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Abstract

This dissertation attempts to gather the main research topics I engaged during the
past four years, in collaboration with several national and international researchers
from “La Sapienza” and other universities. The primary focus is the application of
Bayesian hierarchical models to phenomena in several domains such as economics,
environmental health, and epidemiology. One common point is the attention to their
fast implementation and results’ interpretability. Typically, these two main goals
are challenging to be simultaneously achieved in the Bayesian setting for two main
reasons: on the one hand, the fast implementation of Bayesian machineries requires
an oversimplification of the modeling structure, which does not necessarily reflect
the complexity of the analyzed phenomenon; on the other hand, if the estimation of
complex models is sought, parameters’ interpretation may not be straightforward,
especially when intricate dependence structures are present. The reader must be
aware that all the presented applications with related solutions stemmed from these
premises.

The first chapter of this dissertation introduces the advantages of adopting the
hierarchical paradigm for the model formulation from a conceptual perspective.

Following this conceptual introduction, the second chapter delves more into the
technical aspects of hierarchical model formulation and estimation. Far from being
exhaustive, it provides all the essential ingredients for a thorough understanding of
their theoretical foundations and optimal implementation. These first two chapters
pave the road for the four original developments presented thereafter.

In particular, the third chapter describes a new statistical protocol aiming at
variable selection within a Beta regression model for the estimation of food losses
percentages at the country-commodity level. The work has been carried out in
collaboration with the Food and Agricultural Organization of the United Nations,
which started in 2017 for my Master’s thesis and led to the recent publication by
Mingione et al. (2021b).

The fourth chapter includes an extended version of the work developed during my
Visiting Research period at the University of California, Los Angeles. It describes
a modeling framework for the fast estimation of temporal Gaussian processes in
the presence of high-frequency biometrical sampled data. Nowadays, such data are
easily collected using new non-invasive wearable devices (e.g., accelerometers) and
generate substantial interest in monitoring human activity. The work is currently
under review and is available in Alaimo Di Loro et al. (2021b) as a pre-print.

The fifth chapter presents two modeling proposals to estimate epidemiological
incidence indicators, typically collected during an epidemic for surveillance purposes.
The methodology was applied to the Italian publicly available data for the monitoring
of the COVID-19 epidemic. Both proposals consider probability distributions
coherent with the nature of the data, which are counts, and adopt a generalized
logistic function for the parametrization of the mean term. However, the second
proposal allows for a latent component accounting for dependence among geographical
units. Notice that, in the first work by Alaimo Di Loro et al. (2021a), the inference
is pursued under a likelihood-based framework. This work helps highlighting even
more the advantages of using a Bayesian approach, as subsequently described by
Mingione et al. (2021a).

The last chapter summarizes the main points of the dissertation, underlining the
most relevant findings, the original contributions, and stressing out how Bayesian
hierarchical models altogether yield a cohesive treatment of many issues.
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Chapter 1

Motivation and Introduction

“The best thing about being a
statistician is that you get to play in
everyone’s backyard”

John Tukey

When I attended my first year at the university, I never imagined I would find
myself dazzled by the flair of statistics and today, in truth, I do not understand why
every person does not wish to become a statistician. Indeed, among all disciplines,
statistics is probably the most comprehensive in the sense that it serves all other
sciences, continuously attempting to shape the world and society as a whole. With
this work, although being a grain of sand, I hope to give my contribution in this
field and I wish I could say this is only the beginning.

Among the countless stimulating challenges statistical research poses, and the
plethora of possible approaches to the solution, I often ended up dealing with the
advanced handling of complex phenomena through Bayesian hierarchical models.
Loosely speaking, complex phenomena may be described by the combination of many
sub-components interacting with each other. Truth be told, the majority of real-world
events are the result of entangled relationships, regardless of the field of interest.
Therefore, whenever studying these relationships from a statistical perspective,
their intrinsically complex nature must be taken under proper consideration. In
strict statistical terms, this complexity usually arises in different forms, sometimes
apparent and other times concealed, such as: heterogeneity of data sources, presence
of missing data, unobserved variability. In this respect, statistics experienced giant
leaps forward in the statistical methodology and analysis to keep pace with the
scientific and technological progress momentum in other fields such as climatology,
ecology, environmental health, and economics. Since the early 2000s, we have been
assisting to a paradigm shift where intently gathered experimental data gave way to
the increasing availability of observational data. A thorough examination of complex
systems using such data, often requires integration of multiple sources of information
and necessitates to look at the big picture as a sequence of smaller frames, each one
with its own peculiarity. Following the scheme divide-rule-combine, the goal is to
provide ad hoc solutions to practical problems which require the analysis of data
that are highly multivariate, geographically referenced and/or temporally correlated,
with specific attention to the computational aspects and the interpretability of the
results. To this scope, the Bayesian paradigm for statistical analysis provides a
convenient framework for combining complex data models and external knowledge
by modeling both observed data and any unknown as random variables, allowing for
a proper quantification of uncertainty in the process of decision making. As it will
become even more clear in the following chapters, this dissertation will deal with the
technical and computational aspects of formal inference using Bayesian techniques
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and the adoption of the hierarchical paradigm for the model formulation will
be essential. Further details about the enhancements with respect to the state of
the art will be given in each specific section. However, regardless the framework
adopted, hierarchical modeling should be seen as a conceptual and philosophical
approach of doing science since it emphasizes model construction and depicts the
easiest and most general way of going from the problem to the solution.

1.1 The hierarchical paradigm

Generally speaking, the term hierarchical refers to “a system in which people
or things are arranged according to their importance” (Cambridge Dictionary). In
the statistical field, the concept of hierarchy does not go far beyond its original
definition, but it usually indicates the data structure and/or the model formulation.
In the scientific literature, especially in social sciences, hierarchical analysis is also
referred to as (or considered within) multi-level analysis, and related methodologies
have been developed strongly before they were actually implemented. However, the
existence of such hierarchies is neither accidental nor ignorable.

For instance, let us assume there are variables describing individual characteristics,
but these individuals belong to larger categories (each one consisting of more than one
individual), and there are also variables describing these categories. More practically,
let us assume the interest lies in estimating the average score for humanistic subjects
for high schools students in 2020. The first step is to select a sample of students and
record their grades in philosophy, history, literature and law. If possible, it could
also be useful to record the average number of hours they spent studying per week,
reasonably expecting that the more the time spent studying, the higher the score.
If we estimate a standard linear regression model, we would be neglecting the fact
that the students are grouped in classes, and each class has its teacher, with varying
teaching skills. Moreover, classes may belong to different schools, which in turn
may be located in different neighborhood or cities, and so on. We have variables
describing classes (e.g. size), variables describing schools (e.g. school building)
and also variables describing neighborhoods (e.g. economic status). These higher-
order variables are assigned to the individual since the analysis is conducted at the
individual level. Generally speaking, we can talk about primary units or populations,
secondary units, groups sub-populations, and simple units or individuals. Eventually,
this kind of structure may allow for further levels according to the complexity of
the problem at hand. To overlook such kind of dependence structure would lead to
dramatically wrong conclusions and flawed inference.

The previous example can be interpreted as a kind of individual within group
hierarchy, in which a nesting structure could be identified up to the fourth level (e.g.
students within classes within schools within neighborhoods). Other similar data
structures arise in longitudinal data, as often occurs in econometric applications, or
when repeated measurements are recorded for the same unit, as it is common practice
in clinical trials to study the effect of a treatment or human growth. A further type of
hierarchy includes the so-called non-nested structures, where individual observations
are nested within groups/clusters, but neither of them can be ordered/is above the
other in a hierarchical sense.

At last, even though falling into abeyance, hierarchical models are also known
as random-effects or mixed-effects models. In particular, the term “random effects”
refers to the regression coefficients that are considered random outcomes themselves.
This is in contrast with the term “fixed effects”, which refers either to parameters
that do not vary (e.g. individual-specific intercepts) or to parameters that vary but
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are not modeled themselves (e.g. indicators for categorical explanatory variables). A
“mixed-effects” model includes instead both fixed and random effects1. As for these
informal definitions, it is evident however that there is also no commonly agreed
mathematical formulation for such kind of models, even though the literature is
full of attempts in solving this issue (Kreft et al., 1998; Searle et al., 1992; Green
and Tukey, 1960; LaMotte, 2014; Snijders and Bosker, 2011). In general, the terms
“fixed”, “random” and “mixed” are confusing and often misleading, so we will avoid
their use in what follows, unless it is strictly necessary.

In the last three decades, there has been a substantial growth in the usage
of hierarchical models due to their flexibility and wide applicability in a rapidly
expanding range of fields, such as agriculture (Henderson, 1984; Robinson et al.,
1991), educational statistics (Bock, 2014), social sciences (Longford, 1995; Kreft
et al., 1998; Goldstein, 2011; Snijders and Bosker, 2011; Raudenbush and Bryk, 2002)
and environmental sciences (Clark and Gelfand, 2006; Royle and Dorazio, 2008)
among others. Most cited works discuss hierarchical model formulation from the
frequentist perspective, yet understanding the Bayesian standpoint is somehow more
thorough, as we will see in the next chapter. Generally speaking, we can say that
all multilevel models are Bayesian to the extent that parameters are not unknown
and fixed quantities, but random variables whose inference is sought. A complete
and rigorous overview of hierarchical models theory and implementation with R is
available in Gelman and Hill (2006).

Before moving into the core part of these dissertation, the reader should under-
stand that the hierarchical paradigm is utterly helpful in clarifying the nature of the
inference problem in a mathematically and statistically precise way, by focusing on
its conceptually and scientifically distinct components. Hence, while hierarchical
models yield a cohesive treatment of many technical issues, they also foster the
fundamental activities of model building and inference.

1.2 Content of the thesis
In this brief introduction, I hope the reader already got the scent of the potential

of hierarchical thinking and the advantages of the Bayesian approach to statistical
analysis. To provide an even clearer description of these tools, Chapter 2 is entirely
focused on Bayesian hierarchical modeling formulation and estimation from both
the qualitative and quantitative perspectives. At first, the concept of hierarchy in
Bayesian statistics is discussed, naturally leading to the model’s generic formulation.
Secondly, the main estimation techniques are described, highlighting their pros and
cons. Chapter 2 does not have the presumption of including all the exhaustive details
about the subject at hand, neither it has the rigour of a book in describing the
methods; however, the goal is to provide a comprehensive conceptual account of their
theoretical foundations, the intuition behind them and their optimal implementations.
I hope the dedicated reader will acquire a solid grasp of the motivation that leads to
Bayesian hierarchical models’ choice for the proposed applications, why they work,
when they succeed, and perhaps most notably, when they fail.

Then, in the following chapters of this dissertation, I present the four most valu-
able publications of my whole scientific production. The fil rouge bringing all of them
together is the application of Bayesian hierarchical models, with special attention to
their fast and efficient implementation. Each original work was motivated by a real

1Please, note that this latter distinction is more appropriate in the frequentist setting rather
than in the Bayesian one, as in this case, both the data and the parameters are considered random
quantities
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data problem and intended to provide the best solution from the methodological
perspective, without overlooking the interpretability of the results.

Chapter 3 presents the research work following my Master’s thesis project and
now published in Mingione et al. (2021b). In this work, we proposed an alternative
approach to what is officially reported in the State of Food and Agriculture (FAO,
2019) to estimate yearly food losses percentages at the country-commodity level.
In particular, our approach is based on a Bayesian Beta regression model with a
variable selection step. Proper estimation of food losses is key in the calculation of
the Food Loss Index, which is used by the Food and Agricultural Organization of the
United Nations to monitor progress towards the Sustainable Development Goal n.
12: responsible consumption and production. Identification of the most important
factors explaining what drives food losses dynamics worldwide is equally crucial for
implementing prevention policies.

Chapter 4 describes the original work developed during my visiting research
period at University of California, Los Angeles (UCLA) between September 2019
and March, now under review and published by Alaimo Di Loro et al. (2021b) as
a preprint. The research covered the efficient implementation of Nearest Neighbor
Gaussian Process (Datta et al., 2016a; Finley et al., 2019), and its application to
estimate physical activity level trajectories on a large scale population study, using
data collected through modern accelerometer and GPS devices.

Chapter 5 introduces a novel parametric regression model to fit incidence in-
dicators typically collected during epidemics. This work is the result of a joint
project of a group of statisticians who share the same commitment to the social
role of statistics, but are aware of the pitfalls that can stem from poor quantitative
communication. In particular, the first part of this chapter is dedicated to the first
proposal by Alaimo Di Loro et al. (2021a), developed during the first outbreak of
COVID-19 epidemic; in the second part, the focus instead relates on the extension
of the work mentioned above, now published in Mingione et al. (2021a).

A general discussion is given in Chapter 6, highlighting the important findings
and the contributions. Nevertheless, this dissertation still leaves room for many
questions and open problems, hence some thoughts regarding promising directions
for future research will be discussed.
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Chapter 2

Bayesian hierarchical modeling

“Diviser pour régner”

Luigi XI

The first hints about the notion of a hierarchy date back to the 1960s, when
the classification of kinds of probability from the Bayesian perspective was debated
both from a philosophical (Good, 1959), and mathematical point of view (Good and
England, 1965). In subsequent work, it was noted that different stages of probability
arise naturally, whether in the theory of physical probabilities, subjective probabilities,
or a mix of both (Good, 1980). Nevertheless, the widespread usage of hierarchical
models had to wait another decade before standing out other methodologies. Since
then, a huge amount of related literature was produced, some more focused on the
theory (Berliner, 1996; Gelman et al., 2013; Cressie, 2015; Banerjee et al., 2014;
Gelfand et al., 2019), other on the applications (Raudenbush and Bryk, 2002; Clark
and Gelfand, 2006; Royle and Dorazio, 2008; Congdon, 2019).

Formal definitions of hierarchical modeling are plenty. However, the most
comprehensive and endorsed by researchers is given by Gelman (2006), who states:

“Hierarchical modeling is a generalization of linear and generalized linear
modeling in which regression coefficients are themselves given a model,
whose parameters are also estimated from data.”

The above definition suits both the frequentist and the Bayesian approach, even
though the debate about this matter is still open (Allen, 2017).

The goal of this chapter is to provide the basic ingredients of Bayesian hierarchical
modeling formulation and implementation, in order to make even more clear the
methodological choices proposed in the following applications to the thoughtful reader.
Given these premises, Section 2.1 describes the generic formulation of Bayesian
hierarchical models from the conceptual and technical perspectives. Section 2.2
instead introduces the main Markov Chain Monte Carlo methods for the estimation
of models’ parameters, highlighting pros and cons of each of the described algorithm.

2.1 The generic formulation
When it comes to building a model which has to account for complex structures

and a large variety of random quantities, it may be helpful to break it into little pieces.
From a statistical point of view, this means that a manageable joint probability
distribution for all the random quantities involved may not be derived straightfor-
wardly, and the problem should instead be tackled from a conditional perspective.
Indeed, restoring to basic probability theory, any complex joint distribution can
be factorized into simpler conditional distributions. As we will see hereafter, this
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approach is intrinsically hierarchical, as these conditional distributions are somehow
naturally ordered. Moreover, although the model can also be formulated from the
frequentist perspective, following the Bayesian paradigm facilitates the inclusion of
prior beliefs on the outcome and may help in better quantifying the uncertainty of
the final estimates. Note that the adopted stochastic models are only approximations
of the complex processes affecting real phenomena, hence some error will always be
introduced. The benefit of the transparency implicit in this way of building models
is that it allows to determine where and how to introduce the error.

When specifying a Bayesian model, the main assumption is that both the data
(data) and the parameters (pars) describing the data generative mechanism are
random variables, and the uncertainty should be quantified in terms of their joint
distribution. Specifically, the inference is based on the posterior distribution of the
pars given the data, which represents the statistical compromise between the prior
knowledge and the observed information. By applying the Bayes’ Theorem, this can
always be expressed as:

π (pars|data) = J (data, pars)
m (data) ∝ L (data|pars) · π (pars) , (2.1)

where π(·) and π(·|data) represent the prior and the posterior distribution of the
pars, respectively; J(·, ·) indicates the joint distribution; m(·) is the normalizing
constant which does not depend on the pars; L(·|pars) is the likelihood of the data.
In general, the likelihood is chosen to be coherent with the nature of the data. At
the same time, the prior can either follow as a convenient combination with the
likelihood (i.e., conjugate families) and/or consider pre-existing information (e.g.,
expert opinion or past statistical analysis).

Equivalently, Equation (2.1) can be seen as a two-level structure:

• Level 1: L (data|pars)

• Level 2: π (pars),

where each level may envision the presence of additional sub-levels as, for example,
the specification for the typically unknown pars (e.g., the hyperprior).

Albeit simple, the consideration of such two-stage hierarchical structure has
been revolutionary for statistical modeling1, especially for models requiring the
specification of complicated dependence structures. Following this approach, it is
possible to keep the classical independence assumption at the data level, averting
the specification of elaborate dependence structures directly on the outcome variable
(Gelman et al., 2013). In some applications, these intricate dependence structures
can be dealt with the addition of a latent process (proc). In practice, this means
placing a further level to the hierarchy in between the likelihood and the prior
specification. Following Berliner (1996), we can imagine a three-stage hierarchical
specification:

• Level 1: L (data|proc, pars)

• Level 2: π (proc|pars)

• Level 3: π (pars),
1It changed the way of doing science in many fields: today, with the power of computers,

applications of Bayes’ Theorem go from climatology (e.g. weather forecast, Abramson et al. (1996);
Di Narzo and Cocchi (2010)) to computer science (e.g. spam detection, Eberhardt (2015); Rathod
and Pattewar (2015)).
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where the form of π (proc|pars) is arbitrary, although Gaussianity represents a con-
venient choice in most of the applications, due to its several probabilistic properties.

This framework decomposes a complicated generative process into three primary
components linked by simple probability rules. Moreover, this partitioning allows
specifying simple models at each stage that, when combined, can describe very
complex joint data, process, and parameters distribution (Gelfand et al., 2019). As
thoroughly discussed in Gelfand (2012), either the first or the second stage of the
hierarchical specification can be shaped according to the peculiarities of the problem
under consideration. The process specification can, in turn, envision the inclusion
of latent components either independent or correlated to account for unobserved
heterogeneity.

The ultimate interest is performing inference on the model parameters, (some-
times) on the latent process, and providing predictions for the outcome at unobserved
units. In general, all these tasks can be pursued in terms of the parameters’ and
process’ posterior distributions:

π(proc, pars|data) ∝ L(data|proc, pars) · π(proc|pars) · π(pars) (2.2)

and of the posterior predictive distribution:

π(d̃ata|data) =
∫
π(d̃ata|proc, pars, data) · π(proc, pars|data)dpars dproc. (2.3)

From the mathematical perspective, hierarchical modeling formulation involves
the specification of the distributional model (e.g., the likelihood) f(y|θ) for the data
y = (y1, . . . , yn) given a vector of unknown parameters θ = (θ1, . . . , θk), where we
suppose that θ is a random quantity sampled from a prior distribution π(θ|λ), and
λ is a vector of hyperparameters. In practice, also λ is unknown, therefore the
hyperprior π(λ) will often be required, leading to the generic expression of Equation
(2.2) as:

π(θ|y) = π(y, θ)
π(y) =

∫
f(y|θ)π(θ|λ)π(λ)dλ∫
f(y|θ)π(θ|λ)π(λ)dθdλ, (2.4)

and the posterior predictive distribution in Equation (2.3) as:

π(ỹ|y) =
∫
π(ỹ|θ, y) · π(θ|y)dθ. (2.5)

A useful instrument that can be used in the construction of such models to ease
the understanding of the underlying structure of the problem is a Directed Acyclic
Graph (DAG). This tool is extremely valuable whenever the goal is to represent a
set of variables and their conditional dependencies in a hierarchical structure. In
particular, the nodes in the graph correspond to data or parameters (or any random
variable in the Bayesian sense), while directed edges between the nodes represent
conditional distributions. For example, the DAG-based representation of Equation
2.4 is reported in Figure 2.12. Obviously, this structure can be arbitrarily complicated,
yet this simple representation highlights how interpretable and explainable may be
even the most complex model.

Nevertheless, DAG structures arise even more the computational concerns about
the estimation of such models. Indeed, aside from specific and rare cases, a DAG
representation illustrates how posterior distributions lack a closed-form solution,

2Please note that this is a toy example, where each observation depends on just one parameter.
However, in practice, a single parameter often can condition more than one observation.
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y1 . . . yi . . . yn

θ1 . . . θi . . . θn

λ

Figure 2.1. DAG representation of a simple Bayesian hierarchical model.

like the ones in Equation (2.4) and Equation (2.5). Their computation, therefore,
relies on simulation techniques, such as Markov Chain Monte Carlo (MCMC, Brooks
et al. (2011)), including Hamiltonian Monte Carlo (HMC), either of which will be
introduced in Section 2.2. Although, in principle, these equations can be simplified
by suitable marginalization/integration, the advantage of this specification lies in the
convenience of formulation, ease of interpretation, and, often, in the facilitation of
model fitting. Nevertheless, according to the size of the dataset and the complexity
of the specifications, such model fitting can be very challenging, sometimes unfeasible.
Limitations of hierarchical modeling will become more of a constraint as we seek
models that stretch the limits of our computing capabilities. However, they represent
powerful tools, and their application still brings more advantages than drawbacks.

Because of the above, hierarchical modeling has unsurprisingly taken over the
landscape in contemporary stochastic modeling. It has been chosen to be the primary
methodological tool for the applications presented in the rest of this dissertation.

2.2 Markov Chain Monte Carlo methods

As discussed in Section 2.1, the main object of interest for carrying out Bayesian
inference is the posterior distribution or any of its summaries. Although its definition
(at least up to a proportionality constant) is straightforward from a theoretical point
of view, obtaining closed-form expressions is not trivial in most cases. Unless working
with conjugate families, if we try to calculate the posterior distribution analytically
for such models, the algebra starts to overwhelm the statistical science almost entirely,
making the full Bayesian analysis too cumbersome for most practical applications.
Fortunately, a battery of powerful methods has been developed over the past few
decades for approximating integrals and simulating from probability distributions.
Integration arises for calculating the normalizing constant for the posterior as in
Equation (2.4), the posterior predictive distribution in Equation (2.5) or posterior
summaries of π(θ|y), such as expectation, credible intervals, etc. These techniques
are known as Monte Carlo methods (Robert and Casella, 2013) and fall into the
so-called simulation based inference, generally referring to those algorithms which
allow simulating random processes.

Following Brooks et al. (2011), the typical problem consists in the evaluation of

Eπ [g (θ)] =
∫

Θ
g (θ)π (θ) dθ,

where Θ is the domain of the random variable θ, which usually coincides with the
support of the density function π(·), and g(·) is any valid function of θ.

The idea is to simulate a sample {θ1, . . . , θM} from the density π (·) and approx-
imate the integral by the empirical average:
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ḡM = 1
M

M∑
m=1

g (θm) ,

which converges almost surely to Eπ [g (θ)]. Theoretical justification for this
solution relies on the application of the Strong Law of Large Numbers for M
sufficiently large. Moreover, when Eπ

[
g2 (θ)

]
< ∞, estimation of the asymptotic

variance of ḡM can be obtained as

var [ḡM ] = 1
M2

M∑
m=1

(g (θm)− ḡM )2 ,

hence using the Central Limit Theorem

ḡM − Eπ [g (θ)]√
var [ḡM ]

d−→ N (0, 1) ,

it is possible to build confidence bounds and convergence tests.
The advantage of using probabilistic integration rather than deterministic nu-

merical methods (e.g., trapezoidal or Simpson’s rule, Smith (1991)) is twofold: the
latter fail to spot the region of importance for the integrating function, wasting
computational effort in the evaluation of the integral at unimportant areas, and
present the problem of multi-modality, which largely affects their accuracy. This
implies that numerical methods cannot easily face the high dimensionality of the
probability distributions involved in most of the statistical problems. This issue is
also known as the curse of dimensionality, meaning that the volume of the sample
space increases exponentially with the number of parameters.

However, simulation-based methods also present some limitations, mostly related
to the ability of simulating from the target distribution π. That is typically incon-
venient in Bayesian hierarchical modeling, especially when elaborate dependence
structures are present, as these models produce highly complex probability distri-
butions that are difficult to sample from directly. A suitable solution is provided
by Markov Chain Monte Carlo (MCMC) methods. In principle, they were used
mainly by chemists and physicists to simulate particles movement but later became
essential for applied (Bayesian) statisticians. They can be seen as a subset of Monte
Carlo methods, which comprise an extensive class of algorithms primarily used to
calculate multidimensional integrals’ numerical approximations. The novelty is that
they provide an alternative whereby the sampling occurs directly from the posterior,
deriving the sample estimates of the quantities of interest, namely performing the
integration implicitly (Brooks, 1998).
The idea of MCMC sampling was first introduced by Metropolis et al. (1953) and
later generalized by Hastings (1970). Suppose that the target distribution distribu-
tion π(θ), θ ∈ Θ ⊆ Rk, is only known up to some multiplicative constant. If π is
sufficiently complex that we cannot sample it directly, an indirect method to obtain
samples from π is to construct an aperiodic and irreducible Markov chain with
state-space Θ, whose stationary (or invariant) distribution is π(θ) itself (Smith and
Roberts, 1993). Then, if we run the chain for a sufficiently long time, simulated
values can be treated as a dependent sample from the target distribution and used
as a basis for summarizing important features of π. More technically, a MCMC
method for the simulation of a distribution π is any method producing an ergodic
Markov chain whose stationary distribution is π.

MCMC techniques are fundamental to solve the problem of simulating from
intricate models by sampling from the target distribution indirectly (conditionally),
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but hinder the possibility of constructing independent samples3. As it will be more
clear in the next section, high-autocorrelation is present because the simulation
scheme involves repeated occurrences of the same value. However, the lower the
autocorrelation, the greater the amount of information contained in a given number
of draws from the posterior; this is referred to as the efficiency or mixing of the
chain. Controlling for the autocorrelation is important since, if present, it affects
the precision of our estimates. In particular, the autocorrelation of a Markov-
chain inflates the standard error of the sample mean by a factor, increasing more
than exponentially as the autocorrelation approaches its maximum value. The
value of this inflation factor gives an idea of the effective size of the Markov-chain
needed to provide an unbiased picture of the target distribution. For example,
an autocorrelation equal to 0.95 inflates the standard error by a factor which is
' 40. That means that we would need roughly forty times as many points as are
required for the same precision as with an uncorrelated sequence (Gelman et al.,
1992). This comes with computational concerns because long chains are needed
to achieve stationarity/good approximation. Such computational concerns limited
the widespread implementation of MCMC algorithms until recently, when poor
computing methods and inadequate processing infrastructures were replaced by more
efficient and comprehensive tools. Statisticians were eventually able to estimate
sophisticated models providing accurate representations of the observed data, instead
of settling for simpler models.

The formal definition of a Markov chain and its properties are beyond the
scope of this work. The theory behind these methods is well-establish and has
been thoroughly studied. The general idea of MCMC sampling provided above is
sufficient to understand the main passages of the following sections. However, the
author points the more keen reader to Meyn and Tweedie (2012) and Robert and
Casella (2013) for a detailed technical introduction about Markov chains theory and
theoretical results on the convergence of MCMC algorithms, respectively.

2.2.1 Gibbs sampler

Gibbs sampler is probably the most straightforward MCMC sampling technique.
Its implementation depends on two iterative steps, which can only be computed if
the full conditional distributions of the parameters are available. It was proposed
by Geman and Geman (1984) who chose the name "Gibbs sampler" because the
distributions used in their context (i.e., image restoration, where the parameters
were the colors of pixels on a screen) were Gibbs distributions (Gibbs, 1902), and it
was made famous in the statistical community by Gelfand and Smith (1990).

More in detail, let us suppose our model envisions a set of k parameters,
θ = (θ1, . . . , θk). As aforementioned, to implement the Gibbs sampler we must
assume that samples can be generated from each of the full or complete conditional
distributions {π (θi|θj 6=i, y)}ki=1 in the model. These samples might either be avail-
able directly (e.g., in closed-form from known probability distributions) or indirectly
(e.g., obtained using other sampling schemes, as for example, the adaptive rejection
sampling algorithm of Gilks and Wild (1992)). In both cases, the joint posterior
distribution π(θ|y) is entirely determined (under mild conditions) by the collection
of full conditional distributions. Consequently, all marginal posterior distributions
π(θi|y), i = 1, . . . , k are also determined. Following Banerjee et al. (2014); Robert
and Casella (2013), the generic formulation to obtain M posterior samples for the

3Note that convergence properties are still valid, by means of the ergodic theorem (Robert and
Casella, 2013).
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Algorithm 1: Gibbs sampling scheme.
0: Initialization: define an arbitrary set of starting values
θ(0) =

(
θ

(0)
1 , . . . , θ

(0)
k

)
1: Simulation:
for m = 1, . . . ,M do

Draw θ
(m)
i from π

(
θi|θ(m−1)

1 , . . . , θ
(m−1)
i−1 , θ

(m−1)
i+1 , . . . , θ

(m−1)
k , y

)
, ∀i

end

vector parameter θ using the Gibbs sampler is very straightforward and can be
described as in Algorithm 1.

As proved by Geman and Geman (1984) in their seminal paper, or by Smith and
Roberts (1993) in a review, the generated k-tuple at iteration m, {θ(m)

1 , . . . , θ
(m)
k },

converges in distribution to a draw from the true joint posterior distribution
π(θ1, . . . , θk|y), as long as some weak regularity conditions hold. This result implies
that for m sufficiently large (e.g. larger than a threshold m̃), the set of k-tuple
{θ(m)}Mm=m̃+1 is essentially a (correlated) sample from the true posterior, from which
any posterior quantities of interest may be estimated.

2.2.2 Metropolis-Hastings algorithm
The ease of implementation and understandability of the Gibbs sampler described

above comes at a cost: it is mandatory to be able to sample from each of the full
conditional distributions promptly. This is rarely the case when the prior distribution
and the likelihood are not a conjugate pair (Diaconis et al., 1979), as it is cumbersome
to derive closed-form expressions for these full conditionals. Nevertheless, the latter
are often available up to a proportionality constant that does not depend on θ. The
Metropolis (or Metropolis-Hastings) algorithm fits in such context as it precisely
tackles this issue. It was firstly proposed by Metropolis et al. (1953) and later
generalized by Hastings (1970). The Metropolis sampler was not developed for
statistical purposes in principle, but conceived by physicists to simulate the fluid
particle movements in equilibrium with its gas phase. It is based on a rejection
step for which a candidate density must be chosen, and it only requires a function
proportional to the distribution to be sampled.

Let us suppose our main interest is to obtain posterior samples for the vector
parameter θ = (θ1, . . . , θk). In other words, we wish to generate from the joint
posterior distribution

π(θ|y) ∝ h(θ) ≡ f(y|θ)π(θ).

First of all, there is the need to specify the candidate (also called proposal) density,
which from now on will be referred to as q(·|θ). It has to be a valid density function
for every possible value of the conditioning variable θ, and it should be relatively
easy to simulate from. Following Banerjee et al. (2014); Robert and Casella (2013),
the generic formulation to obtain M posterior samples for the vector parameter θ
using the Metropolis-Hastings can be described as in Algorithm 2.

It can be proved that, under the same mild conditions required for the Gibbs sam-
pler, the generated k-tuple at iterationm with the Metropolis-Hastings, {θ(m)

1 , . . . , θ
(m)
k },

converges in distribution to a draw from the true joint posterior distribution
π(θ1, . . . , θk|y).
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Algorithm 2: Metropolis sampling scheme.
0: Initialization: define an arbitrary set of starting values
θ(0) =

(
θ

(0)
1 , . . . , θ

(0)
k

)
for m = 1, . . . ,M do

1: Draw θ∗ from q(·|θ(m−1))
2: Accept

θm =
{
θ∗ with probability ρ
θ(m−1) with probability 1− ρ

end
where

ρ = min{1, h(θ∗)
h(θ(m−1))

· q(θ
(m−1)|θ∗)

q(θ∗|θ(m−1))
}

This algorithm always accepts the value θ∗ such that its plausibility, ρ, is increased
compared with the previous value, although it may also accept values θ∗ such that
the ratio is decreasing. Obviously, ρ is only defined when h(θ(m)) > 0. However, if
the chain starts with a value θ(0) such that h(θ(0)) > 0, it follows that h(θ(m)) > 0
for every m ∈ N since the values of such that h(θ∗) = 0 lead to ρ = 0, and are
therefore rejected by the algorithm.

One important thing to highlight is that, since full conditional distributions for
well-defined models are unique, the steps of the Gibbs sampler are fully determined
by the considered statistical model. On the other hand, when using the Metropolis
algorithm, the choice of the candidate density is crucial. If appropriately selected, the
algorithm affords substantial flexibility and approximates the posterior distribution
of more sophisticated models. However, even though we are free to pick almost any
candidate density from a strictly theoretical point of view, in practice, only good
choices lead to sufficient candidate acceptances. Theoretically speaking, an optimal
choice of q would lead to an empirical acceptance ratio equal to 1, with no apparent
waste of candidates. This is exactly what happens when the proposal comes from
the full conditional distribution and is always accepted, defining the Gibbs sampler
as a particular case of the Metropolis-Hastings. However, a correct specification
of q is rather more subtle: accepting all or nearly all candidates is often the result
of an overly narrow candidate density. The latter implies a poor exploration of
the parameter space, as the proposal will slowly move around the support for the
target distribution, leading to high acceptance and autocorrelation in the sampled
chain. An overly dispersed candidate density will struggle likewise, proposing leaps
to places far from the core part of the support of the posterior, leading to high
rejection and, again, high autocorrelation.

A convenient approach considers symmetric candidate distribution, namely
satisfying q(θ∗|θ(m−1)) = q(θ(m−1)|θ∗). Typically, the common solution is to set

q(θ∗|θ(m−1)) = N
(
θ∗|θ(m−1), Σ̃

)
, (2.6)

since this distribution obviously satisfies the symmetry property, and is "self cor-
recting" (candidates are always centered around the current value of the chain).
Equation (2.6) is usually referred to as a "Gaussian random walk" proposal density.
Specification of q then comes down to specification of Σ̃. A simple option would be
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setting Σ̃ equal to an empirical estimate derived from a preliminary run. However,
this does not guarantee any optimal property. Hence, in general, it is common
practice tuning Σ̃ so that roughly 25 – 40% of the candidates are accepted (Gelman
et al., 1997), with the optimal value depending both on the the dimension and the
true posterior correlation structure of θ. However, such a procedure may be time-
consuming, and, in practice, a solution has to be obtained in a reasonable amount
of time. A possible remedy involves the implementation of adaptive strategies, and
has been proposed in the literature in different ways (Evans, 1991; Gilks and Wild,
1992; Gelfand and Sahu, 1994; Gilks et al., 1998; Haario et al., 1999, 2001). In
other words, the basic idea is to use the history of the process in order to tune
the proposal distribution suitably. For the scope of this dissertation, we will only
introduce the adaptive proposal by Haario et al. (1999), which has been considered
for the application presented in Chapter 4, and point the interested reader to Laine
et al. (2008) and Brooks et al. (2011) for further details.

Adaptive Metropolis. Specification of the adaptive proposal in the Metropolis-
Hastings algorithm comes with a slight modification of Algorithm 2. In particular,
the candidate density q(·) may depends on the whole history (or a part of it) of the
sampled chain. Hence, we refer to this adaptive proposal as qm(θ∗ | θ(1), . . . , θ(m)). It
is now crucial to establish how the proposal depends on the history. For this purpose,
Haario et al. (1999) noted that the sampled set at iteration m can be written as
{θ(1), . . . , θ(m−H+1), . . . , θ(m)}, where H is a fixed integer representing the memory
parameter. The proposal distribution qm is chosen as follows:

qm(θ∗ | θ(1), . . . , θ(m)) ∼ N
(
θ(m), s2

kΣ̃(m)
)

(2.7)

where Σ̃(m) is the k×k covariance matrix determined by theH points θ(m−H+1), . . . , θ(m)

and the scaling factor sk depends only on the dimension of the vector parameters
k. In particular, the choice of the scaling parameter sk can either be heuristic or
match the theoretically optimal mixing properties (Gelman et al., 1996; Roberts and
Rosenthal, 2009). Here, we note that the stochastic chain obtained using Equation
(2.7) is not Markovian anymore, however Haario et al. (2001) proved that, under mild
conditions, it is still ergodic. Being effective and easy to implement, the inclusion
of an adaptive step partially solves the issue related to convergence (poor mixing)
of the chains. However, there are still several problems to deal with, among which
autocorrelation, the choice of the starting values, the choice of the number of the
chains, etc.

Summing up, even the ideal MCMC technique may poorly explore the support
of the posterior distribution, especially in high-dimensional spaces, yielding to very
imprecise estimators regardless of the tuning. In the worst-case scenario, it is not
guaranteed that we could even attain the center of the target distribution in the
finite computational time at our disposal, and the resulting MCMC estimators
will be highly biased. Consequently, the direct application of MCMC machinery
to hierarchical models must be considered carefully, as their scalability to high-
dimensional settings (i.e., a large number of parameters) of practical interest is not
trivial and often requires advanced solutions. The main reason why the guess-and-
check strategy of Metropolis-based samplers is doomed to fail in high-dimensional
spaces is that the number of guesses increases exponentially, lowering the chances
of these guesses being accepted. The basic idea to overcome such a problem and
possibly attain unexplored regions of the target distribution is to exploit information
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about the geometry of the target distribution itself. Hamiltonian4 Monte Carlo,
firstly proposed in Duane et al. (1987), is the unique procedure for automatically
generating this coherent exploration for sufficiently well-behaved target distributions
and it will be discussed in Section 2.2.3.

The complex set of MCMC techniques just described becomes easy when we
learn how to use several ready-made libraries of programs for their implementation.
The most common are WinBUGS (Lunn et al., 2000), BUGS (Spiegelhalter et al.,
1996), JAGS (Plummer, 2003), and the very recent NIMBLE (de Valpine et al.,
2017). All these are connected to R through specific packages: R2WinBUGS (Sturtz
et al., 2005), R2jags (Su et al., 2015) and nimble.

