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Abstract: This paper investigates a use case of robust anomaly detection applied to the scenario
of a photovoltaic production factory—namely, Enel Green Power’s 3SUN solar cell production
plant in Catania, Italy—by considering a Monte Carlo based pre-processing technique as a valid
alternative to other typically used methods. In particular, the proposed method exhibits the following
advantages: (i) Outlier replacement, by contrast with traditional methods which are limited to outlier
detection only, and (ii) the preservation of temporal locality with respect to the training dataset.
After pre-processing, the authors trained an anomaly detection model based on principal component
analysis and defined a suitable key performance indicator for each sensor in the production line
based on the model errors. In this way, by running the algorithm on unseen data streams, it is
possible to isolate anomalous conditions by monitoring the above-mentioned indicators and virtually
trigger an alarm when exceeding a reference threshold. The proposed approach was tested on both
standard operating conditions and an anomalous scenario. With respect to the considered use case,
it successfully anticipated a fault in the equipment with an advance of almost two weeks, but also
demonstrated its robustness to false alarms during normal conditions.

Keywords: anomaly detection; principal component analysis; Monte Carlo simulation; PV cell
production line; predictive maintenance

1. Introduction

In recent years, predictive maintenance has been receiving an ever increasing attention
and has been considered fundamental in industrial applications. In fact, it contributes to
guaranteeing healthy, safe and reliable systems, as well as to avoiding breakdowns that
could potentially lead to a whole system shutdown.

As known, the main benefit of Principal Component Analysis (PCA) lies in its capabil-
ity to reduce the dimensionality of data by selecting the most important features that are
responsible for the highest variability in the input dataset. Namely, PCA allows to concen-
trate the analysis on a compressed version of the original dataset without compromising
the reliability and the robustness of a predictive model. Among other factors, a key quality
in PCA is the inherent capability of processing large multivariate datasets as customary
in industrial equipment sensor networks. As a result, PCA formed a field of choice in
predictive analytics in several use cases, e.g., maritime and transport applications, as well
as decision support systems in healthcare [1,2].

On the other hand, the well known disadvantage of PCA stems from the sensitivity to
outliers in the data. In this respect, in the literature four known algorithms have been very
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recently devised in order to sort outliers’ observations out, namely the spherical principal
component based algorithm, PCA based on robust covariance matrix estimation, robust
PCA (ROBPCA) and the PCA projection pursuit algorithm [3].

To this end, based on measurements collected by the sensor network of a photovoltaic
production plant, the paper proposes Monte Carlo (MC) simulation as the pre-processing
stage to deal with outliers before applying PCA [4,5]. In this respect, the proposed approach
is shown to be a valid alternative to relying on the classical Interquartile Range (IQR)
method in order to omit outliers when applying PCA for anomaly detection purposes.

1.1. Related Works

Recently, the scientific community has devoted much attention to the use of data
analytics and machine learning models in the operation domains, e.g., manufacturing
and energy management. In particular, many applications have focused on predictive
maintenance and anomaly detection [6–8].

In this context, industrial systems have adopted PCA for detecting anomalous sce-
narios in their operational processes. In particular, key performance indicators (KPIs)
are usually defined starting from the PCA model in order to trigger alarms and prevent
failures [9].

Many works focus on fault isolation techniques which are employed to classify dif-
ferent occurring errors and to isolate the system variables mostly affected by them [10].
Specifically, they often propose statistical methods for fault detection, like Hotelling T2 or
squared prediction errors Q [11,12].

Even though plenty of these works deal with error classification and isolation in
the context of anomaly detection and predictive maintenance, other papers and practical
experiments shed light on innovative strategies to pre-process the input data that will
feed the predictive model. To this end, MC simulation has been largely applied for data
pre-processing in order to define more robust models. For example, in [13] the authors
process geodetic data by applying MC simulation to perform uncertainty modelling [14].

