𝑚𝑖𝑛∕𝑘𝑚𝑎𝑥.11,20,37

By specifying SP damping, the timestep is automatically further reduced for numerical stability, and a new timestep is
calculated as specified in Itasca11 and Belytschko.57 During the simulation of rocking phenomena new contacts are created
and bond breakage occurs, causing differences in calculation time due to having more phenomena to solve while keeping
the timestep constant.

3.1 Pragmatic differences between SP andMP damping applied to free rocking blocks

In order to compare computation time and investigate the pragmatic differences between the MP and SP damping
approaches, eight single block geometries (see Figure 2A) using two fixed values of B (0.19 m and 0.35 m) while changing
the values ofH (0.5 m, 0.9 m, 1.5 m, and 2.0 m) were modelled with two contact points in order to identify a model that is
numerically efficient if a large number of simulations need to be performed. The same modelling strategy was followed
in all simulations reported hereafter. Further investigation on the influence of integration points in rocking block dynam-
ics is discussed in Section 3.3. Two simulations were developed for each geometry, with one simulation incorporating SP
damping and the second simulation incorporating MP damping. First, the DeJong43 recommendations were followed to
assign β (considering E as 1000 MPa, 1800 MPa, and 3600 MPa) and a free rocking test was performed from an initial
tilting displacement of 90% of the instability displacement. Secondly, the best fitting α (MP damping approach) to match
the SP damping simulation was chosen by obtaining the minimum Weighted Mean Error (WME) between the displace-
ment time-history results of bothmodels (same procedure as in Shawa et al.58). ThisWME represents the mean difference
between the displacement obtained in the simulations using SP and usingMP damping over the duration of the free rock-
ing, with a cut-off at the end time of the SP damping simulation (displacement practically equal to zero) to not account
for undamped high-frequency low amplitude oscillations of the MP damping simulation. Figure 4A shows the regression
relationship between α and β for free rocking and in Figure 4B the ratio between the runtime of the simulations with
SP damping and with MP damping can be observed (𝜂 = tan−1(𝐵∕𝐻), Figure 2A). A coarse correlation was obtained in
Figure 4A, where for similar β different α were obtained, mainly due to two factors. First, according to Equation 3 blocks
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F IGURE 5 Bouncing observations. (A) Observation of bouncing in the MP simulation of the block with 0.35 × 1.50 m2 dimensions and
E = 3,600 MPa and (B) Relationship between block dimensions and observed bouncing (points highlighted resulted in α = 0 in Figure 4a).

with different B and E will have different β even if they have the same 𝜂. A lower value of β will be obtained with lower B
and higher E and clear trends can be observed when changing 𝜂, while keeping the same B and E. Therefore, when plot-
ting the results of all the blocks together as in Figure 4A, differences are expected. Secondly, MP damping simulations are
susceptible to changes in the results with little damping variation, as studied in later sections. Therefore, it is challenging
to find a perfect correlation when matching SP damping simulations and dispersion is expected. In those cases where the
best matching simulations had α = 0 (Figure 4A) the SP damping simulation had low damping, but low values of β still
resulted in bouncing not occurring. When attempting to match these SP-damped simulations by instead using MP damp-
ing, the required value of αwas found to be lowwhich triggered high amplitude bouncing, resulting in further damping of
the oscillations. Consequently, the MP damping simulations that most closely matched the SP damping simulations with
low βwere completely undamped simulations. SP damping simulations tookmuch longer to run and the SP/MP damping
ratio of computational times varied from approximately 50 to 350. The eighth block geometry was η = 35◦, which was not
included in Figure 4 because upon first contact with the floor during the first oscillation the bounce displaced the block
by a large distance and after that the rocking motion ended.
When using MP damping, bouncing of the modelled block after impact was expected (see Section 2.2) and was easily

observable from the z displacement of themodelled blocks. An example of block bouncing after impact can be observed in
themotion from the blockwithB= 0.35m,H= 1.50m, andE= 3600MPa (see Figure 5A). The bouncing experienced by all
the blocks withMP dampingwas plotted in Figure 5B to study the relationship between bouncing and block geometry η/R.
The bouncing magnitude was measured by the ratio between amplitude and the duration of time that the block remained
in the air. Blockswith lower η/R, that is, more slender, exhibited less bouncing, while thosewith high η/R exhibited greater
bouncing as was the case for the block with B = 0.35 m and H = 0.50 m (η/R ≈ 115 ◦/m). On the contrary, the simulations
with SP damping exhibited no bouncing. No bouncing was reported in the experimental tests included in Section 4, and
the bouncing criteria proposed by Lipscombe and Pellegrino59 suggested that bouncing is only relevant for rather squat
blocks of H/B ≤ 3 if energy damping increases. Therefore, any bouncing in the reported simulations was attributed to
high-frequency motions being incorrectly underdamped. From a practical perspective, bouncing was found critical when
blocks had approximately η/R> 45 ◦/m as seen in the highlighted area in Figure 5B, which corresponds to the simulations
that could not be replicated by MP damping due to bouncing (see Figure 4A).