2.2.3 Hamiltonian Monte Carlo
As for its alternatives, described in Section 2.2.1 and 2.2.2, Hamiltonian Monte

Carlo (HMC) was firstly introduced in physics by Alder and Wainwright (1959) to
describe the molecules’ motion (Hamiltonian dynamics) following Newton’s laws.
Subsequently, in the seminal paper by Duane et al. (1987), HMC was applied to
lattice field theory simulations of quantum chromodynamics, and the authors referred
to it as "Hybrid Monte Carlo." Not much later, the first statistical applications of
HMC were proposed for neural networks and regression models (Neal, 2012; Ishwaran,
1999; Schmidt, 2009). However, its spread among researchers and practitioners began
immediately after the release of Stan (Carpenter et al., 2017). This probabilistic
programming language provides full Bayesian inference for continuous-variable
models through (but not only) HMC sampling.

The basic ingredients required for the HMC are the k-dimensional vector of
parameters θ, which is also referred to as position vector, and an auxiliary momentum
variable, r, having the same dimension of θ. Altogether, they constitute an augmented
2k-dimensional parameter space, also known as phase space. Combining the phase
space with Hamilton’s equations, able to describe the conservative dynamics in
physical systems, it is possible to establish the conceptual framework HMC stemmed
from.

In the following paragraph, HMC is introduced following the conceptual overview
given by Betancourt (2017) and some technicalities provided by Neal et al. (2011)
and Betancourt and Girolami (2015).

Hamilton’s equations In the context of Hamiltonian dynamics, a physical system
can be described by a function of θ and r, known as the Hamiltonian, generally
referred to as H(θ, r). The partial derivatives of H determine how θ and r change
over time t, according to Hamilton’s equations:

∂θi
∂t

= ∂H

∂ri
∂ri
∂t

= −∂H
∂θi

, i = 1, . . . , k. (2.8)

For any time interval of duration t′, these equations define a mapping from
the state at any time t to the state at time t + t′. In particular, these dynamics
corresponding to such mapping uphold to theoretical properties crucial for the
validity of MCMC updates (e.g. reversibility, conservation, volume preservation and
symplectiness). For the sake of brevity, the discussion of such points is overlooked in
this work, complete technical details are in Neal et al. (2011).

4a.k.a. hybrid.
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The Hamiltonian function can always be decomposed in the sum of two indepen-
dent terms, as follows:

H(θ, r) = U(θ) +K(r), (2.9)
where U(θ) is called the potential energy, and will be defined to be proportional

to minus the log probability density of the distribution for θ that we wish to sample;
while K(r) is called the kinetic energy, and is usually defined to be r>Σ−1r/2. Here,
Σ indicates a symmetric, positive-definite matrix and yields a K(r) proportional
to minus the log probability density of the zero-mean Gaussian distribution with
covariance matrix Σ.

MCMC from Hamiltonian dynamics The conjunction between MCMC and
Hamiltonian dynamics involves the concept of canonical distribution, borrowed from
statistical mechanics. More specifically, the canonical distribution can be seen as the
quantity linking the potential energy function to the distribution we wish to sample
from, representing the probability distribution over all the possible states (θ, r). It
has the generic probability density function:

π(θ, r) = 1
Z

exp(−H(θ, r)/T ), (2.10)

where T is the temperature of the system, and Z is a normalizing constant. If the
Hamiltonian is defined as Equation (2.9), than we can rewrite Equation (2.10) as

π(θ, r) = 1
Z

exp(−U(θ)/T ) exp(−K(r)/T ). (2.11)

Without loss of generality, by setting T = 1 and inverting Equation (2.10) with
respect to H(θ, r), we obtain:

H(θ, r) = − log(π(θ, r))− log(Z).

By looking at this equivalence, it is easy to see that if we want to sample from

π(θ | y) ∝ π(θ, r) = π(θ)f(y | θ),

we can express the posterior distribution as a canonical distribution, where the
potential energy is set to be minus the log-posterior, i.e.:

U(θ) = − log [π(θ)f(y | θ)]

Leapfrog integrator Solution to Equation (2.8) is seldom derived analytically.
Hence numerical approximation is required. For implementation purposes, Equa-
tion (2.8) must be accurately approximated through discretization of time, using
a small stepsize ε. The general idea is starting at t0 and iteratively compute the
approximate position-momentum state at times ε, 2ε, 3ε, . . . , for a reasonable
amount of stepsizes5. Among the set of powerful methods able to approximate the
solution of a system of differential equations, excellent results can be obtained with
the leapfrog integrator. Although valid for any specification of the kinetic energy
function, we here assume K(r) = r>Σ−1r/2 is assumed, with Σ = diag(σ1, . . . , σk)
for simplicity of notation. The leapfrog integrator consists of the following steps,
which are executed repeatedly for a predetermined number of times L:

5Theoretical justification for the optimal integration time is discussed in Betancourt (2016b).
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ri(t+ ε/2) = ri(t)− (ε/2)∂U
∂θi

(θ(t))

θi(t+ ε) = θi(t) + ε
ri(t+ ε/2)

σi

ri(t+ ε) = ri(t+ ε/2)− (ε/2)∂U
∂θi

(θ(t+ ε)).

(2.12)

The leapfrog integrator guarantees volume preservation, is time-reversible, and
provides stable solutions as long as ε < 2 (Neal et al., 2011). Its approximation
error, and hence HMC performances, strongly depend on choosing suitable values
for ε and L6. Indeed, if ε is too large, the simulation will be inaccurate, yielding
low acceptance rates. On the other hand, if ε is too small, computational effort will
be wasted taking many small steps. At the same time, if L is too large, HMC will
generate trajectories retracing their steps. Even worse, if L is chosen so that the
parameters jump from one side of the space to the other at each iteration, the Markov
chain may not even be ergodic (Neal et al., 2011). Eventually, if L is too small,
subsequent samples will be close to each other, resulting in undesirable random walk
behavior and slow mixing. In light of these considerations, tuning these parameters
for any specific problem requires some expertise and usually one or more preliminary
runs. Moreover, there is not a simple objective metric for establishing whether a
trajectory is "correct" or not. Therefore, it is common practice to rely, for example,
on heuristics based on autocorrelation statistics from preliminary runs.

Hamiltonian Monte Carlo sampling scheme The sampling algorithm gener-
ating the Markov chain via HMC consists of two main steps, which are repeated
iteratively. The first step only affects the momentum; namely, new values are
randomly drawn from their Gaussian distribution (recall that K(r) = r>Σ−1r/2
is assumed), independently of the current values of the position variables at each
iteration. The second step may change both position and momentum. Indeed, a
Metropolis update is performed, using Hamiltonian dynamics to propose a new
state. Starting with the current state (θ, r), Hamiltonian dynamics are simulated
for L steps using the leapfrog method (or some other reversible, volume-preserving
method), with a stepsize of ε. The momentum variables at the end of this L-step
trajectory are then negated, giving a proposed state (θ∗, r∗). This proposed state is
accepted as the next state of the Markov chain with probability

ρ = min{1, exp (−H(θ∗, r∗) +H(θ, r))}. (2.13)

Following Hoffman et al. (2014), the standard implementation of HMC is pre-
sented in Algorithm 3.

If the proposed state is rejected, the next state is the same as the current state.
The negation of the momentum variables at the end of the trajectory makes the
Metropolis proposal symmetrical, as needed for the acceptance probability above to
be valid. In practice, this negation is not really necessary since K(r) = K(−r). It
is now clear the “hybrid” nature of HMC in the sense that the simulation is done
alternating the joint update of θ and r via Hamiltonian dynamics and updating r via
Gibbs sampling. The real advantage of HMC is that Hamiltonian dynamics for (θ, r)
can produce a value for θ with a much different probability density (equivalently, a
much different potential energy, U(θ)), leading to a more efficient exploration of the
target distribution.

6Implications and limiting cases are comprehensively discussed in Leimkuhler and Reich (2004).
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Algorithm 3: Hamiltonian Monte Carlo sampling scheme.
0: Initialization: define an arbitrary set of starting values θ(0), ε, L, L and
M

for m = 1, . . . ,M do
1: Draw r(0) ∼ N(0,Σ)
2: Set θ(m) ← θ(m−1), θ̃ ← θ(m−1), r̃ ← r(0)

for i = 1, . . . , L do
3: Set θ̃, r̃ ← Leapfrog(θ̃, r̃, ε)

end

4: Accept θ(m) ← θ̃ and r(m) ← −r̃ with probability ρ
end
where

ρ = min{1, exp (−H(θ∗, r∗) +H(θ, r))}

The algorithms introduced in this chapter are the driving engines behind the
studies which will be presented in the sequel. Their direct and indirect implementa-
tion constitutes the bridge that binds each problem to each solution, always winking
to the computational efficiency.
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Chapter 3

Measuring and modeling food losses

The United Nations (UN) defined sustainable development as “development
that meets the needs of the present without compromising the ability of future gen-
erations to meet their own needs”. In this respect, one aspect is to promote a
“Responsible Consumption and Production” (SDG 12). The third Target
under this goal (Target 12.3) states “By 2030, [to] halve per capita global food waste
at the retail and consumer levels and reduce food losses along production and supply
chains, including post-harvest losses”. The Food and Agricultural Organization of
the United Nations (UNFAO) and UN Environment are the custodians of SDG
12.3 and, for consistency with policy objectives, relevance, and measurement, the
indicator has been split into two distinct sub-indicators that focus on losses on the
supply side and waste on the demand and consumption side of the food systems,
respectively. My work only focuses on the first sub-indicator, namely the one on
losses.

In particular, this chapter includes the joint work with Prof. Giovanna Jona
Lasinio and Dr. Carola Fabi, Statistician at FAO, with whom I had the pleasure
to collaborate during the internship that led to my Master’s thesis project, now
published by Mingione et al. (2021b). During the internship, we developed the basic
methodology for the Food Loss Index (FLI), which is now officially implemented in
FAO Statistical Working System. Then, soon after my Master’s thesis discussion, we
carried out a parallel project which aimed at providing an alternative standardized
protocol for the estimation of yearly food losses at the country-commodity level
to compile the FLI and explain what drives food losses dynamics at the global
level. A major challenge was the lack of data, which dictated many methodology
decisions. Therefore, the objective of the work was to present a possible improvement
to the modeling approach used by FAO in estimating the annual percentage (over
production) of food losses by country and commodity. Our proposal combines robust
statistical techniques with the strict adherence to the rules of the official statistics,
and focuses on cereal crops, which currently have the highest (yet incomplete) data
coverage allowing for more ambitious modeling choices. The estimation work is
twofold: it aims at selecting the most important factors explaining losses worldwide,
comparing two Bayesian model selection approaches, and at predicting losses with a
Beta regression model in a fully Bayesian framework.

We point out that we did not envision a model for immediate use in the production
of official data, but rather run an academic study. Several enhancements have been
made by FAO in the data collection effort and the food loss database is now extremely
different from the one used in Mingione et al. (2021b). The latter uses data which are
now outdated and unofficial: therefore, results do not reflect FAO views or policies.
However, in accordance with FAO Statistics Division, we tried our model on the
official estimates that are now available in FAOSTAT and obtained comparable
results. In particular, 99% of the official data fall into our prediction intervals (see
Figure A.5 for an example).
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3.1 Introduction

The 2030 Agenda for Sustainable Development (Cf, 2015), approved by all the
Member States of the United Nations (UN) in September 2015, officially came
into force on 1st January 2016. The Agenda includes 17 Sustainable Development
Goals (SDGs) and 169 Targets supported by a global monitoring framework with
231 Indicators, which were established to track progress. Some of these goals
are groundbreaking: indeed, for many of them, there was no specific indicator,
methodology, nor underlying data for the measuring. Food losses reduction fell into
this category. More precisely, the indicator to measure and monitor food losses,
associated with Target 12.3, was initially classified in Tier III, meaning that an
indicator and data collection method needed to be developed on purpose. One
significant challenge is the lack of reliable estimates of the level of losses (and waste)
worldwide, particularly in developing countries, for numerous reasons (Fabi et al.,
2018). Preliminary work indicates that food losses and waste remain unacceptably
high, impacting economic efficiency and natural resource usage and contributing to
inefficient food systems. The widely quoted advocacy study “The Global Food Loss
and Waste – extent, causes, and prevention” (Gustavsson et al., 2011), published
by the Food and Agricultural Organization of the United Nations (FAO), estimates
that yearly global food loss and waste account for 30% of the overall production,
which is equivalent to almost USD 1 trillion. Recently, model-based estimates in
the State of Food and Agricultural (SOFA) Report (FAO, 2019) confirmed that food
losses on the supply side alone (after harvest and up to but excluding the retail
level) are equal to almost 14% of agriculture production and are worth at least USD
400 billion in 2016.

Literature on the measurement and estimation of global food losses
Food loss measuring and monitoring is not a novel issue among experts in both the

private and public sectors. The UN General Assembly addressed the problem back
in 1975 and passed a resolution calling for “a 50 percent reduction of post-harvest
losses by 1985”. In 1976, FAO identified the major constraints causing post-harvest
losses focusing on staple crops, including grains and pulses. Two years later, the
FAO produced an action program that led to developing a standard terminology
and suitable methodology for the measurement of post-harvest losses formalized in
the milestone publication, “Postharvest Grain Loss Assessment Methods” (Harris,
K. L. and Lindblad, C. J. , 1978). Some methods and techniques explained in the
manual were later revised by Boxall, R.A (1986) over the period 1980-1986, in
an attempt to simplify them. Additionally, in 1980 FAO published the guidelines
for the “Assessment and Collection of Data on Post-Harvest Food-Grain Losses”
(FAO, 1980) to support the implementation of a statistical methodology combining
objective measurements with statistical survey sampling techniques to collect data
and produce accurate survey-based post-harvest loss estimates. Many other studies
followed these efforts in modeling and estimating losses. The most relevant and recent
ones that have received the highest level of worldwide consensus are: “The African
Post-harvest Losses Information System” (APHLIS), which developed a calculator to
estimate cumulative post-harvest losses over the entire value chain, as a percentage
of production for nine cereals in Sub-Saharan African countries (SSA); “The Global
Food Loss and Waste – extent, cause, and prevention” report (Gustavsson et al.,
2011), that changed the world perception over food loss and waste and which uses a
mass balance approach to quantify the volumes of food loss and waste at the global
level; “Imputation of Loss Ratios”, a technical report by an FAO consultant, Klaus
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Grünberger (2013, unpublished), who developed an econometric model to estimate
loss using causal factors and covariates such as countries infrastructure, national
income level, geographic region, and commodity groups. The causal factors were
not significant, hence the model was abandoned.

All these efforts have been hindered by little available data, which reflects the low
priority given to post-harvest losses until recently and to the objective complexity
and cost of food loss data collection. These constraints persist and affect the quality
of the estimates and, consequently, the reliability of results. The dire lack of data, an
international definition of food losses and a recognized methodology to monitor loss
reduction underpinned the need to develop a standardized approach for measuring,
collecting data, and modeling food losses. A comprehensive methodology including
a measurable definition, an indicator, an aggregation method, an estimation model
and a range of data collection methods and tools has been developed by FAO to
help countries measure food losses and monitor progress against SDG target 12.3
(FAO, 2019).

The scope of this work is to present an improved model capable of estimating food
losses at the country-commodity level. The new model considers a set of explanatory
variables that scientific literature has consistently identified as the causes or proxies
of causes of losses in all countries of the world. The purpose of using explanatory
variables is to link losses with their causal factors at the country-commodity level to
support decisions on interventions, investments, and policy-making. Our model’s
main feature is that it builds on the finding of previous efforts and works toward
overcoming their weaknesses.

Definitions
In recent years, Food Loss and Waste (FLW) became a priority issue on the global

agenda, for both the public and private sector, as one aspect of sustainable global food
systems. In the absence of a commonly agreed definition, the various stakeholders
have developed their definitions of food loss and waste, albeit a pre-condition for
a harmonized methodological approach and data comparability is to agree on the
terminology. For this reason FAO, under the aegis of the Save Food initiative,
undertook the development of a “FLW Definitional Framework” in consultation with
national and international stakeholders building on the previous definitions found
in the literature and laying the foundation for a consistent methodology. In what
follows, we will only report the most important definitions required for a proper
comprehension of this work. For further details, we highly recommend to take a
look at the whole document (FAO, 2014).

In particular, the main definitions include:

• Food Supply Chain (FSC): the connected series of activities to produce,
process, distribute, and consume food;

• Food loss: the decrease in quantity or quality of food.

For the sake of measurability and consistency with the SDG 12.3 target for-
mulation, an operational definition of "Food Loss" was added to the Definitional
Framework in 2016 (unpublished) drawn from FAO’s annual questionnaire on agri-
culture production whereby:

• Food Losses are crop and livestock product losses that cover all quantities
along the supply chain for all utilizations (food, feed, seed, industrial, other) up
to, but not including, the retail/consumption level. Losses of the commodity
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as a whole (including edible and non-edible parts) and losses direct or indirect,
which occur during storage, transportation, and processing, also of relevant
imported quantities, are therefore all included;

• Food Waste occurs from retail to the final consumption/demand stages.

3.1.1 The Food Loss Index
At the global level, the Global Food Loss Index (GFLI) is a composite indicator,

built as a weighted average of countries’ Food Loss Indices (FLIs). A country FLI is
a fixed-base index that aggregates the losses of 10 key commodities in the five main
food groups using economic weights (value of production in the base period). FAO is
partnering with national and international stakeholders to foster data collection along
the supply chains and build the evidence base for these commodities. Although the
FLI uses aggregated percentage losses along the supply chain, more disaggregated
data at different stages of the value chain (e.g., farm, transportation, storage,
processing, and wholesale) is needed to decide on appropriate interventions. The
countries’ FLIs summarise complexities of food loss and their dynamics to provide
decision-makers with an overview of the magnitude of the problem at the national
level and an overall monitoring indicator.

The food loss dataset can be treated as a longitudinal dataset for a multivariate
outcome across different countries. In the ensuing sections, we will refer to the
observed (or estimated) loss percentage for country i, commodity j at year t as lijt.
Therefore, the FLI for country i in year t is defined as:

FLIit =
∑
j(lijt · qijt0 · pjt0)∑
j(lijt0 · qijt0 · pjt0) · 100, (3.1)

where t0 is the reference year; qijt0 the production quantities by country and
commodity in the reference year, available in FAO’s corporate statistical database
(FAOSTAT); pjt0 the fixed price (in USD) set by commodity for the (t0 − 1)-(t0 + 1)
average. At present, the reference year is set to 2015 (the year in which countries
adopted the SDGs), while lijt can be either survey-based or model-based. The food
loss percentages at the commodity or country level can be interpreted as the average
percentage of supply that does not reach the retail stage. The FLI shows the relative
change in percentage food loss for country i over time, compared to the base year.
Finally, using weights proportional to the total value of agricultural production in
the base year, the country indices can be aggregated to build the Global Food Loss
Index (GFLI). To achieve SDG 12.3, both GFLI and FLIs should ideally show that
post-harvest losses decrease compared to the base period from a base value of 100.

Basic data constraints
Primary data on losses are seldom compiled within the national statistical

systems worldwide: only 39 countries out of 185 reported losses for one product
or more in FAO’s annual Questionnaires on Agricultural Production, including a
section on product utilization. Moreover, reporting on losses has increased slightly in
recent years and data was even more scarce in the past period. Data on utilization,
including losses, stock changes, and food supply, is used to compile the Supply
Utilization Accounts (SUA) and Food Balance Sheets (FBS). The FBS framework
defines agricultural production net of harvest losses and collects loss estimates net
of harvest losses. Noteworthy, only 7% of loss data in FAOSTAT’s FBS domain
(FAOSTAT, 2016) was officially reported by the countries in the period 1990-2016.
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The remaining 93% of records are estimated or considered null. In conclusion, since
representative data on losses are very scarce, the FLI will be model-based. However,
with the strong emphasis put on SDG 12.3 and the need for evidence-based policy-
making, one has to expect an increase in data availability in the future years. The
methodology provided herein attempts to refine further the 2016-18 FAO developed
model, described in the next paragraph.

3.1.2 FAO modeling approach: SOFA 2019
FAO developed a random effects model able to exploit panel data information,

i.e., in a cross-section – by commodity and country – and longitudinally over time
to estimate missing loss data and compile the FLI of all countries (FAO, 2019).
The model is part of the methodology for monitoring progress against SDG 12.31.
Results were first published in the State of Food and Agriculture 2019 edition
(SOFA 2019) and stated that global food losses along the supply chain, up to but
excluding the retail level, are almost 14% of 2016 total production. At present,
FAO can disseminate loss estimates at the global, regional, and commodity group
level. The model supplements the 7% officially reported loss data along the supply
chain with two additional data sets. The first one is a dataset of food losses built
from a literature review to increase the coverage. The second one is a dataset
composed of over 200 possible explanatory variables from various international
sources (International Energy Association, World Bank, FAO, and more), possibly
representing causal factors or proxy variables for the causes of losses. These causal
factors can be grouped under common categories to be easily managed by a model.
These categories are welcome . The random forest algorithm was used to standardize
variables’ selection and choose the 5 most important ones by commodity grouping.
The purpose was to capture better the variation in the causes of losses by country or
region and commodity. Where the observations by country and commodity are fewer
than three, a bare minimum to run the model for a country-commodity combination,
available information has been clustered by commodity group on the assumption
that causes and rates of losses are more similar within the groups than across them
(for example losses of maize and lentils are more similar than losses of maize and
fresh milk). The same assumption applies to the value chain (e.g., traditional,
capital-intensive, vertically integrated, and more) and solutions (improved farm
practices, infrastructures, cool chain, and others). Clustering scarce data evened
out the impact of outliers on the results. The coexistence of country-level estimates
and cluster-level estimates required a model hierarchy to fill in the results matrix.
All the methodological choices have been dictated by the need to overcome data
scarcity.

The rest of the paper is structured as follows: Section 3.1.3 describes the available
data and some preliminary results on data consistency; Section 3.2 delves into the
methodology. In Section 3.3, we report and analyze the model results. Section 3.4 is
dedicated to the concluding remarks and discussion.

1see SDG indicators metadata at https://unstats.un.org/sdgs/metadata/

https://unstats.un.org/sdgs/metadata/
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Figure 3.1. Available time series of cereals in Austria (left panel) and Ecuador (right
panel).

3.1.3 Available data

We worked with official loss data extracted from FAOSTAT (2016). The dataset
covered 138 Countries and 145 different commodities, with the most extended time
series starting in 1961 and ending in 2015, and included a total number of 18, 472
records. A preliminary exploratory analysis of the data highlighted some critical
issues. First, some country-commodity combinations presented loss levels larger than
their total production: these losses characterizes several import-dependent countries
where domestic supply consists mainly of imported produce. The FLI methodology
deals with import-dependent countries by changing the denominator in the ratio. In
this work, we did not introduce any exception and therefore we excluded these records
from the analysis. Second, 4264 of country-commodity-year combination records were
equal to 0. Zero losses on such a large scale are unlikely and instead point at under-
coverage or missing data interpreted as nil amounts. Moreover, the comparison of
FAOSTAT data to loss factors found in the literature showed a systematic difference.
The SUA seems to underestimate the actual losses within the countries and the
explanation is manifold (Fabi et al., 2018). Case studies in the literature tend to
focus on countries where losses are high, and the problem is more acute, representing
an upper boundary. On the contrary, nation-wide estimates average losses across all
value chains, including the more efficient ones. Also, losses are sometimes obtained
as the balance for quantities that cannot be accounted for in the SUA. Therefore,
SUA data can be considered the lower boundary. Indeed, FAOSTAT data showed a
global loss average of 7.2% over the whole dataset that is 9.4% when excluding zero
values. Another data constraint and challenge to the modeling framework is that
countries tend to use carry-forwards estimates on loss percentages, on the ground
that systemic losses do not change quickly over time, but at the same time removing
any trend from the time series (see Figures 3.1a and 3.1b). Additional information
was gathered from more than 300 publications and reports from various sources to
increase observations and reduce the noise in the data. These sources included reports
from international organizations, such as the World Bank, GIZ (Gesellschaft fur
Internationale Zusammenarbeit), FAO, IFPRI (International Food Policy Research
Institute), sub-national reports, and academic institutions (Fabi et al., 2018). All
data have been consolidated in a database that is continuously updated and accessible
at http://www.fao.org/platform-food-loss-waste/flw-data/en/.

http://www.fao.org/platform-food-loss-waste/flw-data/en/
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Figure 3.2. Distribution of loss percentages (on the logit scale) by country (a) and crop
(b).

Cereals and cereal products This food category includes the largest share of
available loss data. Hence, we focused our modeling efforts on cereals.

More precisely, cereals data include 66 countries and 14 different commodities,
amounting to 196 country-crop combinations (< 66× 14 as not all countries produce
all cereals), with the longest time-series going from 1991 to 2014. A simple average
over the available data gives a loss percentage of 5.6%, but there is variability
both by country and commodity (for further details see Figures 3.2a and 3.2b).
Figure 3.3 represents a clear snapshot of the data availability: each square identifies
a country-crop combination, and it is colored according to the country-crop temporal
average.

The majority of estimates are provided by countries of Northern America and
Europe (NAE). In particular, 111 out of the 196 country-crop combinations (more
than 50%) come from NAE, whose average loss percentage is the lowest (only
3.24%), as reported in Table 3.1. Sub-Saharan Africa (SSA) records the highest
loss percentages, with losses amounting to 24% of total production, but only five
SSA countries reported data on losses. This unbalanced data distribution does
not introduce any bias in our methodology because the estimation is carried out
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Figure 3.3. Available data for cereals. Each square represents the temporal average loss
by country and commodity. Countries have been ordered on the x-axis with respect to
the SDG region they belong Central Asia and Southern Asia (CASA), Eastern Asia and
South-eastern Asia (EASA), Western Asia and Northern Africa (WANA), Sub-Saharan
Africa (SSA), Latin America and the Caribbean (LAC), North America and Europe
(NAE), Oceania (O).

at the country-crop level. However, some bias may be introduced when losses are
aggregated at the global level. In this case, the weights used to calculate the GFLI
should be proportional to each country’s agricultural sector size. Nevertheless, the
representativeness of single countries or single macro-regions can differ significantly.
We do not want to compile the global losses by estimating missing country data
exclusively from countries within the same region (e.g., losses in Asian countries
estimated only losses of the Asian countries). Few available countries will determine
the estimates too heavily. If the few informants are not representative of the region,
the regional and ultimately the global estimates will underestimate/overestimate
the actual loss level.

CASA EASA WANA SSA LAC NAE O
Loss (%) 5.86 10.53 8.58 24.09 9.67 3.24 3.27
nObs 16 9 24 5 29 111 2

Table 3.1. Average loss (%) and number of distinct country-crop combination by SDG
region: Central Asia and Southern Asia (CASA), Eastern Asia and South-eastern Asia
(EASA), Western Asia and Northern Africa (WANA), Sub-Saharan Africa (SSA), Latin
America and Caribbean (LAC), North America and Europe (NAE), Oceania (O).

3.2 Methodology
This section will describe our proposal. We will first define the steps in our

statistical protocol and then delve into the model in detail. Our model will estimate
losses by country, commodity, and year for cereals in a full Bayesian framework, so
as to reduce the impact of critical issues in the data described in Section 3.1.3. After
dealing with missing data in the available predictors, we build a Beta regression model
with a latent component (Wu, 2009). The latent component captures variations at
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the country-crop level due to missing information on other known causal factors
such as the time of harvest, rainfall on crop areas, and other variables that should
be measured at crop level.

Missing predictors imputation

A total number of K = 34 explanatory variables were considered in the loss
estimation model. Most variables are proxies for relevant explanatory factors
commonly found in the scientific literature. Similar to the loss imputation model of
the SDG methodology, these factors can be grouped into categories relating to Energy,
Economic Factors, Transportation and Logistics, Building Materials and Weather
and Crop Cycles (see Table A.1). However, not all the variables are available for all
countries and years, highlighting a severe missing data issue as the missingness in
the set of predictors is almost 19%. More in detail, 16 out of the 34 variables contain
at least one missing value and 13 out of these 16 ones have more than 30% of missing
values overall. Assuming a MAR mechanism, we consider three non-parametric
missing value imputation methods: the missForest algorithm (Stekhoven and
Bühlmann, 2012), Multiple Imputation by Chained Equations (MICE) approach
(White et al., 2011) and k-nearest neighbours (K-NN) as in Franzin et al. (2016).
With each imputed dataset, we estimate the model in Equation (3.5) and compare
results in terms of variable selection and prediction accuracy. We do not report all
the details, but we simply note that the three imputation methods produce similar
outputs in terms of final model performances. We decided to keep the imputed dataset
with missForest for its flexibility with respect to assumptions on data collection
and distribution. Besides, in the seminal paper, Stekhoven and Bühlmann (2012)
show that missForest generally outperforms the two other imputation methods.
Also, as demonstrated empirically not only with our set of data (Waljee et al., 2013;
Cihan, 2018), the missForest algorithm yields better results, especially in terms of
out of sample prediction error. This happens because of its non-parametric nature,
which allows for the imputation of mixed-type data. Being based on a random forest
algorithm (Breiman, 2001), it has no need for tuning parameters nor does it requires
any assumptions about the distributional aspects of the data. Eventually, it offers a
way to assess the quality of an imputation without the need of setting aside test data
nor performing cross-validations. In particular, the full potential of missForest is
deployed when the data include complex interactions or non-linear relations between
variables of unequal scales, as it is in our case study.

Beta regression

Food losses are expressed as percentage of the total production, hence the Beta
distribution is the most natural assumption for their modeling. Indeed, the class
of Beta regression models, firstly proposed by Ferrari and Cribari-Neto (2004), is
commonly used to model random variables that take values in the open standard
unit interval (0, 1). The main assumption is that the dependent variable is Beta-
distributed and its mean µ ∈ (0, 1) is related to a set of regressors through a linear
predictor with unknown coefficients and a link function g : (0, 1) → R, strictly
increasing and twice differentiable. The model also includes a precision parameter
φ > 0 (independent from µ), which may be constant or may depend on a set of
predictors through a link function as well. This approach has the advantage naturally
incorporating features such as heteroskedasticity or skewness which are commonly
observed in data taking values in the standard unit interval.
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We assume that our outcome variable yi, . . . , yn is the realization of a random
sample such that yi ∼ Beta(µi, φ), i = 1, . . . , n. Then, the Beta regression model
is defined as g(µi) = x′iβ; where β is the k × 1 vector of unknown parameters and
xi is the vector of k predictors. The logit function represents the most common
choice as link function for g(·), due to its shape and ease of interpretation, such as
in any typical Generalized Linear Model (GLM) framework.

3.2.1 Bayesian variable selection
Given the pretty high dimensionality of the problem, which counts 34 predictors,

our first objective is to find a robust selection method for the most relevant factors
that can explain losses’ behaviour. The goal is to find the subset of variables that
can simultaneously catch the dependencies and dynamics driving food losses, but
that are also meaningful for policy making. This issue is of paramount importance
and raises several challenges. For example, a known problem when the number of
relevant variables is large, is to account for possible collinearity in order to avoid
conflicting results when assessing the importance of strongly correlated predictors
(Ijarchelo et al., 2016).

In a Bayesian perspective, variable selection falls in the more general framework
of model choice and can be addressed with various possible approaches. Two main
classes of methods can be identified: discrete mixtures (Mitchell and Beauchamp,
1988; George and McCulloch, 1993) and shrinkage priors (Tibshirani, 1996). Methods
belonging to the class of discrete mixtures model prior knowledge on coefficients
βs with a prior comprising both a point mass at zero and an absolutely continuous
alternative; on the contrary, methods belonging to the class of shrinkage prior model
βs prior distribution with absolutely continuous shrinkage priors centered at zero.

We notice that discrete mixtures offer the correct representation of sparse prob-
lems by placing positive prior probability on the event βk = 0, but pose several
difficulties. These include foundational issues related to the specification of priors
for trans-dimensional model comparison, and computational issues related both
to the calculation of marginal likelihoods and to the rapid combinatorial growth
of the solution set. Shrinkage priors, on the other hand, can be very attractive
computationally. But they create their own set of challenges, since the posterior
probability mass on βk = 0 (a set of Lebesgue measure zero) is never positive. Truly
sparse solutions can therefore be achieved only through artifice. In general, the
choice of one approach or the other involves a series of trade-offs. However, although
the latter is computationally tractable and seems to outperform its competitors in a
variety of applications, the discrete-mixture approach represents a methodological
ideal.

It is under this premises that, in this work, we tested and compared the two
aforementioned estimation alternatives, choosing the most popular statistical tech-
nique for each one of them: the spike and slab technique (within the class of discrete
mixtures) in the formulation by Mitchell and Beauchamp (1988), and the horseshoe
prior (within the class of shrinkage priors), introduced by Carvalho et al. (2010).

Spike and slab

Spike and slab is considered as the gold standard to combine variable selection
with the estimation of the regression parameters. With this technique, variables are
chosen by estimating the posterior probability of all the models within the considered
class (O’Hara et al., 2009), based on the a priori knowledge or expectation that only
few variables truly impact on the outcome.
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The main assumption is that the prior distribution of the k-th regression param-
eter is a mixture of two components: a probability mass either exactly at or around
zero (spike) and a flat distribution (slab) elsewhere. Therefore, this prior is often
written as:

βk|γk, c, ε ∼ γk ·N(0, c2) + (1− γk) ·N(0, ε2), (3.2)

where ε� c and where γk ∈ {0, 1}, denoting absence or presence of the k-th variable
in the model. If ε is set to 0, then the spike is taken to be a Dirac δ0 at the origin.

In Kuo and Mallick (1998), γk is embedded in the regression equation as follows:

yi =
K∑
k=1

βkγkxik + εi. (3.3)

Independent priors are typically assumed for βk, γk and the response variance.
In particular, γk ∼ Ber(pk), namely a Bernoulli distribution with success probability
pk that reflects the preference for including the k-th predictor in the model building:
e.g., pk = 0.5,∀k is associated to prior belief of the equally likely relevance of all
possible 2k sub-models.

Once the model has been set up, it is usually fitted using Markov Chain Monte
Carlo (MCMC) and the variable selection part of the model entails estimating γk.
As a result, the posterior inclusion probability E[γk|y] can easily be calculated as
the mean value of the indicator γk as follows:

E[γk|y] = P (γk = 1|y) = 1
T

T∑
t=1

γ
(t)
k ,

where T denotes the total number of posterior samples. The selection rule
consists merely of keeping those variables with posterior inclusion probability larger
than a given threshold. If the threshold is set at 0.5, then the selection criterion
is known as the Median Probability Model (MPM) by Barbieri et al. (2004). This
criterion is known to be robust as it is the optimal predictive model under a squared
error loss function with certain regularity conditions and the selected variables appear
in at least half of the visited models (Barbieri et al., 2004). The orthogonality of the
design matrix is required in all the sub-model scenarios to satisfy these conditions.
If this is not the case, inference based on marginal inclusion probability could be
incorrect.

Horseshoe prior

This approach assumes that each coefficient βk is a priori distributed as a scale
mixtures of Normal distributions:

βk|λk, η ∼ N(0, λ2
kη

2),
λk ∼ C+(0, 1), η ∼ C+(0, 1)

(3.4)

where C+(0, 1) represents the half-Cauchy distribution, λk is called local shrinkage
parameter and η is the global shrinkage parameter (Carvalho et al., 2009). The
horseshoe is named after the shape of the so-called shrinkage coefficient, which is

1
(1+λ2

k
) ∼ Beta(1

2 ,
1
2) and can be interpreted as the posterior amount of weight that

the posterior mean of βk places on 0. Horseshoe prior’s main advantage lies in its flat
tails allowing for strong signals to remain large a posteriori and in its infinitely tall
spike at the origin that severely shrink the βks that are very likely to be zero. It can
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be easily noticed that setting ε = 0 in Equation (3.2), generates a prior distribution
very close to Equation (3.4) that allows for only two values, i.e. 0 and 1, instead of
assigning continuous priors to γk, as in the case of the horseshoe. For the sake of
clarity, Figure 3.4 shows the distribution of the prior on βk in the case of the spike
and slab (3.4a) and the horseshoe (3.4b).
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Figure 3.4. Prior distribution of the k-th regression coefficient in the case of spike and
slab prior (a) and horseshoe (b).

3.2.2 Model proposal
Our two alternative proposals combine the procedure described in Section 3.2

with the ones described in Section 3.2.1. Let lijt be the observed loss percentage in
country i, for cereal j at year t and xikt be the value of the k-th explanatory variable
for country i at time t. The model with variable selection is expressed as follows:

lijt ∼ Beta(µijt, φ), ∀i, j, t

logit(µijt) = log
(

µijt
1− µijt

)
= βit+

∑
k

xiktβ
∗
k + νij , ∀i, j, t

νij ∼ N (0, τ2), φ ∼ U(5, 150), τ ∼ G(4, 0.1),

(3.5)

where βit is a temporal linear trend specific to country i and νij is the latent
component describing the nested commodity within country effect. We consider
different trend parameters for each country to capture different general behaviors
dictated by country-specific policies or climate conditions, or other unobserved factors.
The temporal trend was always included to detect generally well- or bad-performing
countries in terms of the FLI. Parameter φ is known as the precision parameter,
since for a given µijt, a larger φ implies a smaller variance for lijt. We also adopted
a constant precision τ across countries and commodities after estimating several
models with different precision parameters (e.g., country-specific, crop-specific, or
their sum) that did not yield significantly different estimates. Finally, according to
the prior distribution ascribed to the regression coefficients β∗k , we can obtain either
the spike and slab model (Equation 3.3) or the horseshoe model (Equation 3.4).
While hyperparameters for the shrinkage priors represent standard statistical choices
commonly used in the Bayesian variable selection procedures, hyperparameters for
φ and τ are set to obtain weekly informative priors. In the spike and slab model,
we set γk ∼ Ber(pk), adding a further level to the model by treating pk with a
Beta(5,5) so that all the models were equally likely to be selected a priori. The prior
distribution on the trend coefficients βi is N (0, 1000).
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WAIC

We compared the performances of the two variable selection procedures using
the Watanabe-Akaike Information Criterion (WAIC) proposed by Watanabe (2010).
The main assumption, which should hold in our model setting, is that the observed
values are conditionally independent given the parameters. If the model fits our data,
then parameter estimation should minimize the expected log-pointwise predictive
density. More precisely, let lpd =

∑n
i=1 log

∫
p(yi|y)p(θ|y)dθ is the log-pointwise

predictive density and p =
∑n
i=1 Vpost[log(p(yi|θ))] is the estimated effective number

of parameters, i.e. the sum of the posterior variance (Vpost) of the log-predictive
density for each data point. Following Vehtari et al. (2017) the expected log-
pointwise predictive density is given by elpd = lpd− p. The WAIC is then obtained
as WAIC = −2 · elpd. We use the WAIC instead of the Deviance Information
Criterion (DIC) for two reasons: (i) WAIC has the desirable property of averaging
over the posterior distribution rather than conditioning on a point estimate, which
is particularly relevant in a predictive context (Gelman et al., 2014); and (ii) the
DIC has a weaker theoretical justification (Celeux et al., 2006; Spiegelhalter et al.,
2014). Furthermore, since the final objective is to predict food losses, the WAIC is
more appropriate choice it is asymptotically equivalent to the Bayesian leave-one-out
cross-validation (Watanabe, 2010) and hence it can be seen as a measure of a model’s
predictive performance.