However, choosing the statistical method for MC simulation becomes difficult when
the involved dataset is highly affected by the presence of outliers. In this respect, a robust
estimation procedure has been investigated in [15]: The authors exploit the median since
it provides an estimator with the highest breakdown point and it always guarantees a
feasible solution for the considered optimization problem.

In general, MC simulation is used as a valid pre-processing strategy in order to
successfully manage uncertainty with respect to experimental use cases in manufacturing
and energy management, namely for predictive maintenance [16–19] or predictive analytics
purposes [20].

Moreover, the number of data points sampled by MC simulation is another crucial
parameter, since it could lead to inaccurate outputs [21]. This parameter is particularly
challenging to optimize since it strongly depends on the use case and the quality of data.
In [22] the authors test different MC simulations to determine the relationship between the
sample size and the accuracy of the sample mean and variance.

Despite larger samples could provide for a better estimation of the input distributions,
in [23] results demonstrated the need to restrict the number of MC runs to a number not
greater than the sample sizes used for the input parameters, since a large number could be
unnecessary or even harmful.

Despite the clear advantage of such approaches, they often still need to be validated
in practice. So, to the best of the authors’ knowledge, this paper proposes the application of
MC simulation to a real photovoltaic production scenario, as an effective way to pre-process
the data stream coming from the sensors deployed throughout the production site.

The related literature also reports pre-processing techniques for similar anomaly
detection scenarios based on the IQR method (e.g., [24]), which, however, offers only the
property of outlier removal and not the additional benefit of outlier replacement that is
consequential to applying MC simulation, as further discussed in Section 3.
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1.2. Paper Structure

The paper is structured as follows. Section 2 provides the use case description and
problem setting. In Section 3 we explain our contribution in terms of exploiting MC sim-
ulation as an innovative approach to data pre-processing with respect to the considered
anomaly detection and predictive maintenance application. Later on, in Section 4 we dis-
cuss PCA for anomaly detection. Section 5 presents the experimental setup and numerical
results. Finally, Section 6 concludes the paper.

2. Problem Setting

Enel Green Power needs to implement, in the production line of sun cells in the 3SUN
Factory, an artificial intelligence application capable of predicting faults relative to a piece
of process equipment, the so-called Automatic Wet Bench (AWB) machine, for predicting
any malfunctioning of the fans that ventilate the different stations within such machine.
The data collected on the Manufacturing Execution System (MES) are fed as input to the
predictive analytics engine in order to predict faults.

2.1. Use Case

In Figure 1 we show the process steps involved in the cell production. Each process
equipment has a specific purpose: Raw wafers enter the first machine in the line, the so-
called Wafer Inspection System (WIS), to check the quality of the input wafers; then, they
are subject to texturization and cleaning through the AWB equipment; next, the Plasma
Enhanced Chemical Vapor Deposition (PeCVD) equipment is used for the deposition of
doped and un-doped layer of amorphous Silicon (aSi) on both side of the wafers. Then,
the Physical Vapour Deposition equipment (PVD) is used for the sputtering process. Fi-
nally, the block formed by the Screen Printer, Tester and Sorter equipment are responsible,
respectively, of collecting the electric charge of the cell (fingers) and to let the flow be-
tween one cell and the other (Bus Bar) in the assembled modules, testing the electrical I-V
measurements of the cells and classifying them depending on their perfomance.

Figure 1. Photovoltaic cell production line in the 3SUN Factory.

The process equipment we refer to in this paper in order to predict the occurrence
of faults is the AWB, where the wafers are chemically etched to roughen the surface to
maximize the quantity of absorbed light and therefore the cell efficiency.

Along the production line, two parallel AWB machines are installed, each consisting
of a loading station (the first one) and an unloading station (the last one) and, midway
between the two, several stations where the chemical processes are performed. Within the
AWB stage, the wafers are loaded onto specific containers called carriers, which move
from one station to another until the process ends; the carriers do not enter in all stations
but only some of them, as the same task can be carried out indifferently by one station or
another, so that the carrier is moved by the automation system to the first available station
that can carry out the required task.

