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We thank all the authors, reviewers and the editorial staff who contributed to this
Special Issue. The articles published in this Special Issue highlight how advances in breast
magnetic resonance imaging (MRI) are improving breast cancer (BC) detection, charac-
terization, prognosis and treatment. At present, BC is the most common female invasive
cancer in the western countries and the commonest cause of cancer death in women [1].
About one in eight women will develop BC in their lifetime, with average age of onset
declining over the years [2]. In spite of the increasing incidence, BC mortality progressively
decreased in recent decades [3]. This reduction demonstrates the crucial relevance of early
diagnosis in improving treatment strategies and outcomes [4]. To date, breast MRI repre-
sents the most sensitive technique for breast lesion detection. It is well-established and
considered indispensable in breast imaging practice. Breast MRI consolidated indications
are BC screening in women at increased risk, locoregional staging and neoadjuvant therapy
monitoring [5]. In recent years, novel functional techniques, such as MR spectroscopy
(MRS) and diffusion-weighted imaging (DWI), have been widely investigated to increase
breast MRI accuracy and to provide deeper insights. DWI measures the water diffusivity
of the tissues under examination and represents a valuable tool to distinguish benign from
malignant breast lesions [6]. Moreover, considering the risks associated with the use of
Gadolinium-based contrast agents, such as adverse reactions and brain deposition, DWI
with ADC mapping has been also advocated as a stand-alone sequence for BC detection
with interesting results [7–9]. However, bilateral DWI has limitations, such as magnetic
susceptibility and chemical shift artifacts, low signal-to-noise ratio and low resolution [10].
Therefore, various approaches have been suggested for minimizing these drawbacks.
Reduced field of view (rFOV) techniques obtain detailed images for a target region by
reducing matrix size, leading to decreased susceptibility artifacts and increased spatial
resolution at the expense of longer imaging time compared with single-shot EPI DWI. A
few recent studies on breast imaging with rFOV DWI have shown that the images provide
higher lesion conspicuity, better image quality and relatively higher resolution compared to
images obtained using conventional bilateral DWI, and they can be potentially used instead
of dynamic contrast-enhanced (DCE) MRI in BC patients [10–13]. Alternatively, advanced
approaches based on DWI, such as intravoxel incoherent motion, diffusion weighted kur-
tosis and diffusion-tensor imaging, have recently emerged and are the current object of
study, with promising results in terms of the improvement of BC diagnosis and subtype
differentiation [6,14–17]. MRS is a noninvasive diagnostic tool able to assess metabolic
information from a selected region within the tissue of interest based on the detection of
the peak of some metabolites, such as the total choline peak (tCho) at 3.23 ppm. Elevated
levels of tCho have been detected in malignant tumors, including BC, and are determined
by the increased cell membrane turnover of neoplastic processes. Several studies have
demonstrated that the inclusion of MRS in conventional breast MR examination improves
diagnostic accuracy and reduces the number of unnecessary biopsies, since MRS has shown
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an adequate sensitivity and specificity in distinguishing between benign and malignant
lesions [18–21]. Recent studies demonstrated that the detection of elevated tCho levels is
associated with biological aggressive cancer phenotypes characterized by a high grade,
large dimensions and high Ki67 proliferation rate [18,22]. In addition to tCho, in recent
years MRS has been used to detect and monitor other metabolites, such as lipids, since
lipid metabolism alterations were demonstrated to be associated with cancer development.
Thakur et al. [23] confirmed the diagnostic and prognostic value of MRS, demonstrating
that quantitative in vivo MRS assessment of lipid metabolism of breast lesions enables
the identification of malignancies and the characterization of BC subtypes [24]. In this
context precision medicine has developed, and the use of biomarkers to create customized
treatments has progressively grown. In addition to traditional tissue sampling-derived
biomarkers, nowadays imaging aims to offer a complementary method to obtain biological
information about the hallmarks of cancer. Several perfusion parameters variably derived
from breast MRI were initially correlated with traditional histological prognostic factors
(grading, tumor size, HER2 expression and hormone receptors, Ki67 proliferation index),
later with local recurrences, distant metastases and survival, opening a new scenario in
the treatment of BC where MRI becomes an imaging biomarker. The ultimate goal is to
noninvasively predict the phenotypic differences and molecular status of BC, which has
become more and more essential for optimal treatment. In the last decade some authors
demonstrated that different human cancer phenotypes of BC show specific imaging fea-
tures. Triple-negative BCs are significantly associated with MRI intralesional necrosis
and peritumoral edema on T2-weighted images [25–28], while rim enhancement in DCE
MRI is an established finding of aggressiveness associated with increased angiogenesis,
vascular endothelial growth factor expression and negative expression of estrogen and
progesterone receptors [25,26]. On the other hand, irregular mass shape and not circum-
scribed margins are more frequently associated with luminal BCs, reflecting the lack of
desmoplastic reaction and the relatively slow growth rate [29,30]. A growing interest is
in the use of MRI as a prognostic tool helping to define prognosis as well as costumized
therapy plans. The large datasets provided by and potentially extractable from breast MRI
make it convenient for fitting artificial intelligence (AI) applications. When BC diagnosis or
treatment planning are performed based on MRI data, radiologists are asked to integrate
multiple information from multiple images. The landmark paper from Gilles et al. in 2016
shouted that “Images are more than pictures, they are data” and unmasked the hidden
power of imaging methods encompassing information not always perceivable from human
interpretation [31]. Machine learning methods can extract this information and analyze
it with plenty of algorithms for a better understanding of the disease in vivo. Breast MRI
represents a fertile ground for AI applications due its intrinsic multiparametric concept.
Multiple image volumes for a single subject are generated, each containing proper data to
be integrated and classified according to the specific diagnostic, therapeutic or prognostic
aim. Breast MRI is playing an integral role both in clinical breast care and BC-related
research. MRI is becoming essential for BC screening, diagnosis, staging and monitoring,
and it offers one of the most appealing methods for the testing of AI and the manifestation
of its potential. In the era of personalized medicine, with the fast-paced development of
DWI and MRS, omics technologies, machine learning and big data, the role of imaging is
being redefined to embrace new opportunities and to guide new approaches toward BC
diagnosis and treatment [32,33].
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