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Abstract 

Emotions play an important role in our everyday life, 
influencing our decision-making process, and also 
affecting our physiology. Several studies in literature have 
proposed successful classification models for emotion 
recognition combining multimodal physiological measures 
without dwelling on the physiological significance of the 
measures. Our study aims at finding cardiovascular 
indices related to the autonomic nervous system that can 
explain how autonomic control of the heart responds with 
respect to specific emotions: happiness, fear, relaxation 
and boredom. Pulse arrival time and pulse pressure 
measurements have been shown to be significantly 
separating the 4 emotions, especially along the arousal 
dimension as expected from previous findings. 
Importantly, these blood pressure related indices also 
yielded relevant insights into characterizing the valence 
dimension when looking at high and low arousal subsets. 
In addition, these measures were found to be correlated 
with classical autonomic indices and explanatory in the 
cardiovascular and autonomic changes elicited by 
different emotions.  Autonomic indices were then used to 
train a basic support vector machine model obtaining four-
class test accuracy in discriminating happiness, 
relaxation, boredom and fear equal to 44%, 67%, 55%, 
44% respectively.  
 
1. Introduction 

Emotions play a fundamental role in the life of human 
beings as they represent an evolutionary factor that ensures 
survival and reproduction through adaptation to the 
environment [1]. From a biological point of view, 
emotions are a very complex network of neuronal and 
hormonal interactions which generate cognitive processes, 
aimed at influencing the decision-making process.  

Emotion recognition is finding many applications in 
many areas including Human-Computer and Human-
Robot Interaction [2]. Emotion related technologies, 
indeed, have already been introduced in our daily life and 
in the very next future our mood could be perceived by our 
devices, appliances, cars, etc.  

Many emotion recognition methods deal with the Central 
Nervous System (CNS) by using the 
Electroencephalogram (EEG) from which a large number 
of measures can be estimated to derive the emotional state. 
Affective elicitations arouse the prefrontal cortex which 
encodes the stimuli and transmit them to the brainstem 
through other central areas, producing this way an 
emotional response [3]. Many investigations regarding 
emotion elicitation have found significant links between 
the involvement of multiple cortical and subcortical	
regions with both positive and negative emotions [4].  

Despite the importance of the CNS in regulating the 
emotional sphere of each of us, an important milestone is 
also being reached by the study of changes in the peripheral 
autonomic nervous system (ANS). Indeed, the ANS is 
controlled by the CNS network, stemming from brainstem 
dedicated areas that drive the vagus nerve and the 
sympathetic spinal derivations. These two branches are 
responsible for heart rate variability, sweating and also 
drive the pupil dilation mechanisms and the activity of 
some facial muscles which regulate social engagement via 
facial expression. The clear advantage of studying the ANS 
with respect to CNS is that nowadays many wearable 
systems can easily monitor physiological variables driven 
by the ANS resulting in less invasive than measuring 
central signals [5] and a less cumbersome instrumentation.  

The general objective of our investigation is to find 
cardiovascular indices, linked to changes in the ANS, 
which can explain how, at a physiological level, control of 
the heartbeat and its cardiovascular effects on blood 
pressure is characterized with respect to four different 
emotions. In this study, we focus our attention on two 
measures derived by considering both ECG and BVP time 
series: pulse arrival time (PAT) and pulse pressure (PP). 

 
1.1. Study design and data 

The Continuously Annotated Signals of Emotion 
(CASE) dataset is considered for this analysis [6]. This 
database includes physiological recordings (1000 Hz) 
obtained from ECG, BVP, EMG, GSR, respiration and 
skin temperature on 30 subjects who watched video-



stimuli. Both subjective and pre-study annotations of the 
videos are provided in form of valence and arousal scales 
ranging from 1 to 9. Four emotions (happiness, relaxation, 
boredom, fear) were elicited with 8 different videos, 2 for 
each emotion, randomized in the order of display and 
separated each by a 2-minute blue screen visualization.  

The presented study considers only a subset of 
cardiovascular signals (ECG and BVP) and pre-study 
annotations in order to ensure balanced classes.  

Due to the different length of the videos, only the last 
100 seconds of each video were considered. The last part 
of the videos were considered in order to limit the influence 
of the previous emotion at the beginning of the following 
one. Moreover, by looking at the videos, we noticed that 
the last part was the more relevant for the emotion aroused. 
In order to compute the features needed for the study from 
the physiological signals, the lengths of the signal 
segments for each emotion were uniformed to compute the 
variation of each feature between every video and the 
previous blue screen video, used to bring emotional 
conditions back to baseline.  

For each subject examined all signals were acquired in 
a single session, so the signals were processed as explained 
in the next section before being cut. Then, all the features 
were extracted from the cut signals. 

 
1.2. ECG/BVP signal processing 

The ECG signal was initially filtered with a zero-phase 
low-pass Butterworth filter of 4th order and then it was 
downsampled at 250 Hz.  