More specifically, the stations composing the production line serve three main pur-
poses: Pre-conditioning, texturing and cleaning. Each station is equipped with a sensor
that records measurements when carriers enter and exit the station.

We now provide a brief description of the most frequently occurring fault inside the
AWB and for which we design a suitable predictive analytics strategy. Such a fault is
generally due to the malfunctioning of the fans that ventilate the different stations within
each AWB stage.
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For each AWB stage, there exist two drying tanks which must work properly in
parallel and can never break down (not even alternatively), otherwise the AWB throughput
would be halved, thus compromising the whole production line. Since the fault episode is
generally preceded by the occurrence of anomalous vibrations, there is room for a suitable
predictive analytics strategy aimed at anticipating the occurrence of the fault through the
detection of such vibrations.

At a specific slot of time, an unexpected error may happen in one of its machines and
block the production completely for several few days.

2.2. Sensor Measurements

The sensors mounted onto the production line stations measure several relevant
parameters characterizing each station, such as station temperature, pump speed, flow
speed, and ozone concentration level.

The measurements recorded by the sensors were collected only during the enter, exit
and dosing phases of each carrier, thus leading to a non-constant sampling frequency.
This produced many discontinuities of variable length in the sensor data streams, making
standard time series analysis impossible. For this reason, the collected measurements were
treated as an ordered set of samples rather than time series. In order to capture the time
evolution of carriers going through a line, each sample is composed by the measurements
coming from all the stations, collected during the enter, exit and dosing phases of a carrier.

Let k stations out of the total number N account for the main path drawn by a carrier
entering the AWB stage to undergo pre-conditioning, texturing and cleaning. The remain-
ing (N − k) stations are parallel to the k principal ones and ensure the robustness of the
whole AWB stage in the following way: If one of the k stations fails, there is at least a
redundant station among the available (N − k) that is properly working and can thus be
entered by the carrier to undergo the whole production process.

For the sake of simplicity and without loss of generality, we assume to have k stations
only, and we neglect the remaining ones. Each station contains m sensors. Each sensor
measures the carrier up to t times.

The considered dataset collects the t measurements carried out by the m sensors in
the k stations over n batches or carriers, assuming a batch to account for a couple of wafers
flowing through the whole production line.

So we wrap all the available data into a structured dataset represented by a matrix X
with n rows and y := k×m× t columns.

As our approach is totally data-driven, without losing generality and for the scope
of the model, hereinafter we assume k = 7 and m = 6. Moreover, we assume t = 3,
because each sensor measures the carrier three times while it is inside the considered station.

3. Monte Carlo Based Pre-Preprocessing

In this section we illustrate a novel pre-processing approach based on Monte Carlo
(MC) simulation and compare it with a commonly used method based on the Interquartile
Range (IQR). This last is considered as a reference and the goal is to prove that our approach
is a valid alternative to the IQR method. Since both these methods concern only the outlier
removal phase, we also briefly describe the preliminary pre-processing steps required to
standardize the data and handle missing values or flat signals.

3.1. Preliminary Data Cleaning

Independently on the method, a preliminary data cleaning and preparation stage is
required before removing outliers. The following steps are applied:

• signal filtering when the missing values are above 5% of the total number of measure-
ments. Above this threshold, data interpolation can lead to distortions so we preferred
to discard the involved signals.

• linear interpolation of signals when the missing values are less that 5% of the total
number of measurements.
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• flat signals removal when the derivative is zero for at least 50% of the signal length
since constant measurements do not provide any meaningful information.

• signal standardization in order to make the scales of the different signals comparable.
This operation was achieved by subtracting the mean value and dividing by the
standard deviation.

In the next sections we describe the reference IQR method, followed by the discussion
of the proposed approach based on MC simulation.

3.2. IQR Method

The Interquartile Range (IQR) method is a simple but effective method used to identify
outliers by isolating samples below the 25th percentile or above the 75th percentile [25].

