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Abstract

Starting from a two-dimensional theory of magneto-elasticity for fiber-reinforced magnetic
elastomers we carry out a rigorous dimension reduction to derive a rod model that de-
scribes a thin magneto-elastic strip undergoing planar deformations. The main features
of the theory are the following: a magneto-elastic interaction energy that manifests itself
through a distributed torque; a penalization term that prevent local interpenetration of
matter; a regularization that depends on the second gradient of the deformation and mod-
els microstructure-induced size effects. As an application, we study a problem involving
magnetically-induced buckling and we show that the intensity of the field at the onset of the
instability increases if the length of the rod is decreased. Finally, we assess the accuracy of the
deduced model by performing numerical simulations where we compare the two-dimensional
and the one-dimensional theory in some special cases and we observe excellent agreement.

Keywords: Magnetic actuation, Non-simple materials, Distributed torques, Variational
convergence, Size effects.

1. Introduction

Magnetorheological elastomers (MREs) represent a class of soft composites in which
magnetic fillers are embedded into a soft polymeric matrix. The combined use of a compliant
matrix and rigid particles make MREs mechanically sensitive to applied magnetic fields and
allows for their static and dynamic shape programming as well as reconfiguration capabilities,
which have been exploited in a number of engineering applications [38]. These functionalities
are particularly appealing when the overall dimensions of the actuators are at the millimeter
scale, or even smaller, since at those scales, magnetic fields can be specified not only in
magnitude, but also in direction and spatial gradients, enlarging the class of achievable
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shapes [27]. Over the past decades, many applications have been proposed to exploit MREs
as gripping tools [40], manipulators [39], micro-swimmers [24, 5] or in biomimetic applications
[19, 21].

A key step of the manufacturing process is the “curing” process that creates long-chain
polymers connected by cross–links responsible for the elastic nature and recovery charac-
teristics of the finished material. In addition, since curing is usually carried out under a
magnetic field, the magnetic particles align themselves and form chain-like microstructures
which make the finished material transversely isotropic [7]. The presence of these aligned
chains produce an actuation mechanism in the form of distributed torques which yields bet-
ter steering and navigational capabilities at much smaller scales, and differentiate them from
previously developed continuum robots [31, 34].

To account for this actuation mechanism, several models were proposed in the literature.
The theory of bulk magneto–elasticity was studied in the 1950s with the pioneering works
of Brown [3], Truesdell, Toupin and Tiersten [35] and later formulated in the context of
large strain elasticity by Dorfmann and Ogden [16] and Kankanala and Triantafyllidis [25].
The advantage of structural theories with magnetic forcing terms lies in their analytical
tractability which allows, for instance, to study closed form solution for buckling and post-
buckling regimes as well as inverse problems related to shape optimization [9, 18, 27, 32].

Recent works have shown the feasibility of the so-called fiber-reinforced magnetic elas-
tomers. These materials are obtained by replacing the standard spherical fillers with carbon
fibers coated with nickel [6, 34]. The accurate control of the fiber orientation during the pro-
duction process of the elastomer could have a significant effect on the roughness properties
of the surface and potentially lead to new engineering applications including dampers and
actuators. A continuum model for this new type of magnetic elastomers has been developed
in [7].

In this paper we use as starting point the model proposed in [7] to construct, through a
rigorous deduction, a one–dimensional model for magneto-elastic nanorods. Being interested
in actuators undergoing planar deformations, we consider the special case of plane elasticity.
Moreover, in order to account for the internal length scale brought about by the embedded
fibers we include a regularization that depends on the second gradient of the deformation
(see the energy functional E defined in (3) in Section 2). This additional term accounts for
the microstructure related size effects which become significant when the specimen is very
small [30, 33], and provides an alternative to non-local approaches based on integral-type
formulations. By incorporating size effects, the resulting continuum theory is able to match
the results of molecular dynamics simulations [17, 28]. Thanks to this regularization we
are able to apply the direct method of the calculus of variations to prove the existence of a
minimizer for the equilibrium problem for a body of general shape in a fairly wide class of
loading environments. We then focus our attention on a model problem featuring a rod-like
body having the shape of strip of constant length and vanishing thickness, clamped on one
side and free at the other. Using techniques mutuated from Γ-convergence, we prove that the
solutions of the equilibrium problem converge to the minimizers of an energy functional (see
(34) of Section 4.2) whose arguments are two vector fields defined on the axis of the strip.
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These field describe placement, rotation, and stretch of the typical cross section of the rod.
We derive the equations that govern the equilibrium of the rod, we perform a linearization,
and we apply them to the problem of the buckling of a rod induced by a magnetic field,
which we deal with through a semi-analytical approach to show how the presence of the
internal scale induces a size-dependent effect. Finally, in order to assess the aforementioned
convergence of solutions, we offer a numerical comparison between the two-dimensional and
the one-dimensional theories.

The structure of the paper is as follows. In Sect. 2 the main modeling assumptions
are introduced and the magneto–elastic energy of the composite material presented. The
existence of minimizers of the energy is proved in Sect. 3, whereas the reduced order energy,
obtained by Γ-convergence, is deduced in Sect. 4. The equations governing the motion of
a clamped-free magneto–elastic rod are discussed in Sect. 5, whereas their linearization is
presented in Sect. 6, and applied in Sect. 7 to determine the size-dependence of the critical
field that induces magneto-elastic buckling. Finally in Sect. 8 the instability of the magnetic
rod in a cantilever configuration is studied and the corresponding buckling load derived either
numerically and analytically.

2. The magneto-elastic energy

We use the standard notation for Lebesgue, Sobolev, and Hölder spaces (see for example
[20]). We consider a domain Ω ⊂ R2 representing the reference configuration of the magneto-
elastic body. We assume that the possible configurations of the body take place in the plane
R2, and we represent each configuration through a deformation y : Ω→ R2.

The orientation of the magnetic fibers in the reference configuration is described by a
vector field a : Ω→ R2 such that |a| = 1. These fibers confer to the material both mechanical
and magnetic anisotropy. As to the mechanical response, we describe it by a strain-energy
density of the form

W (x, F ) = We(F, a(x)⊗ a(x)), (1)

where F = ∇y is the deformation gradient, We : R2×2 × R2×2 → (−∞; +∞] is a continuous
isotropic function such that We(·, A) is frame indifferent for every A ∈ R2×2. Thus, given any
F ∈ R2×2 and any A ∈ R2×2, we have W (QTFQ,QTAQ) = We(F,A) (isotropic response)
and W (QTF,A) = We(F,A) (frame indifference) for every rotation matrix Q. It is worth
pointing out that while the first argument of We is subjected to the requirement of frame
indifference, the second argument is a material parameter, fixed once and for all.

We denote by h : R2 → R2 the applied magnetic field permeating the entire space and we
model the interaction between the body and the applied field through the following energy
density, i.e., Zeeman energy, M : Ω× R2 × R2×2 → R

M(x, y, F ) = −M(x)h(y) · Fa(x)

|Fa(x)|
, (2)

where M : Ω→ R represents the magnitude of the permanent magnetization. For a detailed
derivation of (2) the interested reader is referred to [7]. The main assumptions underlying

3



(2) are: (i) the material is composed of a dilute suspension of particles magnetically and
elastically anisotropic according to the average direction a at each material point, (ii) be-
ing dilute, the interaction between particles can be neglected, (iii) the spatial variation of
the externally applied magnetic field can be neglected at the particle scale, meaning that
the resulting magnetization within the particles is uniform. These assumptions have been
experimentally verified in a number of papers [34, 27, 24].