3.2 Discretised model with zero viscous damping

A commonly used strategy to simulate the behaviour of URM walls is to discretise the model into independent blocks
having the same dimensions as the actualmasonry units beingmodelled, connected to each otherwith cohesive interfaces.
Some authors have suggested this approach to be a good strategy to bypass the application of damping by relying on
frictional and bond breakage energy dissipation.21,24
In Meriggi et al.,21 top and bottom joints were modelled as perfectly elastic to avoid slippage that was not observed

in the experimental tests. The tuff and limestone walls were reported to have E = 1575 and 4522 MPa, respectively and
joint spacing (l) of 120 and 129 mm on average. If the relationship kn = E/l is applied as explained in Section 3, as it is
used in multiple DEM simulations that were well matched with experimental testing,28,44,49,60–62 then the joint stiffness
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F IGURE 6 Parametric free rocking simulations with varying η. (A) η = 20.8◦ [0.19 m × 0.5 m], (B) η = 13.1◦ [0.35 m × 1.5 m], (C) η = 5.4◦

[0.19 m × 2 m], (D) η = 20.8◦ [0.19 m × 0.5 m], (E) η = 13.1◦ [0.35 m × 1.5 m] and (F) η = 5.4◦ [0.19 m × 2 m].

is 13,125 MPa/m for the tuff wall and 35,084 MPa/m for the limestone wall. However, the joint stiffnesses in Meriggi
et al.21 were tuned to match the experimental fundamental frequency of the walls by performing time-history analyses
without damping and by applying a Discrete Fourier Transformation to the results, resulting in kn = 490 MPa/m for
tuff masonry and kn = 2800 MPa/m for limestone masonry. Such stiffness values were closer to the stiffness reported by
other authors7,22,26,45 who calibrated their models by best fitting parameters to match experimental dynamic behaviour
or by replicating previous similar research. This observed disagreement among different authors could be considered as
irrelevant if viscous damping is abandoned, based on the findings of Dimitri et al.37 who established that joint stiffness
had little influence on the dynamic capacity of cohesionless multidrum 2D columns. However, Dimitri et al.37 did find
that when using a friction coefficient of μ= 0.46 a large difference in column dynamic capacity occurred when compared
to the results of simulations with μ = 0.70. The column with μ = 0.46 produced simulated sliding between the stone
drums that resulted in overturning at higher accelerations than for simulations with μ= 0.70, but only for inputs having a
short oscillating period, while longer oscillating period inputs resulted in the multidrum column rocking as a single rigid
body. Similarly, varying the MP and SP damping parameters was found to influence the overturning capacity at low input
periods and to influence whether the collapse mechanism of the column was sliding or rocking.
The observations described above led to a parametric analysis being performed to better understand the influence of

joint stiffness, cohesion, tensile strength and friction coefficient on the rocking behaviour of a cohesive discretised wall
without viscous damping applied. Cohesion, tensile strength and friction do not have an influence on the simulation
runtime, and therefore a study of simulation runtime was performed with only stiffness variability.

3.2.1 Stiffness variability

Four different stiffnesses were parametrized in three different block geometries (see Figure 6A–C), with γ = 1800 kg/m3

and with joints between bricks having sufficiently high cohesion and tensile strength for no bond connection to fail, in
order to solely study the influence of stiffness on damping of the resultant motion. The friction angle, which is relevant for
the base joint that opened to allow rocking, was equal to 31◦. Widely used rocking models that can be utilised to compute
the rocking equation of motion of blocks that are damped by the application of e after each impact were compared to the
discretised rocking blocks having no viscous damping applied. Two values of e were used in the comparison: the value
based on a geometrical relationship, which is valid for a homogeneous parallelepiped block (𝑒𝜂 = 1 −

3

2
⋅ sin2𝜂), and 95%
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TABLE 1 Free rocking apparent damping (ea) and difference between DEM and simulations using eη

η = 20.8◦ [0.19 m × 0.5 m]
𝒆𝜼 = 0.811, eη95% = 0.770

η = 13.1◦ [0.35 m × 1.5 m]
𝒆𝜼 = 0.922, eη95% = 0.876

η = 5.4◦ [0.19 m × 2 m]
𝒆𝜼 = 0.986, eη95% = 0.937

Mean ea
WME
(eη)

WME
(eη95%) Mean ea

WME
(eη)

WME
(eη95%) Mean ea

WME
(eη)

WME
(eη95%)

kn = 1,000 MPa/m 0.629 0.846 0.841 0.938 0.657 0.684 0.959 0.618 0.644
kn = 5,000 MPa/m 0.589 0.892 0.886 0.918 0.031 0.091 0.963 0.008 0.058
kn = 10,000 MPa/m 0.639 0.883 0.878 0.919 0.032 0.092 0.966 0.006 0.062
kn = 20,000 MPa/m 0.636 0.844 0.836 0.915 0.027 0.086 0.969 0.002 0.065

F IGURE 7 Result analysis of the parametric simulations. (A) Relationship between block dimensions and observed bouncing and (B)
Ratio between SP damping runtimes and discretised model runtimes.