3.3. Monte Carlo Method

In this paper we propose an innovative method for removing outliers based on MC
simulation, which has been largely applied in other scenarios like estimation of sum, linear
solvers, image recovery, matrix multiplication, low-rank approximation, etc. [26]. In our
case, the idea is to generate new data points providing a more robust dataset by applying
an estimator to random samples extracted from the original dataset.

By using the median estimator, there is no need to remove outliers from the raw data
since this estimator is proved not to be affected by outliers [27].

Moreover, the size of the estimator dataset can be chosen arbitrarily, and can even be
greater than that of the original one.

In the next sections we discuss the choice of the proper estimator, the number of
samples used for MC simulation and the sliding window approach adopted to preserve
the temporal locality of the sensor signals. Finally, we present the pseudocode illustrating
the general pre-processing approach used to generate the new estimator dataset as input to
the PCA model.

3.3.1. Mean Versus Median

The mean and the median are considered to be the most reliable estimators of the
central tendency of a frequency distribution. Choosing the appropriate estimator is a
challenging issue when using MC simulation since different results can lead to different
correlations between signals, and thus different principal components when applying
PCA. Let

xi = (xp,z,w) p = 1,...,k
z = 1,...,m
w = 1,...,t

(1)

denote the i-th row of the n× y data matrix X accounting for the measurement of sensor z
during phase w in station p relative to batch i. In this way, each column f j (j = 1, . . . , k×
m× t) of X describes the temporal evolution of the measurements recorded by a specific
sensor in a station during the processing of the batches.

Let RIQR = [rIQR
ij ] with i, j ∈ {1, . . . , n}, i 6= j, rIQR

ij =
σfi f j

σfi
σf j

and −1 ≤ rIQR
ij ≤ 1

denote the correlation matrix computed between the columns of the dataset resulting from
the IQR pre-processing. Recall that σfi f j

denotes the covariance between the columns fi
and f j, whereas σfi

denotes the variance of the i-th column.

Let RMC,median = [rMC,median
ij ] and RMC,mean = [rMC,mean

ij ] (i, j ∈ {1, . . . , n}, i 6= j),
formulated as above, denote the correlation matrix computed between the columns of
the dataset resulting from the median-based and the mean-based MC simulation pre-
processing methods, respectively.

Let ∆ := [δij] = RIQR − RMC account for the deviation between the two matrices,
letting RMC denote alternatively the correlation matrix relative to the median-based or the
mean-based MC pre-processing method.
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In order to evaluate which estimator suits our purpose best, we run the following
statistical hypothesis test: {

H0 : δij < α ∀i, j
H1 : δij ≥ α ∀i, j,

(2)

considering the difference between the correlation matrix computed after the application of
the IQR method and the correlation matrix of the new dataset resulting from the previous
section (that is, the MC dataset).

We can state that there exists a significance level α such that δMC,median
i,j < α, ∀i, j,

and ∃(i, j) : δMC,mean
i,j ≥ α, allowing us to choose H0 only under the median-based

MC method.
In particular, in the considered use case, the difference in the correlation matrices

considering the median-based MC method is less than α = 6× 10−2 in absolute value and
this proves to be a consequence of the median insensitivity to outlier observations.

3.3.2. Choosing the Size of the Monte Carlo Sample

Choosing the proper number of samples has a significant effect on MC simulation
since it considerably improves estimation reliability. We recall that samples are chosen out
of the data matrix X, where xi, as defined in (1), represents a generic row of X accounting
for the measurement of sensor z during phase w in station p relative to batch i.

Up to the authors’ knowledge, the literature claims that increasing the sample size
reduces the variance and decreases the noise of the simulation results method [28]. Cali-
brating the sample size depends on many factors such as dataset size, the pursued objective
and the complexity of the phenomenon the designer is modeling [29]. Therefore, we have
tested different sample sizes before defining a methodology aimed at finding a suitable
number of samples for each round in MC simulation.