3.3 Application

In this section, we present the results of our modeling effort. We will start
with results of data pre-processing, including dimensionality reduction; we report
the results of the variable selection afterwards, and finally show the out-of-sample
predictions. Note that all the variables were standardized before the quantitative
analysis.

We notice that the estimation of the posterior inclusion probabilities in the spike
and slab framework is not reliable in the presence of severe collinearity. In particular,
following Bhadra et al. (2019a), optimality can be achieved in terms of parameters’
estimation if the design matrix is well-conditioned (e.g., orthogonal). The design
matrix orthogonality ensures that no information is shared among the predictors,
while collinearity has the effect of blurring distinctions between predictors in the
variable selection process.

To this purpose, we first computed the correlation matrix (Figure 3.5a). Three
different groups of strongly correlated variables can easily be pointed out: the first
one (the big black square at the center of Figure 3.5a) includes all metals’ prices (e.g.,
potash, silver, iron, gold, lead, etc.); the second one includes the prices of electricity,
natural gas oil and derived products provided by the International Energy Agency
(IEA); the third group (bottom right corner) includes all the economic variables from
national accounts (such as net capital stocks) and credit to agriculture. We carried
out a preliminary dimensionality reduction on the predictors using a simple principal
component analysis (PCA) on 27 out of the 34 standardized variables in the three
groups leaving out the seven variables (i.e., rainfall (mm), temperature (C), biofuels,
heat, coal, LPI, spending on agriculture) in the top left square of Figure 3.5a, as they
are not highly correlated with the others or among them. Results show that three
components can explain 81% of the total variance. The first (principal) component
can be interpreted as a proxy for input prices with metal prices (iron, silver, copper,
etc.) for implements and infrastructure, and fertilizers’ prices (potash, urea, etc.)
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Figure 3.6. Variables associated to the first principal component, with loadings greater
than 0.2 in absolute value. The size of each variable is proportional to its loading.

for growing crops (see Figure 3.6). The second component can be interpreted as
a proxy for investment in agriculture (capital stocks, credit to agriculture, and
more), but with negative loadings (see Figure A.1a). In other words, lower values of
this component correspond to higher values of the considered variables. The third
component is a proxy for energy’s price (oil, natural gas, electricity, and more, see
Table A.1b. The final dataset includes 10 almost completely uncorrelated variables
(3 components + 7 standardized variables), whose correlation matrix is shown in
Figure 3.5b.
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Figure 3.5. Graphical representation of the correlation matrices: (a) before dimensionality
reduction of 27 variables out of 34, (b) after dimensionality reduction.
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Estimation
The estimation was carried out using JAGS (Plummer, 2003), a well-known

software for Bayesian model estimation, which uses Gibbs Sampler and the Metropolis
Within Gibbs Sampler algorithms. For each variable selection approach, we ran the
MCMC algorithm with two chains, 120, 000 iterations, a burn-in of 60, 000 iterations,
and a thinning of 10, keeping 6, 000 samples from each chain for inferential purposes.
Coding examples for both the estimation and prediction of the model with the
different prior settings are available in Algorithms A.1 and A.2. From now on, we
will refer to the model with spike and slab priors as M1 and to the model with
horseshoe prior as M2.

The WAIC is equal to −19, 510.6 for M1 and −19, 522.8 for M2, meaning that the
two selection approaches are substantially equivalent, with M2 performing slightly
better in terms of goodness of fit.

Recall that the spike and slab procedure allows for estimating the posterior
inclusion probability for each predictor. We chose the Median Probability Model as
the selection rule, hence we kept all the variables with posterior inclusion probability
larger than 0.5.

The horseshoe priors do not provide a straightforward variable selection technique,
hence we decided to keep all variables with coefficients whose 95% posterior credible
intervals did not include the zero value. In other words, the whole point for shrinking
priors is to shrink to zero coefficients that are not significant, according to the
classical likelihood definition. Figure 3.7 illustrates the outcome of the selection step.
Both techniques select four variables, i.e., biofuels (price), spending on agriculture
(i.e., the agriculture share in GDP, which is a proxy for the agricultural sector relative
importance in the national economies), the second principal component (comp.2),
and the third principal component (comp.3). Both the computed point estimates
and the credible intervals are comparable. In particular, according to M1, biofuels,
spending on agriculture, and comp.2 are included in the model with probability
equal to 1, and comp.3 is included with probability equal to 0.562. The temperature
is selected only by M2, while according to M1, its posterior inclusion probability γ̂k
is equal to 0.0075 ' 0.

Biofuels has the most considerable effect (in absolute value) on the outcome
with a positive sign. This variable, measured by the IEA, represents solid biofuels,
liquid biofuels, and biogases produced with industrial and municipal waste. Biofuels
are a possible utilization of cereals, both the full grains and its waste or discarded
quantities. In this respect, a commissioned study by FAO (Kuiper and Cui, 2020)
found that reducing food losses could decrease agricultural prices, which would
benefit the production of meat and biofuels, with lower agricultural input prices.
This study can help explaining the correlation between biofuels price and losses. An
increase in biofuels price would increase the demand for input crops and absorb
larger amounts of cereals for industrial uses, thus reducing the quantities ultimately
lost. Unfortunately, biofuel data are often based on small sample surveys or other
incomplete information. Thus, the data give only a broad overview of the biofuel
sector and are not strictly comparable across countries (IEA, 2019). Spending
on agriculture has the second-largest effect and with a negative sign, while the
coefficient associated with comp.2, which we recall is a proxy for investment, is
positive. However, the component has negative loadings on the original variables,
which means that the higher the investments (or capital intensity), the lower the
losses; it also means that investing more in agriculture would reduce losses. Comp.3
gives a small positive contribution, both for M1 and M2, which is consistent with

2see Table A.2 for the exact numerical results.
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Figure 3.7. Point estimates and 95% credibility intervals for β∗k associated to the selected
variables by M1 (Spike and slab) and M2 (Horseshoe).

the other energy-related variable (i.e., biofuels). Eventually, the temperature effect,
selected only in M2, is the smallest. Moreover, the temperature is not measured
at the crop level and is a simple yearly average. Therefore, we cannot interpret
the relation as a direct effect of annual temperature on losses, but rather as the
combined phenomenon by which countries with higher average temperature tend to
experience smaller losses (at least in our sample).

Recall that in Equation (3.5), we set a different time trend for each country. M1
estimates 24 countries out of 66 with statistically significant trends: 9 of them show
an increasing trend and 15 of them show a decreasing trend. M2 instead identifies
30 countries with significant trends (22 of which are the same as in M1), with 10
countries showing an increase and 20 a decrease in the food loss percentages over
time. The largest estimated random effect by both M1 and M2 belongs to Malta for
wheat and is equal to 1.07 on the logit scale, which corresponds to 70% percentage
losses. However, the final loss factors, including the covariates’ effect, are around
18%, close to the observed value in FAOSTAT. We would like to point out that
Malta is an island country that imports around 90% of its wheat consumption. Loss
percentages in import-dependent countries should be calculated based on domestic
supply to include imports and correct extreme results. The import-dependency has
been dealt within the FLI methodology but was overlooked in this work because it
was not relevant in this research context.

At the opposite hand of the scale, M1 estimates the smallest effect for oats
in Armenia, while M2 does so for maize (corn) in Cuba. The point estimates are
−5.45 and −5.58 on the logit scale, which correspond to 0.43% and 0.37% of loss
percentage, respectively (see Table A.2). In Cuba’s case, the final estimates range
between approximately 15% (M1) and 25% (M2), on a similar level to the country’s
reported losses.

The estimated values for the variance of the random effects τ2 and the variance
of the outcome φ are ' 0.1 and ' 71 (thus a dispersion φ−1 ' 0.014), respectively,
both for M1 and M2, meaning that the estimates are precise. Finally, the estimated
value for the global shrinkage parameter η2 is equal to 0.013.

3For η2; we use the Maximum A Posteriori (MAP) estimator since its posterior distribution is
not symmetric. For details on variance’s parameters, see Figures A.2 and A.3
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Validation
To evaluate our models’ predictive performance, we split the sample into training

and test sets. The test set includes 953 data-points (i.e. 25% of the whole sample)
and was built by removing the last five observations from the time series of each
country-crop combination when the time series length was larger than eight years,
only two observations were set aside for prediction purposes otherwise. We used the
Relative Mean Squared Error (RMSE) to measure the difference between predicted
and observed values. The RMSE is computed as the ratio between each model’s
prediction error (at the numerator) and the error that would have resulted by using
the simple predictor (e.g. sample average). It can be computed as:∑nte

i=1(ltei − l̂i)2∑nte
i=1(ltei − l̄tr)2 , (3.6)

where ltei are the observed losses in the test set, l̂i are the predicted losses and l̄tr is
the sample average of observed losses in the training set. Predictions are obtained
using the selected variables in M1 and M2. For each model, we ran two chains
with 80, 000 iterations each, applied a burn-in of 40, 000, and a thinning of 10, then
kept 4, 000 samples from each chain for inference. The overall RMSE is 0.359 and
0.358 for M1 and M2, respectively, confirming again that the two approaches are
equivalent. Figure 3.8 shows the observed losses in the test set and their predicted
values. Perfect predictions would lie on the dashed red line (or the identity line
y = x). Both models show a good performance, especially for losses smaller than
' 20% (the majority in the sample). Besides, the average coverage of the prediction
intervals for both M1 and M2 is greater than 90%. In particular, it is equal to
92.34% for M1, while it is equal to 92.55% for M2.
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Figure 3.8. Observed vs predicted losses by the two sub-models. The dashed red line
represents the identity line y = x.

M1 and M2 have comparable predictive performances when the error is evalu-
ated separately by country and commodity, although the RMSE is not uniformly
distributed across countries or across commodities. In particular, Pakistan and
quinoa are the country and the commodity with the highest RMSE, respectively. For
Pakistan, we only have loss data for one commodity (maize), with an approximately
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flat time series at about 5%, as shown by the blue line in Figure 3.9c. The point
predictions produced by our models struggle to reproduce the flat trend in this
country, suggesting some weird behavior of one of the predictors (the spending
on agriculture halved over the period) or an issue with the target variable itself;
nevertheless, observed values fall into the 95% prediction intervals for both models.
Quinoa losses are only observed for Peru, as reported in Figure 3.9a. The models
underestimate losses for this commodity; however, also, in this case, observed values
fall into the 95% prediction intervals. Good prediction performances are also shown
in Figure 3.9b and 3.9d: both M1 and M2 catch the plateau and the decreasing trend
in the observed time series. For these two country-crop combinations, the prediction
error is about 0.00005 for Israel-sorghum and 0.0003 for Togo-millet. Notice that the
error for Israel-sorghum would have been equal to 0.0036 had we used the sorghum
mean for the prediction, or 0.0058 had we predicted losses with Israel mean; for
Togo-millet, the error would have been equal to 0.00037 had we used the millet
mean, or equal to 0.008 had we used with Togo mean.
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Figure 3.9. Observed time series and predicted values by the two sub-models with 95%
predictive intervals for four different country - crop combinations.

3.4 Discussion and further developments

In this work, we present a substantial improvement over the previous global
food losses modeling efforts. First, the proposed distributional framework is highly
coherent with the nature of the data: since food losses are expressed as proportions,
the Beta distribution represents a much more appropriate choice for describing their
behaviour. Second, the proposed approach is very flexible: the model in Equation
(3.5) could be applied to other food groups when data will be available. Third, the
hierarchical modeling structure covers most food loss dynamics and is easily scalable
when needed (e.g., to estimate losses at supply chain step).
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The two proposed variable selection techniques provided equivalent results.
Although being computationally more demanding, the spike and slab priors allow for
the computation of posterior inclusion probabilities for all the variables, providing
a rigorous and straightforward way towards variables’ choice. On the other hand,
the horseshoe priors require the choice of a posteriori selection criteria, but they
are considerably less demanding in terms of computational effort. Hence horseshoe
priors should be preferred when the latter poses a serious issue.

One caveat on the use of this model is that it is more demanding in terms of the
number of observations than the hierarchical mixed-effect model developed for the
SDG 12.3 methodology and the SOFA 2019 report. Our model could be developed
and tested for cereals only, which account for the largest share of available data.
It is not a viable option to date to compile the FLI, which needs to cover all five
commodity groups, eventually with very few observations.

We would like to further remark that quality and reliability issues affect both the
explaining variables and the outcome in our case study. We dealt with these issues
using a Bayesian approach, which allows for the modeling of parameters’ uncertainty
at the prior level, but the correction of such values is not within the scope of this
work and would require additional investigation. In this regard, we are aware that, in
general, multiple imputation should be used, as suggested in Sinharay et al. (2001).
Indeed, single imputation techniques usually underestimate the imputation process’s
uncertainty, and the imputed data may display a smaller variance. To handle this
issue, we can think of building a model that includes a measurement error term for
the imputation step. However, the increase in computational complexity does not
seem to justify this solution. For these reasons, as also suggested by an anonymous
reviewer, we believe that the imputation of missing data in such context could
become in itself a good method paper, hence we leave this for future developments.

We also expect, when a larger amount of data will be available, to obtain
the same results if we estimate the model using a maximum likelihood approach.
In this work, we decided to test only Bayesian techniques because they allow to
perform probabilistic uncertainty quantification in the model choice process unlike,
for example, with a lasso regression. Furthermore, the lasso’s optimality (theoretical
properties) is only guaranteed in the framework of standard linear regression (e.g.,
Gaussian outcome). There is a very interesting paper by Groll et al. (2019) in
which the authors propose a lasso-type penalization for generalized additive models,
but in the discussion, they state that “the number of true parameters is partly
overestimated”. An extensive comparison between the lasso and the horseshoe is
given in Bhadra et al. (2019a). Here, the authors argue that even though the
lasso estimation procedure is typically computationally faster, the horseshoe prior
performs better in terms of estimation thanks to its heavy tails, making it adaptive
to sparse data and robust to large signals. Moreover, Polson and Scott (2010),
Polson and Scott (2012) and Datta and Ghosh (2015) have shown that horseshoe
empirically outperforms lasso in terms of out-of-sample predictive sum of squares
errors. Last but not least, the lack of speed can be easily overcome, as proposed in
Terenin et al. (2019) and Bhadra et al. (2019b).

Overall, all the proposed models produced promising results, in terms of (i) the
explanatory variables that were selected; (ii) the possibility to use country-level
estimates instead of clustered or global estimates; (iii) the estimated trends (see
SOFA 2019 for comparison with this paper). More extended tests will be carried
out when the data collection effort that should be undertaken by the national and
international stakeholders to support policy-making towards the achievement of
SDG 12.3 will produce significant improvements in data availability.





39

Chapter 4

Modeling physical activity using acti-
graph data

The methodology and the application presented in this chapter have been devel-
oped between September 2019 and March 2020, during my Visiting Research period
at UCLA. The work has been carried out in collaboration with Ph.D. Pierfrancesco
Alaimo Di Loro from “La Sapienza” and the research team of the Fielding School
of Public Health of UCLA, under the supervision of Prof. Sudipto Banerjee. The
motivation of the study concerned the advanced modeling of Actigraph data, which
are usually analyzed using standard statistical techniques because of their huge
sample size. Building upon recent developments in this field, we construct temporal
processes using directed acyclic graphs (DAG) on the line of the Nearest Neighbor
Gaussian Process (NNGP) (Datta et al., 2016a), account for spatial heterogeneity
through penalized spline regression, and develop optimized implementations of the
collapsed MCMC algorithm. The resulting Bayesian hierarchical modeling frame-
work for the analysis of spatial-temporal actigraphy data proves able to deliver
fully model-based inference on trajectories while accounting for subject-level health
attributes and spatial-temporal behaviour. We undertake a comprehensive analysis
of an original dataset from the Physical Activity through Sustainable Transport
Approaches in Los Angeles (PASTA-LA) study to formally ascertain spatial zones
and trajectories exhibiting significantly higher physical activity levels.

Abstract

Rapid technological developments in accelerometers have generated substantial
interest in monitoring human activity. Wearable devices, such as wrist-worn sensors
that monitor gross motor activity (actigraph units) continuously record the activity
levels of a subject, producing massive amounts of high-resolution measurements.
Analyzing actigraph data needs to account for spatial and temporal information on
trajectories or paths traversed by subjects wearing such devices. Inferential objectives
include estimating a subject’s physical activity levels along a given trajectory;
identifying trajectories that are more likely to produce higher levels of physical
activity for a given subject; and predicting expected levels of physical activity in
any proposed new trajectory for a given set of health attributes. We devise a
Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to
deliver fully model-based inference on trajectories while accounting for subject-level
health attributes and spatial-temporal dependencies. We undertake a comprehensive
analysis of an original dataset from the Physical Activity through Sustainable
Transport Approaches in Los Angeles (PASTA-LA) study to formally ascertain
spatial zones and trajectories exhibiting significantly higher levels of physical activity.



40 4. Modeling physical activity using actigraph data

4.1 Introduction

Promoting a healthy lifestyle continues to stoke substantial research activities
in public health. The “Physical Activity Guidelines for Americans” (2nd edition)
suggests that most individuals, depending on age and body composition, receive
150-300 minutes of moderate to vigorous physical activity (MVPA) weekly (Piercy
et al., 2018). In general, the scientific community agrees that regular physical
activity (PA) can have immediate and long-term health benefits (Reiner et al., 2013;
Bull et al., 2020). Despite these well-known benefits, most Americans fail to meet
recommended requirements (Piercy et al., 2018). Specifically, only 1 in 5 high-school
adolescents and 1 in 4 adults meet recommended levels of physical activity (PA).
Given the well-established relationships between lack of PA and several obesity-
related chronic conditions such as heart disease, type-2 diabetes, and cancer, as
well as many physical and mental health benefits, an urgent need exists to improve
monitoring of PA and to establish public health programs that promote more PA1.

Technologies for monitoring spatial energetics (James et al., 2016; Drewnowski
et al., 2020) and promoting physical activity continue to emerge. Actigraphy broadly
refers to the monitoring of human rest and activity cycles using wearable devices.
Actigraphy data are gathered directly from wearable sensors or indirectly through
smart-phone mobile applications and record repeated measurements at very high
resolution. Accelerometers, in particular, are motion sensors that measure accelera-
tion along different axes and are able to collect large amounts of data (Plasqui and
Westerterp, 2007; Sikka et al., 2019). They are increasingly conspicuous because of
their affordability, accuracy, and availability in smart-phones, smart-watches and
other wearable devices. Many devices include Global Positioning System (GPS)
sensors that reference measurements with location tracking along trajectories, or
paths, traversed by the subject. Collected data can be quickly downloaded and
promptly analyzed to obtain insights into their pattern and structure.

We pursue a comprehensive analysis of an original actigraphy data set from
the Physical Activity through Sustainable Transport Approaches in Los Angeles
(PASTA-LA) study. Analyzing such data is sought for several reasons: (i) estimating
a subject’s physical activity levels along a given trajectory; (ii) identifying trajectories
that are more likely to produce higher levels of physical activity for a given subject;
and (iii) predicting expected levels of physical activity in any proposed new trajectory
for a given set of health attributes. Researchers have cogently demonstrated the
benefits of an active lifestyle over a sedentary one on physical and mental well-being
and longevity (Lee et al., 1995). Therefore, actigraphy tracking is especially attractive
as it allows for a better understanding of what behavioral and environmental
factors influence population and individual health and, hence, aid in public health
recommendation and policy.

Given that actigraphs generate large amounts of spatial-temporal data, it is
natural to choose from the rich classes of such models (Cressie, 2015; Gelfand
et al., 2019). However, actigraph data present some notable challenges (Kestens
et al., 2017): they exhibit dependence along trajectories and must be accounted
while predicting PA along arbitrary (unobserved) trajectories. We argue against
a customary spatio-temporal process over R2 and disentangle spatial effects from
dependence along trajectories. The balance of the paper is organized as follows.
Section 4.2 introduces the PASTA-LA data set with insights into accelerometry data.
The model for the temporal correlation is introduced in Section 4.3, while spatial

1More details at https://www.cdc.gov/chronicdisease/resources/publications/
factsheets/physical-activity.htm

https://www.cdc.gov/chronicdisease/resources/publications/factsheets/physical-activity.htm
https://www.cdc.gov/chronicdisease/resources/publications/factsheets/physical-activity.htm
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effects are discussed in Section 4.3.4. An extensive simulation study validating our
model is proposed in Section 4.3.5. Data analysis, including model assessment and
comparisons, are presented in Section 4.4. Finally, we conclude with a discussion in
Section 4.5.

4.2 PASTA-LA project

4.2.1 Available data
Our dataset is compiled from the original Physical Activity through Sustainable

Transport Approaches in Los Angeles (PASTA-LA) study conducted on a cohort
of 460 individuals monitored between May 2017 and June 2018. Data were collected
through different sources: online questionnaires, a smartphone app named MOVES,
a GPS device (GlobalSat DG-500), and a wearable Actigraph unit (Actigraph
GT3X+). We focus on the values recorded by Actigraph and GPS devices worn
by 134 subjects for two one-week periods (one in 2017 and one in 2018). Study
protocol for safeguarding participant information received necessary institutional
review board (IRB) approval from the UCLA Human Research Protection Program.
The data were stored on a secure computer and a redacted version was created for
purposes of data sharing and research collaboration. While we do not pursue all of
the aims of the PASTA-LA study, we build and test the framework in Section 4.3
for modeling high-frequency actigraph data related to different individuals.

Questionnaires The online questionnaires included two baseline and four follow-
up surveys: one baseline and two follow-ups for each collection period of the
actigraph and GPS data. Each survey consisted of responses pertaining to the
participant’s demographics and transportation habits. Not all participants completed
all questionnaires. Hence, we considered only the surveys available for all the
participants. This survey is the first baseline questionnaire and contains personal
information such as sex, age, BMI, ethnicity and other socioeconomic factors. A
user ID was assigned to each survey response data and a redacted master key was
generated using all ID types for joining with other study data.

Actigraph The Actigraph unit is an accelerometer roughly the same size and
weight of the average wrist-watch that can be worn on the wrist, hip, and thigh and
measure the directional acceleration at a pre-specified time frequency (generally 10
Hz to 30 Hz). The Actigraph GT3X+ model used for the PASTA-LA study (see
Figure 4.1) can detect movement in up to three orthogonal planes (anteroposterior,
mediolateral, and vertical).

Figure 4.1. Actigraph GT3X+
model used for the PASTA-LA
study.

Data are stored in an internal memory and can
be downloaded to other hardware for analysis
through a proprietary software. During download,
the software converts the raw acceleration infor-
mation to activity counts, step counts, caloric
expenditure, and activity levels, aggregated at
the level of sample epochs that can be specified
by the user. The proprietary software precludes
recovering the raw data once they have been pro-
cessed in the download phase. Our study asked
the 134 participants to keep the Actigraph unit
on them (wrist) at all times other than during
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Figure 4.2. Derived missing data patterns for actigraph data during the daytime for 4
individuals arising from querying the inclinometer and eliminating low values: blank
spots are missing data, black spots are observed values.

bathing and sleeping (awake time was assumed approximately from 7am to 11pm).
Observations recorded outside this daily time-window were excluded.

When participants arrived at the research offices to drop off devices, some
described issues of efficacy in the ability to keep the device on or charged. Indeed,
while the actigraphs were supposed to hold a charge long enough to last the whole
week, this was not always the case (possibly due to external conditions affecting
the battery life or variations in manufacturing). Troiano et al. (2014) showed that
such a protocol naturally results in huge amounts of missing data, not random but
biased toward an increased general level of physical activity (i.e. people who kept
the accelerometer on during these times are likely to be the ones who would be
performing physical activity). In the context of this paper, we settle on modeling
solely the active hours of the individual, with our interest lying in detecting how
individual or environmental covariates affect the physical activity level during the
active time. During download the data were aggregated in sample epochs spanning
10 seconds. Measurements included the activity counts for the three axles and
step counts. Time-stamps for final measurements (hour, minute, and second) were
referenced by the mid-point between the beginning and the end of the epoch.

The Actigraph GT3X+ automatically records a measure of inclinometer values
on how many of the 10-second epochs have been spent by the individual lying down
(inclinometer.lying), sitting (inclinometer.sitting), standing (inclinometer.standing)
or without wearing the accelerometer (inclinometer.off ). These variables were not
of primary interest to the PASTA-LA study and were not directly addressed in their
data collection protocol for quality assurance. Inclinometers2 have reported sizable
error rates up to 30% depending upon where they are worn and are likely less accurate
when worn on the wrist (Peterson et al., 2015). We sought to exploit convergence of
accelerometry and inclinometer data to derive periods of inactivity. We checked that

2see https://actigraphcorp.com for details

https://actigraphcorp.com/research-database/validity-of-the-actigraph-inclinometer-algorithm-for-detecting-sitting-and-standing-postures/
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large values of inclinometer.off corresponded to low (∼ 0) values of activity in all
the possible endpoints. Then, we dropped observations with inclinometer.off larger
than 5s (i.e., the accelerometer was inactive for more than half of the epoch). This
yields “missing data” from querying the inclinometer and eliminating low values.
These resulted in ≈ 6.4×106 scattered observations out of the potential ≈ 12.3×106

ones3, exhibiting missingness patterns as in Figure 4.2.

GPS The Global Positioning System (GPS) is a satellite-based radio-navigation
system that does not require the user to transmit data and operates independently
of any telephonic or internet reception. Any GPS unit can be set to record and
store the spatial location at a pre-specified time frequency so that they could be
downloaded and subsequently analyzed in a second moment. Obstacles, such as
mountains and buildings, can block the relatively weak GPS signals and prevent the
device from functioning accurately. In particular, the GPS GlobalSat DG-500 was
provided to the 134 subjects, which recorded the subject’s location (latitude and
longitude) every 15 seconds and comprised date and time of localization and speed
in kilometers per hour (computed as distance over time through linear interpolation).
In order to avoid a geographical imbalance that could bias and invalidate the model
estimates, for the current analysis we restricted attention to subjects living and
working in the Westwood neighborhood of Los Angeles. This helped excluding
some of the clearly unreasonable GPS values resulting from connection problems or
participants that would forget to turn off the tracking during long-range travels (e.g.
on a flight). The remaining clear errors (e.g. jumps of > 10 mile in the span of 15
seconds) were detected by verifying coherency rules and dropped before the analysis.

Joining GPS and accelerometer data were all assigned a participant ID aligned
with the questionnaires’ master-key to facilitate joining across all ID types (including
email) while redacting and encrypting user data. The first baseline questionnaire,
Actigraph and GPS were available for our group of 134 individuals. Henceforth, we
refer to this specific group of units. We then build two different data sets:

• The first dataset, D1, comprising N ' 5 × 106 measurements is obtained
by joining the first baseline questionnaire with Actigraph data and includes
the MAG (Section 4.2.2) at the different timestamps and all the individual
predictors, but no spatial information.

• The second dataset, D2, consists of N ' 5× 105 measurements (Figure 4.3)
and is obtained by joining D1 with GPS data. Actigraph and GPS data were
temporally misaligned: the alignment was achieved by linear interpolation of
the GPS locations on the temporal grid from the actigraph, keeping only those
interpolated values with subsequent GPS measurements less than 30 seconds
apart. This is a reasonable assumption, given that the individual’s trajectory
is well-approximated by a piece-wise linear GPS trajectory.

4.2.2 A measure of physical activity
Our primary endpoint of analysis is the magnitude of acceleration (MAG) defined

as:

MAGkt =
√
x2
kt + y2

kt + z2
kt, k = 1, . . . ,K, t = tk1, . . . , tkT , (4.1)

3computed as n.days× n.(epochs/day), where n.(epochs/day) = 5400
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(a) (b)

Figure 4.3. (a): Observed locations over the Westwood area. (b): Observed physical
activity level over the Westwood area on a subset of 10 individuals

where tkj is the j-th time point for the k-th individual; and x, y and z are the activity
counts of the three axes (Ott et al., 2000). There are substantial investigations
into the statistical relationships between accelerometer measurements and energy
expenditure (EE) measures (Freedson et al., 2012; Taraldsen et al., 2012). In
particular, the Metabolic Equivalent of Task (MET) is currently the gold-standard
measure of rate of activity intensity (Crouter et al., 2006; Hall et al., 2013; Lyden
et al., 2014). When dealing with the filtered accelerometer outcomes (i.e. axes
counts obtained after the transformation of the raw acceleration measurements by
the proprietary software in the downloading process) the conversion into physical
activity measurements and the corresponding accuracy vary by accelerometer model
and brand, but mostly by the number of axis considered (Karantonis et al., 2006;
Rothney et al., 2008). In particular, the introduction of tri-axial accelerometers raised
questions about whether the vector magnitude of the three axes would provide more
accurate assessment of physical activity intensity as compared to the magnitude of
the vertical axis alone (Howe et al., 2009; Hänggi et al., 2013). In particular, Migueles
et al. (2017) offer an extensive review of proposed accelerometer measurement cut-
points and transformation into physical activity metrics, including single axis or
MAG values.

More specifically, Sasaki et al. (2011), Santos-Lozano et al. (2013) and Kamada
et al. (2016) investigated axis counts and vector magnitude resulting from the GT3X+
accelerometer in both controlled and free-living environments, while Aguilar-Farias
et al. (2019) investigated the accuracy of relationships between MAG and MET in
comparison to those based on the vertical axis counts only and validated the results
with the EE and MET as quantified by a portable calorimeter.

The MAG-to-MET relationship expounded in Sasaki et al. (2011) is expressed as
a function of the MAG per minute, which we rescale to our 10 seconds aggregated
counts as:

METkt = (0.000863× 6) ·MAGkt + 0.668876, (4.2)
and perform the same to the corresponding cut points for different PA intensity level
(Table 4.1).
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Activity intensity MET range MAG
Sedentary or light [0, 3) [0, 493)
Moderate [3, 6) [493, 1029)
Hard [6, 9) [1029, 1608)
Very hard [9, ∞) [1608, ∞)

Table 4.1. MAG activity count cut-points for different PA intensity levels.

Based upon the aforementioned literature, the MAG is the outcome we fit and
predict. We consider the closest outcome to the original source of information,
without introducing additional and unnecessary noise or bias in the fitting process.
However, for inferential purposes, MAG is later transformed into MET through
Equation (4.2) to interpret results from a physical activity perspective. Nevertheless,
equations directly relating accelerometer measurements with physical activity metrics
in free-living studies must be interpreted with caution. Relationships between MAG
and MET have been posited in controlled studies and validated while patients
are performing specific tasks (i.e. walking on a treadmill, gardening etc.). The
relationship between the recorded movement (acceleration) and the corresponding
energy expenditure, can vary significantly across different tasks affecting the reliability
of acceleration-based energy expenditure metrics (Lyden et al., 2011; Freedson et al.,
2012; Montoye et al., 2018).

4.3 Methodology
The outcomes corresponding to the K subjects are referenced with respect to

the time at which they are recorded and the position in the trajectory. While
it is tempting to work with a spatio-temporal process, dependence introduced by
such processes may not be appropriate. An individual can visit the same location
numerous times in his/her trajectory. These revisits need not occur at regular
intervals and can be at distant time points. This suggests that proximity of two
spatial locations in a trajectory need not result in strongly dependent MAGs recorded
there. It appears more reasonable to model dependence among MAG measurements
through a temporal process. In fact, such temporal processes can be motivated by
the position vectors defining the trajectories as we describe below.

Let Zk(·) : R2 → R be a spatial process corresponding to individual k. The
domain of Zk(·) is restricted to the trajectories γk(t) =

(
γxk (t), γyk(t)

)
, where k =

1, . . . ,K and t ∈ R+, which defines the movements of the k-th individual along
time. As shown in Figure 4.4, the process actually belongs to a one-dimensional
space, for which we define a proper distance measure d(tki, tkj) = ‖γk(tkj)− γk(tki)‖,
where tki is the i-th recorded time point from individual k. A similar problem has
been addressed in Abdalla et al. (2018), where the geographic distance along a
coast has been replaced by a piece-wise linear approximation over a coarse grid.
Here, we approximate such distances as the elapsed time between the two points
d(tki, tkj) = |tkj − tki|, which would result in a good approximation of the spatial
distance (especially if the subject is moving at constant speed). More generally,
the elapsed separation across time will reflect dependence better than the spatial
distance. The faster an individual is moving from one point to the other, the shorter
the time elapsed, and higher the correlation between the two measurements. Hence,
we model our measurements as Yk(·) ≡ Zk ◦ γk(·) : R+ → R which, by construction,
is a valid stochastic process.
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Figure 4.4. Example of observed points (a) and trajectory (b): black dots are realizations,
grey line is domain of the process.

This will form the edifice of the model in Section 4.3.1, where we are modeling
the dependence by solely considering stochastic evolution through time. How should
spatial information be introduced in the model?

Two individuals at the same spatial coordinate experience the same spatial effect
but different temporal effects because their physical activities are a function of their
trajectory’s temporal evolution. An added complication is that trajectories intersect
and overlap and, in practice, can have multiple observations at the same location.
Even more flexible spatio-temporal covariance kernels (e.g., non-separable or non-
stationarity) will struggle to recognize the above features. Hence, we introduce the
spatial effect in the mean using spline regression (see Section 4.3.4).

4.3.1 Temporal model

Let T = ∪Kk=1Tk where Tk = {tki}Tk
i=1 and tki ∈ R+ be the set of the n =

∑K
k=1 TK

observed time points. We model Y (T ) as the finite realization of a K-variate process
Y (·) over R+:

Y (t) = X(t,γ(t))>β +w(t) + ε(t), t ∈ R+, (4.3)

where Y (t) = (Y1(t), Y2(t), . . . , YK(t))> is a K × 1 vector of measurements at time t
on the K individuals, X(t,γ(t)) is a p×K matrix, each row being the values of a
covariate for the K individuals, w(t) = (w1(t), w2(t), . . . , wK(t))> is a K × 1 vector
comprising a temporal process for each individual, and ε(t) ∼ NK(0, τ2IK), τ2 ∈
R+, is a white noise process for measurement error. Assuming independence among
all the components of the temporal process, i.e. among individuals, each element of
w(t) is specified as

wk(t)
ind∼ GP (0, cθk

(·, ·)) , (4.4)

where cθk
(·, ·) is a covariance function with parameters θk ∈ Θ.

Let yki and xki be the outcome and covariates for individual k at time point tki,
respectively, so

{(yki,xki) : k = 1, . . . ,K, i = 1, . . . Tk}

is the observed data. Let yk be Tk × 1 vectors comprising all measurements on
individual k. We will then refer to the joint n× 1 vector of the outcomes and n× p
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matrix of the predictors as:

y =
[
y>1· y>2· · · · y>K·

]>
, X =

[
X>1· X>2· . . . X>K·

]>
,

where Xk is the Tk × p matrix of predictors corresponding to yk, and values are
first ordered by individual and then by time. Then, let us denote with {wk}Kk=1 the
Tk × 1 vectors comprising all the random effects on individual k, forming the n× 1
vector w =

[
w>1· w>2· · · · w>K·

]>. We extend Equation (4.3) to a hierarchical
model with posterior distribution

π(β,w,θ, τ2 |y) ∝ π(θ, τ2)×N(β |µβ,V β)×N(w |0,Cθ)×N(y |Xβ+w, τ2In) .
(4.5)

The independence assumption of Equation (4.4) is not strictly necessary, however
applying Equation (4.5) involves the determinant and inverse of Cθ, which require
O(n2) storage space and O(n3) floating point operations (flops). This operations
are cumbersome and become already unfeasible for n ≈ 103, as the covariance
matrix Cθ is dense (see Figure 4.5a). Under Equation (4.4) instead, the covariance
matrix Cθ = diag (Cθ1,1,Cθ2,2, . . . ,CθK ,K) = ⊕Kk=1Cθk,k is n × n block-diagonal
with Cθk,k = [cθ(tki, tkj)] as the Tk × Tk temporal covariance matrix corresponding
to individual k, and where the covariance between observations belonging to different
individuals is set to 0 (see Figure 4.5b). Each individual is allowed its own covariance
parameters, θk, and θ = {θ1,θ2, . . . ,θK} in Equation (4.5) is the collection of all
the covariance kernel parameters. The block-diagonal structure of Cθ considerably
alleviates this burden since

det(Cθ) =
K∏
k=1

det(Cθk,k), C−1
θ = diag

(
C−1
θ1,1,C

−1
θ2,2, . . . ,C

−1
θK ,K

)
.

This reduces the flop count from O(n3) = O((
∑K
k=1 Tk)3) to O(K

∑K
k=1(Tk)3),

with a significant saving of calculations especially when the Tk’s are reasonably small
(< 104). Furthermore, each Cθk,k can be computed in parallel rendering further
further scalability to the algorithm.

However, analyzing the Actigraph data in Section 4.2 will involve Tk > 105

measurements from some individuals. Full inference will be impractical without any
exploitable structure for each Cθk,k. Analyzing massive spatio-temporal data has
witnessed burgeoning interest and a comprehensive review is beyond the scope of
this work (see, e.g., Heaton et al., 2019, and references therein). We will pursue
an approximation due to Vecchia (Vecchia, 1988), based on the directed acyclic
graph (DAG), that has generated substantial recent interest (Datta et al., 2016a,b;
Katzfuss et al., 2020; Katzfuss and Guinness, 2021; Peruzzi et al., 2020) in scalable
Bayesian modeling.