of 𝑒𝜂 (eη95%) as suggested by Sorrentino et al.63 as a closer value to experimental observations. To process the differences
between time-histories the apparent coefficient of restitution (ea), shown in Equation 663,64 was computed and is shown
in Figure 6D–F. In Equation 6, |θn| is the maximum absolute rotation at the nth bounce. The ea represents the energy that
was dissipated after each impact between the block and the ground, with a larger value of the coefficient of restitution
representing less energy dissipation. The damping that resulted from each simulationwas studied by comparing the trends
in Figure 6D–F and analysing the WME in Table 1 for ea at each impact compared to that of the simulation using eη and
eη95% as input parameters. Sorrentino et al.63 found that ea is less than the calculated value eη and that the first few impacts
generally have a lower ea than the subsequent series of values. The same trends as noted by Sorrentino et al.63 are evident
in Figure 6E–G.

𝑒𝑎 =
2𝑛

√√√√√√√√
1 −

(
1 −

|𝜃𝑛|
𝜂

)2

1 −
(
1 −

|𝜃0|
𝜂

)2
(6)

In certain cases, low stiffness caused overturning midway through the decaying dampedmotion that is phenomenolog-
ically incorrect (see Figure 6B,C,E,F). The bouncing magnitude of the blocks was similar to values that were obtained for
the MP damping simulations reported in Section 3.1, although higher kn values caused reduced bouncing (see Figure 7A).
The large bouncing observed in the block with η = 20.8◦, regardless of the value of kn, caused rapidly-decaying energy
dissipation in the time-history simulation as seen in Figure 6A,D and Table 1. No trend was clearly observable from Fig-
ure 6 and Table 1 that systematically correlated the change in kn and the level of damped motion except for simulations
with η= 5.4◦ that showed an ascending trend of energy dissipation with lowering kn. With the exception of simulations in
which a very low stiffness was implemented, simulations using different kn with η = 5.4◦ and η = 13.1◦ showed almost no
difference in energy dissipation (see mean values of ea in Table 1). Overall, the results of DEM simulations with η = 5.4◦
and η = 13.1◦ were closer to the results for 𝑒𝜂 than those results for 95% of 𝑒𝜂 (see values of WME in Table 1), leading to an
underestimation of damping in the DEM simulations when compared tomost physical experiments represented by 95% of
𝑒𝜂, as demonstrated by Sorrentino et al.63 However, the SP damping simulations reported in Section 3.1 and undertaken by
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applying damping at the frequencies discussed in Section 2.2 showed a more highly damped response, being closer to 95%
of 𝑒𝜂, without bouncing or rotation effects. For the exclusive purpose of runtime comparison, new SP damping simulations
were developed to match the discretised simulations. The runtimes of the discretised models were from approximately
two to five timesmore efficient than for the SP damping simulations, except for the geometry η= 20.8◦ where the runtimes
were from 30 to 50 times more efficient (see Figure 7B).

3.2.2 Cohesion, tensile strength and friction variability

Based on the findings of the stiffness parametrization study reported in the previous section, the block with η = 5.4◦ and
kn = 10,000 MPa/m was selected to investigate the role of cohesion (c), tensile strength (ft), and friction coefficient (μ),
due to the very low bouncing observed (see Figure 7A), thereby avoiding any influence in the damped motion that was
potentially related to bouncing. The block with kn = 20,000 MPa/m was discarded because such a high stiffness made for
long computational time. The cohesion and tensile strength of the joints were parametrised as 0.1 and 0.5 MPa and 0.1,
0.3, 0.5 MPa, respectively, including values as low as 0.1 MPa to allow for joint breakage and to observe the influence of
cracking of the discretised model during the rocking motion. Similarly, the friction coefficient was parametrised as 0.30,
0.50, and 0.75 including low values that could be found in real URM structures and would allow the role of interface
sliding in the rocking behaviour to be observed.
Joints fail either in shear, which is controlled by c and μ, or fail in tension, which is governed by ft, with both failure

modes causing damped motion due to energy dissipation. After the sub-contacts in the joints failed in either tension or
shear only frictional interaction was observed, making it difficult to assess the cause of the damped motion of the model
by only observing the failure type. Hence, to parametrically study the dampedmotion of themodel the parameters μ and ft
were pairedwith very high and very low values of c (see Figure 8) that conditioned the development or non-development of
shear failure. The free rocking time-histories and ea for the combination of c and μwere plotted as shown in Figure 8A,C,
and for the combination of c and ft were plotted as shown in Figure 8B,D. The trends of the ea plots obtained for each
simulation resulted in a steeper slope when the bond strength parameters were weak and resulted in a shallower slope
when strong bondwas applied (Figure 8C,D), agreeingwith the trend observed in Section 3.2.1 (see Figure 6F) of shallower
slopes when the bonds were modelled as being strong enough to cause a low level of damage. As seen in Figure 8C,D,
the values of ea fluctuated at different points of the simulations, meaning that after the fluctuation points that alter the
trend slope, failure in the joints occurred changing the energy dissipated in each impact. For the first few impacts before
failure a high value of cohesion was found to correlate with low energy dissipation (see Figure 8C,D) and ft was highly
influential only when no major shear failure occurred (difference between c = 0.5 MPa, ft = 0.1 MPa and c = 0.5 MPa,
ft = 0.3 MPa), while the influence of μ was found to be less pronounced. In all simulations the shear or tensile failure of
joints was clearly visible, except for the combination c = 0.5 MPa, ft = 0.5 MPa, and μ = 0.7. One of the main drawbacks
of using discretised models that rely on damage for damped motion is that in the experimental results, no damage was
observed in the block other than at the base joint.