By comparison with the highly dispersed original dataset, by increasing the number
of samples we obtain a proportional decrease in variance. The desired sample size will
allow to remove only the outliers and at the same time preserve the rest of the information
contained in the original dataset.

By excessively increasing the number of samples, the risk is that a significant part of
the information is lost, thus affecting the accuracy of the PCA model.

In order to select the proper sample size for MC-based outlier removal, we evaluate
the impact this parameter has on the PCA model.

To demonstrate that MC pre-processing is a valid alternative to the IQR-based pre-
processing method, we compared the PCA models resulting from both approaches for
different sample sizes, ranging from 1 to 100. In particular, we measured the proportion of
the variance of the MC-PCA components that is explained by the IQR-PCA components
in terms of R2. In this way, high values of R2 correspond to similar PCA models, thus
confirming the equivalent performance of the two pre-processing methods.

From Figure 2, it is evident that by considering three samples we obtain the highest
value of R2 (around 97.5%), thus demonstrating that, by choosing the proper sample size,
the MC pre-processing method achieves very similar results to those obtained by the
IQR-based pre-processing method.

Figure 2 presents the results of the previous steps where it is experimentally proven
that PCA with three-sample size has the best results.
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Figure 2. Testing R-squared for different sample sizes.

3.3.3. Preserving Trend Properties through a Suitable Choice of the Monte Carlo Sample

Since PCA is based on the linear correlation among variables, any trends intrinsic to
the signals themselves will not be considered. For this reason, a random sampling among
all the batches for the purpose of median computation may result in the loss of the temporal
dependencies characterizing signals.

Therefore, we refined the procedure for the MC sample selection accordingly. In par-
ticular, for each batch in the original dataset we considered a time window centered around
the batch itself. Samples considered for the median computation were therefore extracted
inside such window, thus preserving the temporal locality among subsequent batches.

3.3.4. Pseudocode for the Pre-Processing Method Based on MC Simulation

The pseudocode reported in Algorithm 1 illustrates the steps required to generate
a new estimator dataset by using a pre-processing procedure based on MC simulation,
as proposed in Sections 3.3.1–3.3.3.

Algorithm 1 Pre-processing algorithm based on MC simulation
Input X: The original n× y data matrix
Output X̂: The new estimator n̂× y data matrix
Parameter n̂: The size of the new estimator dataset
Parameter b: The number of samples considered for MC simulation
i← 0
while i < n̂ do
idx← generateRandomInteger[b, n− b− 1]
for j in range[0, y− 1] do
window← X[idx− b : idx + b, j]
X̂[i, j] =←median(window)
end
i← i + 1
end

4. Principal Component Analysis for Anomaly Detection

Principal Component Analysis (PCA) is a well known method commonly used to
reduce the dimensionality of a dataset, by transforming the original set of variables into a
smaller one that still contains most of the information in terms of variance. In particular, it
is a linear dimensionality reduction method based on Singular Value Decomposition (SVD)
that projects the data on a lower dimensional space.

Being n̂ the number of samples and let y the number of variables, the n̂ × y data
matrix X̂ is centered (by removing the mean of every feature) and SVD is applied on
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its covariance matrix, thus leading to a subset of orthonormal dimensions, namely the
Principal Components (PCs) [30]. Since SVD computes PCs incrementally, their number
depends on the pre-defined stopping criterion in searching for the next PC. A common
strategy is to define the number of PCs as a function of the minimum variance information
to be preserved with respect to the original dataset in order to compress the data sufficiently
without loosing too much information.