R peaks on the ECG signal were identified through a 
Pan-Tompkins based algorithm [7]. Thanks to the 
extracted peaks a total of 11 features were computed. In 
this regard, different heart rate variability features were 
included. Considering both time domain and frequency 
domain features computed from the available 100 seconds 
signals. Specifically, frequency domain features were 
obtained from the autoregressive modeling of RR series 
with the Yule-Walker method. The order of the model was 
chosen as the lowest order in the range 7-15 that provided 
white residuals and/or minimized the Akaike information 
criterion.  

The BVP signal was pre-filtered at 25 Hz with a zero-
phase low-pass Butterworth filter of 4th order and 
successively down-sampled at 250 Hz. The obtained signal 
was then low-pass filtered with a 4th order Butterworth 
filter with cut-off frequency equal to 5 Hz. Fiducial points 
(systoles and diastoles) on the BVP signals were extracted 
and synchronized with the corresponding R-peaks on the 
ECG signal.  

Pulse arrival time (PAT) series and pulse pressure (PP) 
series were computed as the time between the R-peak and 
the systolic event and the difference between systolic and 
diastolic values, respectively.  

 

Figure 1. In the upper panel delta distributions for   
AVPAT feature are shown according the four emotions. 
In the lower panel delta distributions for   AVPP feature 
are shown as well. Significances are marked with *. ** 
if the p-value resulted lower than 0.01and *** if the p-
value resulted lower than 0.001.  
 
For statistical analysis, the following features were 

included: ECG features: average and standard deviation 
of NN intervals (AVNN, SDNN), power spectral density of 
RR in very low (RR VLF), low (RR LF) , high (RR HF) 
frequencies and LF/HF, normalized power spectral density 
of RR in low (RR LFn) and high (RR HFn) frequency 
ranges. BVP features: average pulse pression (AVPP), 
average and standard deviation of systolic amplitude 
pressure (AVSAP, SDSAP), diastolic amplitude pressure 
(AVDAP, SDDAP). ECG-BVP features: average pulse 
arrival time (AVPAT) and power spectral density of PAT 
in very low (PAT VLF), low (PAT LF) and high (PAT HF) 
frequency ranges.  
 
2. Statistical analysis 

After computing all the delta features, the Wilcoxon 
signed-ranked test with Bonferroni correction was 
performed for each feature among the four different 
emotions. Most of the features showed less than 4 
significant comparisons, with the exception of the average 
pulse pressure (AVPP) and the average pulse arrival time 
(AVPAT) which showed respectively 4 and 5 significant 
comparisons out of 6 comparisons. Figure 1 shows the 
boxplots for the two most relevant features.  

The standard heart variability measures confirm previous 
results on the ability of these indices to resolve 
discrimination along the arousal scale [8]. On the other 
hand, both AVPP and AVPAT are able to separate 
emotions on both valence and arousal dimensions, 
although not for all emotions. In particular, AVPAT alone 
is able to discriminate all the emotions except relaxation  
 



Table 1. Correlations between AVPAT and AVPP with 
respect to ANS features. Bold numbers represent 
significant correlations (p<0.05).  

 
and boredom (high-low valence), which are successfully 
separated by AVPP though.  

In order to characterize the relationship between these 
features with respect to classical autonomic indices, their 
correlations are shown in Table 1.  

AVPAT results to be slightly and negatively correlated 
with RR LF and RR LF/HF, positively correlated with 
normalized RR HF and strongly (positively) correlated  
with AVNN. Normalized RR LF results slightly and 
positively correlated with AVPAT. AVPP is slightly and 
positively correlated with AVNN and normalized RR HF 
as well as slightly negatively correlated with normalized 
RR LF.   

In order to estimate how AVPAT and AVPP behave, on 
average, according to each emotion, standard errors and 
95% confidential intervals were computed. In particular, 
we tried to see whether the combination of these two 
features could manage to separate the 4 emotions. In this 
regard, Figure 2 shows 2D boxplots given by the 
combination of the values of the two features. The asterisks 
represent the average values of AVPAT and AVPP, while 
inner rectangles represent the average +/- the standard 
errors computed as the standard deviation over the root of 
the number of samples and outer rectangles represent the 
average +/- 95% confidential intervals, computed as 1.96 
multiplied by the standard error. This measure can give us 
insights about the capability of these two features in 
estimating their averages for each emotion.  
In order to quantify the measure of average estimations, we 
computed for each emotion the ratio between the area of 
intersection of each couple of outer rectangles and the area 
of each outer rectangle itself. As we can notice from Figure 
2, the rectangles relating to happiness and fear do not 
intersect with relaxation and boredom and vice versa. 
Thus, we obtained percentages of non-intersection of 
85.70% for happiness, 65.59% for relaxation, 76.32% for 
boredom and 92.47% for fear.  

Both AVPAT and AVPP seem to separate better the 
arousal dimension with respect to the valence one. Fear and 
happiness, which belong to high arousal, create indeed a 
different cluster with respect to relaxation and boredom,  

 

 
Figure 2. 2D boxplots are represented. * represent the 

averages of AVPP on x axis and AVPAT on y axis. Inner 
rectangles are linked to the average features +/- the 
standard error and outer rectangles are linked to the 
average features +/- 95% confidential intervals for the 
average estimations. 

 
belonging to low arousal instead. Regarding the valence 
dimension, on the other hand, the difficulty in separating 
emotions can be appreciated in Figure 2, as happiness and 
relaxation theoretically should form a cluster different 
from fear and boredom.  
 