3.3 Dependency of rocking motion on interface integration points

An important factor that contributes to the level of damped motion of rocking blocks and to the computation time of
the simulation is the division of the contact interface between the block and the foundation. It is well known that when
the contact interface is more refined, the obtained solution will have a smoother transition from the elastic phase to the
rocking phase, whereas if the interface is not refined enough the result will be closer to a rigid interface case. In DEM, each
contact point between blocks defines an integration point to compute the stress distribution within the contact surface
(see Figure 3A). Specifically for 2D quasistatic DEM simulations, Pulatsu et al.65 calibrated elastic blocks using parametric
analysis and observed when the results of successive simulations with an increasing number of contact points achieved
similar responses. However, because an increased number of contact points increases the computational time, six contact
points between elements was observed to be a suitable number of thickness integration points. Similarly, Shawa et al.58
fitted their model by comparing a pushover curve with a Winkler-type foundation, considering 16 sub-contacts as being
most appropriate. Godio et al.66 researched the interaction problem for rigid elements and offered recommendations for
one-way bending walls in 3D based on a relationship between horizontal and vertical reaction forces. It was also found
that a reasonable balance between computation time and accuracy was obtained when using nine sub-contacts, which
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F IGURE 8 Free rocking time-histories and apparent damping (ea) for blocks with η = 5.4 ◦ and kn = 10,000 MPa/m. (A) ft = 0.3 MPa,
(B) μ = 0.7, (C) ft = 0.3 MPa (independent plots on the left including general trend) and (D) μ = 0.7 (independent plots on the right including
general trend).

was later applied byGodio and Beyer28 in 2D dynamic simulations. For 3D simulations, Lemos67 and Lemos68 explored the
types of contacts and the discretization possibilities in terms of triangular or rectangular faces and levels of discretization
for rigid and deformable blocks in order to correctly compute the eigenvalues of a stepped cantilever wall and a square
column, recommending at least three contact points across the thickness.Most researchers investigating 3D rocking blocks
have used DEM to simulate the response of multi-drum pseudo-cylindrical columns, which have been approximated
using a polygonal cross-section where the geometry of every drum naturally creates several contact points for a correct
computation of the stress distribution.
Based on a study performed by Shawa et al.58 for 2D DEM, blocks with different numbers of interface integration

points and with B = 0.2 m, H = 2 m, depth (L) = 1 m, a very large friction coefficient to prevent sliding (μ > 5), den-
sity (γ)= 1800 kg/m3 and E= 1800MPa were modelled herein to simulate a pushover analysis and compare their capacity
curves (see Figure 9A). The difference in the dynamic performance between blocks with different numbers of integra-
tion points was also investigated using SP damping (β = 0.00693, according to Sections 2.2 and 3), to avoid any rattling
or bouncing (Figure 9B) and the computational time of each simulation was recorded (see Table 2, CPU Intel Xeon E5-
2698 v3 @2×2.30 GHz, 36 GB RAM). The blocks with 10 and 15 integration points were observed to provide a smooth,
accurate prediction of the real quasistatic behaviour of a rocking URMwall, while blocks with two and five contact points
showed higher resistance to initiate rotation, resulting in a predicted response that was closer to the ideal rigid block and
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F IGURE 9 Block response for different numbers of interface integration points. (A) Pushover curves and (B) Free rocking histories.

TABLE 2 Change in computational time with interface contact points for the free rocking analyses

Contact points 2 3 4 5 10 15
Computation time (h) 6 13 16 20 34 54

rigid foundation bi-linear behaviour. In Figure 9B more damped oscillations can be observed when fewer contact points
were implemented. This difference in damped behaviour is a consequence of the decrease in the spring stiffness with
increasing number of contact points (Equation 2) and therefore the rocking amplitude of the block increased with more
contact points (see Figure 9B). Similar performance of the block was obtained when 10 and 15 contact points were imple-
mented. However, a significant change in computational time was observed when adding contact points as can be seen in
Table 2.

4 ARTIFICIAL SUPPORT FOR DAMPING STRATEGY SELECTION BASED ON
DECEPTIVEMATCHING OF RESULTS

Following the study of possible sources of inaccuracy, various laboratory tests of free rocking and earthquake-induced
rocking parapets, façades and one-way bending walls were simulated using MP and SP damping. The MP and SP damp-
ing parameters α and β were adjusted to match the free rocking experiments, and later, the same values were used to
simulate the same rocking element subjected to earthquake motion. The values of α and β used in the parapet and
façade experiments were plotted against the values obtained in Figure 4A to observe how close the simulations were
to the previously obtained relationship. Discretised models were also included in the experimental simulations whenever
possible.