In this paper we use PCA to perform anomaly detection. For this purpose, it is
necessary to isolate a subset of data points associated with a normal behavior of the
equipment. This subset is used as input to the PCA algorithm to compute a set of PCs
considering as stopping criterion a high variance preservation (at least 90%). Having
defined the y× z projection matrix Π composed by the z PCs, it is now possible to project
each data point x̂i on a lower dimensional space as:

ci = x̂iΠ (3)

where ci is the z-dimensional compressed version of x̂i. Then, we transform ci back to its
original space by multiplying it by the the inverse of the matrix Π (being Π orthonormal,
the inverse coincides with its transpose), thus obtaining the reconstructed version of the
input data:

x̂′i = ciΠT (4)

Finally, we compute the reconstruction error of the sample x̂i as:

ei = |x̂′i − x̂i| (5)

where the vector ei contains the residual of every input feature. Since the model is trained
on normal behavior data, the reconstruction error should be low for samples belonging to
the same distribution. However, during an anomalous scenario, the error is expected to
be high since the associated samples will deviate from such distribution. By considering
these vectors as KPIs for the stations in the production lines, it is not only possible to detect
anomalies when high errors occur, but also go back to the sensors mostly involved by
inspecting the residuals of each single input feature.

Remark 1. Thanks to the property of outlier replacement, to the median-based approach as in-
troduced in Section 3.3.1, to the optimal choice of the sample size as described in Section 3.3.2
and to the preservation of any temporal dependencies characterizing the input signals as stated in
Section 3.3.3, the proposed MC-based pre-processing approach turns out to be a robust alternative
to IQR pre-processing. In fact, as it can be seen from the experimental results reported in Section 5,
using median-based MC simulation in place of the IQR method for the pre-processing stage yields
very similar results, although the number of PCs obtained when applying PCA after MC simulation
is slightly higher than the number of PCs obtained when applying PCA after the IQR method.

Remark 2. The proposed pre-processing approach based on MC simulation is more adapt to the
scenario of energy plants whose data require extensive cleaning. In this respect, if the input data
are not cleaned enough, the IQR method, by isolating samples below the 25th percentile or above
the 75th percentile, may end up removing a significant part of the original dataset, thus potentially
compromising the quality of the subsequent data analytics task. Instead, MC simulation overcomes
this obstacle by enabling the data scientist to tune the dimension of the dataset resulting from
pre-processing according to the technical specifications of the considered task.

5. Experimental Results of Anomaly Detection

In the experimental phase, we compared the results of the proposed anomaly detection
approach considering both the IQR and MC pre-processing methods. In both scenarios,
the relevant data were collected from the MES of the 3SUN Factory and a set of normal
behaviour samples was defined for training the PCA model.



Energies 2021, 14, 3951 9 of 16

5.1. Training and Test Sets

According to the data format of matrix X specified in (1), we isolated a week of normal
condition samples as training set, going from 8 July 2020 to 15 July 2020. This period was
labelled as a period of standard operation by the operators working in the plant, together
with other periods going from 1 November 2020 to 14 November 2020 and from 1 May
2020 to 8 May 2020, respectively, which we considered as test sets. The operators reported
a fault in the plant on 4 July 2020, so we isolated 24 days of data before the fault as a further
test set to see if the proposed model actually detects the anomaly, possibly in advance.

5.2. Pre-Processing Phase

Before the application of the anomaly detection approach based on PCA, we pre-
processed the dataset as described in Section 3. In particular, 10 signals were filtered since
they were completely flat, 12 signals were discarded since they presented an excessive rate
of missing values, and eight signals were linearly interpolated. After this phase, the dataset
counted 36 variables on which the two outlier removal methods were applied.

5.2.1. Outlier Removal Results

From the results it is evident that both the IQR and MC methods were able to filter
outliers successfully. In Figure 3a, the original sensor signals are plotted in order to high-
light the presence of outliers, while in Figure 3b,c, respectively, the pre-processed signals
after the IQR and MC outlier removal methods are presented. It is important to notice
that the IQR method does not handle the substitution of outliers (e.g., by interpolation)
and it is limited to their identification and filtering. The MC method, instead, handles the
presence of outliers by replacing all data points with the median over a sliding window,
without requiring any additional substitution phase for the filtered values.