4.3.2 Independent DAG models over individuals
We adapt Vecchia’s likelihood approximation (Vecchia, 1988) to the random

effects wk for each k = 1, 2, . . . ,K. Beginning with the observed time points
{tk1 < tk2 < · · · < tkTk

} for individual k and the DAG representation π(wk) =
π(wk1)

∏Tk
i=2 π(wki |wk1, . . . , wk(i−1)), we define

π(wk) ≈ π̃(wk) = π(wk1)
Tk∏
i=2

π(wki|wk,N(i)) , (4.6)



48 4. Modeling physical activity using actigraph data

Dimensions: 30 x 30
Column

R
ow

5

10

15

20

25

5 10 15 20 25

(a) Cθ

Dimensions: 30 x 30
Column

R
ow

5

10

15

20

25

5 10 15 20 25

(b) ⊕Kk=1Cθk,k

Figure 4.5. Covariance matrix of the process before (a) and after (b) assuming independence
among individuals.

where π̃(·) is the joint density derived from π(wk) by restricting the parents (con-
ditional sets) of each wki in the DAG to a set wkN(i) = {wkj : j ∈ N(i)}, where
N(i) is a set of prefixed size m comprising the m nearest neighbors of tki from the
past. Thus, N(i) = {tk(i−m), . . . , < tk(i−1)} for i > m and N(i) = {tk1, . . . , tk(i−1)}
for i ≤ m.

Such approximations yield valid4 probability likelihoods (Lauritzen, 1996; Stein
et al., 2004; Murphy, 2012) and can be extended to stochastic processes (Datta et al.,
2016a) for inference on arbitrary time points.

The connection between sparsity and conditional independence follows by writing
Equation (4.6) as a linear model wk = Akwk + ηk,

wk = Akwk + ηk,
ηk ∼ NTk

(0,Dk)
(4.7)

where Ak is a Tk × Tk strictly lower triangular matrix, ηk ∼ NTk
(0,Dk) and

Dk is the Tk × Tk diagonal matrix such that [Dk]ii = dii = Var (wki|{wkj , j < i})
for i = 1, . . . , Tk. The DAG imposes the lower-triangular structure on Ak and its
(i, j)-th entry is allowed to be nonzero only for j ∈ N(i). Therefore, each row of Ak

has at most m nonzero entries so that

C̃
−1
k = (ITk

−Ak)>D−1
k (ITk

−Ak)

identifies with the sparse Cholesky decomposition of C−1
k , and where C̃−1

k is the
precision matrix corresponding to π̃(wk). Replacing C with C̃ in Equation (4.5)
yields a computationally efficient hierarchical model with

∏K
k=1N(wk |0, C̃k) as the

prior on w. An example of the structure of C̃ and C̃−1 is given in Figures 4.6a and
4.6b.

The key observation is that the nonzero elements of the i-th row of Ak is the
solution ak of them×m linear system Cθ,k[N(i), N(i)]ak = Cθ,k[N(i), i], where [·, ·]

4and consistent with respect to the parent process, as far as the size of the neighbour sets tends
to the full size Tk.
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Figure 4.6. Approximated covariance (a) and precision (b) matrix of the process.

indicates sub-matrices defined by the given row and column index sets. Obtaining
the nonzero elements of Ak and Dk costs O(Tkm3) (scales linearly with Tk) instead
of O(T 3

k ) as would have been without sparsity. This cheaply delivers the quadratic
form w>k C̃

−1
k wk in terms of Ak and Dk and the determinant det(C̃k) =

∏Tk
i=1 dii at

almost no additional cost.
Algorithm 4 shows how it is possible to compute the sparse versions of L =

(I −A)> and R = D−1(I −A), where A = ⊕Kk=1Ak and D = ⊕Kk=1Dk.
Hence, we can approximate the parent Gaussian latent process wk with its

NNGP version w̃k and replace the density of the latent process in Equation (4.5)
with NTk

(w̃k |0, C̃k), whose computation requires ' O(Tk) flops.
Although Datta et al. (2016a) demonstrated to have no discernible impact on

the final approximation, one of the biggest critical points of the NNGP process is
that the results in Equation (4.6) and Equation (4.7) depend upon the ordering of
the observations. Unlike spatial locations, temporal observations possess a natural
order. Indeed, observations along time can be ordered from the least to the most
recent tk1 < tk2 < · · · < tkTk

, with the additional property to be arranged according
to their mutual distance. More precisely, the neighbour set of each time-point tki is
always composed by its m preceding values, if they exist:

N(tk1) = ∅, N(tki) = {tkmax(i−m,1), . . . , tk(i−1)}, i = 1, . . . , Tk.

As a result, the lower triangular matrix Ak is not just sparse but also banded,
with a lower bandwidth equal to m. Consequently, C̃−1

k is also banded with lower
and upper bandwidth equal to m. This leads to further accrual of computational
benefits. The overall cost is O(

∑K
k=1 Tkm

3) = O(nm3) (linear in n) for computing
the posterior for any given values of the parameters.

4.3.3 Implementation using collapsed models

The Bayesian hierarchical model in Equation (4.5), either with Cθ or with C̃θ

in the prior for w, allows full posterior inference for {β,w,θ, τ2} using Markov
chain Monte Carlo (MCMC). In particular, its standard implementation relies on a
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Algorithm 4: Sparsity inducing computation of L = (In −A)>, d and
R = D−1(In −A)
Input: {Ck}Kk=1
Output: L, R, d
for k in 1 : K do

Lk[1, 1] = 1
dk[1] = Ck[1, 1]
Rk[1, 1] = 1/dk[1]
for i in 1 : (Tk − 1) do

Lk[i+ 1, i+ 1] = 1
Lk[i+ 1, N(i+ 1)] = −Ck[N(i+ 1), N(i+ 1)]−1 ·Ck[N(i+ 1), i+ 1]
dk[i+ 1] = C[i+ 1, i+ 1]−Ck[i+ 1, N(i+ 1)] ·Lk[i+ 1, N(i+ 1)]>
Rk[i+ 1, i+ 1] = 1/dk[i+ 1]
Rk[N(i+ 1), i+ 1] = Lk[i+ 1, N(i+ 1)]>/dk[i+ 1]

end
L[(Tk−1 + 1 : Tk), (Tk−1 + 1 : Tk)] = Lk
R[(Tk−1 + 1 : Tk), (Tk−1 + 1 : Tk)] = Rk

d[Tk−1 + 1 : Tk] = dk
end

sequential sampler (a.k.a. Sequential NNGP) that envisions a direct Gibbs sampling
with random walk Metropolis steps. It exploits the full conditional distributions
in closed form for {β,w} and also for τ2 with an IG(aτ , bτ ) prior. However, this
convenience is nullified in practice by strong autocorrelation and poor mixing of the
chains (Liu et al., 1994).

Nevertheless, the flexibility of the Bayesian approach allows for the definition of
alternative valid estimation procedures for both the vector of regression coefficients
β and covariance parameters θ. In this respect, samplers based on spatial DAG-
based models have been devised, explored and compared in Finley et al. (2019),
and collapsed samplers (marginalized over the latent component w̃) have been seen
to considerably improve convergence. In particular, the authors compared three
alternatives to the original sequential sampler, which attempt at improving its
performances through the exploitation of high-performance computing libraries for
expensive numerical linear algebra computations. These have been named as the
Collapsed NNGP, the NNGP for the response and the Conjugate NNGP. In the
sequel, we only describe the implementation with collapsed likelihoods in the specific
context of temporal processes, as they represent the only appropriate choice if the
objective is to provide full inference on the latent component. In particular, we
describe some computational shortcuts linked to convenient patterns arising from
the temporal structure.

Starting from the two-stage hierarchical specification of the model in Equa-
tion (4.5), the collapsed model is obtained by integrating out the latent process w(·),
thereby “collapsing” the parameter space to a much smaller domain without w. The
resulting complete likelihood is:

L (y |β, θ) = N (y |Xβ, Λ̃),

where Λ̃ = C̃ + τ2 · In. Hence, instead of Equation (4.5), we sample from:

π(β,θ, τ2 |y) ∝ π(θ, τ2)×N(β |µβ,V β)×N(y |Xβ, C̃θ + τ2In) , (4.8)
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Algorithm 5: Sampling from the posterior of the collapsed temporal model
0: Initialization
begin

for k = 1, . . . ,K do
a: Compute dk

ij = |tj − ti|, ∀tj , ti ∈ Tk

b: Find the neighbor sets {Nk(i)}Tk
i=1

end
end
1: Metropolis-Hastings update for {θ, τ2}
π(θ, τ2|·) ∝ π(θ, τ2)× 1√

det Λ̃
exp
(
− 1

2 (y −Xβ)> Λ̃−1 (y −Xβ)
)

begin
for k = 1, . . . ,K do

a: Compute Lk =
(
ITk
−Ak

)>
, dk = diag(Dk) and Rk = D−1

k

(
ITk
−Ak

)
using Ck

and {Nk(i)}Tk
i=1

b: Compute Ωk = Lk ·Rk + τ−2ITk
exploiting sparsity

c: Compute rk = yk· −Xk·β and δDk
=
∏Tk

i=1 dk,i

d: Compute vk = Ω−1
k
rk, uk = Ω−1

k
Xk· and δΩk

= det(Ωk) exploiting the sparse
Cholesky decomposition of Ωk

e: Collect rk, vk and uk into r, v and u, respectively.
end
f: Compute q1 = τ2n ·

∏K

k=1 δDk
·
∏K

k=1 δΩk
and q2 = r>r/τ2 − r>v/τ4

g: Get π(θ, τ2|·) ∝ exp(−q2/2)√
q1

· π(θ, τ2)
end
2: Gibbs’ sampler update for β
β|· ∼ Np(B−1b,B−1), where B = X>Λ̃−1

X + V −1
β

and b = X>Λ̃−1
y + V −1

β
µβ

begin
a: Compute F = V −1

β
and = V −1

β
µβ

b: Compute b = y>X/τ2 − y>v/τ4+ and B = X>X/τ2 −X>v/τ4 + F
c: Generate β ∼ Np(B−1b,B−1)

end
Repeat steps 1 and 2 to obtain M MCMC samples for {β, θ, τ2}

considerably improving mixing and convergence.
We will need to compute the inverse and determinant of Λ̃ = C̃θ + τ2In, which

is n× n. While Λ̃−1 does not share the same convenient factorization of C̃−1 and is
also not guaranteed to be sparse, the Sherman-Woodbury-Morrison formulas reveal

Λ̃−1 = τ−2I − τ−4Ω−1, with Ω = C̃
−1 + τ−2I , (4.9)

where Ω enjoys the same sparsity as C−1. Moreover, det(Λ̃) = τ2ndet(C̃)det(Ω).
The core of the algorithm is therefore to compute Λ̃−1 through Ω. In our application,
the random effect is assumed to be the realization of K independent temporal
processes. As discussed in Section 4.3.2, this implies a block-diagonal structure for
C̃ that can be shown to be shared also by Ω (see Equation (4.9)). Each block Ωk of
Ω can be computed independently for each individual and the same holds for its
inverse and its determinant. This means that the body of the algorithm will consist
of a loop over all the individuals, which allows for straightforward parallelization;
see Algorithm 5. Unlike in spatial DAGs (Datta et al., 2016a; Finley et al., 2019),
we do not need fill-reducing permutation methods since neighbors sets for temporal
processes consist of contiguous observations and {Ωk}Kk=1 are banded matrices with
no gaps.

We devised a Gibbs sampler with Metropolis random walk updates for Equa-
tion (4.8), where β is updated from its full conditional distribution, while {θ, τ2}
are updated using an adaptive Metropolis step based on Haario et al. (2001). Here,
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after the first few iterations, a new proposal covariance matrix is regularly computed
on the run according to the empirical covariance of the current chain. Subsequently,
a mixture of the original and adaptive proposal is used as the new proposal. Con-
vergence toward the desired acceptance rate is assured for an appropriate choice
of the variance terms and of the adaptation rule (Neal and Roberts, 2006; Roberts
and Rosenthal, 2009). The algorithm has been coded using the R 4.0.1 statisti-
cal environment and C++, exploiting the interface provided by the Rcpp package
(Eddelbuettel et al., 2011). All expensive computations are managed by the Eigen
library (version 3.3.7, Guennebaud et al. (2010)), which provides efficient routines for
numerical linear algebra with an emphasis on sparse matrices. Our implementation of
Equation (4.8) outperforms the algorithms that update w in terms of computational
speed as it is implemented in the spNNGP package (Finley et al., 2017). We present
these comparisons in Appendix B.

4.3.4 Including the spatial effect

Accounting for spatial information in our Actigraph dataset requires some new
considerations. As mentioned in Section 4.1, spatial information is available in terms
of the physical location along the trajectory as well as through covariates that are
functions of space. Considering the discussion in Section 4.3, the analytical goals
of this dataset suggest accounting for spatial heterogeneity. Here, modeling w(·)
in Equation (4.3) as a spatio-temporal process (also considering scalable versions)
is challenging for three main reasons: (i) the trajectory’s domain does not have
a positive area, (ii) associations among the measurements are more amenable to
the temporal scale, and (iii) potentially retrievable spatially-referenced features
may be recorded at different resolutions, either among them or with respect to the
observed process. Therefore, we introduce spatial effects into the mean employing
a smooth function of space, fS(·) : R2 → R, approximated by a spline basis
representation (see, e.g., Goodman and Hardin, 2006; Ramsay and Silverman, 2007).
For instance, if Jx and Jy are the dimensions of independently defined B-spline basis
expansions on the x and y coordinates, respectively, then fS ((x, y)) ≈ f̃S ((x, y)) =∑Jx
j=1

∑Jy

h=1 βS,(j,h)Bx,j(x)By,h(y), where Bx,j = [Bx]j and By,h = [By]h are the
j-th and h-th element of the B-spline basis along the two axis. For any location
(x, y) ∈ R2 the elements of the previous sum can be more compactly expressed
through the tensor product basis BS(x, y) = (Bx ⊗By) (x, y). The size of this basis
is JS = Jx · Jy and depends on the size of the two original spline basis, which in
turn depends on the chosen number of knots knotsx, knotsy and degree degx, degy
(namely Jc = knotsc + degc for c = x, y). We now modify Equation (4.3) to include
the spline,

Y (t) = X(t)β +BS (γ(t))βS +w(t) + ε(t), t ∈ R+ , (4.10)

where γ(t) = {γ1(t),γ2(t), . . . ,γK(t)}, γk(·) = (γk,x(t), γk,y(t)) : R+ → R2 is the
trajectory function mapping time t for individual k to its position and BS (γ(t))
is the K × JS matrix with row k corresponding to the JS basis elements for the
coordinates at time point t for individual k. A proper choice of JS (i.e. knots and
degree) is required to fit a spline surface flexible enough to describe the spatial
variations at the scale of interest without incurring over-fitting. Let us denote with
B = BS (γ(T )) the n× JS matrix containing the B-spline basis elements evaluated
at the observed location of each individual γ(T ) = {γ1(t11), γ1(t12), . . . , γK(tKTk

)}.
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Algorithm 6: ψ and λ Gibbs’ update in the collapsed algorithm with
shrinkage
1: Gibbs’ sampler update for ψ
ψ|· ∼ NJ(G−1g,G−1), where G = X∗

>Λ̃−1
X∗ + V −1

ψ and
g = X∗

>Λ̃−1
y + V −1

ψ µψ
begin

a: Compute F = V −1
ψ and = V −1

ψ µψ

b: Compute g = y>X∗/τ2 − y>v/τ4+ and G = X∗
>
X∗/τ2 −X∗>v/τ4 + F

c: Generate ψ ∼ Np∗(G−1g,G−1)
end
2: Gibbs’ sampler update for λ
λ|· ∼ Ga (α∗λ, β∗λ), where α∗λ = αλ + 1/2 and β∗λ = βλ + β>SPβS
begin

a: Compute h = β>SPβS and get: α∗λ = αλ + 1/2 and β∗λ = βλ + h
b: Generate λ ∼ G (α∗λ, β∗λ)

end

Following Equation (4.8), we sample from the posterior,

π(β,βS ,θ, τ2 |y) ∝ π(θ, τ2)×πS(βS)×N(β |µβ,V β)×N(y |Xβ+BβS , C̃θ+τ2In) ,
(4.11)

where the prior πS(·) shall be accurately chosen. We must consider that our
Actigraph data includes millions of observations in a limited study area, of which
some assume different values in the same location (or in its immediate vicinity) so
over-fitting will not be an issue. However, some areas present sparsely observed
points (trajectories are not uniformly distributed, as shown in Figure 4.3). This
may cause coefficients corresponding to those regions to be weakly identified. To
control for the balance of all these components, we may assign ad-hoc priors to the
spatial spline regression coefficients (Eilers and Marx, 1996) for penalizing deviation
from a certain degree of smoothness and favoring identifiability. This yields the
Bayesian P-Spline (Hastie et al., 2000; Lang and Brezger, 2004). While keeping the
Gaussian priors, we effectuate shrinkage by choosing a suitable precision matrix P
and introducing a shrinkage parameter λ at a deeper level of the hierarchy. To be
precise, βS |λ ∝ exp

{
−λ2 · βSPβ

>
S

}
and λ ∼ G(αλ, βλ). We consider two possible

forms for P , which imply different penalization for the coefficients:

• Ridge-like prior, which is to say P = PRL = IJS
;

• First-order random walk prior, which is to say:

P = PRW : [PRW ]ij =


ni i = j

−1 i ∼ j
0 otherwise

where ni is the number of neighbors of knot i and i ∼ j denotes a neighboring
relationship between the knots.

Both precision matrices provide a multivariate Gaussian prior distribution on the
coefficients. However, the latter is improper since rank (PRW ) < JS . Nevertheless,
if we collect the B-Spline basis elements with the other covariates as X∗ = [X,B]
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and stack the corresponding coefficients into the joint vector ψ = [β,βS ], then
the posterior distribution of the latter is a proper multivariate Gaussian with full
conditional distribution ψ | · ∝ NJ

(
ψ
∣∣∣G−1g, G−1

)
, whereG = X∗>Λ̃−1

X∗+V −1
ψ

and g = X∗>Λ̃−1
y+V −1

ψ µψ with V −1
ψ = diag

(
V −1
β , λ · P

)
and g =

[
µβ, µβS

]>
=

0>. Moreover, the Gamma prior on λ implies a Gamma full-conditional distribution
λ | · ∝ G

(
λ
∣∣∣αλ + 1/2, βλ + β>SPβS

)
.

Estimating the model in (4.10) is achieved through a straightforward extension
of Algorithm 5. We jointly update ψ and λ from their full conditional distributions.
Algorithm 6 shows how the Gibbs’ sampling step of Algorithm 5 can be modified
to get full inference also on the spline coefficients βS and the shrinkage parameter
λ. In practical terms, this requires JS additional linear coefficients to be estimated,
whose size p∗ = p+ JS may undermine the efficiency of the algorithm. For example,
calculations in Step 1b are quadratic w.r.t. p∗ → O(np∗2). Steps 1a and 1b (i.e. the
most expensive in p∗) are executed in the first iteration and subsequently, only in
those iterations where new values of θ are accepted. When θ is rejected, we retain in
memory the previously computed value (which would stay unchanged). Thus, if we
attain an optimal acceptance rate of ≈ 20%−30% in the Metropolis Hastings step on
θ, the computation is avoided in the majority of cases with a sensible improvement
in computation time and speed.

4.3.5 Simulations

We conducted simulation experiments to evaluate the model described in Sec-
tion 4.3.4 and compared the performance of our algorithm in terms of fitting,
prediction error and computational speed with other routines available from the
spNNGP package. Additional comparative experiments are provided in Section B.1
and B.2 of Appendix B. We executed our MCMC algorithms on a computing envi-
ronment equipped with 12 modern computational nodes with 16 cores each (bringing
the overall number of cores to 192), roughly equivalent to 3 TeraFlop/sec, and
64Gb of RAM. Each of the following jobs, and the ones from Section 4.4, have been
executed on a single node exploiting all 16 cores. The results presented here and in
Section 4.4 are based upon posterior samples that were retained after diagnosing
convergence using visual tools (e.g., traceplots, autocorrelation), effective sample
sizes, Monte Carlo standard errors (MCSE) and other diagnostics offered by the
coda, mcse and bayesplot packages in the R computing environment.

We first generated Tk = 2 × 105 time points for K = 5 individuals, where
each time point tki followed exponential waiting times between observations, i.e.
tki =

∑i−1
h=1 δh, and δh

iid∼ Exp(5). Given the time points, we constructed spatial
trajectories γk(·), k = 1, . . . ,K, by simulating sk = [γk(tk1), . . . , γk(tkTk

)]>, where
subsequent components were independent Gaussian random walks over the square
S = (1, 10)× (1, 10), with the variance of each step along the horizontal and vertical
axis proportional to the elapsed time between two subsequent observations. If the
trajectory left the square, it was projected onto the border and the next step would
resume from there. The simulated trajectories are shown in Figure 4.7a.

Given the time points and positions, we generated the latent temporal Gaus-
sian processes wk(·)

ind∼ GP(0, cθ(·, ·)) with an exponential covariance cθ(t, t′) =
σ2 exp{−φ · |t− t′|}, where σ2 > 0 represents the variance of the process, φ > 0 is
the decay in temporal correlation (range) and τ2 > 0 the residual variance (nugget).
The spatial effects are then introduced through fS(·) : S → R by considering a
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Figure 4.7. Observed trajectories (a) and observed points (b) for the simulated dataset.

Param. (True) S-Spline P-Spline
Point Interval Point Interval

β01 (−3.76) -3.799 (-3.846,-3.752) -3.797 (-3.844,-3.75)
β02 (0.65) 0.572 (0.523,0.62) 0.575 (0.526,0.623)
β03 (−0.60) -0.649 (-0.697,-0.6) -0.646 (-0.693,-0.598)
β04 (2.36) 2.326 (2.277,2.374) 2.328 (2.28,2.376)
β05 (−0.33) -0.359 (-0.408,-0.31) -0.356 (-0.404,-0.308)
β1 (2.59) 2.599 (2.59,2.608) 2.599 (2.59,2.608)
β2 (2.70) 2.691 (2.683,2.7) 2.691 (2.683,2.7)
β3 (−0.58) -0.586 (-0.595,-0.577) -0.586 (-0.595,-0.577)
σ2 (1) 1.001 (0.973,1.032) 0.993 (0.965,1.023)
φ (1) 0.994 (0.948,1.04) 1.01 (0.964,1.063)
τ2 (1) 1.001 (0.984,1.018) 1.001 (0.984,1.018)
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.95 0.99 0.95 0.99
RMSPE (r) 0.07 (1.18) 0.03 (0.84) 0.07 (1.19) 0.03 (0.84)
PIW 4.66 4.44 4.66 4.44
DIC 115’543 115’556
Fitting time (h) 2.18 2.2

Table 4.2. Parameter estimates, predictive validation and fitting times (hours) on the
simulated dataset for all the considered models.

tensor product spline basis of degree 2 and with 9 knots over the square domain
(including boundary knots), where the spline coefficients βS have been fixed to
randomly generated values from N81 (0, λI81) with λ = 0.5. The model also included
individual-specific intercepts {β0k}5k=1 and the effect of 3 covariates with random
values drawn independently at each location from a N (0, 1) distribution, leading to
covariate vectors {xki}Tk

i=1 , k = 1, . . . ,K. The effect of the covariates is assumed
common across individuals, and set to be determined by slopes β = [β1, β2, β3]>.

We generated values of the outcome for individual k at time tki and location ski =
γk(tki) according to the generative process defined by Equation (4.10) with parame-
ters fixed as above. This yielded a simulated datasetDsim =

{
(Indj , tj , sj , yj ,x>j )

}n
j=1

with n = 105 observations, where Indj denotes the individual corresponding to row
j. Then, we fit the model in Equation (4.11) on 70% of the total observations in
Dsim using Algorithm 5 with the Gibbs’ sampling modified as in Algorithm 6. The
remaining 30% were held out to assess out-of-sample predictive performances in
terms of Relative and Root Mean Squared Prediction Error (RMSPE), and Coverage,
Predictive Interval Width (PIW). Intercept and slope regression parameters were
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assigned N (0, 106) priors; the variance components, σ2 and τ2, were both assigned
inverse Gamma IG(2, 2) priors; and the decay parameter φ received a Gamma prior
G(1, 1). For the spline coefficients, we considered both the penalized versions in
Section 4.3.4. The first is referred to as an S-Spline (shrinking splines), and the
second as P-Spline (penalized splines).

Table 4.2 presents the posterior estimates. We also included the Deviance
Information Criterion (DIC) for both models. Performances in the two settings are
almost identical, but the DIC favors the S-Spline model. This is not surprising as
the data were generated using an analogous shrinkage prior for the βS ’s. Further
details, including the estimates of the spline coefficients are provided in Appendix B.
Figure 4.8 presents the posterior estimate of the spatial surface. We compare the
true latent surface with the two (practically identical) estimates.
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Figure 4.8. True (top left) and estimated spline surfaces (bottom left and right), including
the point-wise difference between the true one and the S-Spline estimated (top right).

4.4 Application

We analyze activity levels throughout the “active time”—when the Actigraph
device records the individual as being physically active—excluding epochs when the
device was not worn or when there was no physical activity (e.g., the individual
was sitting or lying down). The data processing and merging of actigraph data
with GPS locations resulted in two final datasets (Section 4.2). These are treated
separately. In both applications, 70% of the total observations were used for training
the model, while the remaining were excluded to assess the out-of-sample predictive
performances.

4.4.1 Temporal model

We first analyze D1. Our predictors include a binary variable indicating if the
measures refer to the period before or after a Bruin Bike Share (BBS) program was
launched in Westwood, Los Angeles to account for the effect of a new specific policy
which aims at improving the physical activity level of the participants. We account
for the daily periodic behavior that characterizes most human activities by modeling
the impact of the hour of the day on the physical activity level as a non-linear
function fH(·) : [7, 23) → R, which is approximated by a linear combination of
JH spline basis functions φj(·) with unknown coefficients βH,j ’s, fH(h) ≈ f̃H(h) =
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JH∑
j=1

βH,jBH,j(h) = BH(h)βH . The full process specification yields

Y (t) = X(t)β +BH (h(t))βH +w(t) + ε(t), t ∈ R+ (4.12)

where h(·) : R+ → [7, 23) links each time point to the corresponding hour of the day
and BH (·) : [7, 23)→ RJH links each hour of the day to the values of the splines at
that point.

We employ a second order approximation with 4 internal knots spread uniformly
over the domain. Collecting the basis elements in the design matrix and stacking the
coefficients as for the spatial model in Section 4.3.4 introduces 6 additional columns
(hence, only 6 additional slope parameters) in the design matrix (i.e. the spline basis
functions evaluated at the observed time-points). The large number of observations
in each epoch and the reduced number of knots subdue any concerns surrounding
over-fitting and unrobust inference.

We use a logarithmic transformation, lMAGk(t) = log(MAGk(t)) for k =
1, 2, . . . ,K and t = tk1, . . . , tkTk

. We denote the parameter associated with variable
“varname” as βvarname and the levels of each categorical covariate as varname(j) for
j = 1, . . . , Jvarname. Hence,

lMAGk(t) = β0 + βBMI · BMIk+

+
JEth∑
j=2

βEth,j · I
(
Ethnicityk = Eth(j)

)
+
JAge∑
j=2

βAge,j · I
(
AgeClassk = Age(j)

)
+

+
JSex∑
j=2

βSex,j · I
(
Sexk = Sex(j)

)
+

JH∑
j=1

βH,jBH,j (h(t)) + wk(t) + εk(t) ,

(4.13)
where I(·) denotes the indicator function, wk(·) is the DAG-based approximation

(Section 4.3.2) for GP(0, cθ(·, ·)) with cθ(t, t′) the exponential function and εk(t)
iid∼

N
(
0, τ2). For the categorical variables “Age” and “Sex”, the levels start from 2

as J = 1 is taken as the baseline, which corresponds to an Asian female with
age between 20 and 25 years. Other socioeconomic factors (e.g. education and
income level) have been excluded from the analysis as they are strongly associated
with ethnicity and age, while Lux (detecting light exposition) was excluded after
some preliminary analysis revealed its low predictive power5. We have assigned
priors such as β ∼ NJ

(
0, 106 · IJ

)
, σ2 ∼ IG(2, 2) and τ2 ∼ IG(2, 2) with J being

the total number of β coefficients. The presence of temporal dependence was
investigated through an individual-specific exploratory analysis on the residuals
from an ordinary least squares linear regression. Subsequently, it was decided that
an exponential covariance function for temporal dependence (corresponding to an
Ornstein-Uhlenbeck process) will be a parsimonious and effective choice to model
the behavior of the underlying residual process.

We implemented Algorithm 5 for Equation (4.13). Inference was based on 10, 000
posterior samples retained after convergence was evinced (discarding an initial 5, 000
iterations as burn-in). Point estimates from the standard linear model were used as
starting values for the regression coefficients. The run time of the collapsed sampler

5The PASTA-LA study did not contemplate a rigorous protocol for the light exposition sensor,
and hence this variable is likely to not have been recorded accurately.
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(Section 4.3.3) on D1 was ≈ 15 hours, achieving a desirable acceptance rate of ≈ 28%
at convergence.

Table 4.3 presents the posterior estimates. The regression coefficients were
slightly different from a Bayesian linear regression model, but presented very similar
inference. African Americans, Latinos and Whites revealed higher values of lMAG
than Asian-Americans as did males over females. As expected, higher age-groups
revealed lower lMAG. Unsurprisingly, the introduction of the temporal process
produces slightly wider credible intervals for the regression parameters. This results
in BMI being marginally less credible from the temporal process model than from
linear regression. What is more surprising in both models is the slightly negative
effect of BBS on physical activity. This, however, is likely a consequence of the
fact that at least 2 · 106 data points in D1 corresponded to individuals outside of
Westwood without access to the program. The average of the lMAG for the reference
individual is represented by the common intercept, which is estimated ≈ 5.514 by
our model. This implies a MAG per minute count of 1, 488, which corresponds
to hard physical activity and an average MET of ≈ 7 according to the Table 4.1
and (4.2). This value, while large, is not surprising as we are modeling the epochs
corresponding to active time.

Parameter Collapsed Model Linear regression
Point Interval Point Interval

Intercept 5.514 (5.507, 5.520) 5.872 (5.854, 5.888)
Eth. Latin-American 0.166 (0.149, 0.183) 0.136 (0.131, 0.142)
Eth. White 0.073 (0.005, 0.095) 0.081 (0.076, 0.086)
Eth. Black or other 0.203 (0.184, 0.221) 0.164 (0.158, 0.170)
Sex Male 0.017 (0.003, 0.033) 0.023 (0.019, 0.027)
BMI 0.004 (-0.002, 0.01) 0.003 (0.002, 0.004)
Age [25-35) -0.106 (-0.121, -0.091) -0.124 (-0.129, -0.119)
Age [35-50) -0.110 (-0.131, -0.09) -0.123 (-0.129, -0.117)
Age [50-70] -0.092 (-0.121, -0.065) -0.144 (-0.152, -0.137)
BBS -0.051 (-0.066, -0.037) -0.067 (-0.071, -0.064)
σ2 1.537 (1.528, 1.546)
φ 0.315 (0.312, 0.319)
τ2 1.138 (1.135, 1.141)
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.94 0.97 0.94 0.94
RMSPE (r) 0.60 (1.24) 0.34 (0.93) 1 (1.59) 1 (1.59)
PIW 4.80 4.62 6.24 6.24

Table 4.3. Parameter credible intervals, 95%(2.5%, 97.5%) and predictive validation for
15× 103 MCMC iterations on D1.

The estimate of the temporal decay parameter φ, suggests a fairly sharp decline
in temporal association, which drops below 0.05 after ≈ 1 minute (computed, with
the exponential covariance function as 1

3φ). While the estimated variance of the
temporal process, σ2, is slightly larger than τ2, the latter’s estimate indicates
substantial residual variation beyond the temporal process—motivating our analysis
in Section 4.4.2. Comparison between the estimates of the hour of the day spline term
is shown in Figure 4.9. The two models provide coherent patterns, but with slightly
different magnitudes. It is way more pronounced in the linear model than in the
temporal process model, where some of the temporal effect is likely to be absorbed by
the temporal latent component. Combination of the hour of the day spline and of the
temporal process can capture subject-specific diurnal variation in physical activity.
This implies that the model in Equation (4.13) can deliver statistical estimates (with
uncertainty quantification) of personalized daily PA profiles for any individual for
any day. The splines and the temporal process combine to capture subject-specific
diurnal variation. Figure 4.10 presents the posterior estimates of daily MAGs (log) of
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two such individuals (number 204 (a) and 188 (b)) throughout the day to evince the
inter-subject variation. This figure illustrates the need to accommodate variations
among subjects when predicting their daily physical activities.
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Figure 4.9. f̂H for the linear model (left) and the NNGP model (right), with 95% credible
intervals in dashed lines.

An example of the out-of-sample predictions of the temporal process for a set of
100 subsequent points from one specific subject (number 77) is shown in Figure 4.11,
which demonstrates the proposed model’s ability to interpolate the lMAG values
at unobserved time-points or intervals. The interpolated values (red dots) provide
a slightly over-smoothed but accurate reconstruction of the held out lMAG (grey
dots), which is always included in the corresponding 95% predictive bounds. This
smoother behavior characterizes both in-sample and out-of-sample predictions when
compared to the true values and is not necessarily a limitation of our model. Indeed,
accelerations recorded by accelerometers are generally noisy, and the predicted values
may be interpreted as a denoised version of the raw signal.

4.4.2 Including the spatial effect
We consider D2 and fit the model in Equation (4.13), adding a spatial term

(Section 4.3.4) to exploit GPS information. D2 is restricted to those observations
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Figure 4.10. Personalized PA profiles for two individuals estimated with 95% credi-
ble intervals (dashed lines) using the spline daily effect and the temporal process in
Equation (4.13).
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Figure 4.11. Out-of-sample predictions for two random individuals: black dots (observed
values), grey dots (test set), pink dots (oos predictions), dashed line (95% confidence
intervals)

recorded in Westwood, Los Angeles. We introduce spatial splines obtained through
the tensor product of two analogous univariate B-spline basis on longitude and
latitude. We choose two bases of degree 2 with 9 equally spaced knots over a square
encompassing Westwood. This sums up to JS = (7 + 2)× (7 + 2) = 81 terms for our
complete spline basis, including the boundary knots.

(a) (b)

Figure 4.12. Observed locations (a) and knots (b) over the Westwood area.

In practice, since locations are functions of time through the trajectory function
γk(·), k = 1, . . . ,K of each individual, rewrite the time dependent component of
the process mean as µk(t) = βBBS · BruinBikeShare(t) +

∑JH
j=1 βH,jBH,j (h(t)) +∑JS

j=1 βS,jBS,j (γk(t)), where BS = BX ⊗BY is the tensor product bivariate spline.
Given the reduced number of knots and the high spatial density of observations in
several areas of the map (see Figure 4.12a) , over-fitting is not a concern. However,
there are also areas in Westwood that present sparsely observed data-points and
the model can struggle to identify the spline coefficients referred to those areas,
jeopardizing convergence of the MCMC algorithm. Therefore, we consider the
S-Spline (Ridge-like prior) for this application, where the shrinkage parameter λ has
been assigned a G(1, 1) prior. Other parameters have been assigned the same priors
of the temporal application in Section 4.4.1. Our posterior inference was based on
5, 000 samples retained after convergence out of 10, 000 MCMC iterations. Fitting
the model to D2 required ≈ 30 hours. The acceptance rate obtained is ≈ 28%,
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Param. Linear regression S-Spline
Point Interval Point Interval

Intercept 5.613 (5.536, 5.689) 5.31 (5.29, 5.33)
Eth. Latin-American 0.093 (0.079, 0.108) 0.114 (0.069, 0.159)
Eth. White 0.053 (0.040, 0.067) 0.053 (0.004, 0.102)
Eth. Black or other 0.066 (0.052, 0.080) 0.095 (0.054, 0.135)
Sex Male 0.019 (0.008, 0.029) 0.021 (-0.014, 0.055)
BMI 0.005 (0.003, 0.006) 0.006 (-0.007, 0.02)
Age [25-35) -0.170 (-0.183, -0.156) -0.191 (-0.227, -0.155)
Age [35-50) -0.217 (-0.233, -0.201) -0.249 (-0.298, -0.199)
Age [50-70] -0.381 (-0.404, -0.359) -0.456 (-0.528, -0.384)
BBS -0.008 (-0.091, -0.071) -0.107 (-0.140, -0.073)
σ2 1.489 (1.461, 1.517)
φ 0.364 (0.351, 0.376)
τ2 0.777 (0.768, 0.786)
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.94 0.94 0.95 0.99
RMSPE (r) 0.95 (1.43) 0.95 (1.43) 0.53 (1.07) 0.26 (0.74)
PIW 5.62 5.62 4.78 4.74

Table 4.4. Parameter estimates and predictive validation on D2.

supporting the consistency of our adaptive strategy.
Table 4.4 presents parameter estimates and predictive performances of the model

and compares with a standard linear regression model which includes the spatial
spline terms, but neglects the temporal dependence structure. Conclusions on
the regression coefficients are very similar to those from Section 4.4.1. However,
accounting for the spatial effects allows for easier interpretation of the age-group
regression coefficients: the older the person, the lower is the expected physical
activity level. Also, both models estimate the effect of BBS as trending slightly
negative. This somewhat surprising finding can be attributed to a few factors. First,
the observations after the BBS launch are mostly from the winter season (February
to April, the coldest months in L.A. together with December), while the others
include summer and autumn (June to November, the warmest months). Given that
physical activity levels tend to be lower in the colder months, there is indication
of some possible confounding between the BBS effect and seasonality. Second, not
all subjects were exposed to the BBS after its launch and, hence, could not take
advantage of it.

In this application, the intercept is estimated to be ≈ 5.31 by our model and,
hence, a MAG per minute count of 1214 (slightly lower than in the temporal
application). This would again correspond to vigorous physical activity and a MET
of ≈ 6.5. The estimate of φ implies that the dependence drops to 0 in less than
a minute. Unsurprisingly, including the spatial effect and the temporal process
improves predictive performances (RMSPE or PIW in Table 4.4) over a model
including only spatial effects (using linear regression with splines). The spatial-
temporal model delivers satisfactory coverage and outperforms its competitor in all
of the other indices for the training and testing dataset.