4.1 Rocking parapets

The first experiment that was simulated was the free rocking test performed by Giaretton et al.69 of an URM parapet. Four
models were compared against the experimental test using the mechanical properties provided in Giaretton et al.69: two
models with the geometry discretised into multiple blocks (no damping applied), a third as a single block (Figure 10C)
with MP damping, and a fourth having the same discretised geometry and SP damping. At the contact interface with the
foundation a total of 7 mm was removed from the 230-mm thickness reported by Giaretton et al.69 to take into consider-
ation crushing of the very soft mortar after the rocking motion commenced. The material properties implemented in the
discretised model were extracted from Giaretton et al.69 as c = 0.5 MPa, ft = 0.1 MPa, and μ = 0.60, while γ = 1800 kg/m3

and E = 1800 MPa were assumed for all the models. These tensile strength and cohesion parameters caused extensive
damage in the joints of the discretised model (35% of sub-contacts in the model exhibited shear failure and 55% of the
sub-contacts in the model exhibited tensile failure), which resulted in extensive damping of the rocking motion (see Fig-
ure 10B). Applying the lessons learnt in Section 3.2.2, c and ft were increased until a reasonablematchwith the experiment
was obtained, reaching c= 0.6 MPa and ft = 0.5 MPa (18% of the sub-contacts in the model exhibited shear failure and 19%
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F IGURE 10 Free rocking motion of URM parapet. (A) Experimental setup69, (B) Non-dimensional top displacement vs time, (C)
Discretised parapet drift [mm] at the end of the simulation, with c = 0.5 MPa and ft = 0.1 MPa and (D) Discretised parapet drift [mm] at the
end of the simulation, with c = 0.6 MPa and ft = 0.5 MPa.

of the sub-contacts in the model exhibited tensile failure). While the motion of the lower-strength discretised model was
damped due to a distributed failure of the joints, with some blocks completely detaching from the wall (see Figure 10C),
the higher-strength discretisedmodel had amain horizontal crack and torsion (due to the non-symmetricalmasonry bond
pattern and the multiple possibilities of joints failure propagation) was observed in the remaining top and bottom pieces
(see Figure 10D). Numerical results indicated that good agreement with the experimental displacements could be reached
with every modelling strategy (Figure 10B), despite the motion being underdamped for high frequencies using MP damp-
ing. The single block models that best fit the experimental free rocking using SP and MP damping had α = 0.0753 and
β= 0.00068, respectively, with the SP damping simulation being the best matching of all the alternatives. However, when
applying the formulation given in Sections 2.2 and 3 (β = 0.00305) the motion was overdamped as seen in Figure 10B,
indicating that the formulation explained needs further improvement.
Part of the Giaretton et al.69 testing campaign consisted of subjecting a set of parapets to earthquake motions with an

increasing intensitymeasure until reaching overturning. A simulationwas also performed for the last test of the increasing
test series on a partially cracked parapet that was undamaged at the beginning of the experiment. The parapet tested by
Giaretton et al.69 still had cohesive resistance at the beginning of the simulated test, which added uncertainty to the
simulation strategy and required extra parametrical work to accurately introduce the tensile strength. Due to the large
drift error observed on the discretised free rocking model, only the single block model was simulated for the earthquake
time-history.
Different values of tensile strength applied at the base interface triggered the start of the rocking motion at differ-

ent times of the earthquake, completely changing the history of the motion. Therefore, accurately obtaining the tensile
strength at the basewas crucial.While inGiaretton et al.69 the tensile strength of themortar sampleswas given as 0.07MPa,
the optimal tensile strength for matching of the simulation was 0.10 MPa in the MP damping simulation and 0.06 MPa in
the SP damping simulation, showing the tendency of the MP damping simulation to collapse at an early stage. The rest
of the parameters of all models remained the same as given by Giaretton et al.69 Values of α = 0.0753 and higher were
not enough to prevent the premature collapse of the parapet using MP damping (Figure 11A). Conversely, SP damping
provided a consistent prediction of the parapet response and collapse while varying β = 0.00068 (see Figure 11B).

4.2 Rocking façades

Most of the studies performed on rocking blocks were focused on freestanding parapets or one-way bending walls. How-
ever, observations after earthquakes have shown that most macroblocks cannot complete a full oscillation because of
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F IGURE 11 Free rocking top displacement of URM parapet. (A) MP damping and (B) SP damping.