(a)

(b)

Figure 3. Cont.
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(c)

Figure 3. (a) shows the sensor signals without the removal of outliers, while (b,c) represent the signals
over time after the IQR and MC methods were applied respectively for the outlier removal phase.

5.3. Anomaly Detection Results

The PCA algorithm was run onto the two scenarios, namely considering an IQR and
MC pre-processing phase, by setting as stopping criterion a minimum of 90% of explained
variance. In the case of IQR, the PCs computed by the PCA algorithm were 16, while using
the MC method led to 19 new dimensions.

5.3.1. Testing in Normal Operating Conditions

The robustness of the anomaly detection model has been tested on normal behaviour
conditions (Figure 4) in a period going from 1 November 2020 to 14 November 2020,
namely on the data collected during the week following the training period. Figure 4a plots
the reconstruction errors of the model without pre-processing, while Figure 4b,c display,
respectively, the residuals considering IQR and MC for pre-processing. In all scenarios
the reconstruction errors are never persistently exceeding a threshold of 20 units, which
was taken as a reference considering the errors computed on the training data. In fact,
the operating conditions are very similar to the normal behaviour period on which the
model was trained and demonstrate that there are no substantial differences between the
two pre-processing methods.

(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. (a) shows the KPIs associated to all sensors without the removal of outliers in a normal
operating condition period, while (b,c) represent the KPIs (5) over time after the IQR and MC methods
were applied respectively for the outlier removal phase.

5.3.2. Testing in Anomalous Conditions

As a final step, we evaluated the model in a critical period going from 20 June 2020 to
8 July 2020, during which a technical problem led to equipment failure, as reported by
the operators. Figure 5 shows the residuals of the model considering no outlier removal
phase (Figure 5a), the IQR (Figure 5b) and the MC (Figure 5c) pre-processing methods.
In proximity of the failure event (on 4 July 2020), the anomaly is detected by the residuals
drastically exceeding the training reference threshold of 20 units, anticipated by another
reconstruction error spike on 3 July 2020. Without outlier removal the residuals never
persistently exceed the threshold in the period preceding the fault. When considering the
IQR and MC methods, instead, residuals above 20 units are already frequent starting from
20 June 2020, anticipating the fault by more or less two weeks. As for the normal behaviour
scenario, also in an anomalous period the two pre-processing methods demonstrated their
similarity by achieving comparable results.

It is important to notice that it is possible to isolate the sensors of the stations that are
mostly related to the anomalous conditions by inspecting the residual of each input feature
of the model. In this anomalous period, stations 12 and 13 were isolated by looking at the
large residuals two weeks before the fault. During the fault itself, instead, stations 19 and
20 were involved according to the model reconstruction errors.
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(a)

(b)

(c)

Figure 5. (a) shows the KPIs (5) associated to all sensors without the removal of outliers before and
after the break, while (b,c) represent the KPIs (5) over time after the IQR and MC methods were
applied respectively for the outlier removal phase.

6. Discussion

The proposed method for data pre-processing based on MC simulation exhibits the
following features:

• preserving temporal locality with respect to the training dataset;
• outlier removal;
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• outlier replacement, by contrast with traditional methods which are limited to outlier
detection only (for example methods based on z-scores [31] or IQR techniques [32]).

As discussed in Section 3.3 and confirmed in [27], the median was chosen as the most
accurate estimator in order to obtain a suitable dataset using Monte Carlo simulation to be
provided as input to the PCA-based model. In particular, the median-based MC method
proved to be more effective against outlier observations with respect to the mean estimator.

Moreover, we selected the optimal sample size for MC simulation by measuring the
percentage of variance of the PCA components trained on the MC pre-processed dataset
explained by the PCA components trained on the IQR pre-processed dataset in terms of R2

due to many considerations in the literature which report pre-processing techniques for
similar anomaly detection scenarios based on the IQR method [24]. This analysis led to an
optimal value of three samples to be considered for the median computation. In particular,
we adopted a sliding window sampling approach in order to preserve the temporal locality
of subsequent batches.