Finally, to model the size effects due to the presence of the magnetic fibers, we add a gra-
dient energy density proportional to the Lp norm of the second gradient of the deformation,
with p > 2. Summing up, we have the following regularized energy:

E(y) =

∫
Ω

W (x,∇y) + M(x, y,∇y) + µ`p|∇2y|pdx1dx2, (3)

where µ and ` are, respectively, a characteristic energy density, e.g., shear modulus, and a
characteristic length. Materials whose stored-energy depends on the gradient of the defor-
mation F are examples of “non-simple materials”. The higher-order term incorporates scale
effects in the mechanical properties which are usually relevant in micro– and nano–structures
(see for instance [19, 17]). As we shall see below, the presence of the second gradients of the
deformation bring about additional regularity, as well as compactness of the set of admissible
deformations in a topology stronger than the weak W 1,p topology, which is usually adopted
in the approach to existence of solutions through the direct method.

3. Existence of minimizers

3.1. The admissible set.

Let p > 2 be fixed. In the foregoing developments the following admissible sets play an
important role:

Ac(Ω) =


y ∈ W 2,p

(
Ω,R2

)
such that

y(x) = x on Γ,

‖y‖W 2,p(Ω;R2) +

∫
Ω

1

| det∇y|q
dx1dx2 ≤ c,

det∇y(x) > 0 for a.e. x ∈ Ω,∫
Ω

det∇y dx1dx2 ≤ meas(y(Ω))


. (4)

Here c > 0 is a constant, Γ ⊂ ∂Ω is a part of the boundary having positive length, where
the clamping condition y(x) = x is enforced, and q is an exponent satisfying the inequality

q ≥ 2p

p− 2
. (5)

Before proceeding further, we would like to comment on some properties of the admissible
sets.
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Smoothness. The first important property of the admissible set Ac(Ω) is that each of its
elements admits a continuous representative. Morrey’s inequality [20], a fundamental result
from the theory of function spaces, asserts that if a real-valued function u belongs to the
Sobolev space W 1,p(U) with U ⊂ Rn a Lipschitz domain and with exponent p greater than
the dimension n of the domain, then u is Hölder continuous with exponent α = 1 − n/p.
In particular, u is continuous up to the boundary of U . Thus, the equivalence class of u in
W 1,p(U) has a continuous representative, whose values make sense pointwise in the closure
of U . When this result is applied to the present case to the matrix-valued function F = ∇y
where y ∈ Ac(Ω), we have F ∈ C0,1−2/p(Ω;R2×2). This implies the continuity of detF on Ω.
For this reason, in the definition (4), the qualification of detF as a positive function holds
in a pointwise sense.

Local and global invertibility. Since ∇y is continuous, by the inverse-function theorem the
condition that det∇y > 0 implies that y is locally invertible at all points of Ω. As is well
known, local invertibility does not guarantee the global invertibility of the deformation y.
As an example, consider a thin rod which is initially straight, and then is bent so that its
ends superpose. To obtain global invertibility of the elements of Ac(Ω), we have imposed
the condition

∫
Ω

det∇y ≤ meas(y(Ω)), which was introduced by Ciarlet and Nečas in [10] to
ensure injectivity of the deformation. In fact, as one can easily see, this condition is violated
whenever distant parts of the body undergo a superposition on a set of positive measure.
This inequality improved on a previous result by Ball which stated that a deformation which
is locally invertible is also globally invertible if it is invertible at the boundary. One of
the original reasons why the condition appeared first as an inequality is that the set of
deformations that satisfy the Ciarlet and Nečas condition is weakly closed in W 1,p(Ω;R2),
which is desirable if, when applying the direct method, one deals with weakly convergent
sequences. In the present case, the reverse inequality

∫
Ω

det∇y ≥ meas(y(Ω)) holds as a
consequence of the change-of-variables formula.

Uniformly strictly positive determinant. A key property of the admissible sets is summarized
in the following result.

Proposition 1 (Local invertibility, T.J. Healey and S. Krömer [22]). Let c > 0 be such that
Ac(Ω) 6= ∅. Then there exists ε = ε(c, p, q) > 0 such that

y ∈ Ac(Ω)⇒ det ∇y ≥ ε on Ω. (6)

Besides [22], a proof of Theorem 1 can be found in [26, Theorem 2.5.3]. We point out
that a key role in the proof is played by the fact that, according to the definition of Ac(Ω)
in (4),

y ∈ Ac(Ω) ⇒
∫

Ω

1

| det∇y|q
dx1dx2 < c.

With this fact in mind, Theorem 1 follows through the application of the next lemma, which
slightly generalizes [22, Thm. 3.1].
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Lemma 1. Let n ≥ 1 and U be bounded Lipschitz domain in Rn. Let f be a function in
C0,α(U) such that f > 0 a.e. in U and

‖f‖C0,α(U) ≤ K,

∫
U

1

|f |q
dx1dx2 ≤ K,

for some K > 0 and q ≥ n/α. Then

f ≥ ε̂(U, α,K, q) > 0 in U,

where the constant ε̂ depends on the domain U and on the constants α, K, and q, and is
independent on the particular function f .

Proof. Assume that the statement of the lemma is false and that there is x ∈ Ū such that
f(x) = 0. Assume first that x ∈ U . We have that

|f(x)− f(y)| ≤ C|x− y|α

for every y ∈ Ū . In other words, |f(y)|q ≤ C|x − y|αq because f(x) = 0. Consequently,
taking B(x, r) ⊂ U

K ≥
∫
U

1

|f(y)|q
dy ≥

∫
B(x,r)

1

|f(y)|q
dy

≥
∫
B(x,r)

1

Cqrαq
dy = Cmeas(B(0, 1))rn−αq .

If qα > n the last term tends to infinity for r → 0 which gives the contradiction. If qα = n
then we have that ∫

B(x,r)

1

|f(y)|q
dy ≥ Cmeas(B(0, 1))

for every B(x, r) ⊂ U and this contradict uniform integrability of 1
|f |q . If x ∈ ∂U then

we proceed similarly taking into account that the Lipschitz property of U implies that
meas(B(x, r) ∩ U) ≥ Crn for some C > 0. We invite the interested reader to show that
ε does not depend on a particular f .

To see how Lemma 1 applies to prove Theorem 1, we use Morrey’s inequality, applied to
∇y, to obtain the implication

y ∈ Ac(Ω) ⇒ ∇y ∈ C0,1−2/p(Ω;R2×2) . (7)

Since F 7→ detF is a separately convex function complying (in dimension 2) with the
bound | detF | ≤ |F |2, we can apply [12, Prop. 2.32] to obtain

| detF (x1)− detF (x2)| ≤ C(1 + |F (x1)|+ |F (x2)|)|F (x1)− F (x2)|, for all x1, x2 ∈ Ω,

which implies Hölder continuity of det∇y and Lemma 1 applies with f = det∇y.
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Remark 1. When reading the statement of Lemma 1 one may wonder why the exponent
q should be greater than n/α and why the domain Ω is required to have the cone property.
Concerning the exponent, suppose that f vanishes at a point x0 ∈ U , then the bound on its
C0,α norm would limit the growth |f | in a sufficiently small neighborhood of x0; as a result,
the singularity of 1/|f |q at x0 would not be integrable for q > n/α. This argument requires
that the density of the set U be positive at all points of the closure of U , which is guaranteed
if U has the cone property (i.e., when Ω is Lipschitz) but not, for instance, when U has a
cusp.

3.2. Assumptions

We now state assumptions that: 1) guarantee that the functional E given by (3) is well
defined in the admissible space Ac(Ω) for some positive c; 2) render the functional coercive,
which is one of the ingredients we will use to prove the existence of minimizers.