F IGURE 1 2 One-sided free rocking: comparison between experimental and numerical discretised and single-block models. μ = 0.60,
γ = 1750 kg/m3, and E = 1800 MPa, unless otherwise noted. (A) Experimental setup63 and DEM discretised model and (B) Displacement vs
time.

contact with transversal structures, referred to as one-sided rocking or 1SR. The experimental setup reported by Sorrentino
et al.63 was used to test the limits of usingMP damping for 1SR because the block had to impact the ground and the return
walls (Figure 12A), resulting in a greater likelihood of the impact frequencies being underdamped and introducing inac-
curacies into the simulation.
As observed in Figure 12C, low levels of damping were insufficient to damp the motion of the 1SR wall when a solid

block was used to simulate the façade. High levels of damping not only affected the amplitude of the rebound but also the
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F IGURE 13 DEM simulations and experimental testing from Sorrentino et al.63 (A) Complete time-history and (B) Zoom in between 0.9
and 1.7 s.

period of the first quarter cycle of the free rocking becauseMPdamping overdamped the low-frequencymotion. Therefore,
the model using a single block was considered to not be the best option to simulate 1SR. A secondary option that involved
discretising the wall into as many blocks as bricks in the real specimen (see Figure 12A) and not applying any viscous
damping was modelled. When E = 1800 MPa was used, not shown for the sake of clarity, very similar behaviour was
obtained as for the single block strategy with no damping. Lowering c and ft resulted in only a minor difference to the
dynamic behaviour until the strength was low enough to impose permanent strong deformation to the wall. Only when
E was reduced by a factor of 10-2 did the simulated behaviour become closer to the experimental results, but with strong
rattling effects also observed (see Figure 12B). Residual drift was observed at the top of the wall due to a combination of
the rattling effect and damage of the joints, resulting in a 4 mm rotational displacement at the top of the wall as seen in
the plot of the three points at the top (corners and centre, see Figure 12B).
The abovementioned experimental setup developed by Sorrentino et al.63 was also simulated using SP damping, includ-

ing the reported imperfections of rounded edges in contact with the base. One-sided rocking, where the block experiences
a double impact with the foundation and one impact with the returnwall, was not covered inDeJong43 andwhen applying
the single block strategy described in Section 2.2, the results did not replicate the experiments. As commented in Section 3,
the 𝜔𝑐𝑟𝑖𝑡 of the wall impacting the return walls is significantly higher than that of the single rocking block impacting the
foundation. The β value, for a wall having B = 0.11 m, H = 0.8 m, L = 1.5 m, μ = 0.60, γ = 1750 kg/m3 and E = 1800 MPa
obtained using the formulation from Section 2 was 0.00017 for the 1SRmodel and 0.00470 for the two-sided rocking block.
As seen in Figure 13, the best fitting simulation occurred for β= 0.00025, although the rockingmotion after themajority of
the energy was dissipated remained undamped without causing rattling. The same phenomena occurred for simulations
with β = 0.000125, 0.000500, and 0.001000. In contrast, simulations with β = 0.00200, 0.00400, and 0.00580 were found
to be overdamped after the first impact. It is worth noting that, even when accounting for the drawback of the undamped
motion at the end of the free rocking, SP damping provides a significantly better simulation than that obtained using MP
damping (see Figures 12B vs. 13).
Simulations using MP damping were not capable of realistically simulating 1SR free-rocking tests. However, in order to

observe the consistency and approximation of the MP damping model to simulate 1SR blocks subjected to earthquakes,
the experimental campaign reported by Shawa et al.58 was simulated. It is worth noting that Shawa et al.58 reproduced the
1SR tests with both an analytical model based on the Housner64 approach taking into account the appropriate coefficient
of restitution for energy dissipation due to multiple impacts, and with a 2D DEM model using SP damping. By means
of a lengthy and tedious trial and error procedure, values for α were obtained that enabled a close approximation to 1SR
walls subjected to four earthquakes named BagnirWE, SturWE, R1168EW, and CalitWE (more information can be found
in Shawa et al.58). A physical gap of 4 mm was left between the return walls and the overturning wall as specified in
Shawa et al.58 A slope under the wall was observed in the experimental campaign, caused by dust and crushed material
accumulation. The magnitude of this slope increased test after test and had to be simulated by adding the slope with an
angle φ. Rounded corners with 8mm radius at the bottom of the wall were also included to simulate crushing andwearing
due to the rocking motion. An acceptable agreement was obtained, as observed in Figure 14 where the damping that best
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F IGURE 14 Comparison of top displacement between experiments and DEM simulation. (A) BagnirWE, φ = 0.191◦, (B) SturWE, φ =

0.210◦, (C) R1168EW, φ = 0.272◦ and (D) CalitWE, φ = 0.348◦.

F IGURE 15 Comparison of top displacement between experiments and DEM simulation. (A) BagnirWE, φ = 0.191◦, (B) SturWE, φ =

0.210◦, (C) R1168EW, φ = 0.272◦ and (D) CalitWE, φ = 0.348◦.

fitted the solution is plotted together with minimal variations of α. Small changes in α changed the history of the motion,
showing significant differences in displacements (see Figure 14A,C,D) as opposed to the SP damping approach used in
Shawa et al.58
Similarly, to the free rocking blocks, the 1SRwalls tested by Shawa et al.58 were simulated using SPdamping. Considering

β = 0.00025 as the value obtained in the free rocking tests for a non-deteriorated wall, β was gradually increased for
the testing sequence described in Shawa et al.58 Good agreement was found between experimental observations and 3D
DEMwith SP damping simulations (see Figure 15). Little difference in the rocking performance between simulations with
varying β values was observed (see Figure 15), with results being robust for explored variations of damping coefficient.
The results obtained by Shawa et al.58 using UDEC (2D DEM software developed by Itasca11) were similar to the ones
obtained herein, but not identical due to current simulations having an extra dimension that allows for different boundary
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F IGURE 16 Pragmatic linear relationship between α and β derived from best matching α and β values for Shawa et al.58 façades and for
Giaretton et al.69 parapets. Parapet results from the parametric analysis reported in Section 3.1 were also included

conditions, rotation about the vertical axis, and the use of different amounts of interface integration points. The result of
these differences at an early stage of the simulations influences the complete time-history.