Figure 4.13a shows the estimated spatial surface, while Figure 4.13b presents the
width of the posterior predictive intervals. The map clearly evinces zones (darker
shades of red highlighted with white contours) that tend to depict high levels of
physical activity. For example, the largest dark red blob in the north center-left
almost perfectly tracks the UCLA campus boundary reflecting a campus environment
with active mobility (walking, running, biking). Other zones of high activity identify
with locations where more participants in the study live, including those residing
in student dorms (northwest corner) and residential areas immediately around and
in the predefined Westwood/UCLA study area (such as the south central zone) or
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Century City shopping center (to the east). Lighter shades (orange) correspond
to areas that are less developed (open space), such as the areas in the north east;
or they are areas with a high degree of transportation infrastructure and traffic
(e.g., toward the western boundary). These correspond to highways (such as the
Interstate-405 highway or other vehicular transportation corridors) that often have
lower levels of activity because they inhibit outdoor physical activities due to noise,
pollution, safety, etc. Our analysis reveals three additional high activity areas that
are not gleaned from non-spatial models: the Los Angeles National Veteran Park;
the Century City shopping center and the Stone Canyon Park. The color gradient
closely follows the spatial characteristics of the Westwood neighborhood and reveal
how spatial patterns can impact physical activity behavior after accounting for
variation attributable to known explanatory variables.

(a) (b)

Figure 4.13. (a) Spatially smoothed estimates from a shrinkage spline over Westwood, Los
Angeles; (b) width of 95% posterior predictive intervals for the shrinkage spline.

Figure 4.14 shows two examples of observed (left) and reconstructed (right)
MAGs along trajectories carved out by two subjects. We find a good degree of
agreement between the two plots, and the ability of our model to recover the lMAG
in locations where it has not been observed. The reliability of the predictions can be
proved through different metrics and, unsurprisingly, including the spatial effect and
the temporal process improves predictive performances either in terms of MSPE or
PIW. We deliver these personalized trajectory plots for every subject in the study
and also predict personalized MAGs for each subject along any new trajectory. This
enables personalized recommendations based upon an individual’s health attributes
including suggestions for more effective paths to follow for optimal physical activities,
while also informing community level interventions in the built environment.
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Figure 4.14. Two randomly chosen lMAG trajectories over Westwood from individual 204
(a) and individual 566 (b). Observed trajectories with gaps are seen on the left panels;
spatially reconstructed (predicted) trajectories are seen on the right panels.

4.5 Discussion and further developments

We have devised a Bayesian modeling framework to conduct fully model-based
inference for high-resolution accelerometer data over trajectories compiled from
the PASTA-LA study. Our key data analytic developments included (i) modeling
dependence over trajectories; (ii) accounting for subject-specific spatial-temporal
variation for daily mobility; and (iii) predicting or interpolating PA levels across
trajectories; and (iv) identify zones of high physical activity in Westwood, Los
Angeles. Our spatiotemporal analysis offers richer inference and evinces relationships
between physical activity levels and a variety of factors, both at the subject level (e.g.,
personal attributes) and as a function of space and time. The temporal process was
able to effectively glean the features of the data at finer resolutions, while the spatial
splines accounted for residual spatial heterogeneity. Accommodating both temporal
dependence and spatial heterogeneity demonstrably improved predictive ability and
enabled us to effectively delineate zones of high physical activity. Furthermore, the
ability of the model to pool information across individuals at all time points allows
us to infer about those who present sparsely observed space-time points (due to
technical issues or protocol violation). In particular, given our improved predictive
power, we can fill gaps and infer about PA levels with good accuracy and ensure the
desired coverage by our prediction intervals.

Our analysis also resolves practical difficulties in using actigraph data. It is
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not cost-effective to deploy research-grade GlobalSat GPS and Actigraph units
as they are very expensive and continued usage requires heavy staff involvement.
Our methods can be applied to analogous, but less complete, data derived from
smart phones and smart watches, then such devices could be deployed in much
larger studies with much larger sample sizes at a fraction of the cost. Given the
spatio-temporal nature of outdoor PA research, our ability to predict in areas of
data missingness drastically improve inference related to the impacts of the built
and natural environments on physical activity and active mobility.

While our approach offers trajectory-based inference for actigraph data, we rec-
ognize that there are several avenues for further research. Our DAG-based approach
for scalable temporal processes can be further enriched with recent developments
(Katzfuss and Guinness, 2021; Peruzzi et al., 2020), although any of the methods
reviewed and evaluated by Heaton et al. (2019) can be incorporated into our frame-
work. Finally, there is possible merit in modeling the activity counts in each axis
jointly and relaxing the assumptions of Gaussianity using recent developments in
multivariate spatio-temporal count models and for non-Gaussian outcomes (see, e.g.
Bradley et al., 2018, 2020).

Recent public health reviews call for interdisciplinary technological advances to
more effectively measure spatio-temporal energetics of activity spaces in obesity and
chronic disease research (James et al., 2016; Kestens et al., 2017; Drewnowski et al.,
2020). Individual-level data, at aggregate, can be used to identify anchor points for
physical activity and reveal causal pathways between built environment exposures
and health. Our work is a novel contribution demonstrating methodologies for how
these pressing research questions may be answered.
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Chapter 5

Modeling COVID-19 incident indicators

As soon as COVID-19 pandemic hit the globe, the whole scientific community
buckled down and dedicated all energies in carrying out new research work to help
fighting the battle against SARS-CoV-2. Perhaps, scientific research experienced
unprecedented leaps forward in many fields, virology, epidemiology and statistics
amongst all. The first vaccine was made available in roughly one year (Tanne, 2021),
while new statistical and epidemiological models were developed to understand the
dynamics of the virus spread, to predict its evolution and to build scenario evaluation
following the implementation of economic, political and health interventions (Varotsos
and Krapivin, 2020; Barbarossa et al., 2020; Car et al., 2020; Girardi et al., 2020a).
This did not come without setbacks, mostly due to the inadequacy of national
and international infrastructures to collect fully and promptly the required data.
Bright side, all these research efforts toward the study of the pandemic evolution
finally raised awareness about the true need of high-quality data, which are crucial
for guiding decision making. Nevertheless, COVID-19 caught us unprepared and
data quality frailties have been exposed worldwide during the pandemic (Idrovo
and Manrique-Hernández, 2020; Costa-Santos et al., 2021; Vasudevan et al., 2021;
Lloyd-Sherlock et al., 2021; Mingione and Alaimo Di Loro, 2021).

Since the beginning of April 2020, I also had the opportunity to give my contribu-
tion to the modeling of COVID-19 epidemic data. In particular, I had the pleasure
of working jointly with Ph.D. Pierfrancesco Alaimo Di Loro and the StatGroup-19
research team, composed of (in alphabetic order): Prof. Fabio Divino, Prof. Alessio
Farcomeni, Prof. Giovanna Jona Lasinio, Prof. Gianfranco Lovison and Prof. An-
tonello Maruotti. At first, we proposed a novel parametric regression model to fit
incidence data typically collected during epidemics. This proposal was motivated by
real time monitoring and short-term forecasting of the main epidemiological indica-
tors within the first outbreak of COVID-19 in Italy (e.g. the number of daily positives
and daily deceased). Model estimation was carried out via maximum-likelihood and
forecasts proved to be reliable, close to the later observed true values (also for the
second outbreak), and helped estimating accurately important characteristics of the
epidemic, such as peak time and height, either at the national and regional level.
Both the methodology and results are now published in Alaimo Di Loro et al. (2021a).
The choice of including a modeling attempt based on the likelihood maximization in
a thesis on Bayesian models is twofold: first, I wanted to provide a comprehensive
picture of our whole research work up to date, by including all the steps that guided
us through the understanding (yet ongoing) of COVID-19 epidemiological features;
eventually, the inclusion of such attempt, makes even more clear the advantages of
adopting a Bayesian hierarchical modeling approach to describe the complexities of
COVID-19 dynamics more accurately.

Indeed, this first work presented some limitations, as regions were assumed to be
independent among each other. Moreover, likelihood maximization led to results
that happened to be unstable, possibly due to difficulties in finding a global optimum
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for the likelihood of an inherently non-linear model. For these reasons, we developed
the Bayesian counterpart of the proposal in Alaimo Di Loro et al. (2021a), including
a network structure to deal with spatial dependence, and an auto-regressive process
to take into account the time dependence. We analyzed data at the regional level
and, interestingly enough, proved that substantial spatial and temporal dependence
occurred in both epidemic outbreaks. Unsurprisingly, accurate predictions were
obtained, improving those of the model where independence across regions was
assumed, leading to the second publication by Mingione et al. (2021a).

In parallel, our research group devoted energies for the correct statistical com-
munication of COVID-19 epidemic data to the general public. We aimed at in-
forming properly the general public on the daily evolution of the epidemic. That
was achieved by deploying an interactive tool (web application) freely accessible
at https://statgroup19.shinyapps.io/Covid19App/. We wished to contribute
in the process of risk literacy of the population to make them capable of dis-
tinguishing relevant information from harmful and dangerous misinterpretations.
The app includes basic summaries of the epidemic indicators, easily readable in-
teractive graphs and maps. All source codes are public and freely accessible at
https://github.com/minmar94/StatGroup19, in the spirit of a completely Open
Data community.

5.1 Nowcasting COVID-19 incidence indicators during
the Italian first outbreak

5.1.1 Introduction
Italy has been the first European country to be severely hit by the first epidemic

wave due to the spread of the SARS-CoV-2 virus. COVID-19 syndrome emerged
in northern Italy in February 2020, with a basic reproduction number R0 between
2.5 and 4 (Flaxman et al., 2020). In its most severe form, COVID-19 has two
challenging characteristics (Peeri et al., 2020): it is highly infectious and, despite
having a benign course in the vast majority of patients, it requires hospital admission
and even intensive care for about 10% of infected (Hu et al., 2020). During the
outbreak, it was crucial to set up appropriate data collection and modeling systems
quickly. Both were necessary for monitoring infections evolution, evaluation of policy
interventions, and prediction.

Generally speaking, the nature of epidemics’ spread has nearly always followed
the same scenario: first, the growth in the number of infected people is (close to)
exponential; in a second moment, this growth gradually but consistently slows
down as an effect, for instance, of various containment measures. This pattern can
cyclically recur until the outbreak is tamed.

So far, a number of mathematical and statistical models of different complexity
levels have been used to explain the spread of epidemics and predict their conse-
quences. The starting point is often the Verhulst logistic equation (Liang, 2020),
which can easily capture both the exponential increase in the number of infected
people at the initial stage of the epidemic development and the tendency towards
a constant value by its ending. In more complex models, people are divided into
different groups: (S) the susceptible class, namely those individuals who are capable
of contracting the disease and becoming infected; (I) the infected class, namely those
individuals who are capable of transmitting the disease to others; (R) the removed
class, namely infected individuals who are deceased or have recovered, who are either
permanently immune or isolated. This group of mathematical models are called

https://statgroup19.shinyapps.io/Covid19App/
https://github.com/minmar94/StatGroup19
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SIR (or compartmental) models (Diekmann et al., 2013). References include Chen
et al. (2020); Giordano et al. (2020); Gatto et al. (2020); Dehning et al. (2020),
and several more. However, whilst being potentially very appropriate to model the
true dynamics underlying any epidemic, the SIR-based models rely on accurate
initial estimates of several quantities governing its spreading mechanism (which are
unknown). Poor data input on key features of the pandemic can heavily bias these
estimates, jeopardizing the reliability of any theory-based forecasting effort. SIR
models are micro-simulation models and we believe that, generally speaking, they
should be used mostly for “scenario evaluation” rather than predicting future out-
comes. Indeed, they rely on several speculations and strict theoretical assumptions,
not necessarily met by the analysed data and, especially during the first stage of the
outbreak, failed in predicting various COVID-19 related outcomes (Ioannidis et al.,
2020). Such specifics lead the choice of coefficients in the equations defining the SIR
model and define its initial conditions. It is well known that even a slight change in
those can lead to large differences in the final results. For instance, at the beginning
of the epidemic, early data providing estimates for case fatality rate, infection fatality
rate, basic reproductive number, and other key numbers that are essential for the
modeling, are often inflated and may cause potentially large over-estimation of the
epidemic severity. Similar criticism to using compartmental modeling for nowcasting
can also be found in Baek et al. (2020), and references therein. Hence, we followed
an alternative approach, which involved direct modeling of the observed counts
(Salje et al., 2020). This encompasses the use of phenomenological models without
detailed mechanistic foundations, but which have the advantage of allowing simple
calibrations to the empirical reported data. Such approaches are particularly suitable
when substantial uncertainty tarnishes the epidemiology of an infectious disease,
including the potential contribution of multiple transmission pathways. In these
situations, phenomenological models provide a starting point for obtaining early
estimates of the transmission potential and short-term forecasts of the epidemic
evolution (Chowell et al., 2016).

We propose a parametric regression for modeling the incidence indicators based
on the use of the Richards’ curve (a generalized logistic function) as a response
function in place of the widely used exponential or polynomial trend. Furthermore,
we replace the generally entrenched Gaussian assumption for the distribution of
log-counts (Grasselli et al., 2020; Sebastiani et al., 2020) by the more appropriate
Poisson or Negative Binomial distributions for counts. In this way, we avoid the
implausible assumptions stemming from the more common alternatives: the former
allows the underlying counts to potentially grow indefinitely; the latter neglects the
proper specification of dependence between mean and variance under the log-normal
distribution. We further propose different ways of including the effect exogenous
information on the response function of counts in an extended generalized linear
model framework. These models have been implemented during the outbreak with
the aim of modeling the medium to long term evolution of the epidemic wave.
The use of logistic-based curves is also widely discussed in the literature (Cabras,
2020; Girardi et al., 2020b; Ritz et al., 2015). Logistic growth curves can be seen
as a flexible formulation for approximating a large variety of growth phenomena,
especially in biology and in epidemiology (Hsu et al., 1984; Grossman and Bohren,
1985; Morris and Silk, 1992; Berkson, 1944; Wachenheim et al., 2003). In particular,
highly flexible parametric models such as Gompertz curves and the unified Richards’
family (Tjørve and Tjørve, 2010) have been proposed in the study of organisms’
growth, for a review see Tjørve and Tjørve (2017).
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5.1.2 Available data

The Italian Civil Protection Department (CPD), starting from February 24th,
2020, has been gathering data at the regional level every day and making these public
in a GitHub repository. During most of the Italian epidemic, data were commented
by the department head in an official press release at about 6 p.m. The daily
updated data are currently stored at https://github.com/pcm-dpc/COVID-19.
For public health service purposes, Italy is divided into 21 regions. There are 19
administrative regions, plus two autonomous provinces (Trento and Bolzano) that
form the administrative region of Trentino-Alto-Adige. In the sequel, we focus on
modeling the indicators aggregated at the national level. Nevertheless, we also tested
our procedure for each Italian region to evaluate the graphical and quantitative
performances of the proposed model. Results of this analysis are presented in Figures
C.8 and C.9.

Incidence and prevalence indicators: different mathematical fea-
tures

The epidemiological data provided by CPD can be distinguished into two basic
types: incidence indicators (flows) and prevalence indicators (stocks).

Incidence indicators

Incidence indicators measure the number of individuals with a particular con-
dition, related with the epidemic, recorded during a given period. They can be
referred to different time periods; in particular, in the CPD data set, daily incident
counts are available for the following indicators: positives, which are sub-classified
into hospitalized (either in regular wards or in intensive care) and isolated-at-home;
deceased; recovered/discharged.

These indicators can be considered, by analogy with the terminology used in
econometrics, as flow data, quantifying the daily input (positives) and output
(deceased and recovered/discharged) of the system. Figure 5.1 shows the time series
of daily positives and daily deceased1 aggregated at the national level.

From the viewpoint of the following modeling effort, one important feature of these
indicators is that they can be referred to longer time intervals, simply cumulating
them over time. The most interesting cumulative incidence indicators are those
referring to the whole history of the pandemic, computed from a conventional date
of "beginning of the pandemic" (typically, the day the systematic recording of daily
positives began) to the current day: cumulative positives, cumulative deceased and
cumulative recovered/discharged. In particular, given Y0 = 0, we can build the whole
series of cumulative counts conditionally on the value of the cumulative indicator at
time (t− 1), and the incidence indicators at time t, for each t = 1, . . . , T :

Y c
t = Y c

t−1 + It,

where Y c
t represents the cumulative indicator and It represents the inputs in the

system, e.g.: cumulative positives at time t are the cumulative positives at time
(t− 1) plus the daily positives at day t. By their nature of cumulative counts, these
data series are necessarily monotonically non-decreasing (see Figure 5.2).

1The red dot highlights a data entry error, i.e. the recording of a negative count. Same as
Figure 5.2.

https://github.com/pcm-dpc/COVID-19


5.1 Nowcasting COVID-19 incidence indicators during the Italian first
outbreak 69

0K

2K

4K

6K

01−Mar 01−Apr 01−May 01−Jun 01−Jul

da
ily

 p
os

iti
ve

s
(a)

0

250

500

750

1000

01−Mar 01−Apr 01−May 01−Jun 01−Jul

da
ily

 d
ec

ea
se

d

(b)

Figure 5.1. Time series of the Italian daily incidence indicators: daily positives (left panel)
and daily deceased (right panel).
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Figure 5.2. Time series of the Italian cumulative incidence indicators: cumulative positives
(left panel) and cumulative deceased (right panel).

Prevalence indicators

Prevalence indicators measure the number of individuals with a particular condi-
tion, related with the epidemic, at a given instant in time (or at a given short interval
of time, e.g. a day). They are typically obtained from simple algebra from other
indicators; in particular, in the CPD data set, the following indicators are available
daily: current positives, and current Intensive Care Units (ICU) occupancy. These
indicators result from the balance between total inputs and outputs of the system,
e.g.: current positives are the difference between cumulative positives and cumulative
deceased plus recovered/discharged. Again, by analogy with the terminology used
in econometrics, they can be considered as stock data. In particular, given Y0 = 0,
we can build the whole series conditionally on the value of the prevalence indicator
at time (t− 1), and the incidence indicators at time t, for each t = 1, . . . , T :

Y p
t = Y p

t−1 + It −Ot,
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Figure 5.3. Time series of Italian daily prevalence indicators: current positive (left panel)
and ICU occupancy (right panel).

where Y p
t represents the prevalence indicator, It represents the inputs in the system

and Ot represents the outputs, e.g.: current positives at time t are the current
positives at time (t − 1) plus the daily positives at day t and minus the sum of
deceased and discharged recovered at day t. However, given the different delay in
reporting the various information by the regional agencies, there exists a relevant
temporal misalignment among all the quantities reported at the daily scale. Therefore,
the simultaneous consideration of all these flows may be significantly flawed and we
rather prefer modeling the indicators individually.

Two important features of these indicators are that:

1. given their stock nature, they cannot be aggregated (e.g.: it does not make
sense to compute “cumulative current positives”);

2. by their own nature, these indicators are not monotone, since they can increase
or decrease as a result of different trends of the component series. Typically,
we expect the series of current positives and ICU occupancy to increase in
the rising phase of an epidemic, reach a peak and then decrease to a lower
asymptote (see Figure 5.3), although more complex patterns due to resurgence
of the epidemic are also plausible.

Prevalence indicators are characterized by a strong and tangled dependence
structure which is cumbersome to simplify into a manageable and useful statistical
model on the short run. For this reason, the focus of this work concerns only
incidence indicators. Our model proposal, from a strictly mathematical point of
view, could potentially applied also on prevalence indicators. However, from the
statistical point of view, the modeling assumptions which are assumed to hold (with
good approximation) considering the incidence indicators, are likely to be strongly
violated by prevalence indicators and the resulting outcome cannot be considered
reliable. A brief discussion about some possible approaches for the analysis of
prevalence indicators is given in Section 5.1.5.

Data issues
COVID-19 public Italian data present several issues that severely affect their

quality. The information has been gathered and reported at a regional level, and
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each regional healthcare organization has a different transmission and data collection
system2. Measurement errors and errors in data entry are expected to be often
present. Delays in reporting has been, sometimes, substantial. Some patients
were transferred (e.g., from Lombardia to Puglia, and even to Germany) without
notification, and they were counted as hospital patients of the receiving region (or
not at all when sent abroad) and positive cases of the region of residence. Most
importantly, counts were updated on the notification day rather than aligned to a
more appropriate date. For example, death is counted on the day of the reporting,
not on the day of the outcome, which could be even weeks before. Positive status is
also counted on the day that test results are received, with swabs being processed
from one day to weeks after symptoms’ onset. No distinction between actively
symptomatic and asymptomatic patients was made.

Swabs and positive cases are not time-aligned. For example, in countries like
Singapore (https://www.moh.gov.sg/covid-19), daily data include information on
total swabs tested, total unique persons swabbed as well as total swabs per 1,000,000
total population and total unique persons swabbed per 1,000,000 total population.
In Italy, up to the 19-th of April 2020, only the total number of daily swabs is
available, and no linkage between swabs and tested individuals was kept in the data
repository. Hence, it is impossible to make statistically sound use of swabs’ count to
model the whole first pandemic wave.

Finally, it is crucial to recall that people diagnosed with COVID-19 disease
are only a small fraction of the people infected by the virus. Moreover, since the
tracking was highly symptoms driven, especially in the first phase of the outbreak,
the detected number of positives cases can provide only a partial estimate of the
true incidence of COVID-19 in the Italian population. Eventually, we expect this
detected fraction to vary wildly over space and time.

In our opinion, the most reliable indicator is the count of ICU occupancy. The
reason is that the Italian Society for Emergency Care issued national guidelines
(that did not change substantially during the epidemic) for testing patients with
a suspected infection by SARS-CoV-2, who also had top priority for swab access
and reporting; and ICU admissions can be expected to depend on the proportion
of infected population susceptible to severe infection, rather than on the regional
strategy for testing and contact tracing. However, while probably reliable, this
indicator also presents some drawbacks. First of all, it provides only a partial
snapshot of the epidemic’s current stage, which concerns the most severe cases of
the disease. The latter is a critical issue, especially in the COVID-19 case, which
is known to present severe symptoms only in a small percentage of the currently
affected individuals. Second, this snapshot is affected by a constant delay (i.e., the
time between catching the disease and manifesting severe symptoms). As mentioned
above, its daily variation is obtained as a combination of new incoming patients
(+) and the deceased or recovered ones (-), whose effects blend and are hard to
disentangle. As a consequence, incidence indicators, such as daily positives and daily
deceased, while being measured with some error and even more delay in the case of
deaths, still represent the critical indicators for timely and appropriate monitoring
of the pandemic.

2see https://www.epiprev.it/materiali/2020/EP2-3/112_edit1.pdf for further details.

https://www.moh.gov.sg/covid-19
https://www.epiprev.it/materiali/2020/EP2-3/112_edit1.pdf
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5.1.3 Methodology

The time series of any of the observed indicators, denoted by z = {zt}Tt=t0 ,
is modeled separately and considered as the realization of the stochastic process
Z = {Zt}Tt=t0 . The idea behind this paper is to model any of the mentioned indicators
through a generalized model with a response function E[Zt] = µ(t) = g−1 (t;θ),
where g(·) is a known link function and θ is a parameter vector, that is appropriate
for the specific mathematical features of the epidemic process. This must be coupled
with a response distribution f(Zt; θ) coherent with the domain of such indicators,
which are counts and therefore Natural numbers.

Response function for incidence indicators

Let us denote by {yct}
T
t=0 the time-series of cumulative incidence indicators since

the start of the epidemic (t0 = 0, first day of systematic data recording). Visual
inspection of these indicators in Figure 5.2 suggests that their expected values follow
a logistic-type growth curve. Different example of logistic curves have been proposed
in the literature, all representing solutions to specific differential equations that
model the spread of epidemics (Banks, 1993; Hsieh et al., 2010; Ma et al., 2014).
Differently from the more standard exponential models, these are able to describe
the slow down of the outbreak associated with a decaying transmission rate just
after the number of cases approaches its inflection point. They have been already
widely used to describe the evolution of the COVID-19 pandemic in different states
during its early to medium stage (Wu et al., 2020; Lee et al., 2020). Here, for all the
incidence indicators, we consider the Generalized Logistic Function, also known as
Richards’ curve (see Figure 5.4 as an example), as response function for the mean
of the process (Richards, 1959). This curve was widely used to describe various
biological processes (Werker and Jaggard, 1997), but has been recently adapted
also in epidemiology for real-time prediction of outbreak of diseases (Hsieh, 2009;
Hsieh and Chen, 2009; Hsieh, 2010). The specialty of the Richards’ curve lies in
its ability to describe a great variety of growing processes, endowed with strong
flexibility, that includes as special cases the standard logistic growth curve (Tsoularis
and Wallace, 2002), the Gompertz growth curve (Gompertz, 1825) and others. It
can be expressed in different forms (Causton, 1969; Birch, 1999; Kahm et al., 2010;
Cao et al., 2019). One of its most general formulation depends on the vector of 5
parameters γ> = [b, r, h, p, s] and can be expressed as:

E[Y c
t ] = g−1(t;γ) = λγ(t) = b+ r

(1 + 10h(p−t))s
. (5.1)

b ∈ R+ represents a lower asymptote and r > 0 is the distance between the upper
and the lower asymptote, hence b+ r would be the final epidemic size; h is known
as the hill, and represents the infection/growth rate; p ∈ R represents a lag-phase
of the trajectory and determines the peak position (it tells when the curve growth
speed slows down); s ∈ R is an asymmetry parameter regulating differences in
the behaviour of the ascending and descending phase of the outbreak. In our
context, since cumulative incidences are always monotone increasing indicators, it is
reasonable to assume h, s > 03.

An extensive review of the Richards’ curve and other logistic growth models,
together with discussion on the proper interpretation of the parameters, is given in
Tjørve and Tjørve (2010).

3Conversely, we may assume h, s < 0
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Figure 5.4. Example of Richards’ curve (left panel) and derivative of the Richards’ curve
(right panel).

An Extended Generalized Linear Model using Equation (5.1) as response function
seems to be a natural choice for modeling time series of cumulative counts, whose
monotonically non-decreasing average behaves as the Richards’ curve. Unfortunately,
there is a significant drawback to this choice. As it will be better clarified thereafter,
a very useful working assumption would be that all these counts were stochastically
independent, given their mean function λγ(t). However, we cannot consider this
assumption as realistic in the case of cumulative counts, since the constraint on the
domain of definition on subsequent counts (i.e., yct ≥ ycτ ,∀τ < t) is not guaranteed
to be satisfied. On the other hand, the stochastic independence assumption sounds
more reasonable, albeit not necessarily true, for the daily incident counts {yt}Tt=1,
i.e., the addenda of the cumulative counts excluding the starting point y0, which
can be defined as:

yct =
t∑

τ=0
yτ ⇒ yt = yct − yct−1, t = 1, . . . , T

where y0 = 0 by definition.
Using Equation 5.1, and exploiting the additive properties of the expected value, we
have:

µ̃(t) = E[Yt] = E[Y c
t ]− E[Y c

t−1] = λγ(t)− λγ(t− 1) =

= r ·
[
(1 + 10h(p−t))−s − (1 + 10h[p−(t−1)])−s

]
= λ̃γ(t)

which, in particular, does not depend on the baseline b. Therefore, we shall adopt an
extended generalized model with response function given by the first differences of the
Richards’ curve λ̃γ =

{
λ̃γ(t)

}T
t=1

to model the daily expected values µ = {µ(t)}Tt=1

of the observed incident counts y = {yt}Tt=1 (see example in Figure 5.4).
In addition, we may also consider adding a kink effect/baseline α to the first

differences λ̃γ(·), which is to say assuming the following functional form for the mean
of the daily counts:

µ̃θ(t) = α+ λ̃γ(t), α ≥ 0, (5.2)
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where θ = (α,γ). This would correspond to the following mean function for the
cumulative counts:

µθ(t) = α · (t− 1) + λγ(t).
In practice, the parameter α includes the possibility of having a strictly positive
baseline rate, which can be interpreted as the endemic steady state incidence rate.
This is in line with the current perspective that SARS-CoV-2 might not be completely
eradicated within the next few years (Shaman and Galanti, 2020). On the other
hand, the first differences of the Richards’ curve λ̃γ(t) are (by construction) forced
to decrease asymptotically to the value of 0. However, this asymptotic result is
not necessarily observed in real data. In particular, Figure 5.1 highlights that both
time-series do not attain the 0 value, but settle to a low, constant level. This
situation may, potentially, continue indefinitely: new cases will be found as long as
people will be tested. Consequently, the model without a baseline lacks the ability
to catch this tail and, because of the curve parametric form, this may indirectly
affect the fit on the whole series.

In the first instance, one solution would be to fit the model, including the kink
effect α. Afterward, if it is estimated not to be sensibly different from 0, the model
without α can be fitted again to stabilize the estimation procedure and decrease the
uncertainty on the other parameters.

Response distribution for incidence indicators
Before introducing the distributions for the daily incident counts, we must make

some assumptions about the time dependence structure. In particular, we assume
that given the mean function µ̃θ(t), the daily incident counts Yt are stochastically
independent from the previous cumulative counts: Yt ⊥ Y c

τ ∀ τ < t. We denote this
hypothesis of independence by HI. We also assume the value of the first cumulative
count Y c

0 = yc0 to be known and fixed. Exploiting HI, we can express the joint
density of all the subsequent cumulative counts conditional on Y c

0 = yc0 as the
product of the univariate densities of the corresponding daily counts {Yt}Tt=1. The
equivalence follows from the following conditional argument:

fY c
1 ,...,Y

c
T

(yc1, . . . , ycT |yc0; θ) =
T∏
t=1

fY c
t

(yct |yc0, . . . , yct−1; θ) =

=
T∏
t=1

fY c
t

(yt + yct−1|yc0, . . . , yct−1; θ) =

=
T∏
t=1

fYt(yt|yc0, . . . , yct−1; θ) HI=
T∏
t=1

fYt(yt|θ),

where the second identity is justified in the light of Y c
t = Yt + Y c

t−1, t = 1, . . . , T ,
which is true by definition. From a practical point of view, this also implies a 1-st
order Markov property for the cumulative counts:

Y c
t |Y c

t−1 ⊥ Y c
1 , . . . , Y

c
t−2, t = 1, . . . , T

and mutual independence between the daily counts:

Yt ⊥ Yτ , ∀ t, τ, t 6= τ.

We remark that although these independence structure is just an approximation
in the present case, this kind of approach has provided valid inference for all the
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available Italian incidence indicators.
For communication purposes, it can be of interest to report the results of analyses and
predictions in terms of cumulative, rather than daily, incidence indicators. Clearly,
it is possible to model and predict the daily incidence indicators and, from these
estimates and predictions, obtain the relevant cumulative incidence indicators.

Poisson distribution

Let us assume that the vector of daily incident counts, y = {y1, . . . , yt}, is
composed of independent Poisson realizations with expected value µ̃θ(t):

Yt|θ ∼ Pois(µ̃θ(t)), t = 1, . . . , T

Hence, the likelihood can be written as:

L(θ|y) =
T∏
t=1

Pois(yt|µ̃θ(t)) ∝ µ̃θ(t)
∑T

t=1 yt · exp
{
−

T∑
t=1

µ̃θ(t)
}

and the log-likelihood is given by:

l(θ|y) = logL(θ|y) ∝
T∑
t=1

yt log (µ̃θ(t))−
T∑
t=1

µ̃θ(t).

Remark that, under the assumption of Poisson distribution and the baseline α = 0
(i.e. µ̃(α,γ) = λ̃γ(·)), we can exploit the well-known Poisson’s additive property4 to
conclude that each cumulative count Y c

t is still marginally distributed according to
a Poisson, parametrized by the original Richards’ curve function λγ(·):

Y c
t |γ ∼ Pois

(
t∑

τ=1
λ̃γ(τ)

)
= Pois(λγ(t)).

Negative Binomial distribution

When counts are over-dispersed the Poisson distribution is not a suitable choice.
We can model the observed daily incident counts y = {y1, . . . , yt} as independent
realizations from a Negative Binomial with mean λ̃γ(t) and dispersion parameter
ν ∈ R+:

Yt|θ ∼ NB(µ̃θ(t), ν), t = 1, . . . , T
Hence, the likelihood can be written as:

L(θ, ν|d) =
T∏
t=1

NB(yt|µ̃θ(t), ν) ∝
T∏
t=1

[Γ(ν + yt)
Γ(ν)

(
ν

ν + µ̃θ(t)

)ν ( µ̃θ(t)
ν + µ̃θ(t)

)yt]
and the log-likelihood is:

l(θ, ν|y) = logL(θ, ν|y) ∝
T∑
t=1

log
(Γ(ν + yt)

Γ(ν)

)
+ ν

T∑
t=1

log
(

ν

ν + µ̃θ(t)

)

+
T∑
t=1

yt log
(

µ̃θ(t)
µ̃θ(t) + ν

)
.

4the sum of independent Poissons is still a Poisson with parameter the sum of the parameters
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The Negative Binomial does not satisfy the same additive property as the Poisson,
hence we cannot draw the same conclusion reached in the Poisson case about the
marginal distribution of the cumulative count Y c

t when α = 0. In general, the
cumulative count in the Negative Binomial case will follow the distribution stemming
from the sum of independent Negative Binomial random variable with common
dispersion parameter ν but different means µ̃ =

{
λ̃γ(t)

}T
t=1

.

Response function depending on covariates

The trend of any of the considered indicators may also depend on additional
exogenous information, which we may assume to be known a priori either because
it is immutable (i.e., the day of the week), or because policymakers fixed it (daily
number of tested cases/swabs set by the government). For instance: one might want
to correct for possible weekly seasonality, which is known to affect the daily positives
series since many laboratories are closed during the weekend and cannot process
swabs. The latter can be used to disentangle the underlying trend of the epidemic
from the obvious positive correlation between tested cases and daily positives. In
general, we may want to include the effect of any set of k time-varying covariates

X
T×(k+1)

= [x(t)]Tt=1 in the Richards’ framework through the usual linear predictor

η(X) = Xβ, where β is a k + 1-dimensional vector of real valued parameters
(including intercept). Let us denote the mean function of the considered indicator
as µ̃θ(t) = E [Yt], where θ = (α,γ,β). In order to respect the positivity of the mean
parameter (which is necessary both in the Poisson and in the Negative Binomial
case), we consider the link function g(·) = log(·), so that the effect on the mean is
expressed as:

µβ (X) = exp {η(X)} = exp {Xβ} .

Considering a single time point t, we would get the following functional form:

µβ (x(t)) = exp {x(t)β} .

The mean term of our model shall take into account both the effect of the covariates
through µβ (·) and the temporal behaviour induced by the Richards’ curve λγ(·).
As a matter of fact, these two components may be combined in different ways. We
considered two alternative specifications denoted in the sequel as: additive and
multiplicative.

Additive inclusion of covariates

The inclusion of an additive effect of covariates implies that the effect of every
covariate is constant through-out the pandemic, notwithstanding the current con-
tagion level: for instance, one may think that an increase of daily tested cases will
always produce the same increase of daily positives. If that is the case, we may just
express the baseline parameter α at each time-point t as the linked linear combina-
tion of covariates µβ(x(t)) = exp {x(t)β}, which would produce the following mean
function:

µ̃θ(t) = µβ(x(t)) + λ̃γ(t).

On the whole vector of observations, this can be expressed as µ̃θ = µβ(X) + λ̃γ .
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Multiplicative inclusion of covariates

The inclusion of a multiplicative effect of covariates would imply that the more
serious the pandemic situation, the more severe the impact of any covariate on the
indicators’ daily rate.

First, let us recall that the first differences of the Richards’ curve function can
be computed as:

λ̃γ(t) = r ·
[
(1 + 10h(p−t))−s − (1 + 10h[p−(t−1)])−s

]
= r · λ̃γ,−r(t),

where λ̃γ,−r(t) =
[
(1 + 10h(p−t))−s − (1 + 10h[p−(t−1)])−s

]
, namely the difference

between the Richards’ curve function at time t and t− 1, which does not depend on
r. On the log-scale, it would return the more familiar:

log(λ̃γ(t)) = log(r) + log
(
λ̃γ,−r(t)

)
. (5.3)

From Equation 5.3, it comes natural the idea of expressing log(r) at each time-point
t as the linear combination of covariates η(x(t)) as in a Generalized Poisson model
with log link function. Indeed this provides a multiplicative effect of the covariates,
where the parameter r can be expressed as µβ(·) in the following way:

rβ(x(t)) = µβ(x(t)) = exp {x(t)β} . (5.4)

Note that the constant r is still present and included in Equation 5.4 through the
intercept β0. Therefore, the mean at time t is expressed as:

µ̃θ(t) = α+ rβ(x(t)) · λ̃γ,−r(t).

Considering the whole vector of observations, we would have the following vector of
means µ̃θ = α+ rβ(X) · λ̃γ,−r, where α = α · 1T .

Model estimation
Parameters can be estimated by maximizing the log-likelihood l(θ|y), where θ in

this case includes all the parameters the likelihood depends on (e.g. including ν in
the Negative Binomial case). This optimization problem does not have an analytical
solution, and numerical maximization must be used. To improve computation,
we derived analytical expressions for the gradient and Hessian of the two possible
log-likelihoods (i.e. Poisson or Negative Binomial counts), making Fisher-scoring
iteration very fast. The expressions are reported in Appendix C. Given the non-
smooth shape of the objective function, we are at risk of being trapped by local
maxima of the log-likelihood, depending on the initial conditions. Therefore, in
order to strengthen the optimization procedure, a multi-start procedure based on
a combination of genetic and gradient descent algorithms has been used (Scrucca,
2013; Nash et al., 2020).