First of all, we require the following:

a : Ω→ R2 is measurable and |a(x)| = 1 for a.e. x ∈ Ω. (8)

Next, we ask the following conditions on M and h:

M ∈ L∞(Ω), (9a)

h : R2 → R2 is continuous and bounded. (9b)

Finally, we impose the following coercivity conditions

∃c, C > 0 such that We(F ; a⊗ a) ≥ c

(
|F |p +

1

| detF |q
)
− C ∀F ∈ R2×2 : detF > 0,

We(F ; a⊗ a) = +∞ if detF ≤ 0.
(10)

These conditions guarantee that if E(y) is finite then y ∈ Ac(Ω) for some c > 0. Beside
the coercivity condition, we also impose a growth condition when F has large norm and
non-degenerate determinant :

∃C1 > c such that ∀ε > 0 : We(F ; a⊗ a) ≤ C1(|F |p + 1/εq) ∀F ∈ R2×2 : detF ≥ ε > 0.
(11)

We conclude this section with some remarks concerning the motivation for the above
assumptions.

Remark 2. Assumption (8) guarantees that W (·, F ) is a measurable function for every F
fixed, and that W (x, ·) is continuous for a.e. x ∈ Ω (this is proved in the next section).
Accordingly, the integrand W (·, ·) in (1) is a Caratheodory integrand. This is a typical
requirement in variational problems. Assumptions (9a) and (15) play a similar role, since
they ensure that for y ∈ R2 and F ∈ R2 fixed the function x 7→M(x, y, F ) is measurable. In
particular, we require that h be continuous to guarantee that the composition h ◦ y with the
measurable function y is measurable. The requirement that M and h be bounded ensures

7



that the integrand M(x, y(x),∇y(x) besides being measurable, is bounded from below (see
(13) in the foregoing part of the paper). This fact, together with the fact that W (x, F ) is
bounded from below, guarantees that the negative part of the argument of the integral in
the definition of the energy is finite.

Remark 3. The growth condition (11) shall be invoked in Step 3 of the proof of Theorem 1
below (see in particular the bounds (64) and (65)). It is similar to the condition (2.3) of [2].

Remark 4. The coercivity assumptions (10) on the energy W along with the boundary
condition on Γ imply that sequences of deformations yk with uniformly bounded energy
are uniformly bounded in W 1,p(Ω;R2). The extra regularizing term yields indeed a bound
in W 2,p(Ω;R2). The fact that exponent p is greater than 2, the number of dimensions,
entails that the deformation gradients Fk = ∇yk of the above sequence are also bounded in
C0,λ(Ω;R2×2) with λ = 1 − 2/p. This fact is important because, when applying the direct
method of the calculus of variations, we can pass to the limit in the integrand W (x, Fk).

Remark 5. The limit passage in the magnetic interaction energy M (see (2)) is more
delicate, compared to that in the strain energy W . This is because the function F 7→
M(x, y, F ) is not continuous and bounded, having singularity at F = 0 (note however that
F = 0 is not admissible). The property (6) alleviates this problem, since it guarantees that
|Fa| is uniformly bounded by a positive constant for all F = ∇y with y ∈ Ac(Ω). This allows
us to replace F 7→M(x, y, F ) with any extension which is continuous at F = 0. To see this
point, let c be fixed, and consider any y ∈ Ac(Ω). Define F = ∇y and let F = RU be the
polar decomposition of F . Since U is symmetric, positive-definite it can be diagonalized.
We denote by λ1 and λ2 the eigenvalues of U , and we sort them so that λ1 ≤ λ2. Then
|Fa| = |RUa| = |Ua| ≥ λ1. Moreover, λ1 = detF/λ2 ≥ ε/λ2, where the last inequality

follows from from Prop. 1. On the other hand λ2
2 ≤ λ2

1 + λ2
2 = |U |2 = |F |2

(7)

≤ C. Thus we
conclude that |Fa| ≥ C, as desired.

Proposition 2. Let (8)-(10) hold. Then E given in (3) has a minimizer on A(Ω).

3.3. Well posedness

Under the assumptions (8)-(10), we show that if y belongs to the admissible set Ac(Ω)
for some c > 0, that is to say, y ∈ A(Ω) where

A(Ω) =
⋃
c>0

Ac(Ω),

then the integral on the right-hand side in the definition (3) of E(y) is well-defined.

We divide the proof in two steps. In the first step we check that the integrand in (3) is
measurable. In the second step we argue that the integral makes sense, according to the
standard definition (see e.g. [13, §4.7]).
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Step 1. Measurability. Suppose that y ∈ A(Ω). We are going to show that the function
x 7→ W (x, F (x)) + M(x, y(x), F (x)) is measurable, where, as usual, we use the shorthand
notation F = ∇y.

As a start, recalling the definition (1), we notice that, since We is a continuous function,
since F is measurable by assumption, and since a is measurable by (8), the composite function
x 7→ W (x, F (x)) = We(F (x), a(x)⊗ a(x)) is measurable. It remains for us to check that the
function

x 7→M(x, y(x), F (x)) = −M(x)h(y(x)) · F (x)a(x)

|F (x)a(x)|
(12)

is measurable. Indeed, since h is a continuous function, it is Borel measurable; thus, the
composition h◦y is Lebesgue measurable. By (8) we have (h◦y)·Fa is measurable; concerning
the remaining term |Fa|−1, we observe (cf. Remark ) that |Fa| > 0 a.e. Then it follows that
|Fa|−1 is measurable ([13, Chap. 4, Prop. 1.2]).

Step 2. Boundedness from below. Once we know that the integrand in (3) is measurable,
its integrability is guaranteed if either its positive or its negative part have finite integral
according to the definition in §4.7 of [13]. This is indeed the case. In fact, since h and M
have been assumed to be bounded (cf. (9)), the function in (12) is bounded, that is,

|M(x, y(x),∇y(x))| ≤ C for a.e. x ∈ Ω, (13)

for some constant C > 0. Likewise, the function x 7→ W (x, F (x)) is bounded from below.
Thus the integral of the negative part of the right-hand side of (3) is finite. Accordingly,
the entire integral is well defined (the integral may be in general infinite, unless we enforce
a growth conditions on We).

3.4. Existence of minimizers

We split the proof of Proposition 2 in several steps.

Step 1. Infimizing sequence.
Let y0(x) = x for all x ∈ Ω denote the trivial deformation. Then y0 ∈ A(Ω) and in

particular E(y0) < +∞. This implies that m = infy∈A(Ω) E(y) < +∞. Thus, there exists
sequence of deformations yk ∈ A(Ω) such that E(yk) → m as k → ∞. Without loss of
generality we can assume that the sequence E(yk) of energies is monotone decreasing, with

E(yk) ≤ C (14)

for some constant C.

Step 2. Compactness. Using, in the order, the definition of E in (3), the definition of W
in terms of We given in (1), the coercivity of We in (10), and the boundedness of M in (13),
we obtain

‖∇yk‖pLp(Ω;R2×2) ≤ C1E(yk)− C2,

where C1 and C2 are positive constants. Moreover, since yk(x) = x on a set of positive length
(cf. (4)) it follows from the Poincaré’s inequality that

‖yk‖Lp(Ω,R2) ≤ C‖∇yk‖W 1,p(Ω;R2×2). (15)
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Clearly, we have also
‖∇∇yk‖pLp(Ω;R2×2×2) ≤ C1E(yk)− C2. (16)

By putting together (14)–(16) we conclude that the sequence yk is uniformly bounded in
W 2,p(Ω;R2) and hence there exists a subsequence such that (following standard practice we
do not relabel subsequences):

yk ⇀ y weakly in W 2,p(Ω;R2). (17)

Furthermore, by the Morrey embedding theorem W 2,p(Ω;R2) is compactly embedded in
C1,1−2/p(Ω;R2). Thus, by further extracting a subsequence we have:

yn → y strongly in C1,1−2/p(Ω;R2). (18)

Step 2: Admissibility of the limit. We next verify that y ∈ A(Ω). To begin with, we observe
that

y(x) = x for all x ∈ Γ, (19)

since yk(x) = x for all x in Γ and since yk converges pointwise to y in Ω. We henceforth use
the notation

F = ∇y, Fk = ∇yk.
By (1), (10), (3), and (13) there exist positive constants C1 and C2 such that∫

Ω

1

| detFk|q
dx ≤ C1

∫
Ω

W (x, yk(x)) ≤ C1E(yk)− C2.