4.3 Using MP damping to approximate correct use of SP damping

The damping values of α and β for those simulations that bestmatchedwith the experimental tests described in Figures 10,
11, 14, and 15 were plotted in Figure 16. These best-matched values of α and β were observed to follow the same trend
as the results reported in Figure 4A (included in Figure 16) from matching MP to SP damping simulations following
the DeJong43 method (see Section 2.2) to assign β, without including the simulations that were strongly influenced by
undamped bouncing. A linear best fit regression of the combined data was undertaken and a pragmatic relationship
was developed as 𝛼 = 22.4 ⋅ 𝛽 + 0.05 (see Figure 16). The exercise of matching the MP-damped DEM simulations to the
experimental tests needs to be interpreted carefully because, as observed in the simulated parapet and façades subjected to
earthquakemotion (Figures 11A and 14), small input changes can lead to bouncing and incorrect rocking and overturning.
Nonetheless, the trend observable from the point cloud shown in Figure 16 offers an approximation of α from β that can
be estimated from material and geometrical properties of the block as explained in Sections 2.2 and 3. This relationship
offers a tool for a first approximation of the results using MP damping, that should later be refined using SP damping
simulations.

4.4 Vertically spanning rocking walls

After simulating single-block URM parapets and façades, a one-way bending wall composed by two blocks rocking on top
of each other was modelled to explore the relationship between MP and SP damping. For this purpose, a set of laboratory
tests performed by Griffith et al.70 with B= 0.11 m,H= 1.50 m, L= 0.95 m, were simulated using μ= 0.70, γ= 1800 kg/m3.
The value of Young’smoduluswas not stated byGriffith et al.,70 so the rather low value ofE= 48MPa as obtained byGodio
and Beyer28,71 within an Euler beam framework bymatching experimental and analytical capacity curves was used herein.
In such tests Griffith et al.70 recorded the displacement d at the mid-height of pre-cracked walls left to freely rock from
an initial displacement. One of the most challenging details to model from the experimental campaign was the boundary
conditions (see Figure 17B,C). Theoretically designed as a vertically rolling support, the top connection needed to allow
vertical sliding of the wall with minimum resistance while at the same time restraining the horizontal displacement.
Additionally, the connection needed to be independent from the wall and capable of transmitting motion if earthquake
input was to be modelled. Consequently, rod elements with zero friction were modelled at the same height as in Griffith
et al.70 to emulate the real setup (see Figure 17B). As seen in Figure 17C, a secondary moving rod was modelled to push
the centre of the wall to its initial rocking position.
The value of α = 0.7539 was chosen when reaching the minimum weighted mean error between both displacement

time-history results (same procedure as in Shawa et al.,58 see Figure 17A). For the SP damping simulation, βwas obtained
as 0.0032 using the formulation explained in Sections 2.2 and 3, which is a very similar value to that obtained by Godio
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F IGURE 17 Free rocking motion of one-way bending wall. (A) Time vs non-dimensional mid-height displacement, (B) Top boundary
condition and (C) Mid-height crack.

F IGURE 18 Rocking motion of one-way bending walls subjected to earthquakes. (A) MP damping and (B) SP damping.

and Beyer28 (β = 0.0038). In addition to modelling free rocking oscillations, the same one-way bending walls tested by
Griffith et al.70 when subjected to three different earthquakes were simulated as well. Three earthquake ground motions
with different amplitude scaling factors were considered, being El Centro earthquake at 66% of the original accelerations,
Pacoima at 80% and Nahanni at 100%. The simulations showed very good agreement with the tests when the same β was
applied as for the free rocking test (see Figure 18A). Simulations using MP damping (see Figure 18B) predicted an approx-
imated motion of the wall, although not as good as the SP damping simulations. As outlined by Griffith et al.,70 vibration
frequency and damping ratio could be related to overburden of the walls. A parametric study of vertically spanning rock-
ing walls including viscous damping, with different overburden loads and subjected to different earthquakes was studied
by Godio and Beyer.28
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5 CONCLUDING REMARKS