Once an approximate point of maximum θ̂ has been obtained, we could theo-
retically obtain an estimate of the asymptotic variance-covariance matrix of the
estimated parameters through inverse of the negative log-likelihood Hessian in θ̂
(which corresponds to the Observed Fisher Information):

V̂θ = −H
(
l(θ̂|y)

)−1
,
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where H denotes the Hessian matrix. Nevertheless, we may want to account for the
potential misspecification of our model potentially arising from the independence
assumptionHI. Therefore, we resort to a robust approach for estimating the standard
errors and covariance structure associated with the parameter vector θ. In particular,
we consider the Huber Sandwich Estimator of the variance-covariance matrix (Hardin,
2003; Freedman, 2006), that can be computed as:

V̂ R
θ =

(
−H

(
l(θ̂|y)

)−1
)
∇l(θ̂|y)∇l(θ̂|y)>

(
−H

(
l(θ̂|y)

)−1
)
,

where ∇l(θ̂|y) represents the gradient of the log-likelihood in the point of maximum.
Interval estimates for the parameters are directly derived through the asymptotic
distribution of the Maximum Likelihood Estimator, with the corresponding robust co-
variance matrix θ̂ ∼ N

(
θ, V̂ R

θ

)
. A similar theoretical result for predictions is not as

straightforward. Therefore, these are derived through a parametric double bootstrap
procedure (Efron, 2004; Hall and Maiti, 2006; Efron, 2012), which accounts for both
the uncertainty of parameter estimation and the randomness of the observations.
In practice, re-sampled trajectories {Yi}Bi=1 are obtained by simulating B sets of
parameters from their asymptotic distribution and computing B mean functions
trajectories {µθi

(·)}Bi=1. An artificial time series of counts is then simulated for each
of the B trajectories and 95% confidence intervals are obtained by computing the
point-wise 2.5% and 97.5% quantiles. The dispersion parameter ν, being a poorly
identifiable nuisance parameter of no impact on the mean curve behaviour, has been
excluded from the bootstrapping procedure and kept fixed at its estimated value ν̂.

Model validation
Diagnostic check on the model has been performed through the Pearson residuals

and the Deviance residuals. Computation of the former is trivial, where we recall
their definition as:

ρ̂t = yt − ŷt
V̂ar [Yt]

, t = 1, . . . , T.

Under the Poisson and Negative Binomial assumptions we have:

V̂arPoi [Yt] = µθ̂(t), V̂arNB [Yt] = µθ̂(t) +
µθ̂(t)

2

ν̂
, (5.5)

respectively. The Deviance Residuals are instead defined as the individual contribu-
tions of each observation to the Deviance of the model, i.e. the discrepancy between
the proposed model and the full model (perfect fit) fits in terms of log-likelihood:

d̂t = 2 ·
[
log

(
f(yt|θ̂s

)
− log

(
f(yt|θ̂

)]
,

where f(·|·) is the chosen distribution function and θ̂s is the parameter vector of the
saturated model. For the Poisson and Negative Binomial this can be computed as:

d̂Poi
t = sgn

(
yt − µθ̂(t)

)
·

√√√√2yt log
(
yt
µθ̂

)
−
(
yt − µθ̂(t)

)
,

d̂NB
t = sgn

(
yt − µθ̂(t)

)
·

√√√√2
[
yt log

(
yt

µθ̂(t)

)
− (yt + ν) · log

(
yt + ν

µθ̂(t) + ν

)]
,
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respectively (Svetliza and Paula, 2003). If the model correctly describes the variability
in the data, then both the Pearson residuals and the Deviance residuals are expected
to be Normally distributed and independent, with the latter being generally more
robust to outliers.

Fitting performances are further evaluated through numerical metrics such as
the pseudo-R2 and coverage of the 95% prediction intervals:

R2 = 1− MSE
σ2
y

= 1−
∑T
t=1(yt − ŷt)2∑T
t=1(yt − ȳ)2

,

Cov95% = 1
T
·
T∑
t=1

I(ŷl
t;ŷu

t )(yt),

where MSE is the Mean Squared Error, ȳ = 1
T

∑T
t=1 yt, IY(·) denotes the indicator

function over the set Y, and ŷlt and ŷut are the lower and upper bounds of the 95%
confidence intervals, respectively.

Step-ahead predictions

We test our model’s ability to predict the evolution of the epidemic (at least its
first wave) from the short to the medium term. Indeed, while the choice of a rigid
parametric form for the mean function is penalizing in terms of flexibility and fitting
ability, it allows for extrapolation outside the observed domain and is supposed
to provide robust forecasts (at least in the short/medium term). Therefore, using
the best model for the two indicators we calculated the out-of-sample Root Mean
Squared Prediction Error (RMSPE) for:

• different fitting windows t = 1, . . . , t̃;

• different forecast horizons, say K ∈ {1, 5, 10, 15}.

We recall that, given the fitting window set 1, . . . , t̃:

RMSPEt̃,K =

√√√√ 1
K

K∑
j=1

(yt̃+j − ŷt̃+j)2

5.1.4 Application
For the sake of brevity, here we present results referred to the proposed Richards’

growth model only for daily positives aggregated at the national level. Further results
of the model performances for daily deceased are included in Appendix C. We only
present results obtained adopting the Negative Binomial distribution because of the
substantial over-dispersion present at all levels for these indicators (spatially and
temporally heterogeneous data collection process, varying containment measures,
etc.).

Model on daily positives
To decide whether or not to include the kink effect, we fitted the model with and

without the baseline α and compared the two fits in terms of log-likelihood, AIC, BIC
and Corrected AIC (AICc). The values are presented in Table 5.1 and provide clear
evidence in favor of the model with baseline (i.e. with mean µθ(·) as in Equation 5.2).
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Table 5.1. Log-likelihood, AIC, BIC and AICc for the model without baseline and the model
with baseline, on daily positives.

Index Model without baseline Model with baseline
log-likelihood −1081.4 −982.8
AIC 2152.7 1953.6
BIC 2162.3 1965
AICc 2137.8 1935.7

Table 5.2. Parameters’ points estimates and 95% confidence intervals for the model with
baseline on daily positives.

Parameter Point estimate 95% Interval
α 173.17 (103.2, 290.54)
r 222.95× 103 (220.56× 103, 225.36× 103)
h 0.0288 (0.0285, 0.0291)
p −31.18 (−32.75,−29.62)
s 72.54 (48.29, 96.79)
ν 18.73 (17.77, 19.73)

Parameters’ estimates of the model θ̂ and the respective 95% confidence intervals are
shown in Table 5.2, where the baseline α is estimated to be α̂ = 173.17, with interval
(103.2, 290.54), which confirms that the baseline is estimated to be significantly
different from 0, and it should be included in the model. This parameter represents
the long-term endemic incidence rate that may (possibly indefinitely) follow the
end of the main outbreaks. This obviously would hold exactly with constant social
interactions, containment measures, control of cases etc. Hence, in the considered
time horizon, we expect this endemic level to be of ≈ 173 daily positives per day.
When the baseline is included, the parameter r does not indicate anymore the final
epidemic size, but only the final outbreak size. This is the number of positive cases
due to the uncontrolled outbreak, additional to what would have been observed in
the steady endemic state. This amount is estimated to be ≈ 222, 950, an amount
that would have been reached in ≈ 1, 288 days at the endemic state level. The
parameters h, p and s do not have an easily quantifiable and absolute interpretation,
but are useful for comparison. We recall that h indicates how fast the infection
spreads, p how soon it starts descending (lag-phase) and s represents the asymmetry
between the ascending and descending phase (s < 1 the ascending is slower than the
descending and vice-versa). Finally, ν is an over-dispersion parameter and does not
present any evident communicable interpretation. The larger it is and the lower the
over-dispersion, according to the formula in Equation (5.5).

We here want to stress the fact that the uncertainty characterizing some of the
parameters (like s) is not alarming. In particular, variations of s at values distant
from 1 have very little effect on the curve shape. Furthermore, the parameter vector
presents a covariance structure that highlights how different combination of parame-
ters can yield similar curves. Indeed, simulating B = 5, 000 set of parameters from
the Normal distribution with variance corresponding to the covariance underlying
the Huber Sandwich covariance matrix, we get the set of difference and cumulative
curves represented in Figure 5.5.
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Figure 5.5. Bootstrapped trajectories corresponding to the Huber Sandwich covariance
matrix in the point of maximum for the model with baseline on daily positives.

We can also directly obtain point predictions {ŷt}Tt=1 as:

ŷt = µθ̂(t), t = 1, . . . , T, (5.6)

and prediction intervals
{

(ŷlt; ŷut )
}T
t=1

through the same set of bootstrapped trajec-
tories, whose statistical validity relies on the asymptotic properties introduced in
Section 5.1.3.

Figure 5.6 shows the model fit on the whole available time series of counts:
the left-side panel shows the fit for the daily time-series, the right-side panel for
the cumulative time-series. We can see how the estimated curve does catch the
observed general behaviour, providing a smooth approximation, only marginally
influenced by extreme values. Our model produces a pseudo-R2 = 0.941 and
coverage Cov95% = 0.945, meaning that the percentage of observed daily counts
falling inside the estimated bounds is perfectly coherent with the specified confidence
level. Looking at Figure 5.6, we notice how daily counts boundaries get smaller
as time passes, due to the implicit relationship between mean and variance that
characterizes count distributions. At the same time, the opposite happens to the
bounds on the cumulative counts. The latter is not surprising: indeed, they are built
marginally on all the epidemic’s possible scenarios. Therefore, they give us a clear
sight of what we could have currently observed, keeping into account and aggregating
the uncertainty at each stage of the epidemic. We performed a diagnostic check
on both the Pearson and the Deviance residuals, but only report the latter for the
sake of brevity. The plots in Figure 5.7 show the Deviance residuals behaviour:
histogram (a), including the p-value from the Shapiro test; Normal qq-plot (b);
auto-correlation plot (c); plot of the residuals vs. fitted values (d). The first two
check the (approximated) Normality assumption on the residuals, while the second
two control for the correlation of the residuals (among them and with the observed
values).



82 5. Modeling COVID-19 incident indicators

0

2000

4000

6000

8000

01−Mar 01−Apr 01−May 01−Jun 01−Jul 01−Aug

da
ily

 p
os

iti
ve

s

(a)

0K

100K

200K

01−Mar 01−Apr 01−May 01−Jun 01−Jul 01−Aug

cu
m

ul
at

iv
e 

po
si

tiv
es

(b)

Figure 5.6. Observed (black dots) and fitted values (grey solid lines) with 95% confidence
intervals (grey dashed lines) for the model with baseline on daily positives.
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Figure 5.7. Deviance residuals for the model with baseline on daily positives.

Weekly seasonality

The diagnostic check on both type of residuals showed that the Normality
assumption is not rejected, but the correlation plot manifests undesirable patterns
(see Figure 5.7). In particular, the auto-correlation between errors is larger at lag 7
(and multiples of this). We can interpret this outcome as the presence of an intense
weekly seasonality (especially during/after the weekend). This suggests people would
rather not come forward for testing on the weekend or, alternatively, the system has
less capacity at the weekend, meaning it is more challenging to get a test. This may
be adjusted by simply adding a weekday effect in our model as a covariate, using
the approach described in Section 5.1.3. Such effect may be included either in an
additive or a multiplicative fashion. At first, we considered effects for each day of
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Table 5.3. Log-likelihood, AIC, BIC and AICc for the models with baseline including
additive or multiplicative week-day effect on daily positives.

Index Additive effect Multiplicative effect
log-likelihood −971.74 −974.1
AIC 1929.48 1934.3
AICc 1942.67 1947.5
BIC 1908.60 1913.4

the week, taking Monday as a corner point. Preliminary results showed that not
all week-days present a significant deviation from the common mean. On the other
hand, the distribution of the Deviance residuals d̂t of the standard model aggregated
by week-day (see Figure 5.8) shows that an evident overestimation pattern (i.e.,
negative deviations) is taking place on Monday and Tuesday.
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Figure 5.8. Deviance residuals distribution aggregated by day of the week for daily positives.

Therefore, in the sequel, we will present only results obtained with the dichoto-
mous variable that is equal to 1 whenever the week-day is Monday or Tuesday (0
vice versa). Note that the lower testing effort during the weekend is reflected in the
data on Monday and Tuesday, since daily reports involve mostly results received
the day before, with swabs therefore dating back 48 hours on the day of publication.
This confirms that working with daily data require special care as the cases reporting
may suffer from week seasonality. The additive option is chosen over its alternative
because of its lower/improved AIC, BIC and AICc score (see Table 5.3).

The resulting fit of the model with week seasonality on the observed data are
shown in Figure 5.9.

Estimated parameters are shown in Table 5.4. This model estimates the baseline
to be at eβ̂0 = 192.48 on Wednesday to Sunday and at eβ̂0+β̂wd = 121.51 on Mondays
and Tuesdays. Deriving the corresponding 95% intervals, these two baselines result
significantly different from the estimate of the overall baseline α̂ in the model without
covariates. The estimates of the outbreak size r̂ and of the infection rate ĥ of the two
models are in agreement, while the point estimates of the asymmetry parameter ŝ are
different but both large and mutually included in the corresponding 95% intervals.
This is reasonable since we would not expect the outbreak size, rate and symmetry
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Figure 5.9. Observed (black dots) and fitted values (grey solid lines) with 95% confidence
intervals (grey dashed lines) for the model with baseline and week-day additive effect,
estimated on the daily positives.

Table 5.4. Parameters’ point estimates and 95% confidence intervals for the additive model
on daily positives

Parameter Point estimate 95% Interval
β0 5.26 (5.18, 5.34)
βwd −0.46 (−0.53,−0.38)
r 224.57× 103 (224.13× 103, 225.01× 103)
h 0.0289 (0.0287, 0.0291)
p −23.26 (−29.64,−16.88)
s 44.42 (−35.67, 124.51)
ν 22.01 (21.35, 22.70)

to vary after accounting for week-day heterogeneity. On the other hand, the new
estimate p̂ of p detects a shorter lag-phase and hence a slightly faster approach to
the descending phase. Finally, the estimate of the dispersion parameter ν̂ is slightly
larger than the one obtained using the model without covariates, denoting less over-
dispersion with respect to the equivariance hypothesis. This is completely reasonable
since the week-day effect is able to explain some of the previously unaccounted
heterogeneity.

In terms of model validation, the inclusion of this effect improves sensibly the
pseudo-R2 (0.956), while the average coverage Cov95% remains stable around 0.950.
The diagnostic check of the Deviance residuals showed that adherence to Gaussianity
improved and the correlation pattern at lag 7 is still present but mitigated (see
Figure 5.10).

Prediction of future cases and of the peak date

For the latter empirical model, the RMSPEs for each steps-ahead are presented
in Figure 5.11. Results match the expectations as: (i) the error decreases with the
length of the fitting window; (ii) the error trend is more stable on larger testing
windows (10-15 steps ahead vs 1-5 steps ahead); (iii) larger errors are made around
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Figure 5.10. Deviance residuals for the model with baseline and week-day additive effect
estimated on daily positives.

the day of the peak. It can be seen nevertheless that predictions are always reasonable
at these time horizons. This is a good point for our theoretical framework, as it
can be used as a guidance tool to plan non-pharmaceutical-interventions due to
its capability to predict future scenarios with reasonable accuracy. Of course, with
more detailed data and including confounding factors, the accuracy may be further
improved. Unfortunately, the aggregated available data do not contain important
information which may strongly improve the prediction, e.g. stratifications of cases
by age, gender, comorbidities, etc.

Finally, we evaluate the model’s ability to predict the date of the peak. The
approximate dates and heights of the peak have important epidemiological implica-
tions. This becomes possible under the assumption that sensible modifications of
the adopted epidemiological strategies do not emerge. However, if exogenous events,
e.g. efficient treatments or vaccines, arise at a certain point in time, our framework
allows to include it to predict the peak, in a similar manner as we did for the week
seasonality effect. To do so, we estimate the model without covariates, using all
available data until K ∈ {15, 10, 5, 3, 2, 1} days before the observed peak. For the
sake of conciseness, we only report results for K ∈ {10, 5, 2, 1} as shown in Figure
5.12.

When s = 1, the peak t̂ is directly expressed by the parameter p. When s 6= 1,
after some algebra it can be seen that the peak can still be computed analytically as:

t̂γ̂ = p̂+ log10(ŝ)
ĥ

.

Confidence intervals are obtained through the same bootstrap procedure introduced
in Section 5.1.3. The dashed grey vertical lines represent the bounds of the confidence
interval and the predicted date of the peak (confidence area is shaded with the
same grey). The solid vertical black line represents the "true" date of the peak (i.e.
obtained via smoothing of the observed counts through non-parametric polynomial
approximations). The observed time-series is represented through point and lines,
where the black section is referred to the training window while the grey section is
referred to the testing (out-of-sample) window.
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Figure 5.11. RMSPE for daily positives at different steps-ahead.

Table 5.5. Delay (days) in point estimation of the peak.

Days before 10 5 2 1
Delay Width Delay Width Delay Width Delay Width

daily deceased -1 37 -3 25 -4 22 -3 21
daily positives 20 106 17 69 1 37 2 37

As expected, as we approach the real date of the peak, we predict it more
accurately. Point predictions are very accurate since 5 days before the actual peak.
At the same time, interval bounds get tighter and tighter as the fitting interval
approached the day of the peak and, in general, the day of the peak is always
included in such bounds (see Table 5.5 for exact numerical evaluation).

All the aforementioned results have been calculated also for the national aggre-
gated daily deceased. Exposition and discussion of these results, which are in fact
very similar to the daily positives ones, are included in the supplementary material.
Here, we just want to highlight how the peak is accurately predicted with a shorter
delay and generally smaller uncertainty for the daily deceased than for the daily
positives (see Table 5.5). This is probably related to the more regular behaviour of
the series, due to a likely more homogeneous collection process of the records.

Finally, we here want to stress the point that we are introducing a framework
with the highly desirable goal to formulate a model which would predict an evolution
curve. To be more precise, a great variety of epidemiological models have been
proposed in the literature, but most standard versions of SIR-like models typically
yield an increase before the peak that is quite similar to the decrease after the peak.
The proposed framework, based on more complex evolution dynamics, is robust
enough to be fitted successfully on the (poor quality) available data while explaining
and forecasting different increasing and decreasing behaviour before and after the
peak. We emphasize that such increase-decrease quantitative behaviours appear to
satisfactorily conform to reality.
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Figure 5.12. Estimation of the date of the peak for daily positives at different steps-before.

5.1.5 Discussion and further developments

We presented an approach to modeling and prediction of epidemic indicators
that has proven useful during the first outbreak of COVID-19 in Italy. The model
has been validated on publicly available data, and has proved flexible enough to
adapt to different indicators.

It is important to underline up front that the available data are clearly biased.
Incidence depends on testing and tracing efforts, whose indications have varied wildly
over time and space. Comparability of indicators over time and space might in part
be achieved by including the daily number of swabs as a predictor, which anyway
would make predictions cumbersome to obtain. Different definitions of COVID-19
related death make it also very hard to compare mortality across countries. This
problem does not apply to our data, that refer to Italy. However, while this definition
has been constant over time in Italy, it shall be remarked though that also deaths
might be underestimated, with the degree of undercount positively associated with
incidence. Correcting for this bias is not trivial and require corrections based on
individual-level data and/or reliable statistics about excess mortality.

Summarizing the results, we would like to emphasize that the proposed Richards’
curve model describes properly the growth in the number of COVID-19 daily
positives and daily deceased, despite its simplicity. Indeed, it is able to reflect
properly the trend of the considered daily incidence indicators and also allows for
the straightforward inclusion of exogenous information. Basic covariates such as the
week-day effect proved to sensibly enhance model fitting and prediction accuracy.
While we have illustrated results at the national level, the model can clearly be
used also at the regional/local level (perhaps including specific local effects) and the
resulting fits are included in the supplementary material. The maximum likelihood
approach so far considered is rather stable, as long as reasonable starting values
are passed to initialize the algorithm. Of course, different approaches could be
investigated.
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A limitation of our approach is that logistic growth curves are constrained so
that only one wave at a time can be successfully modeled. This implies that initial
(and possibly final) dates shall be set by the user to identify a wave. This is rather
simple empirically (e.g., the initial date can be the last day with zero incidence, and
the final date can be the first day with incidence above (or under) a pre-specified
threshold). On the other hand, multiple waves could be modeled by modification of
our non-linear model as a weighted average of multiple Richards’ curves (one for
each wave), in which weights of the non-current wave are forced to decay to zero
with the distance from the wave-specific peak. We leave this as grounds for further
work.

A Bayesian approach will also be experimented in order to overcome possible
issues with the asymptotic properties of the maximum likelihood estimator. Notably,
implementation of the No-U-Turn Sampler (NUTS) algorithm for the estimation
of non-linear models might be a valid working solution. Additionally, a Bayesian
approach may also be used to include spatial dependence into the modeling framework
and also to relax the first-order Markov assumption for taking into account more
complex temporal dependence. In particular, the latter may be key in order to adapt
the introduced Richards’ curve model for the nowcasting of prevalence indicators, e.g.
current positives and current intensive care units occupancy. Indeed, any modeling
effort shall account for the strong temporal dependence between subsequent counts
stemming from the fact that daily counts at time t potentially include units which
are in stock since times τ < t. Furthermore, as specified in Section 5.1.2, prevalence
indicators are non-monotonic and their value is the result of the combination of
the incidence components building up each of those. These two last issues may
be addressed by adapting the Richards’ response function to accommodate non-
monotonicity and/or by hierarchically specifying a model for the prevalence indicators
through the combination of models for their incidence components. A successful
attempt in accurately nowcasting the ICU occupancy is given in Farcomeni et al.
(2021).

5.2 Spatio-temporal modelling of COVID-19 incident
cases using Richards’ curve: an application to the
Italian regions

5.2.1 Introduction
One of the limitations of the approach presented in Section 5.1 is that indicators

in each area are modelled independently. That is clearly only a working assumption,
as mobility have occurred across Italian regions also during the hard lockdown of
Spring 2020. Even sick people with COVID-19 have been sometimes transferred
from one region to another. Furthermore, it is likely that regions close to each other
culturally, economically, or geographically (e.g., sharing borders) present similar
features as people experience similar climates, pollution and have similar lifestyles.
For these reasons, this work aims to overcome this limitation by explicitly taking into
account the spatial dependence across regions and the temporal dependence within
regions. We make this extension for different specifications of the generalized growth
model of Alaimo Di Loro et al. (2021a) in a Bayesian framework. The Bayesian
formulation by itself is already a notably additional advancement, regardless of the
model specification. We report here that posterior summaries, in our experience,
seem to be more stable compared to the maximum likelihood estimates, possibly due
to difficulties in finding a global optimum for the likelihood of an inherently non-linear
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model. Furthermore, exploiting hierarchical models’ flexibility in a Bayesian context,
we replace the Negative Binomial assumption in Alaimo Di Loro et al. (2021a)
with the Poisson distribution. The still present over-dispersion and unobserved
heterogeneity are accounted for by including observation-specific random effects.
If the random effects were assumed to be gamma-distributed, the corresponding
marginal would indeed be a Negative Binomial and the method would be analogous to
the original modelling framework. However, we rather consider normally distributed
random effects on the log scale. Gaussianity allows for a more straightforward
specification of prior information and inclusion of possible dependence structures in
the process governing such effects. While temporal correlation is dealt with an Auto-
Regressive (AR) structure, spatial dependence is included by specifying a suitable
Conditional Auto-Regressive (CAR) prior, where the covariance matrix is identified
using two possible networks: one based on geographic proximity and one built on
historical data of transport exchanges between regions (taken from Della Rossa
et al., 2020). The advantage of introducing this dependence structure is twofold.
On the one hand, the resulting simultaneous model provably gives more accurate
description of the true pandemic evolution than separate models for each region. On
the other hand, it can be expected that parameter estimates of characteristics of
interest (e.g., peak time and height) can benefit from the pooling information from
multiple regions. We separately evaluate the first and second wave of Sars-CoV-2 in
Italy. Similarly to Bartolucci and Farcomeni (2021), we consider weekly incidence,
even if observed cases are made available daily. That is done in order to mitigate
the issues with erratic daily fluctuations due to late reporting. Even though we
are aware that this does not solve the data issues, it sufficiently alleviates them, as
testified by the smoother time series obtained at the weekly level.

5.2.2 Methodology
Public data about COVID-19 in Italy are published every day by the Civil

Protection Department, since February 24th, 20205. For each of nineteen regions
and two provinces (Trento and Bolzano, forming the region of Trentino Alto Adige),
these include (i) prevalence indicators (currently positive, Intensive Care Unit (ICU)
occupancy, hospital occupancy) and (ii) incidence indicators (e.g. newly diagnosed
positives, deceased, new admissions to ICU, swabs, subjects tested). For a more
technical description refer to Dicker et al. (2006); Alaimo Di Loro et al. (2021a).
For any of the incidence indicators in a given area, the number of new cases at time
t = 1, . . . , T can be obtained as the first difference of its cumulative counterpart as
Yt = Y c

t − Y c
t−1 where Yt and Y c

t are the number of new and cumulative cases at
time t, respectively, and where we may assume Y c

0 = 0 without loss of generality.
Cumulative indicators present some peculiarities: they are monotone non-decreasing
and their behaviour usually follows a logistic-type growth curve. These curves have
been widely used to describe various biological processes (Werker and Jaggard, 1997).
More recently, they have also been adapted in epidemiology and biostatistics for
modelling the onset and the spreading of epidemics (Hsieh, 2009; Hsieh and Chen,
2009; Hsieh, 2010).

Alaimo Di Loro et al. (2021a) proposed a modified Richards’ curve (Richards,
1959), also known as the Generalised Logistic Function, for modelling cumulative
incidence indicators. The generalised logistic function can accurately model various
monotone processes and include other widely-used logistic growth curves as special
cases (Tsoularis and Wallace, 2002; Gompertz, 1825). In Alaimo Di Loro et al.

5GitHub repository: https://github.com/pcm-dpc/COVID-19.

https://github.com/pcm-dpc/COVID-19
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(2021a) a parametric model is specified for region-specific incidence indicators (e.g.,
Poisson or Negative Binomial), where the cumulative indicators are assumed to
follow a five-parameters Richards’ curve.

Here, we propose a slightly different parametrization of the classic Richards’ curve
to allow the model to reach an endemic state in which there is a constant (hopefully,
small) growth. In particular, without loss of generality, we modified Equation (5.1)
by considering a linear trend on the baseline b and using the exponential as the
power base:

Λγ(t) = b · t+ r

(1 + eh(p−t))s
. (5.7)

This is similar to the use of an endemic parameter for the first differences as pursued
in Alaimo Di Loro et al. (2021a).

Assuming that E[Y c
t ] = Λγ(t), the expected value for the innovation Yt can be

straightforwardly obtained as:

E[Yt] = E[Y c
t ]− E[Y c

t−1] = Λγ(t)− Λγ(t− 1) = λγ(t), (5.8)

where:

λγ(t) = b+ r ·
[
(1 + exp (h(p− t)))−s − (1 + exp (h(p− t+ 1)))−s

]
. (5.9)

Inclusion of space-time dependence in the Richards’ based model

Let Yg = [Ygt]Tt=1 denote the time-series of number of new cases in area g, for
g = 1, . . . , G, such that

Y =
[
Y>1 ,Y>2 , . . . ,Y>G

]>
.

The main assumption of our model is that Ygt arises from a Poisson distribution
with mean µgt = Eg ·mgt. This can be expressed as:

Ygt|µgt ∼ Pois(µgt)
log(µgt) = log(Eg) + log(mgt), g = 1, . . . , G, t = 1, . . . , T,

where log(Eg) is an offset term that accounts for region-specific exposures levels.
When the offset is present, all other parameters impacting the overall rate become

dimensionless, regardless of the scale of the corresponding region. In other words,
the term mgt can be interpreted as a relative measure of the risk of region g at time
t with respect to the considered offset Eg.

Different specifications of mgt lead to different models, each with its own charac-
teristics. We decompose the log-risk in three main components:

log(mgt) = φgt + log
(
λγg

(t)
)

+ x>gtβ, (5.10)

where φgt is a specific random effect for the g-th area at time t, λγg
(t) is a determinis-

tic function denoting the general time trend, with possibly region specific parameters
γg as for Equation (5.9), and x>gtβ a linear predictor based on K covariates with
associated regression coefficients β.
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The Spatio-Temporal CAR model
The observation-specific random effects {φgt : g = 1, . . . , G, t = 1, . . . , T} are

included to account for unobserved heterogeneity in the data. At each time, possibly
correlated random effects allow regional curves to deviate from their global average.
Besides, their presence corrects for the evident over-dispersion (with respect to the
Poisson assumption) present in the time-series.

These random effects can either be completely independent, present temporal
dependence, spatial dependence, or spatio-temporal dependence. In a Bayesian
framework, the covariance structure can be induced hierarchically by specifying
a suitable prior on the complete set of random effects. In order to simplify the
formulation of the random effects prior, we collect all of them in a set of time-varying
vectors φt = [φ1t, . . . , φGt, ]> , t = 1, . . . , T .

Spatial dependence at each time point can be introduced by using a CAR prior
(Besag, 1974) over some network, that under Gaussianity produces a so-called
Gaussian Markov Random Field (GMRF, Rue and Held (2005)). This approach
falls into the wide range of methods related to disease mapping (see Waller and
Carlin (2010) and Lawson (2018) for a review). Such CAR prior specification allows
incorporating the undeniable spatial correlation at the second level of the model
hierarchy, avoiding analytical complications inherent in modelling spatial correlation
within non-Gaussian distributions with inter-related mean and variance structures
(Gelfand et al., 2010). This form of dependence is valid on discrete domains arranged
over a network, where neighbouring relationships are determined by an adjacency
matrix W (possibly weighted). The matrix W = [wij ] is a G×G symmetric matrix
with all diagonal elements equal to 0 (as no region/area/unit is its own neighbour),
and where off-diagonal elements wij are greater than 0 if and only if areas i and j
are connected (i ∼ j): the larger the connection strength wij , the closer the two
random effects are pulled together. The original expression of this prior starts from
the consideration of the full conditional of each random effect given all the others.
For the generic t ∈ {1, . . . , T}, the full conditional φgt|φ−gt, g = 1, . . . , G has mean
equal to the weighted combination of the random effects in its neighbourhood:

φgt|φ−gt ∼ N

 G∑
j=1

wgjφjt , σ
2

 , ∀ g = 1, . . . , G,

where φ−gt =
[
φ1t, . . . , φ(g−1)t, φ(g+1)t, . . . , φGt,

]>
and σ2 is the overall variance of

the random effect. This induces smooth variations over close regions, as determined
byW . Following Brook’s lemma, for a fully connected graph (i.e. with no “islands”),
this local specification implies a very specific global multivariate prior on the vector
φt, centered at 0 and with precision matrix Q which depends on the network
structure. Under row-wise normalization of the weights in W , and introducing a
spatial smoothing parameter α, this global prior can be expressed as:

φt ∼ NG
(
0, σ2 ·Q(α,W )−1

)
, ∀ t = 1, . . . , T, (5.11)

where Q(α,W ) = (D − αW ) and the matrix D is a diagonal matrix containing
the row sums of the weights of each region on the diagonal. This simply ensures
that the weights of each region are properly normalized over all its neighbours
(i.e. the row-wise normalization). The spatial smoothing parameter α regulates
the amount of spatial dependence: values close to 0 approximate independence (no
impact of W ) and values close to 1 strong spatial dependence (full impact of W ).
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This spatial CAR expression introduces of spatial dependence among random effects
belonging to connected regions at the same time-point. Nevertheless, we cannot
neglect the indisputable temporal correlation which characterizes such kind of data.
Following the original work by Rushworth et al. (2014), we induce such dependence
by imposing a temporal Auto-Regressive structure over the vectors {φt}Tt=1. This
yields a spatio-temporal CAR model (CAR-AR) whose only difference in this work
from the original version is that, instead of the mixed specification of Leroux et al.
(2000), we here consider the typical CAR of Besag (1974). In particular, we also
extend the original AR(1) formulation introduced in Rushworth et al. (2014) to order
J ≥ 1. The extended specification amounts to the following prior for the collection
of time-varying spatial vectors:

φt ∼ NG
(
0, σ2

0 ·Q(α,W )−1
)
, t = 1, . . . , J,

φt ∼ NG

 J∑
j=1

ρj · φt−j , σ2 ·Q(α,W )−1

 , t = J + 1, . . . , T,
(5.12)

where {ρj}Jj=1 is the set of coefficients governing the amount and direction of temporal
dependence at different lags. Such a complex AR structure may be very useful to
catch dependence and seasonality patterns at different temporal scales. For instance,
we may expect to observe a strong weekly seasonality at the daily level, which
may be well-captured by an AR(7) specification (potentially with some of the lower
order coefficients set to zero). Remark that AR(J) processes are stationary only
if the characteristic polynomial φ(z) = 1 −

∑J
j=1 ρjz

J−j has the reciprocal of its
roots {ηj}Jj=1 lying inside the unit circle. This property is desirable as it favors
the identification of all the considered space-time components. This is not easily
enforced for arbitrary values of J . A general prior choice in this sense is provided in
Huerta and West (1999), where the process is reparametrized in terms of ηj ’s and
other auxiliary latent components. Section 5.2.3 focuses on the analysis of weekly
data that do not show any cyclic behaviour. Therefore, we only expand on the case
J = 1, where stationarity is guaranteed by simply enforcing ρ1 = ρ ∈ (−1, 1). In the
time series literature the first J time points are usually ignored, and just conditioned
upon. Equation (5.12) makes a simplifying working assumption of independence
of the first J time points to obtain a marginal parameterization. This clearly is
irrelevant for the case J = 1, while in the other cases we recommend checking the
goodness of fit of the initial joint distribution, and maybe adjust the assumptions.
All the aforementioned hyperparameters are then ascribed standard hyperpriors,
commonly found in the literature:

α ∼ Be(0.5, 0.5) ρ ∼ Unif(−1, 1) σ2 ∼ IG (2, 2) ,

where the latter has been coded as σ2 = 1
τ2 with τ2 ∼ Ga (2, 2) (see Algorithm D.1

in Appendix D).

The logistic growth trend
In Section 5.2.2, we state that we want to model the general trend of COVID-19

counts (of positives) in a single outbreak by using the first differences of the Richards’
curve as in Alaimo Di Loro et al. (2021a). The first differences in Equation (5.9)
do not present an elegant expression and are slightly cumbersome to work with.
Since data are collected at equally spaced time intervals, we propose to linearly
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approximate λγ(t) with the derivative of the Richards’ curve, as follows:

λγ(t) ≈ λ̃γ(t) = d

dt
Λγ(t) ·∆t = b+ r · s · h · exp{h · (p− t)} · (1 + exp{h(p− t)})−(s+1) ,

(5.13)
where ∆t = 1. In our implementation, we initially considered both the exact and
the linearised version of Equation (5.9) and Equation (5.13), respectively. In the
final results, differences were negligible, but the latter provided improved numerical
stability and convergence of the chains. Thus, we decided to stick to this version,
which is also used to produce the final results included in Subsection 5.2.3.

The expression in Equation (5.10) implicitly considers a very highly parametrised
model, where each region is allowed its on vector of parameters {γg}Gg=1, hence its
own Richards’ curve, to drive the trend of the regional outbreaks. In the sequel, we
alternatively envision the existence of one common single Richards’ curve governing
the spread of the epidemic in all the Italian regions, which then deviate from this
global average as an effect of specific characteristics (observed or unobserved). This
is obtained as a particular case of the former, where γg = γ, ∀ g ∈ {1, . . . , G}.

There is an essential difference between these two specifications, especially in
terms of the role of the space-time random effects. The first one is a local model,
where the random effects represent temporal variations of the mean underlying each
regional counts-series from the region-specific trend. In the second case, they instead
represent the spatio-temporal deviations of each region’s means, at each time, from
the common curve. From a dependence interpretation standpoint, in the first case
we are assuming that if region g and region j are connected, when region g deviates
from its trend λγg

(·), then region j will likely have similar deviation from its own
trend λγj

(·) as well. In the second case, we are assuming that if region g and region
j are connected, when region g deviates from the general trend λγ(·), then region j
will also deviate from the general trend similarly.

Let us recall that the parameters {b, r, h, s} governing the differences of the
Richards’ curve are constrained on the positive domain R+. In order to favour the
elicitation of diffuse priors and the Bayesian estimation process, these have been
parametrised on the log-scale as {log(b), log(r), log(h), log(s)}. The first two have
been assigned a N (0, 100) prior, while the last two a N (0, 1) one. These correspond
to very vague priors on the log-scale, where the second are assigned a lower variance
given their double-exponentiated nature in Equation (5.13). One may argue that the
same prior specification for log(b) and log(r) does not reflect the natural intuition
about b being some order of magnitude lower than r. However, while this may seem
obvious in the case of COVID-19 pandemic waves, we here want to point out that
this is not necessarily true in general. For instance, in the case of an endemic disease,
we may observe a relatively high baseline (endemic rate) with only small seasonal
waves of infections that could be rapidly contained. However, we performed some
preliminary runs embedding such prior belief before proceeding to the final analysis
of Section 5.2.3. The results were indistinguishable to the ones obtained using vague
priors and therefore we opted for the latter in order to let the data drive the final
estimates. The parameter p, unlike the others, belongs to the whole real line R
and, more importantly, is not dimensionless. Its magnitude is indeed related to the
dimension of the analysed time window. It can be loosely interpreted as the lag-phase
of the outbreak (for s = 1 it represents precisely the point of maximum of the curve),
which is the point in time when the exponent h · (p − t) becomes negative. It is
not well-identified for varying s, and hence it has been given a N (T/2, T/(2 · 1.96))
prior to help it move inside the observed time interval (included in [0, T ] with 95%
probability).
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The linear predictor

The linear predictor x>gtβ describes the effect of covariates on the log-risks. Since
the dimension of the region is already accounted for in the offset term, such covariates
shall account for exogenous factors that affect the spread of the virus, or the ability
to detect the infected people in each area at different times. In practice, this term
shall represent all the meaningful observed heterogeneity between regions and within
regions over time.

For instance, the population density is a region-specific and constant over time
feature that can likely impact on the rate of infection. This covariate has been
considered in the recent work by Jalilian and Mateu (2021) and proved to be valid
for both explanation and prediction purposes. Another interesting variable to study
may be the number of daily swabs. Its inclusion accounts for the effort in detecting
positive cases carried out by a region at a specific time.