From the results is Section 5.3 it is evident that the IQR and MC-based pre-processing
methods produce similar results, demonstrating their capability to successfully deal with
outliers. Nevertheless, they present substantial differences. In fact, a standard method
like IQR is limited to isolating outliers and possibly remove them from the dataset. This
is a limitation because filtered observations generate missing values which require a
substitution algorithm (e.g., mean imputation [33], KNN [34], linear interpolation [35]).
The MC method, instead, intrinsically deals with outlier substitution by computing the
median of randomly selected points, thus generating a new estimator dataset with an
arbitrary number of samples.

The PCA models for anomaly detection demonstrated their capability to successfully
anticipate a fault in the equipment as shown in several other works and practical exper-
iments [6–8]. In particular, two PCA models were trained, respectively, on the IQR and
MC pre-processed datasets. Both models highlighted an anomalous condition almost
two weeks before the equipment failure by producing KPIs (residuals) above a reference
threshold which was used to discriminate between healthy and anomalous states of the
equipment as done in [36].

Moreover, it is important to notice that, without any pre-processing, the algorithm is
unable to detect the anomalies with such an advance and is limited to spotting only the
occurrence of the actual fault, which is also detected by the IQR and MC approaches.

Both models were also tested in standard operating conditions in order to prove their
robustness to false alarms. In fact, in normal conditions, the residuals of the models never
exceed the reference threshold persistently.

Finally, by inspecting the residual of each input feature of the model, the proposed
approach allows to isolate the sensors of the stations that are being subject to anoma-
lous conditions.

The authors have selected a reference period in order to calculate the average down-
time for the AWB stage of the production line shown in Figure 1, and then to compute
an estimate of the AWB downtime reduction resulting from the adoption of our predic-
tive model.

Considering that only 50% of the predicted machine-down events can be totally
avoided—in fact, only in some cases it is possible to take advantage of scheduled preven-
tive maintenances to repair the equipment in advance, the authors measured a reduction
in AWB downtime by 0.55%. Assuming to extend the implementation of the predictive
model to the entire equipment of the 3SUN production line (as shown in Figure 1), the au-
thors expect an overall downtime reduction between 1% and 2%, which corresponds to
an increase in the annual photovoltaic panels production in the order of approximately
1–2 megawatts.
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7. Conclusions

In this paper, the authors have presented a use case of robust anomaly detection
applied to the scenario of a photovoltaic production factory—namely, Enel Green Power’s
3SUN solar cell production plant in Catania, Italy—by considering a Monte Carlo based
pre-processing technique.

The proposed pre-processing algorithm demonstrated its ability to handle outliers
like other standard methods, with the additional advantage of intrinsically dealing with
outlier substitution and taking into account the temporal locality of subsequent samples.

After pre-processing, the authors trained an anomaly detection model based on
Principal Component Analysis and defined a key performance indicator for each sensor
in the production line based on the model errors. In this way, by running the algorithm
on unseen data streams, it was possible to isolate anomalous conditions by monitoring
the key performance indicators and virtually trigger an alarm when exceeding a reference
threshold.

The proposed approach was tested on both standard operating conditions and an
anomalous scenario. In particular, it successfully anticipated a fault in the equipment with
an advance of almost two weeks, but also demonstrated its robustness to false alarms
during normal conditions.

Finally, given the data-driven nature of the approach and its robustness to outliers
and irregular sampling frequencies, this approach could be applied to multiple lines in the
production plant. In fact, as future work, the authors look forward to testing the proposed
method on multiple pieces of equipment in order to further validate its scalability.
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CVD Chemical Vapor Deposition
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MEC Manufacturing Execution System
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PeCVD Plasma Enhanced Chemical Vapor Deposition
PVD Physical Vapour Deposition
ROBPCA Robust PCA
SVD Singular Value Decomposition
WIS Singular Value Decomposition
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