Rockingmotion is frequently associatedwith the response ofURMstructureswhen subjected to earthquake excitation and
a type of behaviour that can be effectively modelled using the DEM. The damping phenomena present in rocking motion
and the frequencies associated with this motion were investigated herein. The energy dissipation strategies necessary
to damp these frequencies were presented, together with an investigation of the effect that several parameters have in
damping the rattling effect and damping of the frequencies associated with rocking impacts.
Discretised rocking block models with varying geometries were studied by parametrising joint material properties

without applying Rayleigh damping, based on the suggestions of previous authors regarding a methodology for how
to bypass the application of damping by instead relying on energy dissipation due to friction and bond (cohesion)
breakage. Due to the energy released when either shear or tensile cracking occurs, the apparent damping associated
with friction and bond was found to be heavily dependent on the adopted values of cohesion and tensile strength, but
it was found that tensile strength was only influential when no major shear failure occurred. Low values of cohesion
and tensile strength led to damage due to crack opening and block sliding and associated damped motion, whereas
the friction coefficient was found to be less influential in generating damped motion. Varying the joint stiffness was
found to have less influence on rocking motion when compared to the effect of varying either cohesion or tensile
strength, and it was identified that low magnitudes of joint stiffness (1000 MPa/m) caused non-realistic results and
false forecasts of overturning. Squat blocks (with high η) experienced significant bouncing that hid the effect of varying
the joint stiffness and that reduced the influence of cracking and frictional dissipation of the joints. Bouncing due to
non-damped high frequency motion in the discretised models was the same as when MP damping was used, and the
runtime was 30–50 times faster than when applying the SP damping approach. As a consequence of bond cracking,
discretised models that were developed to simulate parapet testing resulted in residual drift that did not occur in the
experiment, and the overall motion replicated the experimentally-observed motion only when joint strength values
were purposely adapted to match the experimental data. The discretised strategy was implemented for façades, but the
experimental displacement response could not be replicated without generating either extensive damage that was not
observed experimentally, a strong rattling effect or an insufficiently damped motion, regardless of the joint parameters
used.
The conclusions regarding discretised models discussed herein are focused on cohesive rocking masonry parts, which

are different from dry-stacked masonry, but can be extrapolated to complete discretised masonry buildings. Based on
observation from the reported study, for complete masonry buildings where collapse or near collapse is expected, the
introduction of SP damping is recommended in order to control rattling and allow rockingwithout bouncing, and cohesive
joints stronger than 0.1 MPa are recommended in order to avoid excessive damped motion due to joint damage.
Sufficient matching of simulations with MP damping against experimental results was only possible for free rocking

parapets and one-way bending walls. However, these simulations required trial-and-error calibration of a known result
because small changes of α resulted in significant discrepancies. Parapets subjected to earthquake motion and one-sided
rocking blocks that simulate rocking URM façades cannot be modelled with MP damping with adequate confidence
regarding consistency of input parameters and accuracy of results. Due to a major difference in computational runtime
betweenMP and SP damping simulations, a practical relationship between themass-proportional and the stiffness propor-
tional damping parameters (α and β) was investigated. This attempt to correlate α and β does not enable the substitution of
SP damping forMP damping simulations, but rather it allows simulated approximations to be generatedwith significantly
less numerical effort as a precursor for the SP damping simulation that will produce simulations that are phenomenolog-
ically rigorous. To obtain the aforementioned correlation, free rocking simulations of single blocks which were found to
provide a reasonable matching with experimental observations were parametrised using a range of differing geometries.
Experimentally matched simulation results, using both MP and SP damping approaches, were also included to obtain a
relationship between α and β. The combination of the results led to a point cloud with an observable trend that allowed
a relationship between α and β to be established. As part of the study of MP damped rocking blocks, a correlation was
obtained between block geometry and the bouncing phenomena occurring during free rocking, showing that bouncing
increased with increasing slenderness angle η per R length (η/R), and that bouncing was almost non-existent for blocks
with η ≈ 5◦. No bouncing was observed when using SP damping.
Even though computation runtime was high, SP damping simulations were proven to correctly simulate the rocking

behaviour of different URM parts. In every experiment simulated, SP damping results were found to be consistent with
variation in material properties. The formulation to obtain SP damping developed by DeJong43 was observed to work
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for the one-way bending walls that were simulated but resulted in an overdamped simulation for parapets. The non-
matching of results for parapets indicates that the DeJong43 formulation, while the best tool to use to date, needs further
development. It was also highlighted that there is a need for additional research directed towards the development of a
procedure to assess the damping parameters of DEM one-sided rocking blocks, in order to eliminate the trial and error
procedures currently being used. Furthermore, future research is needed to address the disconnect between DEM rocking
simulations that apply Rayleigh damping and analytical models where the coefficient of restitution is applied, and also
to analyse whether the correlation obtained by Vlachakis et al.51 is indeed applicable to DEM. Future investigations will
also be devoted to understanding the role of overburden loads on the damped motion of rocking blocks. The simulations
presented herein were performed using the software 3DEC, but it is expected that similar trends will be observed when
using other software where DEM is utilised, similar to the application of rigid-body-spring models or the applied-element
method.72,73 In the reported study,masonrywas used as the referencematerial because of the extensive amount of research
devoted to this form of construction, but the conclusions drawn from simulations using rocking masonry blocks can also
be applied to concrete rocking blocks (e.g., bridge piers, nuclear reactor shields, water tanks, historic monuments) or
non-structural rocking apparatus (e.g., hospital equipment).
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