Thus, in view of (3), and by the definition of Ac(Ω) in (4), we conclude yk ∈ Ac(Ω) for some
c fixed. As a result, we can apply Proposition 1 to obtain

detFk ≥ ε, (20)

where ε is positive constant. By (18) the sequence Fk converges uniformly to F in Ω. Thus,
also detFk → detF uniformly in Ω. In view of (20) this implies,

detF ≥ ε in Ω. (21)

The last inequality has the consequence that∫
Ω

1

| detF |q
dx1dx2 < +∞. (22)

By the same token,∫
Ω

detF d2x = lim
k→∞

∫
Ω

detFk d2x = lim
k→∞

meas (yk(Ω)) .

On the other hand, an argument used in the proof of Theorem 5 of [10] shows that

lim
k→∞

meas (yk(Ω)) ≤ meas(y(Ω)).
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Thus, we conclude that ∫
Ω

detF dx1dx2 6 meas(y(Ω)). (23)

Recalling that y ∈ W 2,p(Ω;R2) by (17), and by putting together (19), (22), and (21), we
obtain y ∈ A(Ω), as desired.

Step 3. Weak lower semicontinuity. Having established that y ∈ A(Ω), it remains for us
to prove that

E(y) ≤ lim inf
k→∞

E(yk), (24)

which confirms that the infimum of the minimizing sequence is attained.
First observe that since Fk → F in C0,1−2/p(Ω;R2) with detFk ≥ ε > 0 (cf. (18) and

(20)) we have that We(Fk, a⊗a) converges uniformly to We(F, a⊗a) in Ω, by the continuity
of We. Accordingly, by bounded convergence,∫

Ω

W (x, F ) d2 x =

∫
Ω

We(F (x), a(x)⊗ a(x)) d2 x

= lim
k→∞

∫
Ω

W (Fk(x), a(x)⊗ a(x)) d2 x

= lim
k→∞

∫
Ω

W (x, Fk) d2 x.

(25)

Moreover, by the lower semicontinuity of the norm we have∫
Ω

µ`p|∇∇y|pdx1dx2 ≤ lim inf
k→∞

∫
Ω

µ`p|∇∇y|pdx1dx2. (26)

Finally, we observe that the functions Fka convergence uniformly to Fa in Ω. Therefore,
also |Fka| → |Fa| uniformly. Moreover, as observed in Remark 5, the bound (21) entails
that |Fa| > 0. As a result, we have the convergence∫

Ω

M(x, y,∇y) =

∫
Ω

(h ◦ y) · Fa
|Fa|

dx1dx2 = lim
k→∞

∫
Ω

(h ◦ yk) ·
Fka

|Fka|
dx1dx2

= lim
k→∞

∫
Ω

M(x, yk,∇yk) . (27)

By combining (25),(26), and (27), we obtain (24).

Remark 6. The regularizing term in the energy (3) turns out to be a key ingredient in
the proof of existence of a minimizer. In fact, in the absence of the regularizing energy the
standard existence result for the equilibrium problem in nonlinear elastostatics [1] cannot
be applied, since Ball’s result requires the strain energy to be polyconvex. As illustrated
by a counterexample in the Appendix, the magnetic density M(x, y, ·) is not even rank-one
convex, a property implied by polyconvexity (see for example [12, Thm 5.3]).
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Remark 7. While the function W is a Carathéodory integrand, the function M is not, since
the mapping F 7→ Fa/|Fa| is singular at F = 0. Thus, the standard lower semicontinuity
arguments, such as those in [26, Theorem 3.3.1] do not apply. On the other hand, thanks the
coercivity condition (10), we can apply Proposition 1, which ensures that detF ≥ ε > 0, i.e.,
the determinant is bounded from below by a positive (although small constant). In turns,
this guarantees that the denominator |Fa| stays above zero, and hence the singularity of
F 7→ Fa/|Fa| at F = 0 can be removed.

Remark 8. The entire treatment of the existence result could have been done replacing the
set A(Ω) with the set

A′(Ω) = {y ∈ W 2,p(Ω;R3) : y(x) = x on Γ, det∇y > 0 a.e. in Ω}.

In fact, if y ∈ A′(Ω) then integral on the right-hand side of the definition (3) of the energy
E(y) makes sense. If this integral is bounded by some constant M , then we have that
y ∈ Ac(Ω) for some c > 0 that depends on M , which in turn implies that the determinant
of ∇y is bounded from below by a positive constant that depends on M but not on y.

4. Rigorous dimension reduction

4.1. Setup

Geometry. We consider a family of thin bodies having the shape of a rectangle of length `
and thickness t. We can obtain these domains by considering a reference rectangle of unit
height

Ω̃ =
{

(x1, x2) ∈ R2 : 0 < x1 < `,−1/2 < x2 < 1/2
}
,

and by introducing the projection map πt : Ω̃→ Ωt

πt(x) = (x1, tx2),

hence
Ωt = πt(Ω̃) = (0, `)× (−t/2,+t/2) . (28)

The symbol t, which stands for “thickness”, is being used here in place of the more conven-
tional symbol h, which we have used for the magnetic field.

Constraints. We require that, in order to be admissible, a deformation yt be equal to the
identity on the set

Γt = πt(Γ̃), Γ̃ = {(0, x2) ∈ R2 : −1/2 < x2 < +1/2} ⊂ ∂Ω̃.

that is, we impose
yt(x) = x on Γt.

Here yt lives in the following class of admissible maps

Âc(Ωt) ≡

yt ∈ W 2,p
(
Ωt,R2

)
such that

yt(x) = x on Γt,

‖yt‖W 2,p(Ωt;R2) +

∫
Ωt

1

| det∇yt|q
dx1dx2 ≤ c,


(29)
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Energy. For each t, we define the energy functional of the body Ωt by

Et(yt) =

∫ `

0

∫ t/2

−t/2
W (x1,∇yt) + µ`p|∇2yt|p + M(x, yt,∇yt)dx1dx2. (30)

Remark 9. Here we are assuming the strain energy W (·, F ) to be independent on the
coordinate x2. This assumption is not restrictive and may be relaxed, but its removal would
provide little advantage at the cost of the introduction of additional technicalities.

e1

e2

O

z z(x1)
z′(x1)

b(x1)

a(x1)

Figure 1: Deformed configuration of the rod. The vector z(x1) contains the coordinates of the current position
of point x1, while b(x1) represents the cross section that contains x1. The orientation of the magnetic fibers
is given by a(x1).

4.2. Statement of the the convergence result

Having defined the equilibrium problem for a generic rectangular strip Ωt of thickness t
(see (28)), we choose for each t a minimizer:

yt ∈ argmin
Â(Ωt)

Et

taken over the set Â(Ωt) =
⋃
c>0 Âc(Ωt).