3. Support Vector Machine classifier 

We created a simple model for emotion recognition by 
means of a Support Vector Machine classifier. In order to 
provide a simple interpretable model we decided to 
consider only the six most important cardiovascular 
features. To this extent we chose the most significant 
features from the ECG identification (RR HF, RR HFn, 
AVNN), from the BVP identification (AVDAP and 
AVPP) and from the combined identification (AVPAT).  

The dataset was split randomly into training (70% of the 
sample, 168 records) and test (30% of the sample, 72 
records) datasets. Stratification was applied to maintain the 
same percentage of records in the four classes in the 
original dataset and in the training and test partitions. 

Given the small size of the dataset, including 240 records 
(8 videos*30 subjects), the classification model was 
optimized using 5-fold cross-validation on the training 
dataset. The performance of the model was evaluated by 
measuring accuracy on the training and test sets. The 
model was built by using a linear kernel and standardized 
features with respect to their standard deviation. The 
average training accuracy for the 4 class problem was 
found equal to 44% (47% of the best model), an average 
validation accuracy equal to 33% (41% of the best model) 
and an average test accuracy equal to 53%, in 
discriminating the 4 emotions. Dividing by emotion, 

Correlation AVNN RR 
VLF 

RR 
 LF 

RR 
HF 

AVPAT 0,59 -0,32 -0,19 -0,05 
AVPP 0,24 -0,06 -0,09 0,004 

Correlation RR 
LFn 

RR 
HFn RR LF/HF 

AVPAT 0,13 0,24 -0,15 
AVPP -0,13 0,19 -0,09 



happiness reached a test accuracy of 44%, relaxation of 
67%, boredom of 55% and fear of 44%.  

 
4. Discussion 

The aim of the study is to introduce and characterize new 
indices (AVPP and AVPAT) for emotion recognition. The 
statistical characterization obtained from computing 
AVPAT and AVPP suggests that cardiac and peripheral 
vascular activities are strongly affected by autonomic 
changes elicited by emotions. AVPAT conveys 
information from both the activity of the heart and the state 
of the vessels, whereas AVPP is mainly influenced by 
vasodilation, vasoconstriction and respiration phenomena 
[9].  In this perspective, as shown in Figure 1, the decrease 
in AVPAT and AVPP, associated with happiness and fear 
(high arousal), might be due to the strong sympathetic 
activation, inducing an increase in heart rate and 
vasoconstriction, consequently decreasing the time of 
pulse event with respect to R-wave occurrence and 
reducing the excursion of the pulse pressure. Vice versa, 
low arousal emotions are associated with an increase in 
pulse arrival time and pulse pressure with respect to 
baseline, thus indicating that cardiovascular changes 
elicited by these emotions are mainly related to a 
peripheral vasodilation. These considerations are in 
accordance with the results obtained in the correlation 
analysis. Importantly, as it can be noticed in Figure 2, 
AVPAT measurements are effective in distinguishing 
emotions along the valence dimension when dealing with 
high arousal emotions (happiness and fear). This is 
possibly due to the higher sensitivity in estimating the 
sympathetic activation (both cardiac and peripheral). On 
the other hand, AVPP shows a good ability in 
discriminating the valence dimension when low arousal 
emotions (relaxation and boredom) are considered. This 
could be attributed to the high sensitivity in estimating the 
sympathetic peripheral deactivation associated with 
valence.   

In conclusion, as usually ECG derived measures have 
been found useful in separating the arousal dimension, the 
main problem lies on being able to estimate the valence 
dimension, which is more difficult to be recognized since 
it is less related to the ANS. In this perspective, AVPAT 
and AVPP do show a specific ability to stratify the valence 
dimension, in particular when looking at high and low 
arousal emotion subsets, respectively. The higher 
difficulty in separating boredom from relaxation might be 
associated with the computation of differences with respect 
to baseline. It is reasonable to deduce that, depending on 
the subject, the blue screen can be considered either 
relaxing or boring, thus creating a mixing effect between 
the two emotions. 

 
 

5.  Conclusion 

We here present an original characterization of emotional 
states through physiological measures extracted from the 
ECG and BVP time series. In particular, we focus attention 
on two indices related to cardiovascular control dynamics: 
the average pulse arrival time, computed as the time 
between an R peak in the ECG and the following systolic 
value in the BVP and the average pulse pressure derived 
from the difference in amplitudes between each systolic 
and diastolic pressures. Results highlight the importance of 
these features in describing cardiovascular and autonomic 
changes elicited by emotions, particularly along the 
valence dimension. To further validate our  assessment, we 
developed a basic machine learning model including also 
these new features and observed an improved performance 
in identifying the different emotions with a very limited 
number of features extracted from non-invasive 
cardiovascular signals.  
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