IfK covariates are considered, then the vector x>gt is associated to a (K×1) vector
of coefficients β. In our Bayesian machinery, this vector is assigned a multivariate
Normal prior with independent components NK (0, 100 · IK), which corresponds to
a fairly diffuse prior considering the log-linear link.

It is here important to highlight that we are not including the intercept in the
linear predictor. In the case of region-specific Richards’ curves, the intercept is
implicitly defined by the parameters bg and rg already, and its inclusion would
introduce a non identifiable parameter and jeopardize proper convergence of the
estimation algorithms. In the case of a common single Richards’ curve, one may
want to include region-specific intercepts {β0g}Gg=1. These would have the effect of
moving the whole region-specific curve up or down with respect to the global average,
again accounting for unobserved heterogeneity among regions. However, the goal is
to have this heterogeneity explained by the spatio-temporal random effects φgt: the
inclusion of such individual intercepts would add an unwanted player in the game
and make the interpretation of the final results intricate.

Estimation

Estimation has been carried out using Stan6, which is a probabilistic program-
ming language for statistical modelling and high-performance statistical computation
(Carpenter et al., 2017; Stan Development Team, 2021). It interacts with R and
can be called directly from RStudio (Allaire, 2012) through the rstan package
(Stan Development Team, 2020). Among its many capabilities, it allows to get
full Bayesian inference by drawing from the posterior density by a specific Markov
Chain Monte Carlo (MCMC) sampling method known as Hamiltonian Monte Carlo
(HMC, Betancourt (2017)). The HMC techniques provide an efficient sampling
scheme based on the simulation of Hamiltonian dynamics for approximating the
target distribution (Neal et al., 2011). Its functioning relies on the analogy between
the parameter value and the trajectory of a fictitious particle subject to a potential
energy field, preserving its total energy (the Hamiltonian), obtained as the sum of
potential and kinetic energy. In practical terms, given the chain’s current value and
the corresponding log-density, it picks the new value of the chain by proposing a
random shift in the log-density value and then moving arbitrarily far away from that
point along the corresponding contour line. The latter allows for fast and complete
exploration of the whole density that does not negatively affect the acceptance rate,
minimizing the risk of wasting time (or even getting stuck) in local high-density

6Webpage at https://mc-stan.org/

https://mc-stan.org/
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areas. Unlike the Metropolis-Hastings (Metropolis et al., 1953) or Gibbs sampler
(Geman and Geman, 1984), it provides robust performances and easily reaches
convergence even for very complex models, e.g.: posterior density characterized
by complex geometries, multi-layered hierarchical models with many parameters,
models depending on large sets of latent variables, etc. One of the advantages
of Stan is that it allows for an easy implementation of the No U-Turn Sampler
(NUTS, Hoffman et al. (2014)). NUTS proved to perform at least as efficiently as the
standard HMC but, generally, does not require any tuning of the hyperparameters
governing the proposals. Hence, it sensibly reduces the computational burden and
averts any user intervention or wasteful runs. Another advantage of the NUTS
algorithm is that situations in which the sampling cannot thoroughly explore the
whole posterior distribution are easily detectable. Indeed, when the approximation
of the Hamiltonian dynamic fails to reach specific areas without departing from the
original Hamiltonian value, the so-called divergent transitions arise. For more details
we refer to Betancourt (2016a). The Stan interface reports divergences as warnings
and provide ways to access which iterations encountered them. The bayesplot
package (Gabry et al., 2019) can be used to visualize them and locate the areas in
which the exploration failed. If no divergences occur, we can be confident that the
chain was able to explore the whole domain of interest of the log-posterior density.

After few warm-up iterations, during which the NUTS automatically adapts its
future behaviour to the shape of the posterior density, chain convergence and desirable
accuracy are usually reached even in few iterations (≈ 103). Nevertheless, doing
more iterations does not harm and longer chains lead to more robust result. When
the log-posterior density is computationally intensive to compute or the geometry
of the posterior is particularly complex, the approximation of the Hamiltonian
dynamics can be significantly slowed down and negatively impact on the total run-
time. For instance, for the model presented in Section 5.2.2, there are T spatial
vectors of random effects that contribute to the overall density. The evaluation of
the contribution of each of these requires the computation of the corresponding prior,
which in turn involves the computation of inverse and determinant of the G × G
matrix Q(α,W ). It is clear how the naive implementation of such a model is all but
efficient. Nevertheless, we can exploit two facts in order to ease computations. First,
the spatial covariance structure does not vary over time, especially along iterations;
this implies that we can compute the inverse and determinant only once in advance
without doing the same calculations repeatedly. Second, each region has only a few
neighbours, and the matrix Q(α,W ) is not full, paving the way for efficient algebraic
solutions. In practice, many efficient strategies can be adopted in order to alleviate
the computational burden by speeding up linear algebra operations. Here, we based
ours on the Exact-sparse CAR elaborated in Joseph (2016), which accrues significant
computational efficiency by more than halving the needed run-time7. The original
code has been slightly modified in order to include the temporal AR structure of our
spatio-temporal CAR. The core of the Stan program needed to update the CAR-AR
random effects is presented in Algorithm D.1 of Appendix D. The full codes to
reproduce the results presented in Section 5.2.3 are available in a public GitHub
repository accessible at https://github.com/minmar94/Covid19-Spatial.

https://github.com/minmar94/Covid19-Spatial
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Figure 5.13. Regional weekly time series for positives during the first (a) and second (b)
wave.

5.2.3 Application

We test and compare our proposals on the regional weekly positives time series
made available by CPD. We consider the time series of the weekly positives at the
regional (G = 20) level, for the first and the second wave of the epidemic. From
an epidemiological perspective, there is no strict definition for what is or is not an
epidemic wave (or phase). However, the scientific community agrees on the fact that
the word wave implies a natural pattern of peaks and valleys, suggesting that even
during a lull, future outbreaks of the disease are possible. Our proposal is able to
model only one epidemic wave at a time, since the Richards’ curve entails a single
peak time and height. The latter implies that the start and end date of each wave
must be set by the researcher. Albeit this is a drawback of our approach, it can be
easily seen through sensitivity analyses that results do not drastically depend on
this choice. We mention here the work by Bartolucci and Farcomeni (2021), which
can flexibly model more than one wave at a time, but at the price of not being able
to explicitly estimate important characteristics of each wave (e.g., peak time, onset
time, etc.). Similarly, Farcomeni et al. (2021) does not require to identify a time
frame for waves, but it is restricted to short term predictions.

In our application, we set the 24th of February 2020, as the start date of the
first wave, namely when systematic data recording started, while the 19th of July
2020 is set as the end date. That is the day in which discos and pubs were re-opened
after the lockdown period (a total of 22 weeks). For the second wave, the 20th of
July 2020 was set as the start date, while the 27th of December 2020 was set as the
end date (for a total of 24 weeks), which corresponds to the end of the last week
of the year and, more importantly, is the day the vaccine campaign began in all
Europe (a.k.a. V-day). The regional time series of the weekly positives for both
waves are reported in Figure 5.13a and Figure 5.13b, respectively. It can be seen
that the second wave had a slower onset (due to the seasonality of infections in early
Summer) but a much higher peak for most regions. That is not only due to a larger
number of infected with respect to the first wave (which has mostly hit only the
northern part of Italy) but also to the much larger proportion of identified cases.

7The computational gain is inversely proportional to the degree of the network defining neigh-
bourhoods
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We recall that we used the logarithm of the number of residents scaled by a
factor of 104 as an offset, essentially studying the number of positives per 10, 000
residents rather than crude incidence. This is necessary in order to be able to
compare different regions, which can have very different number of infected only due
to a very different number of residents. We also included the number of total weekly
swabs (standardised) as covariate, to take into account different contact tracing
efforts. The number of positive swabs can be assumed to be negatively associated to
the proportion of undetected cases, and is one of the official indicators of the World
Health Organization.

We also compared two different specifications for the adjacency matrix in the
CAR-AR model. The first matrix, which we refer to asW 1, specifies a neighbourhood
structure based on proximity flows and the availability of direct train, flights, and
ferry connections. This matrix has been also used in Della Rossa et al. (2020),
and can lead to distant regions to be neighbours because of, for instance, frequent
internal flight connections. The original matrix is a weighted measure of commuters’
flow and is not symmetric since exchanges may have different magnitudes in the two
directions. As a fast and viable solution to symmetrise the matrix in this application,
we decided to dichotomise it. We set w∗ij = 1 if there exists a positive flow in at
least one of the two directions. The second adjacency matrix, which we refer to as
W 2, is the most typically adopted network defined on regions’ mutual geographical
position. In our application, we considered a first-order structure, where only pairs
of regions sharing at least one land border are considered as neighbours.

The two different neighbourhood structures are shown in Figure 5.14a and
Figure 5.14b, respectively. In particular, we report the number of edges (connections)
and the (scaled) degree of each region. We notice that using W 1 we end up with 18
out of 20 regions that have at least one connection (Molise and Valle d’Aosta have
none), three of them having 12 neighbours (which is the mode), and where Sicilia is
the most connected area with 15 neighbours. On the other hand, using W 2 we end
up with seven regions that have 3 neighbours; two regions that have 6 neighbours,
while Sardegna, which is an island, has no connections. For Sicilia, which is also an
island, we selected Calabria as the only neighbour. The two regions are separated
by very few kilometres of sea (the Strait of Messina), with extremely frequent ferry
connections.

As a baseline model for comparison, we also considered the possibility of a
completely disconnected graph W 0 = [0]ij , ∀ i, j, hence assuming complete spatial
independence between regions. Nevertheless, being temporal dependence undeniably
present in the observed series, we always retain the temporal AR structure between
subsequent vectors φt−1,φt, t = 2, . . . , T . As a matter of fact, preliminary runs that
neglected this feature of the date produced way worse results (especially in terms of
out-of-sample performances) that will not be reported in the sequel.

For the sake of brevity, we will refer to the model ignoring spatial dependence
with the fully disconnected graph W 0 as M0, and as M1 and M2 to the models
including spatial dependence using W 1 and W 2 as adjacency matrices, respectively.
We considered these three dependence structures for the model with one common
Richards’ curve, which we name common, and the model with region-specific Richards’
curves, which we name regional.

For all models considered, we ran two separate chains for 10, 000 iterations,
allowing Stan to perform 5, 000 warm-up iterations each, which were discarded for
inferential purposes.

We computed several metrics in order to compare the goodness-of-fit and predic-
tive performance of the model’s alternatives. The large flexibility of the space-time
random effects specification easily makes the model fit the observed set of data



98 5. Modeling COVID-19 incident indicators

Degree 0.25 0.50 0.75 1.00

(a)

Degree 0.2 0.4 0.6 0.8 1.0

(b)

Figure 5.14. Network structure of the two adjacency matrices considered: W 1 (a) and
W 2 (b).

almost perfectly. This feature exposes the typical in-sample metrics to over-fitting,
flawing any sensible interpretation of the results, and would inevitably favour the
highly parametrized regional model. Therefore, we decided to avert the over-fitting
issues by artificially subtracting 15% randomly selected points from each region’s
time series. These are treated as missing data in the estimation process, and the
ability to reconstruct the missing pieces properly is then verified in terms of various
metrics: Coverage, Root Mean Squared Error (RMSE) and Predictive Interval Width
(PIW). Comparison of these three metrics for the three dependence structures, with
common and regional Richards, for the two waves, are presented in Table 5.6.

Common Regional
Wave Metric M0 M1 M2 M0 M1 M2

I
Coverage 0.98 0.98 0.98 0.96 1 0.96
PIW 1535 1178 1144 3311 846 1017
RMSE 423 184 272 399 331 314

II
Coverage 0.96 0.97 0.92 0.97 0.96 0.92
PIW 33393 4497 4046 16900 3131 3121
RMSE 12841 910 995 3669 1008 1038

Table 5.6. Out-of-sample predictive performances of our proposals with a common or
region-specific Richards’ curve in the first and the second wave.

We can clearly observe how the out-of-sample performances are comparable across
the common and regional specifications. The coverage is close (actually larger in
most cases) to the 95% nominal level in both cases, for all the dependence structures.
M1 and M2, under both the common and regional specification of the logistic trend,
show equivalent coverage and similar PIWs. However, the common specification
provides more accurate out-of-sample predictions in terms of RMSE, whenever the
random-effects account for the spatial dependence (M1 and M2). Therefore, given
the comparable out-of-sample performances and the more parsimonious specification
of the common model, we chose this one as the preferred option. All future results
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will then be referred to this specification.
Parameter estimates for the spatial (α) and temporal (ρ) auto-correlation, to-

gether with the swabs’ effect (β) are reported in Table 5.7. Here, we want to
first highlight that there is a clear evidence of strong dependence both spatial and
temporal, with values of ρ̂ > 0.8 in all models for both waves. It is instead notable
how the transport based graph detects low spatial dependence (α̂ ≈ 0.14) during the
first wave, and a large spatial dependence during the second wave (α̂ ≈ 0.93). This
change in the spatial correlation parameter between the first and the second wave for
M1, highlights the different type of non-pharmaceutical measures that were adopted
to contain the spread of the contagion and the estimated values are completely
reasonable, given the harder block to inter-regional movements that characterized
the first wave as compared to more liberal mobility policies that accompanied the
second one. On the contrary, the geographic vicinity effect is stable across the two
waves, probably capturing similarities between close regions that depend on shared
unobserved characteristics more than on people exchange.

The parameter β represents the effect of additional swabs on the number of
detected positives. Being the swabs variable standardized, this does not allow for
a trivial interpretation. However, we can observe a positive effect which was more
evident during the first wave than the second wave. This happens unsurprisingly,
since the testing efforts were not yet at full capacity during the first outbreak, with
many undetected cases, detected as soon as additional testing hubs were made
available.

Wave Param. M0 M1 M2

I
α – 0.14 (0.02, 0.21) 0.76 (0.71, 0.81)
ρ 0.89 (0.87, 0.91) 0.88 (0.90, 0.93) 0.86 (0.85, 0.89)
β 0.36 (0.26, 0.44) 0.34 (0.25, 0.42) 0.21 (0.14, 0.29)

II
α – 0.93 (0.92, 0.95) 0.87 (0.85, 0.90)
ρ 0.88 (0.86, 0.90) 0.87 (0.85, 0.89) 0.82 (0.80, 0.85)
β 0.42 (0.38, 0.46) 0.27 (0.24, 0.30) 0.13 (0.09, 0.16)

Table 5.7. Comparison of parameters’ estimates for the spatial (α) and temporal (ρ)
auto-correlation, and for the swabs’ effect in the first and the second wave.

Wave Model b r h p s

I
M0 0.05 (0.04, 0.06) 23 (20, 27) 0.62 (0.60, 0.64) 2.0 (1.5, 2.5) 7.8 (6.3, 9.9)
M1 0.06 (0.05, 0.07) 20 (17, 22) 0.62 (0.59, 0.65) 2.2 (1.7, 2.8) 7.9 (5.5, 9.3)
M2 0.05 (0.04, 0.06) 26 (21, 31) 0.61 (0.58, 0.65) 2.2 (1.5, 2.9) 7.8 (5.2, 9.3)

II
M0 7 · 10−5 (1 · 10−6, 1 · 10−3) 158 (143, 172) 3.46 (3.26, 3.63) 23.2 (23.1, 23.3) 0.06 (0.05,0.07)
M1 2 · 10−4 (3 · 10−5, 7 · 10−3) 178 (127, 215) 2.72 (2.33, 3.08) 22.9 (22.8, 23.2) 0.09 (0.07,0.10)
M2 4 · 10−4 (3 · 10−6, 1 · 10−2) 194 (163, 220) 3.50 (3.20, 3.70) 23.1 (22.9, 23.2) 0.06 (0.05, 0.07)

Table 5.8. Parameters’ estimates of the Richards’ curve for the first and the second wave.

Table 5.8 shows the estimated parameters of the common Richards in all settings.
We here recall that b represents the baseline (endemic rate), r the final size of the
outbreak (in terms of cases every 10, 000 residents), h the contagion speed, p the
lag-phase and s the asymmetry. We can clearly observe how the second wave is
characterized by a larger final outbreak size, a larger endemic rate and a longer
lag-phase (meaning the curve approximates exponential growth for a longer time
window) in all cases. Furthermore, while the first outbreak was characterized by
positive asymmetric behaviour (with a fast and sudden growth followed by a long
descending phase) the second wave presented a negative asymmetric evolution,
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probably because of the softer lockdown measures undertaken. Indeed, the positive
asymmetry characterising the first wave reflects the hard containment measures
implemented by the Italian government at the beginning of the epidemic (March
2020), which were gradually loosened. On the contrary, the second wave experienced
a negative asymmetry as the prevention policies were mild at the beginning of the
second outbreak (mid Summer 2020) and were suddenly strengthened following the
abrupt increase of positive cases in late November 2020.

Figure 5.15a-5.15c and Figure 5.16a-5.16c show the estimated common Richards’
curves (red solid line) by the proposed models with the associated uncertainty
(grey areas represent the 95% credible intervals) for the first and the second wave,
respectively. In Figure 5.15d-5.15f and Figure 5.16d-5.16f we instead report the
heatmaps of the estimated spatio-temporal effect for each model specification for
the first and the second wave, respectively. The estimated common Richards’ curve
and random effects during the first wave highlight how deviations from the global
average presented a strong geographic clustering effect, as the number of positive
cases increased from the South to the North of Italy. On the contrary, there is
relative homogeneity in the deviations of each region from the national epidemic at
each time point during the second wave. This means that all regions experienced a
similar epidemic trend in terms of shape but different in terms of relative magnitude.
Notably, some peculiar regional behaviours are highlighted very clearly. For example,
a sudden surge in the contagion between October and November 2020 experienced
by Trentino Alto Adige and Umbria. In general, we notice that a larger uncertainty
characterizes the common Richards’ estimated by M1 for the second wave compared
to the other two models. Considering that the PIWs (see Table 5.9) do not vary much
across the proposed dependence structures, this implies a stronger identification of
the random effects, i.e. less variability of the random effects. We can then assume
that this model provides a better description of the regional heterogeneity in the
data.
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Figure 5.15. Common Richards’ curve for the first wave for the different specifications of
the random effect (top panels); Posterior mean of the random-effect (bottom panels).
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Figure 5.16. Common Richards’ curve for the second wave for the different specifications
of the random effect (top panels); Posterior mean of the random-effect (bottom panels).

In order to fully compare the different dependence structures on the space-time
random effects for the common model, we also evaluated the overall fitting perfor-
mances in terms of two wide-scope indicators: the Watanabe-Akaike Information
Criterion (WAIC) (Watanabe, 2010), and the Leave-One-Out (LOO) score as in
Vehtari et al. (2017). These two metrics shall be considered as a proxy of the
out-of-sample prediction accuracy, but can be directly computed from the fitted
Bayesian model by retaining the log-likelihood values at the different steps of the
chain (Vehtari et al., 2017). Results of the estimated validation metrics for the three
models for both the first and the second wave are reported in Table 5.9. We notice
that results are comparable, with M1 performing slightly better in terms of RMSE,
WAIC and LOO for both waves, guaranteeing a greater or equal coverage in both
scenarios. Furthermore, comparing the in-sample and out-of-sample RMSE, we can
see how the independent M0 model strongly overfits on the training set. On the
other hand, limiting and driving the behaviour of the random effects through a
spatial structure (such as M0 and M1) strongly improves the predictive power of
the model and leads to way more reliable results. All things considered, M1 is then
chosen as the best dependence structure, also in light of the appealing interpretation
of the varying spatial dependence strength as expressed by α in the two waves (see
Table 5.7). Hence, the following results will be referred to this model.

Wave Model Coverage RMSE WAIC LOO

I
M0 0.98 (1) 423 (2.1) 2869 3087
M1 0.98 (1) 184 (2.3) 2650 2849
M2 0.98 (0.99) 272 (2.5) 2774 2982

II
M0 0.96 (0.99) 12841 (2.8) 4112 4393
M1 0.97 (0.99) 910 (4.6) 3820 4080
M2 0.92 (0.99) 995 (4.1) 3971 4252

Table 5.9. Validation metrics for the estimated models for the first and the second wave:
coverage and rmse out-of-sample (in-sample), WAIC and LOO.

Figures 5.17a-5.17b show the map of the temporal averages of the space time
effects of each region: φ̄g =

∑T
t=1 φ̂gt/T . These values can be interpreted as the

effect of the over-dispersion on the contagion’s spread due to the interactions with
the neighbourhood and the auto-regressive term. That allows to verify which regions
generally presented an infection rate larger than the national average along the two
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waves. As already pointed out, we can notice a stronger geographical clustering
during the first wave, which is even more evident looking at the maps than at the
heatmaps. Given the low value of the estimated α in the first wave, this effect
is not really linked to the superimposed networking structure, but is an inherent
characteristic of the data at regional level: the pandemic initially hit stronger the
North of Italy and only later slowly spread to the South. On the contrary, the
geographic clustering effect vanishes during the second wave and the coloring of the
map looks smoother. Regions similarity is actually explained by people exchange
and transportation between regions (larger value of α). It is crucial to notice that,
differently from what was often reported by the news in Italy, Lombardia did not
perform worse in terms of positive cases with respect to the the rest of the country
along the second wave (net of the tracking effort and regional offset). We added
the maps obtained using M2 for comparison in Figure D.1a and D.1b, and we only
report here that differences were negligible.
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Figure 5.17. Average estimated spatial random effect φ̄g by M1 for the first (a) and the
second (b) wave.

We argue that the chosen model is able to reconstruct the true evolution of
the incidence curve, also at missing points in the series. Some examples are in
Figure 5.18a-5.18h. The fit along all time points (in sample and out-of-sample)
are plotted together with the 95% posterior predictive intervals for four randomly
selected regions (Abruzzo, Emilia Romagna, Lombardia and Sicilia), for the first and
the second wave of the epidemic. We can clearly notice how the random effect allows
the model to capture the wiggly behaviour of the observed data, and how almost all
the observed data fall into the prediction intervals in spite of the large over-dispersion
of the observed counts. More importantly, the predictive intervals obviously widen
in correspondence of the missing observations, and practically always include the
true value, even when this deviates from a typical, expected behaviour (see again
Figures 5.18a-5.18h). Given the homogeneity assumptions for Richards’ curve for all
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regions, this must be mainly due to the dependence structure induced by M1. Figure
D.2 shows specifically the out-of-sample predictive performances, where values in
the test set are plotted on the log-scale. Appendix D also includes an evaluation
of the forecasting performances (i.e. prediction of future outcomes) of the model,
yielding results very coherent to the ones included in this section.
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Figure 5.18. Observed time series (red dots) and model fit (black solid) with 95% prediction
intervals (black dashed) for 4 randomly chosen regions in the first (top panels) and the
second wave (bottom panels).

5.2.4 Discussion and further developments
Modelling incident cases poses several issues, ranging from the discrete nature of

the observations to the dependence structure of the data across times and neigh-
bouring regions. The proposed generalised logistic growth curve accommodates
the main data features, and provides a satisfactory solution for data analysis and
prediction under a spatially heterogeneous framework. The proposal is applied to
Italian regional data, but it can be applied to data from any other country. Similarly,
if data were available at the province and/or municipality level, within-region spatial
dependence could be explored, promptly identifying clusters of positive cases.

The spatio-temporal dependence is modeled through the inclusion of region-
specific random effects. The inclusion of random effects relaxes the working assump-
tion used in Alaimo Di Loro et al. (2021a), where independence was assumed. Failure
of the independence-assumed model to fit the data could be due to misspecification
of any of the elements defining the linear predictor. Here, not all possible covariates,
such as population density or pollution exposure levels, were considered in model
specification. Their joint effect is, however, summarized by latent variables, i.e.
the random effects. On the one side, the additional computational burden can be
dealt with Stan within a Bayesian framework with minor efforts. On the other side,
the improvements in the goodness of fit and predictions are evident. As shown in
Section 5.2.3, the dependence network plays a crucial role and gives useful insights.
Here, we analysed two separate waves in Italy. During the first wave, strict restric-
tions were applied, strongly limiting mobility across the country, mainly allowing
for transportation routes only. As a result, the spread of the contagion was mostly
influenced by geographic proximity, with northern regions being more affected by
the epidemic than those in the Center and South of Italy. During summer, instead,
people took the chance of less restrictive travelling constraints and enjoyed the
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summer season having holidays far from their region of residence. This led to a
completely different spatial association. The country was not anymore divided into
three geographical macro-regions, but a more uniform development of the epidemic
was observed. Regions’ coloring Figure 5.17b reflects both the type of regional policy
in terms of screening and the type of non pharmaceutical measures taken. For
example, Calabria did not develop a consistent screening activity, and hence was
subject to more strict restrictions than other regions.

These results, together with the considerations about the data collection proce-
dures implemented in Italy and their impacts on data quality in Section 5.1, have
important consequences in terms of public health policies. In particular, they make
even more clear that the ability to monitor, predict and hence govern a pandemic is
directly linked to the availability of high quality data, fully harmonised at regional
level. Although in a country like Italy, with a high level of regional autonomy, the
data collection procedures are necessarily decentralised, the COVID-19 pandemic
has shown the need of an integrated system of health data collection, transmission,
storage and dissemination, which must be necessarily centralised in order to avoid
the heterogeneity, time misalignment and lack of quality which have characterised
the available data in this critical period, and have hampered the possibility to obtain
from the data the best possible information to support public decisions. Moreover, all
our results also point out that in a country with marked geographical, environmental,
social and economic regional differences, like Italy, the management of a pandemic
must be coordinated at national (and perhaps even at supranational) level, but
implemented through specific measures that take into account regional heterogeneity.
At the same time, inter-regional mobility should always be considered as crucial,
since it can jeopardise the effectiveness of restrictions imposed at regional level, as
shown by the different role played by the spatial component in the second wave
compared with the first wave in Italy.

The latent dependence structure consistently aids interpretation. However, it
may induce some bias in the predictions if the underling network is misspecified. To
avoid such bias, the network might be explicitly modeled, and estimated together
with all other parameters in the MCMC machinery. There are some examples of this
approach in the recent literature (Rushworth et al., 2017; Ejigu and Wencheko, 2020;
Corpas-Burgos and Martinez-Beneito, 2020), and it is a possible further development
for our model.

In the future we will also consider weighted spatial structures as in Della Rossa
et al. (2020), by specifyingW 1 as

(
W 1 +W>

1

)
/2. Indeed, using weighted adjacency

matrices may better reflect the underlying similarity among geographical units and
either boost or mitigate the neighborhood effect on the mean of each one of them.
However, this was not pursued in this paper in order to directly compare unweighted
versions of the two spatial graphs. We do not generally expect results to differ
extremely when applying the weighted matrix. However, we are aware that the
specification of the spatial weights matrix can both affect model fitting and parameter
estimation. More importantly, in a recent paper by Duncan et al. (2017), where 17
different specifications of W have been compared to perform spatial smoothing, the
model using binary, first-order adjacency weights proved to be an optimal choice for
achieving a good model fit. Another important extension would be the development
of a space-time model capable of capturing the entire evolution of an epidemic, fitting
all waves within the same model specification. That could be done by developing a
model based on a mixture of Richards’ curves, each capable of describing individual
epidemic waves. In particular, a change-point model, in the spirit of Girardi et al.
(2021), could be specified under our framework. The unknown change point, which
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could be in principle more than one, could be estimated along with all other model
parameters. The resulting model is a (constrained) finite mixture model that could
be implemented in future research, whose computational burden is not much different
from the one considered here. Similarly, assessing the effectiveness of the Italian
risk-zones policy during the different waves (Pelagatti and Maranzano, 2021) could
also be implemented under the proposed framework, providing further insights to
the decision-makers to govern the epidemic spread better. Eventually, to exploit
the general idea of dependence in both space and time, we may imagine defining
a space-time neighborhood structure linking neighboring regions at different time
points. In all mentioned developments, we have to remember that swabs play a
crucial role. Hence, we have to imagine a nested, hierarchical model structure where
a proper predictive model is added if the prediction of cases becomes a crucial
feature.

Further results (e.g. chain diagnostics) are available from the authors upon
request and we point again the reader to the public GitHub repository available at
https://github.com/minmar94/Covid19-Spatial.
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Chapter 6

Final discussion

“You can never know everything,
and part of what you know is always
wrong. Perhaps even the most
important part. A portion of
wisdom lies in knowing that. A
portion of courage lies in going on
anyway.”

Robert Jordan

This dissertation covered the estimation of Bayesian hierarchical models with
applications to phenomena in different domains. The presented solutions to each
specific problem stemmed from the need of providing a good compromise between
the interpretability of the results and the computational burden for prediction and
estimation purposes.

Chapter 1 served as an introduction to allow the reader into the view of Bayesian
hierarchical models as a comprehensive tool for model building and inference.

Chapter 2 focused on the model formulation and estimation under the Bayesian
framework. Firstly, the general equation of a Bayesian hierarchical model was
defined. Then, a brief introduction to the main MCMC estimation methods, among
which the Gibbs sampler, the Metropolis-Hastings algorithm and the Hamiltonian
Monte Carlo was provided. The goal was to introduce the basic ingredients for
the understanding of each methodological choice that has been undertaken in the
following applications.

Chapter 3 presented a Bayesian Beta regression model, including a variable
selection step, for the modeling of food losses percentages of cereals and derived
products at the country-commodity level, now published by Mingione et al. (2021b).
The proposed distributional framework already represented a substantial improve-
ment over the previous approaches. In addition, the scalability of the hierarchical
modeling structure easily allows for the application of the same model to other food
groups or at single steps of the supply chain, when more data will be available.
More importantly, although being computationally demanding, the proposed spike
and slab prior provides an interpretable measure of the importance of the variables
explaining food losses dynamics worldwide. This could be utterly helpful to support
decisions on interventions, investments and policy-making towards the achievement
of SDG 12.3. For further discussion on how countries can use the FLI as a suitable
tool for policy-making, the author points to Fabi and English (2019) and Koester
and Galaktionova (2021). We are currently working in collaboration with FAO on
the development of an interactive dashboard to inform the interested users on the
global state of Food Loss and Waste. We would like to provide useful summary
statistics at different levels of detail (e.g. country, SDG region, commodity, etc.),
and allow scenario building based on the model in Mingione et al. (2021b) to help
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decision-makers implementing timely prevention policies.
Chapter 4 included the fast estimation of Gaussian processes, when the de-

pendence among observations occurs in the temporal domain. The methodology
was applied to high-frequency sampled accelerometer data and it was used for the
estimation of physical activity trajectories at the individual level. Although not
directly modeled within the dependence structure, spatial effects were accounted
using spline regression. The disentanglement of the spatial and temporal effects ap-
pears successful, providing excellent results both in terms of predictive performances
and interpretability. The NNGP setting was profitably adapted to the univariate
case and a specific algorithm was implemented, improving on the computational
performances of the already existing tools.
The proposal is currently published as a preprint by Alaimo Di Loro et al. (2021b),
and represents a novelty in the context of human activity tracking in a free-living
environment, having the potential of being a game-changer for the new monitoring
technologies. Indeed, it provides a decently efficient and precise tool to impute gaps
and/or predict biometrical variables at unobserved time-points and locations. Low-
cost tracking devices (e.g. smartphone apps) already present these issues and can
suddenly benefit from such modeling tool. Future work on this topic would consider
the inclusion of spatial varying covariates (e.g. normalized difference vegetation
index (NDVI), distance from parks, elevation, etc.) which could likely affect physical
activity levels of individuals in open spaces. The consideration of alternatives ways of
including spatial dependence is of no less importance. In this first modeling attempt,
we settled for spatial regression using splines, however spatio-temporal Gaussian
processes (Datta et al., 2016a) can be exploited to model the latent component.
Even more specific solutions could be envisioned by including dependence among
trajectories (points near in space may belong to completely different paths and be
distant in time) via convolved Gaussian processes (Alvarez and Lawrence, 2011).
Eventually, we are currently working on a stable version of the collapsed algorithm
to make available an R package for the estimation of NNGP models to actigraph
data.

Chapter 5 described a growth model for the epidemiological incident cases using
the Richards’ curve. The methodology is published by Alaimo Di Loro et al. (2021a),
and was firstly applied to COVID-19 incident cases (e.g. daily positives and daily
deceased) at both the national and regional level during the Italian first epidemic
wave. Although results were promising, and predictions proved to be trustworthy
also for the second wave, the proposal presented two main limitations: (i) regions
were assumed to be independent among each other; (ii) likelihood-based inference
produced unstable results due to the complex parametrization of the mean term.
Hence, we extended the proposed model to the Bayesian setting and included a latent
component to deal with the spatial dependence among geographical units using a
CAR prior. An efficient implementation of such model was provided to hasten the
computational time, exploiting the sparsity of the adjacency matrix driving the
spatial dependence. The proposal is published by Mingione et al. (2021a), and was
applied to Italian regional weekly positive COVID-19 cases during the first and the
second wave of the epidemic. Results were improved with respect to the previous
approach, and several features of the epidemic wave, such as peak time and height,
could be properly detected. Nevertheless, both the modeling proposals depend on
the suitable choice of epidemic waves’ time windows, and therefore can be applied to
each one of them separately. In this respect, we are working on an extension of the
model presented in Section 5.2 which is capable of capturing the entire evolution of
an epidemic, considering all waves within the same model specification by means of
a mixture of Richards’ curves.
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In general, all the results point out that in a country like Italy, with marked
geographical, environmental, social and economic regional differences, the manage-
ment of a pandemic must be coordinated at national level, but implemented through
specific measures that take into account regional heterogeneity. This lesson can be
summarised in the motto “centralize information, localize decisions”, which should
be taken seriously by decision-makers when dealing with the current COVID-19
pandemic, and to prepare for future, unwelcome, but not unlikely pandemics.

Summing up, all the proposed applications showed that the statistician has be-
come altogether sufficiently knowledgeable in many subject matter to keep pace with
the technological enhancements in several fields and the broad range of applications
for which his/her skills may be required. By means of hierarchical modeling, the
presented solutions proved to be reliable and provided a – partial but – accurate
explanation of the phenomenon under consideration. The adoption of a Bayesian ap-
proach always helped the model formulation, and allowed for a proper quantification
of the uncertainty surrounding the quantities of interest for each of the proposed
applications. This was consistently highlighted in commenting the results, which
were validated with common sense and public awareness of science. However, there
are still open research questions and lot of potential for further developments, as
pointed out in each specific discussion at the end of the previous chapters. In doing
so, the good statistician must always keep in mind that doing statistics is like doing
crosswords, except that he/she can never know for sure whether he/she found the
solution.
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Appendix A

Measuring and modeling food losses

A.1 Explanatory variables

Variable Source Description
Lead World Bank Pink Sheets prices, annual average (nominal)
Coal World Bank Pink Sheets ”

Copper World Bank Pink Sheets ”
Nickel World Bank Pink Sheets ”

Crude Oil World Bank Pink Sheets ”
Crude Petrol World Bank Pink Sheets ”
Aluminium World Bank Pink Sheets ”

Zinc World Bank Pink Sheets ”
Platinum World Bank Pink Sheets ”
Silver World Bank Pink Sheets ”
Gold World Bank Pink Sheets ”
Iron World Bank Pink Sheets ”
Tin World Bank Pink Sheets ”

Potash World Bank Pink Sheets ”
Urea World Bank Pink Sheets ”

Phosrock World Bank Pink Sheets ”
TSP World Bank Pink Sheets ”
DAP World Bank Pink Sheets ”
Gas World Bank Pink Sheets ”

Natural Gas International Energy Agency ”
Heat International Energy Agency ”

Geothermal International Energy Agency ”
Oil International Energy Agency ”

Oil Product International Energy Agency ”
Biofuels International Energy Agency ”

Electricity International Energy Agency ”
Credit to Agriculture FAOSTAT /
Net Capital Stocks FAOSTAT /

Gross Fixed Capital Formation FAOSTAT /
Gross Capital Stocks FAOSTAT /

Consumption Fixed Capital FAOSTAT /
Spending on Agriculture IFPRI Share of agricultural GDP

Logistic Performance Index World Bank Composite indicator evaluating trade logistics
Rainfall World Bank Yearly average in mm

Temperature World Bank Yearly average in Celsius

Table A.1. Explanatory variables, their source and a brief description. Each variable is
coloured with respect to its category: building materials (red), energy prices (green),
fertilizers (brown), economic factors (grey), transportation and logistics (blue), weather
(orange).
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A.2 Dimensional reduction of the design matrix

(a) (b)

Figure A.1. Path diagram representation of PCA, showing variables associated to the 2nd
component (a) and the third component (b).