We would like to capture the asymptotic behavior of yt as t→ 0. To this effect, we need
a way to compare deformations over different domains. A convenient way to do so is to
consider the thickness averages

zt(x1) =
1

t

∫ +t/2

−t/2
yt(x1, x2)dx2, (31)
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which are defined on the same domain (0, `) independently of the thickness. It turns out,
however, that thickness averages alone do not allow to capture the asymptotic behavior of
the deformation, and that in addition we need to record the following functions

bt(x1) =
1

t

∫ +t/2

−t/2
∂2yt(x1, x2)dx2, (32)

which represent the average over the thickness of the image of a material fiber parallel to
vector e2 = (0, 1)T . The convergence result can be stated rigorously in the next proposition.
In that statement, we make reference to a generic sequence {tn}n∈N such that tn → 0 as
n→∞, and for typographical convenience we replace the symbol tn with t.

Proposition 3. Let (ỹt)t>0 ⊂ Â(Ωt) be a sequence of minimizers of the energies Et defined
in (30). Then there is a (non-relabeled) sequence such that the averages defined in (31) and
(32) satisfy

zt → z weakly in W 2,p((0, `);R2), and

bt → b weakly in W 1,p((0, `);R2),
(33)

Moreover, the limit (z, b) is a minimizer of the functional F : W 2,p((0, `);R2)×W 1,p((0, `);R2)→
R ∪ {+∞} defined by

F(z, b) =

∫ `

0

W (x1, (z
′|b)) + M(x1, z, (z

′|b)) + µ`p(|z′′|2 + 2|b′|2)p/2dx1 (34)

on the set
B = {(z, b) ∈ W 2,p((0, `);R2)×W 1,p((0, `);R2) :

z(0) = 0, b(0) = e2, det(z′|b) ≥ ε, for some ε > 0}.
(35)

Before proving the above result, some remarks are in order.

Remark 10. The model emerging from dimension reduction features a non-simple one-
dimensional continuum with an extra director field b, which represents, physically, the rota-
tion and stretch of the cross sections.

Remark 11. Since the energy is non-convex, we cannot expect uniqueness of minimizers
neither for the original 2-D energy nor for the derived 1-D energy. In particular, different
choices of minimizers of the 2-D energy may be possible in principle, and these minimizers
may possibly lead to different limits.

4.3. Proof of the convergence result.

Proposition 3 is a consequence of a slightly stronger statement, which is proved in The-
orem 1 below. The theorem in question is the main result of the present paper, and its
statement requires the introduction of some further machinery from dimension reduction.

As a start, we introduce the scaled deformation ỹt = yt ◦ πt, that is,

ỹt(x1, x2) = yt(x1, tx2)
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for all x = (x1, x2) ∈ Ω̃. Then

Et(yt) = tẼt(ỹt), (36)

where Ẽt : W 2,p(Ω̃;R2)→ R is the functional defined by

Ẽt(ỹt) =

∫ `

0

∫ +1/2

−1/2

W (x1,∇tỹ) + M(x1, ỹt,∇tỹt) + µ`p|∇t∇tỹ|pdx1dx2. (37)

where we have set

∇tỹt = ∂1ỹt ⊗ e1 +
1

t
∂2ỹt ⊗ e2 =

(
∂1ỹt|t−1∂2ỹt

)
, (38)

and

∇t∇tỹt = ∂1∇tỹt ⊗ e1 +
1

t
∂2∇tỹt ⊗ e2 =

(
∂2

11ỹt t−1∂2
12ỹt

t−1∂2
21ỹt t−2∂2

22ỹt

)
. (39)

We can now state the main result. We recall that Â(Ωt) =
⋃
c>0 Âc(Ωt).

Theorem 1. Let {ỹt}t>0 ⊂ Â(Ω̃) be a sequence of minimizers of Ẽt. Then there is a (non-
relabeled) subsequence such that

ỹt ⇀ ỹ weakly in W 2,p(Ω̃;R2), (40a)

and
∂2ỹt
t

⇀ b̃ weakly in W 1,p(Ω̃;R2). (40b)

The functions (ỹ, b̃) do not depend x2 and hence they can be identified with a pair (z, b) of
functions having the interval (0, `) as their common domain. This pair belongs to the set B
defined in (35) and minimizes, over the same set, the functional F defined in (34).

With Theorem 1 at hand, Proposition 3 follows by observing that the functions (z, b) are

indeed the over-the thickness averages of (ỹ, b̃) and that the convergence statements in (33)
are an immediate consequences of (40a) and (40b).

4.4. Proof of the convergence result.

We split the proof of Theorem 1 in three steps.

Step 1. Compactness. Let idt : Ωt → Ωt be the identity map over Ωt. The trivial deformation
idt is admissible (i.e. it belongs to Âc(Ωt)) for some c = c(t) for every t. The corresponding

rescaled deformation is ĩdt = id ◦ πt. We have Ẽt(ĩdt)
(36)
= tE(idt) = C1 tmeas(Ωt)

(28)
= C2,

for some constants C1 and C2. Note that (11) guarantees that x1 7→ W (x1, I) is bounded
in (−1/2, 1/2). Therefore, the comparison between the energy of the rescaled minimizer ỹt
with that of the competitor ĩdt yields

Ẽt(ỹt) ≤ C (41)
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Since the Zeeman energy M is bounded (recall definition (2) and assumptions (9a) and (9b)),
it follows from (30) and (41) that∫ `

0

∫ +1/2

−1/2

W (x1,∇tỹt) + µ`p|∇t∇tỹt|pdx1dx2 ≤ C. (42)

It follows from (35), from the definition (1) of W , and from the coercivity assumption (10)1

on We that

‖∇tỹt‖Lp(Ω̃;R2×2) ≤ C, (43)

for every t > 0; it also follows that

‖∇t∇tỹt‖Lp(Ω̃;R2×2×2) ≤ C. (44)

On the other hand, by (38),

‖∇ỹt‖W 1,p(Ω̃;R2×2) ≤ ‖∇tỹt‖W 1,p(Ω̃;R2×2) ;

moreover, by (39),
‖∇∇ỹt‖Lp(Ω̃;R2×2×2) ≤ ‖∇t∇tỹt‖Lp(Ω̃;R2×2×2) . (45)

Since ỹt is fixed on a part of the boundary having positive length (see (29)), the inequalities

(43)–(45) imply that the sequence (ỹt)t is uniformly bounded in W 2,p(Ω̃;R2). Thus, there

exists ỹ ∈ W 2,p(Ω̃;R2) and a subsequence of (ỹt)t, which we do not relabel, such that

ỹt ⇀ ỹ weakly in W 2,p(Ω̃;R2). (46)

As a further consequence of (43) and (44), we have the bounds∥∥∥∥∂2ỹt
t

∥∥∥∥
Lp(Ω̃;R2)

≤ C,

∥∥∥∥∂22ỹt
t2

∥∥∥∥
Lp(Ω̃;R2)

≤ C. (47)

The first of these bounds along with (46) and connectedness of the vertical cross-sections of

Ω̃ imply that

∂2ỹ = 0 a.e. in Ω̃,

and that there exists b̃ ∈ W 1,p(Ω̃;R2) such that

∂2ỹt
t

⇀ b̃ weakly in W 1,p(Ω̃;R2);

the second bound in (47) implies that the weak limit b̃ is independent on x2:

∂2b̃ = 0 a.e. in Ω̃,
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and that there exists d̃ ∈ W 1,p(Ω̃;R2) such that

∂2
22ỹt
t2

⇀ d weakly in Lp(Ω̃;R2).

Summing up,

∇tỹt = ∂1ỹt ⊗ e1 +
∂2ỹt
t
⊗ e2 =

(
∂1ỹt |

∂2ỹt
t

)
⇀ (∂1ỹ|̃b) weakly in W 1,p(Ω̃;R2×2), and

∇2
t ỹt = ∂11ỹt ⊗ e1 ⊗ e1 +

∂12ỹt
t
⊗ (e1 ⊗ e2 + e2 ⊗ e1) +

∂2
22ỹt
t2
⊗ e2 ⊗ e2

=


∂11ỹt

∂12ỹt
t

∂21ỹt
t

∂2
22ỹt
t2

⇀


∂11ỹ ∂1b̃

∂1b̃ d

 weakly in Lp(Ω̃;R2×2×2).

(48)

It remains for us to show that (ỹ, , b̃) minimizes F . This is done in the next two steps.

Step 2: Liminf inequality. Thanks to the first of (48), since p > 2, Morrey’s embedding
theorem yields

∇tỹt → (∂1ỹ|̃b) strongly in C0,1−2/p(Ω̃;R2×2). (49)

By the same token, since h is a continuous function (cf. (9b)), we have

h ◦ ỹt → h ◦ ỹ pointwise a.e. in Ω̃.

Note that W is bounded from below and W (·,∇tỹt) converges pointwise to W (·, ∂1ỹ|b) in Ω̃.
Hence, by the Fatou lemma and by (42),∫

Ω̃

W
(
x1, (∂1ỹ|̃b)

)
dx1dx2 ≤ lim inf

t→0

∫
Ω̃

W (x1,∇tỹt)dx1dx2 ≤ C. (50)

Likewise, by the weak lower semicontinuity of the Lp norm, if follows from (42) that

∫
Ω̃

(
|∂11y|2 + 2|∂1b̃|2

) p
2
dx1dx2 ≤

∫
Ω̃

∣∣∣∣∣∣∣∣


∂11ỹ ∂1b̃

sym d


∣∣∣∣∣∣∣∣
p

dx1dx2

(48)

≤ lim inf
t→0

∫
Ω̃

|∇2
t ỹt|pdx1dx2 .

As ỹ and b̃ are both independent of x2, we identify them with z ∈ W 2,p(0, `;R2) and b ∈
W 1,p(0, `;R2), respectively. This yields∫

Ω̃

W
(
x1, (∂1ỹ | b̃)

)
dx1dx2 =

∫ `

0

W
(
x1, (z

′|b)
)
dx1,
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and ∫
Ω̃

(
|∂11ỹ|2 + 2|∂1b̃|2

) p
2 dx1dx2 =

∫ `

0

(|z′′|2 + 2 |b′|2)
p
2 dx1. (51)

In view of definition (1) and hypothesis (10)1, the bound (50) entails that det(z′|b) > 0 a.e.
in (0, `) with ∫ `

0

1

(det(z′|b))q
dx1 < +∞.

Since (z′|b) ∈ W 1,p((0, `);R2×2), we have (z′|b) ∈ C0,α([0, `];R2×2) for α = (p − 1)/p. As a
consequence, det(z′|b) ∈ C0,α([0, `]). Since by our hypothesis q > 2p/(p − 2) (cf. (5)), we
have also q > 2/α. Thus Lemma 1 can be applied with n = 1, U = (0, `) and f = det(z′|b)
to obtain

det(z′|b) ≥ ε (52)

for some ε > 0; then, by (49), we have

det(∇tỹt) ≥
ε

2
, (53)

provided that t is sufficiently small. This implies, in turn, that M(x1, ỹt,∇tỹt) converges

uniformly to M(x1, ỹ, (∂1ỹ|̃b) in Ω̃ (a fact that can be established through an argument
similar to that leading to (23), see also Remark 5), and hence∫

Ω̃

M(x1, ỹt,∇tỹt)dx1dx2 →
∫

Ω̃

M(x1, ỹ, (∂1ỹ|̃b)dx1dx2 =

∫ `

0

M(x1, z, (z
′|b))dx1 (54)

as t→ 0. By putting (50)–(51) and (54) together, we have the “liminf inequality”:

F(z, b) ≤ lim inf Ẽt(ỹt). (55)

To conclude the proof that (z, b) is a minimizer of F , we shall show in the next step that for

every competitor (ẑ, b̂) ∈ B there exists a recovery sequence (ŷt)t such that

lim sup
t→0

Ẽt(ỹt) ≤ F(ẑ, b̂). (56)

Then, the combination of (55), the fact that ỹt minimizes Ẽt, and (56) yields the desired
result:

F(z, b) ≤ lim inf
t→0

Ẽt(ỹt) ≤ lim sup
t→0

Ẽt(ŷt) ≤ F(ẑ, b̂). (57)

Step 3 Recovery sequence. Since (ẑ, b̂) ∈ B, there is a constant ε > 0 such that

det(ẑ′|̂b) ≥ ε. (58)

We take a sequence (̂bt)t ⊂ C∞((0, `);R2) such that

b̂t(0) = e2, b̂t → b̂ strongly in W 1,p((0, `);R2). (59)
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Thanks to the smoothness of b̂t, the functions

ŷt (x1, x2) = ẑ (x1) + tx2b̂t (x1)

belong to the space W 2,p(Ω̃;R2). Moreover, if we identify ẑ and b̂ with functions defined on

Ω̃, then, thanks the the third of (59),

∇tŷt = (ẑ′ + tx2b̂
′
t |̂bt)→ (ẑ′|̂b) strongly in W 1,p(Ω̃;R2×2), (60)

and

∇t∇tŷt =


ẑ′′ + tx2b̂

′′
t b̂′t

sym 0

→


ẑ′′ b̂′

sym 0

 strongly in Lp(Ω̃;R2×2×2). (61)

By (60) and by Vitali’s convergence theorem, the functions |∇tŷt|p are uniformly equi-
integrable. Thus, for every ε > 0 there exists δ(ε) > 0 such that

measN ≤ δ(ε) ⇒
∫
B

(
|∇tŷt|p + |(ẑ′|̂b)|p

)
dx1dx2 < ε (62)

for every measurable set N ⊂ Ω̃. Moreover, there is a subsequence such that ∇tŷt converges
almost everywhere. Since W (x1, ·) is continuous, we have also that the functions W (x1,∇tŷt)
converge almost everywhere and hence in measure. As a consequence of this fact, for ε > 0
fixed, the measure of the set

N(ε, t) = {x ∈ Ω̃ : |W (x1,∇tŷt)−W (x1, (ẑ
′|̂b)| > ε},

satisfies
measN(ε, t)→ 0 as t→ 0. (63)

By (62), (63), and by the growth assumption (11), we have

lim sup
t→0

∫
N(ε,t)

∣∣∣W (x1,∇tŷt)|+ |W (x1, (ẑ
′|̂b))

∣∣∣ dx1dx2 ≤ Cε (64)

for a suitably large constant C. Accordingly, we have

lim sup
t→0

∣∣∣∣∫
Ω̃

(
W (x1,∇tŷt)−W (x1, (ẑ

′|̂b)
)

dx1dx2

∣∣∣∣
≤ lim sup

∫
Ω̃

∣∣W (x1,∇tŷt)−W (x1, (ẑ
′|̂b)
∣∣ dx1dx2

≤ lim sup

∫
Ω̃\N(ε,t)

∣∣W (x1,∇tŷt)−W (x1, (ẑ
′|̂b))

∣∣ dx1dx2
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+ lim sup

∫
N(ε,t)

∣∣W (x1,∇tŷt)
∣∣+
∣∣W (x1, (ẑ

′|̂b))
∣∣ dx1dx2

≤ εmeas(Ω̃) + Cε. (65)

Since the constant ε can be taken arbitrarily small, we conclude that∫
Ω̃

W (x1,∇tŷt)dx1dx2 →
∫

Ω̃

W (x1, (ŷ
′|̂b))dx1dx2 =

∫ `

0

W (x1, (ŷ
′|̂b))dx1. (66)

Thus, taking also in to account (61), we have:∫
Ω̃

W (x1,∇tŷt) + µ`p|∇t∇tŷt|pdx1dx2 →
∫

Ω̃

W (x1, (ẑ
′|̂b)) + µ`p(|ẑ′′|2 + 2|ẑ′|2)

p
2 dx1dx2. (67)

A further consequence of (60) is that ∇tŷt converges to (ẑ′|̂b) uniformly in Ω̃; therefore, by
(58), det(∇tŷt) ≥ ε/2 for t sufficiently small. This means that for each (x, y) fixed, the
function M(x, y, ·) (which is continuous on the set of matrices satisfying detF ≥ ε/2, see
Remark 5), can be replaced by any continuous extension, and the argument used to arrive
at (66) can be replicated to conclude that∫

Ω̃

M(x1, ŷt,∇tŷt)dx1dx2 →
∫ `

0

M(x1, ẑ, (ẑ
′|̂b))dx2. (68)

The combination of (67) and (68), in view of the definition (37), yields the desired result
(56), and by (57), the proof is concluded.