A.3 Model implementation using JAGS

1 model {
2 # Likelihood
3 for(i in 1:n){
4 Y[i] ∼ dbeta ( alpha [i], delta [i])
5 alpha [i] ← mu[i] * phi
6 delta [i] ← (1-mu[i]) * phi
7 logLik [i] ← ( alpha [i] -1)*log(Y[i]) + ( delta [i] -1)*log (1-Y[i])
8 logit (mu[i]) ← zbetaYear [CTRY[i]]* Year[i] + inprod (X[i,], zbeta []) +
9 etacoucomm [CC[i]]

10 }
11 # Priors country - commodity
12 for(k in 1: neff){
13 etacoucomm [k]∼dnorm (0, tau)
14 }
15 # Prior for tau
16 tau ∼ dgamma (4, 0.1)
17 # Prior for phi
18 phi ∼ dunif (5 ,150)
19 ### SPIKE AND SLAB ###
20 # Prior for beta and gamma
21 for(ctry in 1: nctry ){
22 ppYear [ctry] ∼ dbeta (5 ,5)
23 gammaYear [ctry] ∼ dbern ( ppYear [ctry ])
24 betaYear [ctry] ∼ dnorm (0 ,0 .001)
25 zbetaYear [ctry] = betaYear [ctry ]* gammaYear [ctry]
26 }
27 for(j in 1:p){
28 beta[j] ∼ dnorm (0 ,0 .001)
29 pp[j] ∼ dbeta (5 ,5)
30 gamma [j] ∼ dbern (pp[j])
31 zbeta [j] = beta[j]* gamma [j]
32 }
33 ### HORSESHOE ###
34 # Prior for beta and gamma
35 # for(ctry in 1: nctry ){
36 # shrinkYear [ctry] ∼ dt (0 ,1 ,1)T(0 ,)
37 # betaYear [ctry] ∼ dnorm (0, 1/( shrinkYear [ctry ]* global ))
38 #}
39 # for(j in 1:p){
40 # shrink [j] ∼ dt (0 ,1 ,1)T(0 ,)
41 # beta[j] ∼ dnorm (0, 1/( shrink [j]* global ))
42 #}
43 # Prior for global shrinkage
44 # global ∼ dt (0 ,1 ,1)T(0 ,)
45 }

Algorithm A.1. Example code for food losses estimation using JAGS.
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1 model {
2 # Train
3 for(i in 1: ntrain ){
4 Ytrain [i] ∼ dbeta ( alphatrain [i], deltatrain [i])
5 alphatrain [i] ← mutrain [i] * phi
6 deltatrain [i] ← (1- mutrain [i]) * phi
7 logit ( mutrain [i]) ← betaYear [ CTRYtrain [i]]* Yeartrain [i] +
8 inprod ( Xtrain [i,], beta []) +
9 etacoucomm [ CCtrain [i]]

10 }
11 # Prediction - test
12 for(i in 1: ntest ){
13 Ytest [i] ∼ dbeta ( alphatest [i], deltatest [i])
14 alphatest [i] ← mutest [i] * phi
15 deltatest [i] ← (1- mutest [i]) * phi
16 logit ( mutest [i]) ← betaYear [ CTRYtest [i]]* Yeartest [i] +
17 inprod ( Xtest [i,], beta []) +
18 etacoucomm [ CCtest [i]]
19 }
20 for(k in 1: neff){
21 etacoucomm [k]∼dnorm (0, tau)
22 }
23 # Prior for tau
24 tau ∼ dgamma (4, 0.1)
25 # Prior for phi
26 phi ∼ dunif (5 ,150)
27 ### SPIKE AND SLAB ###
28 # Prior for beta and gamma
29 for(ctry in 1: nctry ){
30 betaYear [ctry] ∼ dnorm (0 ,0 .001)
31 }
32 for(j in 1:p){
33 beta[j] ∼ dnorm (0 ,0 .001)
34 }
35 ### HORSESHOE ###
36 # Prior for beta and gamma
37 # for(ctry in 1: nctry ){
38 # betaYear [ctry] ∼ dnorm (0, 0.001)
39 #}
40 #for(j in 1:p){
41 # shrink [j] ∼ dt (0 ,1 ,1)T(0 ,)
42 # beta[j] ∼ dnorm (0, 1/( shrink [j]* global ))
43 #}
44 # Prior for global shrinkage
45 # global ∼ dt (0 ,1 ,1)T(0 ,)
46 }

Algorithm A.2. Example code for food losses prediction using JAGS.

A.4 Further results

Model Variable γ̂ q.025 Mean q.975

Biofuels 1 0.345 0.449 0.558
M1 SpendingOnAgri 1 -0.231 -0.190 -0.149

Comp.2 1 0.136 0.178 0.219
Comp.3 0.56 0.037 0.081 0.125
Biofuels 0.332 0.439 0.547

SpendingOnAgri -0.224 -0.180 -0.136
M2 Comp.2 0.132 0.173 0.213

Comp.3 0.035 0.078 0.120
Temperature -0.0617 -0.021 -0.005

Table A.2. Selected variables with the two different priors and 95% posterior credibility
intervals of the β∗k .
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(a) (b)

(c) (d)

Figure A.2. Traceplot and posterior density of the estimated variance components by M1:
variance of the random effects τ2 (a) (c) and variance of the outcome φ (b) (d).

(a) (b) (c)

(d) (e) (f)

Figure A.3. Traceplot and posterior density of the estimated variance components by M2:
global shrinkage parameter η2 (a) (c), variance of the random effects τ2 (b) (d) and
variance of the outcome φ (c) (e).
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Country-crop random effects

(a)

(b)

Figure A.4. M1 and M2 random effects point estimates and 95% credible intervals for
each cereal commodity (a) and (b).
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(c)

(d)

Figure A.4. M1 and M2 random effects point estimates and 95% credible intervals for
each cereal commodity (a) and (b).

Figure A.5. Comparison of model predictions obtained using old losses data in FAOSTAT
and the current stored values.
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Appendix B

Bayesian hierarchical modeling and anal-
ysis for physical activity trajectories us-
ing actigraph data

We carried out two additional experiments to test the reliability of our algorithm
and verify comparative performances with the Sequential NNGP as it is implemented
in the spNNGP package (Finley et al., 2017). We did not consider the Response
NNGP because it does not recover the latent component. The first one is described
in Section B.1 and includes simulated observations for one single individual; the
second one includes simulated observations for multiple individuals and is described
in Section B.2. Codes to reproduce the following results and additional comparative
analyses of NNGP versus the full GP model are available at https://github.com/
minmar94/EfficientTNNGPforActigraph.

B.1 Experiment 1

We generated observations {y(tj)}>j=1 for K = 1 individual, using T = 105

time-points, where each ti =
∑i−1
h=1 δh, and δh ∼ Exp(5), ∀h. The model included an

intercept β0 and 3 covariates, x1, x2 and x3 all drawn from N (0, 1), with associated
slopes β1, β2 and β3. We modeled the covariance structure between any two
simulations at time-points t and t′ using the exponential covariance function:

Covθ
[
Y (t), Y (t′)

]
= cθ(t, t′) = σ2e(φ|t−t′|), σ2, φ ∈ R+, (B.1)

where σ2 represents the variance of the process (sill), φ is the decay in temporal
correlation (range) and τ2 the residual variance (nugget). In this data generation
step the parameters have been set to the following values: β0 = −1.878, β1 = 0.326,
β2 = −0.302, β3 = 1.182, σ2 = φ = τ2 = 1. A chunk of the simulated trajectory and
its density can be observed as an example in Figures B.1a and B.1b, respectively.

We fitted the model on the simulated data using our Collapsed NNGP implemen-
tation, specifically optimized for the temporal setting, while fitting the Sequential
NNGP using the spNNGP package. The latter, while generally used for fitting spatial
(i.e. two-dimensionals) models, can be adapted to the temporal (uni-dimensional)
case by providing a set of locations where t is one of the coordinates and the other is
fixed to a constant value (e.g. {s̃j}>j=1 = {(tj , 0)}>j=1). In our implementation, the
intercept and slope regression parameters were given a vague normal prior distribu-
tion N (0, 106). The variance components, σ2 and τ2, were both assigned an inverse
Gamma prior IG(2, 2), and the decay parameter φ was ascribed a G(1, 1). On the
other hand, the spNNGP assumes a flat prior on the intercept and slope coefficients
and a uniforma U(a, b) prior on the decay parameter φ. In this experiment we

https://github.com/minmar94/EfficientTNNGPforActigraph
https://github.com/minmar94/EfficientTNNGPforActigraph
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Figure B.1. Simulated uni-dimensional Gaussian process (a) and its density (b).

Param. (True) Collapsed NNGP Sequential NNGP
Point Interval ESS Point Interval ESS

β0 (−1.88) -1.87 (-1.89, -1.85) 4999 -1.87 (-1.89, -1.85) 57
β1 (0.33) 0.33 (0.32, 0.34) 4999 0.33 (0.32, 0.34) 1285
β2 (−0.30) -0.30 (-0.31, -0.29) 4999 -0.30 (-0.31, -0.3) 1365
β3 (1.18) 1.18 (1.17, 1.19) 4999 1.18 (1.17, 1.19) 1342
σ2 (1) 1.00 (0.97, 1.03) 472 1.00 (0.97, 1.03) 294
φ (1) 0.99 (0.95, 1.04) 496 0.99 (0.95, 1.04) 65
τ2 (1) 1.01 (0.99, 1.03) 457 1.01 (0.99, 1.03) 165
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.95 0.99 0.96 0.99
RMSPE (r) 0.39 (1.19) 0.20 (0.85) 0.39 (1.19) 0.20 (0.85)
PIW 4.68 4.46 4.78 4.47
Run time (h) 1.77 1.86

Table B.1. Parameter estimates, predictive validation and fitting times (hours) on the
simulated dataset for all the considered models.

fixed a = 0.5 and b = 30. All the models were trained on the same random sample
composed of the 70% of the total observations, while the the remaining 30% have
been excluded to assess the out-of-sample predictive performances in terms Relative
Mean Squared Prediction Error (RMSPE), Root Mean Squared Prediction Error
(rMSPE), Coverage, Predictive Interval Width (PIW). We ran the 10000 MCMC
iterations, fixing the number of neighbours m = 10. The first 5000 simulations have
been dropped as burn-in, while the last 5000 have been retained for estimation and
prediction purposes. No thinning has been considered. Results are summarized in
Table B.1. The two approaches provide identical outputs, both in terms of estimation
and prediction. However, our implementation is faster than its competitor (at least
in the context of the temporal setting) and provides way better performances in
terms of Effective Sample Size (ESS).

Computation time evaluation

In order to delve more into the computational aspect, we quantified the linearity
of all the algorithms: by construction, the fitting time should increase linearly with
the sample size. We split observations in l = 1, . . . , 5 different fitting windows
{t1, . . . , tTl

} with increasing sizes Tl = {{2l}6l=0 ∪ {100}} × 103 and the computation
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T × 103 Algorithm Min q025 Median Mean q975 Max

1 Collapsed 0.01 0.01 0.02 0.02 0.03 0.03
Sequential 0.12 0.12 0.13 0.14 0.18 0.18

2 Collapsed 0.03 0.03 0.03 0.04 0.06 0.07
Sequential 0.25 0.25 0.26 0.27 0.31 0.34

4 Collapsed 0.06 0.06 0.07 0.09 0.16 0.16
Sequential 0.50 0.50 0.52 0.64 1.21 1.21

8 Collapsed 0.13 0.14 0.30 0.26 0.32 0.41
Sequential 1.01 1.01 2.34 1.99 2.41 2.56

16 Collapsed 0.27 0.28 0.60 0.46 0.63 0.64
Sequential 2.02 2.02 4.65 3.46 4.75 4.77

32 Collapsed 0.55 0.56 1.23 1.17 1.28 1.37
Sequential 4.08 4.09 9.40 8.87 9.59 10.16

64 Collapsed 1.01 1.03 2.46 1.90 2.79 2.85
Sequential 2.51 7.49 18.71 14.43 20.13 20.69

100 Collapsed 1.60 1.61 1.67 1.68 1.87 1.99
Sequential 11.68 11.74 11.93 12.01 12.80 13.87

Table B.2. Time (in seconds) of one MCMC iteration for the two considered algorithms
with increasing sample size (T) and fixed m = 30.

time of one sampler iteration, fixing m = 30 for all the considered algorithms has
been recorded for M̃ = 100 times. Figure B.2 shows that all algorithms scale linearly
with the sample size. However, our implementation of the collapsed NNGP, whilst
pointed out as generally less efficient than its competitors in Finley et al. (2019),
scales with a rate of ≈ 0.376 · 10−4 per data-point, while the Sequential NNGP scale
with a rate equal to ≈ 4.5736 · 10−4, which is sensibly higher. For an exact numerical
analysis, results are reported in Table B.2.
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Figure B.2. Time elapsed (in seconds) for 1 MCMC iteration for the two considered
algorithms with increasing sample size T and fixed m = 30.
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Figure B.3. Time elapsed (in seconds) for 1 MCMC iteration for the Collapsed NNGP
and the Full GP with increasing sample size T.

Additionally, we wanted to quantify the computational advantage of the proposed
NNGP-based collapsed algorithm over the standard MCMC update of the full GP
model (Cressie, 2015), where the latter is already implemented in R through spLM()
function of the spBayes package (Finley et al., 2013). Since Datta et al. (2016a)
proved that the NNGP approximation with 30 neighbours provides almost exactly the
same inference of the full GP, we fixed m = 30 and built again different sets of data
with increasing number of data-points, but this times with Tl = 100, 1000, 5000, 10000
(sizes have been reduced to comply with the slow update of the Full GP). Results,
which are summarized in Figure B.3, showed that for Tl = 100 the computational
time difference between the full GP and the collapsed NNGP is negligible. However,
as the size increases, the saving of time increases exponentially: 15 seconds (per
iteration) when n = 5000, 122 seconds per iteration when n = 10000. For the last
scenario, which is the more realistic in a MCMC inference context, this means that
the collapsed NNGP will provide us with the same results 14 days in advance with
respect to the Full GP model.

B.2 Experiment 2

The aim of this experiment is to verify the ability of our algorithm in recovering
the true parameters and to determine if pooling information from multiple individuals
can help in improving the accuracy of the estimates. Comparison with the Sequential
NNGP is not feasible, since it does not allow the contemporary fitting of multiple
Gaussian processes with common parameters. Thus, we compare performances of
the Pooled NNGP (that’s how we will refer to the proposed collapsed in what follows)
with the single models estimated separately for each individual.

We generated 2 · 104 observations for K = 5 individuals, using the same scheme
of Experiment 1 (total of 105 data-points). Results are presented in Table B.3. The
model also included 3 covariates and an intercept for each individual drawn from
independent N(0, 1). Observations were then generated as described in Section
B.1. The simulated data was split into two sets: 70% composed the train set for
estimation purposes, while the remaining 30% was used to asses model predictive
performances. RMSPE, coverage of the predictive 95% credible intervals and their
mean width were used as measures of the goodness of fit. For all the models, the
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intercept and slope regression parameters were given a flat normal prior distribution
N (0, 106). The variance components, σ2 and τ2, were both assigned an inverse
Gamma IG(2, 2) priors, and the decay parameter φ received a Gamma prior G(1, 1).
The advantage of pooling information from multiple individuals for the estimation
of common parameters, while the independence assumption among them still holds,
is evident according to all criteria. First of all, there is a sensible gain in the
estimation accuracy of the common parameters. Indeed, while the true value of
the parameters are included in the intervals also considering one single individual
at a time, the widths of 95% credible intervals are sensibly smaller when we pool
information together. Furthermore, some slight advantage is also visible for prediction
purposes, where the Pooled NNGP provides larger coverage and smaller RMSPE.
Additionally, thanks to parallelization of the code, there is almost no loss in terms of
the computational time required for the fitting: ≈ 40 minutes to fit one individual
VS ≈ 55 minutes to fit the pooled model.
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Appendix C

Nowcasting COVID-19 incidence indi-
cators during the Italian first outbreak

C.1 Gradients

In order to make the optimization procedure robust, gradients and Hessians
used for the estimation (optimization routine on the log-likelihood) have been
computed analytically. This section provides insights about their derivation for
the log-likelihoods at hand. For the sake of clarity, in the sequel, we will invert
the previous notation and denote the functions of interest as functions of the
parameters, given the observed time points: e.g. µ̃θ(t) becomes µ̃t(θ). We first
provide the computations for the gradient of the log-likelihood for both Poisson
and Negative Binomial distributions by considering their mean function µ̃t(θ) as
a whole. Afterwards, we show the gradients and introduce the Hessians specific to
λ̃t(γ), as it is the most cumbersome component of the mean to derive with respect
to its parameters.

Poisson Gradient
Let q denote any of the elements of θ, vector of parameters characterizing the

mean function µ̃t(θ). The generic derivative with respect to the component q of θ
for the Poisson log-likelihood Poi(µ̃t(θ)) is:

∂

∂q
lPoi(γ|y) = −

T∑
t=1

∂

∂q
µ̃t(θ) +

T∑
t=1

yt
∂

∂q
log(µ̃t(θ)) =

= −
T∑
t=1

∂

∂q
µ̃t(θ) +

T∑
t=1

yt
1

µ̃t(θ)
∂

∂q
µ̃t(θ).

(C.1)

Negative Binomial Gradient
The Negative Binomial NB (ν, µt(θ)) presents the additional parameter ν, which

does not affect the mean function but controls for the dispersion. In the following,
we provide the first derivative with respect to ν and with respect to the generic
element q of θ, respectively.

The first derivative with respect to ν of the log-likelihood is:

∂

∂ν
lNB(ν,θ|y) = T (log(ν)− ψ(ν))+

+
T∑
t=1

(
ψ(ν + yt)− log (µt(θ) + ν) + µt(θ)− yt

µt(θ) + ν

) (C.2)
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where ψ(·) denotes the digamma function. The generic derivative with respect to q
of the log-likelihood is:

∂

∂q
lNB(ν,γ|y) =−

T∑
t=1

yt + ν

µ̃t(θ) + ν

∂

∂q
µ̃t(θ) +

T∑
t=1

yt
µ̃t(θ)

∂

∂q
µ̃t(θ). (C.3)

Richards’ Gradient
Derivation of the gradient µ̃t(θ) can be obtained by deriving separately (but

appropriately) each of the pieces composing it. Computations are straightforward
for all components, but for the Richards’ first differences parameters, which can in
turn be divided as:

∂

∂γi
λ̃t(γ) = ∂

∂γi
λt(γ)− ∂

∂γi
λt−1(γ)

The Richards’ function gradient is composed of the following four terms:

∇λt(γ) =
[
∂

∂r
λt(γ), ∂

∂h
λt(γ), ∂

∂p
λt(γ), ∂

∂s
λt(γ)

]>
which can be computed as follows.

∂

∂r
λt(r) = ∂

∂r

(
b+ r

(1 + 10h(p−t))s

)
= 1

(1 + 10h(p−t))s
,

∂

∂h
λt(h) = ∂

∂h

(
b+ r

(1 + 10h(p−t))s

)
=

= −r · s · (1 + 10h(p−t))−s−110h(p−t)(p− t) log(10),

∂

∂p
λt(p) = ∂

∂p

(
b+ r

(1 + 10h(p−t))s

)
=

= −r · s · (1 + 10h(p−t))−s−110h(p−t)h log(10),

∂

∂s
λt(s) = ∂

∂s

(
b+ r

(1 + 10h(p−t))s

)
=

= −r ·
(
1 + 10h(p−t)

)−s
log

(
1 + 10h(p−t)

)
Log-scale

In the R implementation, the log-likelihood has been parametrized on the log-scale
for all the parameters defined on R+ in order to ease the optimization process under
the positivity constraint. This means that given q ∈ {b, r, p, s}, the log-likelihood
uses log(q) = v, where q = ev. This implies that, when we differentiate, we have to
take into account the Jacobian as a result of the transformation:

∂

∂v
λt(γ) = ∂

∂ev
λt(γ)∂e

v

∂v
= ∂

∂ev
λt(γ) · ev = ∂

∂q
λt(γ) · q. (C.4)

Therefore, each derivative must be multiplied by ev = q.
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C.2 Hessians

Hessians used for the estimation procedure of the model (optimization routine on
the log-likelihood) have been computed analytically. In the sequel, we first provide
the Hessian for the log-likelihod of Poisson and Negative Binomial by considering
λt(γ) as a whole.

Poisson Hessian
Let q and f denote any pair of the parameters characterizing the mean function

µ̃t(θ).
The mixed second derivative with respect to the components q and f of θ for

the Poisson log-likelihood is:

∂2

∂xf
lPoi(θ|y) =

T∑
t=1

yt − µ̃t(θ)
µ̃t(θ)

∂2

∂qf
µ̃t(θ)−

T∑
t=1

yt
µ̃t(θ)2

∂

∂q
µ̃t(θ) ∂

∂f
µ̃t(θ).

The second derivative with respect to the components q for the Poisson log-
likelihood is:

∂2

∂q2 lPoi(θ|y) =
T∑
t=1

yt − µ̃t(θ)
µ̃t(θ)

∂2

∂q2 µ̃t(θ)−
T∑
t=1

yt
µ̃t(θ)2

(
∂

∂q
µ̃t(θ)

)2
.

Negative Binomial Hessian
Let q and f denote any pair of the parameters characterizing the mean function

µt(θ).
The mixed second derivative with respect to q and f of the Negative Binomial

log-likelihood is:

∂2

∂xf
lNB(θ|y) =

T∑
t=1

(
yt + ν

(µt(θ) + ν)2 −
yt

µt(θ)2

)
∂

∂q
µ̃t(θ) ∂

∂f
µ̃t(θ) +

+
T∑
t=1

(
yt

µ̃t(θ) −
yt + ν

µ̃t(θ) + ν

)
∂2

∂qf
µ̃t(θ).

The second derivative with respect to q of the Negative Binomial log-likelihood
is:

∂2

∂q2 lNB(θ|y) =
T∑
t=1

(
yt + ν

(µ̃t(θ) + ν)2 −
yt

µ̃t(θ)2

)(
∂

∂q
µ̃t(θ)

)2
+

+
T∑
t=1

(
yt

µ̃t(θ) −
yt + ν

µ̃t(θ) + ν

)
∂2

∂q2 µ̃t(θ).

In the Negative Binomial case, we must recall the presence of the additional
parameter ν. The second derivative with respect to ν of the Negative Binomial
log-likelihood is:

∂2

∂ν2 lNB(θ|y) = T

(1
ν
− ψ′(ν)

)
+ +

T∑
t=1

(
ψ′(ν + yt)−

1
µ̃t(θ) + ν

− µ̃t(θ)− yt
(µ̃t(θ) + ν)2

)
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where ψ(·) and ψ′(·) denote the digamma and the trigamma function, respectively.
The mixed derivative with respect to ν and the generic element q of γ is:

∂2

∂νq
lNB(γ|y) =

T∑
t=1

yt − µ̃t(θ)
(µ̃t(θ) + ν)2

∂

∂q
µ̃t(θ)

Richards’ Hessian
As for the gradient, the same holds for the Hessian of the first differences of the

Richards function, which would be only one interesting computation to show. Also
here:

∂2

∂γiγj
λ̃t(γ) = ∂2

∂γiγj
λt(γ)− ∂2

∂γiγj
λt−1(γ)

In particular, the resulting Hessian is a 4× 4 matrix such that:

[H (λt(γ))]ij = ∂2

∂γiγj
λt(γ), i, j ∈ {1, . . . , 4} .

Computations are straightforward for most of the terms, but the final result counts
10 terms (the Hessian matrix is symmetric) and some of those terms are cumbersome
to report. Therefore, we won’t include these here. The reader, if interested, is invited
to contact the authors for further details on their detailed computation.

Log-scale

In the R implementation, the log-likelihood has been parametrized on the log-scale
for all the parameters defined on R+ in order to ease the optimization process under
the positivity constraint. This means that given two generic elements, say q and f ,
of the parameters’ vector γ, the log-likelihood uses log(q) = v and log(f) = u, where
q = ev and f = eu. The Jacobian inclusion has two implications on the Hessian.
When computing the mixed derivative, we need to account for the transformation of
both terms (if both are on the log scale):

∂2

∂v∂u
λt(γ) = ∂

∂v

(
∂

∂u
λt(γ)

)
= ∂

∂v

(
∂

∂eu
λt(γ)∂e

u

∂u

)
=

= ∂

∂v

(
∂

∂eu
λt(γ) · eu

)
= ∂

∂ev

(
∂

∂eu
λt(γ) · eu

)
∂ev

∂v
=

= ∂

∂ev

(
∂

∂eu
λt(γ) · eu

)
· ev = ∂

∂q

∂

∂s
λt(γ) · q · f.

(C.5)

Therefore, each mixed derivative ∂2

∂xsλt(γ) must be multiplied by both ev = q and
eu = f . When computing the second derivative for v, we need to recall that the first
derivative contains the Jacobian, so:

∂2

∂v
λt(γ) = ∂

∂v

(
∂

∂v
λt(γ)

)
= ∂

∂ev

(
∂

∂ev
λt(γ) · ev

)
· ev =

=
(
∂

∂ev
∂

∂ev
λt(γ) · ev + ∂

∂ev
λt(γ) · ∂

∂ev
ev
)
· ev =

=
(
∂

∂q

∂

∂q
λt(γ) · q + ∂

∂q
λt(γ) · ∂

∂q
q

)
· q =

= ∂2

∂q2λt(γ) · q2 + ∂

∂q
λt(γ) · q.

(C.6)
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C.3 Model on daily deceased

The same analysis carried out for the daily positives has been conducted on the
daily deceased. Comparisons in terms of goodness of fit measures are reported for both
models in Table C.1. The best model in terms of all the goodness of fit scores (AIC,
AICc and BIC) is the model with baseline. The resulting estimated parameters θ̂
and the respective intervals are shown in Table C.2, where the baseline α is estimated
to be α̂ = 3.3 (sensibly larger than 0). Hence, in the considered time horizon, we
expect the endemic fatality rate to be of ≈ 3 deaths per day. The final outbreak size
r is estimated to be ≈ 35, 810, an amount that would have been reached in ≈ 10, 851
days at the endemic fatality rate. As for the daily positives, the parameters h, p, s
and ν do not have an easily quantifiable and absolute interpretation, but are useful
for comparisons.

Table C.1. Log-likelihood, AIC, BIC and AICc for the model without baseline and the
model with baseline on daily deceased.

Index Model without baseline Model with baseline
log-likelihood −735.8 −732.5
AIC 1461.6 1452.9
AICc 1471.2 1464.4
BIC 1446.7 1435.1

Table C.2. Parameters’ points estimates and 95% confidence intervals for the model with
baseline on daily deceased.

Parameter Point estimate 95% Interval
α 3.3 (1.97, 5.54)
r 35.73× 103 (35.34× 103, 36.11× 103)
h 0.0247 (0.0244, 0.0249)
p −50.50 (−52.07,−48.93)
s 171.58 (130.33, 201.83)
ν 12.36 (11.73, 13.02)

We can then obtain point predictions {ŷt}Tt=1 and prediction intervals
{

(ŷlt; ŷut )
}T
t=1

through the parametric bootstrap procedure described in the Main Text. Figure
C.1 shows the fit on the whole available time series of counts: the former on the
daily series, the latter on the cumulative one. Also in the case of the deceased
the estimated curve does catch the observed general behavior. The same metrics
are used to evaluate the fitting performances, which correspond to an R2 = 0.90
and a coverage Cov95% = 0.95. Also here, we performed a diagnostic check on
both the Pearson and the Deviance residuals. The plots in Figure C.2 show the
Deviance residuals behavior: histogram (a), including the p-value from the Shapiro
test; Normal qq-plot (b); auto-correlation plot (c); plot of the residuals vs. fitted
values (d).
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Figure C.3. Deviance residuals distribution aggregated by day of the week for daily
deceased.
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Figure C.1. Observed (black dots) and fitted values (grey solid lines) with 95% confidence
intervals (grey dashed lines) for model with baseline on daily deceased.
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Figure C.2. Deviance residuals for the model with baseline on daily deceased.
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Weekly seasonality
As in the case of daily positives, the diagnostic check on the residuals for the

daily deceased highlights a slight week seasonality pattern for the auto-correlations.
In addition, also the residual Normality hypothesis is rejected. Potentially, the
inclusion of a week-day effect may solve both problems. In order to decide what set
of week-days to group together, we visualize the residuals’ distribution aggregated by
week (see Figure C.3). The pattern is not as evident as in the case of daily positives,
but we can still detect some undesirable overestimation on Mondays and Sundays.

Table C.3. Log-likelihood, AIC, BIC and AICc for the models with baseline including
additive or multiplicative week-day effect on daily deceased.

Index Additive effect Multiplicative effect
log-likelihood −725.77 −725.30
AIC 1437.78 1436.61
AICc 1450.97 1449.81
BIC 1416.90 1415.73

Table C.4. Intercept β0 and week-day effect βwd point estimates and 95% confidence
intervals for the additive model with baseline on daily deceased.

Parameter Point estimate 95% Interval
β0 1.85 (1.73, 1.98)
βwd −510.36 (−573.84,−446.88)
r 35.81× 103 (33.58× 103, 38.19× 103)
h 0.0251 (0.0246, 0.0255)
p −58.88 (−63.52,−54.22)
s 297.24 (199.12, 390.36)
ν 13.58 (10.01, 18.41)

Therefore, on the line of the previous application, we decide to include a di-
chotomous week-day fixed effect on the pair Sunday-Monday. As before, this effect
may be included either in an additive or a multiplicative fashion and, again, we
may pick the version that achieves the best AIC, AICc and BIC scores. However,
as shown in Table C.3, differences in these scores are almost negligible and choice
based on such a small improvement would not be robust. Therefore, we checked the
Pearson residuals for both alternatives and we selected the additive model because
of the improved residuals behavior (Normality is accepted, autocorrelation at lag
7 is reduced). The resulting fit is shown in Figure C.4 where: on the left, we can
observe the fitted curve and the 95% confidence intervals; on the right, we can
observe the cumulative fit. Estimated parameters are shown in Table C.4, where
the Sunday-Monday effect is estimated to have a strong reducing effect on the daily
baseline rate of ≈ −510 on the log-scale, i.e. exp {−510} ≈ 0, which shrinks to 0
the baseline on Mondays and Sundays. The estimates of the outbreak size r̂ and of
the infection rate ĥ of the two models are in agreement, while the point estimates
of the asymmetry parameter ŝ are different but both large and mutually included
in the corresponding 95% intervals. This is reasonable since we would not expect
the outbreak size, rate and symmetry to vary wildly after accounting for week-day
heterogeneity. On the other hand, the new estimate p̂ of p detects a longer lag-phase
and hence a slightly slower approach to the descending phase. Finally, the estimate



130
C. Nowcasting COVID-19 incidence indicators during the Italian first

outbreak

of the dispersion parameter ν̂ is slightly larger than in the model without covariates,
denoting less over-dispersion with respect to the equi-variance hypothesis. This
is completely reasonable since the week-day effect is able to explain some of the
previously unaccounted heterogeneity. The inclusion of the Sunday-Monday effect
allows for an increase of the R2 to 0.91, whilst keeping the coverage Cov95% steady
at 0.95. The diagnostic check shown in Figure C.5 shows how Residual Normality is
now accepted and the previously evident correlation pattern is slightly reduced.
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Figure C.4. Observed (black dots) and fitted values (grey solid lines) with 95% confidence
intervals (grey dashed lines) for model with baseline and week-day additive effect,
estimated on the daily deceased.

p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7p−value Norm. Test = 0.7

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
Deviance residuals

D
en

si
ty

(a)

−3

−2

−1

0

1

2

3

−2 −1 0 1 2
theoretical

sa
m

pl
e

(b)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
lag

ac
f

(c)

−2

−1

0

1

2

3

0 200 400 600 800
Fitted values

D
ev

ia
nc

e 
re

si
du

al
s

(d)

Figure C.5. Deviance residuals for the model with baseline and week-day additive effect
on daily deceased.
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C.3.1 Prediction of future cases and of the peak date
Validation performances on the daily deceased are analogous to the ones on daily

positives. As in the main text, also here we highlight how the peak is accurately
predicted with a shorter delay and generally smaller uncertainty for the daily deceased
than for the daily positives. This is probably related to the more regular behavior of
the series, due to a likely more homogeneous collection process of the records.
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Figure C.6. RMSPE for daily deceased at different steps-ahead.
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Figure C.7. Estimation of the date of the peak for daily deceased at different steps-before.
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C. Nowcasting COVID-19 incidence indicators during the Italian first

outbreak

C.4 Regional daily positives
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Figure C.8. Observed (black dots) and fitted values (grey solid lines) with 95% confidence
intervals (grey dashed lines) for model with baseline and week-day additive effect,
estimated on the daily positives at the regional level.
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Figure C.9. Observed (black dots) and fitted values (grey solid lines) with 95% confidence
intervals (grey dashed lines) for model with baseline and week-day additive effect,
estimated on the daily deceased at the regional level.





135

Appendix D

Spatio-temporal modelling of
COVID-19 incident cases using Richards’
curve

D.1 Exact-sparse CAR algorithm

1 functions {
2 // Sparse computation of the log - posterior contribution of the single

spatial vector phi_t (phi) given the previous value phi_{t -1} (
phi_old )

3 real sparse_carar_lpdf ( vector phi , vector phiOld , real rho , real tau ,
real alpha ,

4 int [,] W_sparse , vector W_weight , vector D_sparse , vector lambda , int n,
int W_n) {

5 row_vector [n] phit_D ;
6 row_vector [n] phit_W ;
7 vector [n] ldet_terms ;
8 vector [n] phiNew = phi -rho* phiOld ;
9 phit_D = ( phiNew .* D_sparse );

10 phit_W = rep_row_vector (0, n);
11 for (i in 1: W_n) {
12 phit_W [ W_sparse [i, 1]] = phit_W [ W_sparse [i, 1]] + W_weight [i]*

phiNew [ W_sparse [i, 2]];
13 phit_W [ W_sparse [i, 2]] = phit_W [ W_sparse [i, 2]] + W_weight [i]*

phiNew [ W_sparse [i, 1]];
14 }
15 for (i in 1:n) ldet_terms [i] = log1m ( alpha * lambda [i]);
16 return 0.5*( n*log(tau) + sum( ldet_terms ) - tau *( phit_D * phiNew - alpha *(

phit_W * phiNew )));
17 }
18 }
19 data {
20 int < lower =0> nTimes ; // Number of times
21 int < lower =0> nReg; // Number of regions
22 int W_n; // Number of adjacent region pairs
23 int W_sparse [W_n , 2]; // adjacency pairs
24 vector [W_n] W_weight ; // Connection weights
25 vector [Nreg] D_sparse ; // diagonal of D
26 vector [Nreg] lambda ; // eigenvalues of invsqrtD * W * invsqrtD
27 }
28 parameters {
29 vector [Nreg] phi[ Ntimes ];
30 real < lower =0, upper =1> alpha ;
31 real < lower =-1, upper =1> rho;
32 }
33 model {
34 alpha ~ beta (0.5 , 0.5);
35 phi [1] ~ sparse_carar (zeros , rho , tau , alpha ,
36 W_sparse , W_weight , D_sparse , lambda , Nreg , W_n);
37 for (i in 2: Ntimes ){
38 phi[i] ~ sparse_carar (phi[i -1] , rho , tau , alpha ,
39 W_sparse , W_weight , D_sparse , lambda , Nreg , W_n);
40 }
41 }

Algorithm D.1. Core of the Stan code for the sparse implementation of the spatio-temporal
CAR-AR.
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D.2 Estimated average spatial random effects
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Figure D.1. Average estimated spatial random effect φ̄g by M2 for the first (a) and the
second (b) wave.

D.3 Posterior distribution of out-of-sample predictions
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Figure D.2. Observed points (red) and simulated predictions (boxplots) for the first (a)
and the second wave (b) test sets.
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D.4 Forecasting performances

As pointed out by an anonymous referee, during the COVID-19 pandemic the
objective of authorities and researchers was to predict the future incidence. Hence,
it would be interesting to see which of the proposed models performs “better" when
that is the objective in mind. We would like to remark that this model has been
originally conceived as an explanatory tool, not as a forecasting tool. That is why
the prediction performances have been assessed on values occurring within the waves
in the main text. This conceptual limitation depends on a number of factors, listed
here below.

1. The expression of the mean depends on the number of weekly swabs, which is
not known in advance at future times. In order to provide valid and accurate
forecasts (together with the corresponding uncertainty) the number of weekly
swabs and positives shall be modeled jointly. This is something worth of
exploration in the future.

2. The model includes a complex and highly parametrized spatio-temporal struc-
ture. Hence, it likely need a relative large number of time-points to estimate
its components without introducing bias.

3. The main focus on the paper is on identifying the most informative spatial
structure in the observed data. In principle, spatial dependence is much more
helpful when predicting the counts of some regions at some time t, when other
regions’ counts at the same time are available. On the contrary, the impact of
spatial dependence can rapidly fade when considering future outcomes, where
temporal dependence shall dominate the process behavior (unless suitable
space-time neighboring structure are considered). In any case, when there is
no information from other regions at the same time, the spatial dependence
shall propagate through time and its effect is inevitably diminished week after
week.

All things considered, we still believe the proposed model may provide reasonable
predictions up to 15 days (2 weeks) ahead, as for all our other works on this topic
(please see Farcomeni et al. (2021) and Alaimo Di Loro et al. (2021a)). Hence,
in this section, we show predictions at one- and two-weeks ahead, comparing the
different specifications of W . We only did this for the common Richards’: the best
model, as discussed in Subsection 5.2.3. Issue 1 is overcome by assuming constant
tracing effort: the weekly number of swabs used to predict the positive cases for
the weeks ahead is assumed to be the same as the previous (in sample) week. This
is a very strong (and possibly wrong) working assumption, which is particularly
ill-suited for the first wave when the tracing was improving its capabilities week after
week. Therefore, forecasts shall be interpreted only in relative terms as a comparison
between the three dependence structures and not in absolute terms. The prediction
experiment was developed as follows.

First wave. We estimate four examples building training sets up to April
12-19-26 and May 03, 2020. We predict the following first and second week
count in each case.

Second wave. We estimate four examples building training sets up to Novem-
ber 22-29 and December 06-13, 2020. We predict the following first and second
week count in each case.
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Figure D.3. Density and traceplot of a predicted value.

Week(s) ahead
Wave Model 1 2

I
M0 244 (47) 259 (54)
M1 242 (46) 256 (53)
M2 267 (49) 282 (45)

II
M0 1670 (728) 2544 (1522)
M1 1388 (496) 2189 (1005)
M2 1749 (825) 2578 (1543)

Table D.1. Average (Median) RMSPE for each model specification for the first and the
second wave at different steps ahead.

Figure D.3 shows an example of posterior predictive distribution. Notice how this
is strongly skewed, hence we also considered posterior medians as point estimates
for the forecasts.

Performances are evaluated in terms of root mean square predictive error (RM-
SPE), whose distribution by wave, window, and dependence structure can be observed
in Figure D.4. The errors are ultimately averaged over the various regions and fitting
windows, keeping 1-week and 2-weeks ahead as separate objects, and the resulting
estimates are reported in Table D.1.

Eventually, what is found in terms of fit quality in the original application is also
confirmed for these forecasts. Along the first wave, there is no clear dominance of
one dependence structure over the others: apparently, the most of the information
is carried by the temporal process. Instead, along the second wave, the transport
flows dependence structure provides clearly better forecasts than all its competitors.
Note that the two-weeks-ahead prediction error is uniformly larger than the one-
week-ahead as expected, for both waves and for each specification of W .

Some examples of the point forecasts, together with the corresponding uncertainty,
are shown in Figure D.5.
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Figure D.4. Prediction error (on the log scale) at different steps ahead, for each specification
of W and for each wave.
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Figure D.5. Observed time series: black dots are in-sample, grey dots are out-of-sample.
Predicted values (red dots) with 95% prediction intervals (red dashed) for 2 randomly
chosen regions in the first (top panels) and the second wave (bottom panels).
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