4.5. Some technical remarks about the proof.
In carrying out the dimensional reduction, the limit passages (27), (54), and (68)) where

we handle the magnetic energy M(x, y,∇y) which appears in definitions (3), (30), and (34)),
are key in our proofs. The magnetic energy, as defined in (2), is indeed discontinuous.
However, as already pointed out in Remark 5, such discontinuity can be removed once we
know that the Jacobian (the determinant of the deformation gradient) is bounded from below
by a positive constant. The coercivity (10) of the strain energy with respect to the Jacobian
is key to obtain this result through Lemma 1 and Proposition 1.

In particular, Proposition 1 is instrumental in the proof of the existence of a minimizer
given in Section 3.4, where it is used to obtain the bound (20), which in turn allows us to
obtain the convergence (27). Lemma 1 is instead invoked in the proof of the liminf inequality
(Step 3) in Section 4.4 to establish the bound (52) on the limit gradient (z|b) (thanks to
our choice of the admissible set B in (35)), and then, by continuity, the bound (53) on the
scaled gradients ∇tỹt, which eventually leads to the limit passage (54). Note carefully that
(53) cannot be obtained from Proposition 1, since it involves the determinant of the rescaled
gradients ∇tỹt, whereas Proposition 1 is based on a bound for the standard gradient ∇ỹt
(note that we do not have the inequality | det∇tỹt| ≤ | det∇ỹt|!). A similar argumentation
is used to exploit (57) to arrive at (68).

Finally, we observe that the proofs of existence and convergence rely only on the convexity
and the p-growth, with p > 2, of the regularizing term µ`p|∇2y|p in (3). In particular, this
term may be replaced by µΨ(∇2y) with a convex function Ψ with p-th growth.
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5. Equilibrium equations

In this section we derive the strong form of the equations governing the mechanical
equilibrium of the rod. With reference to the terms under integral sign in the definition (34)
of the functional F , we observe that by frame indifference there exists an isotropic function
Ŵe(G; a⊗ a) such that

We(F ; a⊗ a) = Ŵe(G; a⊗ a), G =
1

2
(F TF − I). (69)

In particular, for F = z′ ⊗ e1 + b ⊗ e2, the Green-Lagrange strain tensor is G = 1
2
(|z′|2 −

1)e1 ⊗ e1 + 1
2
z′ · b(e1 ⊗ e2 + e2 ⊗ e1) + 1

2
(|b|2 − 1)e2 ⊗ e2. Therefore, on letting

Ŵ (x1, G) = Ŵe(G; a⊗ a),

and

w(x1, η, ζ, θ) = Ŵ
(
x1,

1

2
(η − 1)e1 ⊗ e1 +

1

2
ζ(e1 ⊗ e2 + e2 ⊗ e1) +

1

2
(θ − 1)e2 ⊗ e2

)
,

we have
W (x1, (z

′|b)) = w(x1, |z′|2, b · z′, |b|2).

Thus, upon setting

m(x1, h, z
′, b) = Mh · (z′|b)a

|(z′|b)a|
(= M(x1, h, (z

′|b))),

we can write,

F(z, b) =

∫ L

0

w(x1, |z′|2, b · z′, |b|2)−m(x1, h ◦ z, z′, b) + µ`p(|z′′|2 + 2|b′|2)
p
2 dx. (70)

The requirement that F be stationary for a virtual variation (z̃, b̃) of its arguments can be
given the form of a virtual-work equation:∫ L

0

n · z̃′ + r · z̃′′ + q · b̃+m · b̃′ dx1 =

∫ L

0

fm · z̃ + nm · z̃′ + qm · b̃ dx1. (71)

The left-hand side of (71) is the virtual work performed by the internal forces over the
variation (z̃, b̃). In particular, the force-like quantities n, r, q,m are given by

n = 2w,2(x1, |z′|2, b′ · z′, |b|2)z′ + w,3(x1, |z′|2, b′ · z′, |b|2)b,

q = w,3(x1, |z′|2, b′ · z′, |b|2)z′ + 2w,4(x1, |z′|2, b′ · z′, |b|2)b

r = pµ`p(|z′′|2 + 2|b′|2)
p
2
−1z′′,

m = 2pµ`p(|z′′|2 + 2|b′|2)
p
2
−1b′,

(72)
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with w,i denoting the partial derivative of w with respect to its i-th argument. The right-hand
side of (71) is the work of the magnetic field, with fm, nm, and qm being given by

fm = ∇hT (z)m,2(x1, h ◦ z, z′, b),
nm = m,3(x1, h ◦ z, z′, b),
qm = m,4(x1, h ◦ z, z′, b).

(73)

It is immediate from (72) that n and q are not independent, but obey

n× z′ + q × b = 0, (74)

Here the symbol × is an antisymmetric scalar-valued product defined as follows: for a and

b a pair of vectors, a× b = Ra · b, with R =

(
0 −1
1 0

)
being the counter-clockwise rotation

by π/2. This property is a manifestation of frame indifference through the requirement that
the virtual work be not affected by a rigid virtual variations to (z̃, b̃).

By imposing that (71) holds for every admissible variation (z̃, b̃) we arrive at the equilib-
rium equations:

− (n− r′)′ = fm − n′m,
−m′ + q = qm, .

(75)

By first taking the cross product with b, and then by taking the scalar product with b, we
split the second of (75) in two scalar components, orthogonal and parallel to b. Making use
of (74), we replace b× q with −n× q, to arrive at

− (n− r′)′ = fm − n′m,
− b×m′ + z′ × n = b× qm,

b · (−m′ + q) = b · qm.

(76)

6. Linearization

With a view towards gaining some insight into the mechanical implications of our theory,
we seek a specialization to a linear version involving small departures from the reference
configuration z̊(x1) = x1e1, b̊(x1) = e2, where e1 and e2 is the canonical basis of R2. In order
for the regularization to be effective in this regime we shall henceforth take the regularizing
exponent p equal to 2. Although this limit case is not encompassed by the existence theory
developed in the previous sections, the latter theory could be generalized in the spirit of the
discussion at the end of Subsection 4.5.

Since (̊z′|̊b) = I, and since the identity tensor I is a minimum of We(·; a⊗a), the reference
configuration is a minimum of the elastic part of the energy

Fe(z′, b) =

∫ L

0

w(x1, |z′|2, b′ · z′) + µ`2(|z′′|2 + 2|b′|2) dx1.
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This being said, if h̊ is a spatially constant applied field and a(x1) is parallel to h̊ for all
x1 ∈ (0, L), then the reference configuration is a stationary point of the magnetic part of the
energy:

F̊m(z′, b) =

∫ L

0

m(x1, h̊ ◦ z, z′, b′) dx1.

As a result, the reference configuration is an equilibrium configuration and the superposition
of a small perturbation h̃ to h̊ results into the applied field

h = h̊+ h̃,

and into a small change of configuration that can be described through

z(x1) = x+ w(x1)e1 + v(x1)e2,

b(x1) = e2 − φ(x1)e1 + ψ(x1)e2,
(77)

with w and v small compared to the length L of the rod, and w′, v′, φ, and ψ small
dimensionless quantities. The quantities u and v represent, respectively, the axial and the
transversal displacement, whereas φ and ψ represent, respectively, the counter-clockwise
rotation and the stretch of the typical cross section.

The fields w, v, and φ are obtained from the solution of the system resulting from the
linearization of the equilibrium equations (76) and the constitutive equations (72)–(73). The
linearized constitutive equations, in particular, depend on a set of constants resulting from
the quadratic expansion of the strain energy in the undeformed configuration. To identify
these constant, we make recourse to the representation formula

Ŵe(G; a⊗ a) = W̃e(J1(G), J2(G), J4(G, a⊗ a)), (78)

for the isotropic function We, where

J1(G) = Tr(G), J2(G) = det(G) =
1

2

[
J2

1 (G)− Tr(G2)
]
, J4(G, a⊗ a) = Tr(Ga⊗ a)

(79)
are the appropriate invariants for the type of symmetry into play. Here we borrow the
notation from three dimensional elasticity, where for transversely isotropic materials the
constitutive response can be expressed in terms of a function depending on five invariants
Ji, i = 1 . . . 5. However, in 2D the number of independent invariants reduces to three since
J2 = J3 and J5 = Tr(G2a ⊗ a) can be expressed in terms of J1, J2 and J4 through to the
Cayley-Hamilton theorem.

From the linearization of (74) one obtains

q1 = n2 (80)

As a result, the virtual-work equation (71) takes the form∫ L

0

n1w̃
′ + n2(ṽ′ − φ̃) + p1w̃

′′ + p2ṽ
′′ −m1φ̃

′ + q2ψ̃ +m2ψ̃
′dx1

=

∫ L

0

fm1w̃ + fm2ṽ + nm1w̃
′ + nm2ṽ

′ − qm1φ̃+ qm2ψ̃ dx1.
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Here, the application of (72), (77), (78), and (79) yields the linear constitutive equations:

n1 = N11w
′ +N12(v′ − φ) +N13ψ,

n2 = N21w
′ +N22(v′ − φ) +N23ψ,

q2 = Q21w
′ +Q22(v′ − φ) +Q23ψ,

(81)

where
N11 = 2µ+ λ+ a4

1α1 + 2a2
1α2,

N13 = λ+ a2
2α2 + a2

1(a2
2α1 + α2),

N23 = a1a2(a2
2α1 + α2),

N21 = N12 = a1a2(a2
1α1 + α2),

N22 = µ+ a2
1a

2
2α1,

Q21 = λ+ a2
2α2 + a2

1(a2
2α1 + α2),

Q22 = a1a2(a2
2α1 + α2),

Q23 = 2µ+ λ+ a4
2α1 + 2a2

2α2,

with
µ = −W̃e,2(0, 0, 0)/2, λ = W̃e,1,1(0, 0, 0) + W̃e,2(0, 0, 0),

α1 = W̃e,4,4(0, 0, 0), α2 = W̃e,1,4(0, 0, 0),
(82)

where the subscript i denotes partial differentiation with respect to the i-th argument. Fur-
thermore, we have

p1 = 2µ`2w′′, p2 = 2µ`2v′′,

m1 = −4µ`2φ′, m2 = 4µ`2ψ′.
(83)

Finally, we have

fm = M∇h̃Ta,
nm = a1M(I − a⊗ a)h̃− a2

1M (̊h · a)(I − a⊗ a)(we1 + ve2)

− a1a2M (̊h · a)(I − a⊗ a)(−φe1 + ψe2),

qm = a2M(I − a⊗ a)h̃− a2a1M (̊h · a)(I − a⊗ a)(we1 + ve2)

− a2
2M (̊h · a)(I − a⊗ a)(−φe1 + ψe2).

(84)

We split each of the equilibrium equations (75) into a component parallel to e1 and a com-
ponent parallel to e2. By doing so, and by making use of (80), we obtain:

− (n1 − p′1)′ = fm1 − n′m1,

− (n2 − p′2)′ = fm2 − n′m2,

−m′1 − n2 = qm1,

−m′2 + q2 = qm2.

(85)

The above splitting is convenient in the special cases when the magnetic fibers are either
parallel or orthogonal to the axis. In both cases the product a1a2 vanishes and the coupling
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coefficients N21, N12, N23, Q22 vanish as well. As a result, the system (85) admits a further
splitting into two pairs of equations: the first and the fourth, which rule unknowns w and
ψ (axial displacement and transverse stretch); the second and the third, which govern v
and φ (transverse displacement and rotation). We shall make use of this observation in the
next section, where we examine an equilibrium problem for a rod whose magnetic fibers are
parallel to the axis.

7. Size-dependent magneto-elastic buckling

We consider a cantilever beam whose reference configuration is shown in the following
figure.

∆ L

t

a(x1)e2

e1

h

Figure 2: A cantilever with magnetic fibers parallel to the axis is acted upon by a uniform magnetic field
whose direction is opposite to that of fibers. Although the model we deal with is one-dimensional, it is
represented as two-dimensional body to better show its geometrical features.

In the reference configuration the cantilever has length L = L+ ∆ and spans the interval
(−∆, L). The cantilever is clamped by a constraining device that, in the limit t→ 0, imposes
null displacement and null rotation in the interval (−∆, 0). This arrangement guarantees
not only that displacement and rotation vanish at the point x1 = 0, but also that the
displacement gradient vanishes at the same point, since displacement must be continuous
together with its derivative. As also shown in the above figure, the direction a of the fibers
is assumed to be parallel to the axis e1, and the magnetic field h̊ has opposite direction with
respect to a:

a = e1, h̊ = −He1, h̃ = 0. (86)

We also assume the magnetization M to be constant.
As pointed out in Section 6, the reference configuration is a stationary point of the energy

F defined in (70), and small departures from this configuration, as described by (77), satisfy
the virtual work equation (85). With the loading environment considered in the present
case, the magnetic energy has in fact a maximum, as opposite to the strain energy, which
has a local minimum. As one can expect intuitively (an intuition that is confirmed in the
foregoing) the applied field plays the same role as a compressive thrust, so that there exists
a critical value of the applied field which renders the undeformed configuration unstable.

To make the argument quantitative, we first deduce the system of equations governing
the unknowns v, w, φ, and ψ introduced in (77). To begin with, we work out the linearized
formulae (84) for the magnetic loads fm, nm, and qm; using (86) we obtain:

fm = 0, nm = HMv′e2, qm = 0.

25



This, the magnetic loading appears only in the second equation of (85); as anticipated at the
end of the previous section, this equation contains only the unknowns v and φ; indeed, by
making use of the linearized constitutive equations (81)–(83), the second of (85) becomes:

2µ`2v(4) − µ(v′ − φ)′ +HMv′′ = 0.

Using (81)–(83) again, the third of (85) becomes:

4µ`2φ′′ + µ(v′ − φ) = 0. (87a)

The substitution of (81)–(83) in the remaining equilibrium equations (namely, the first and
the last of (85)) yield differential equations that involve the axial displacement w and the
transverse stretch ψ, and to not contain neither v nor φ. These equations have only the
trivial solution, and hence can be ignored. We can therefore focus on (87).

We seek a solution of these equations in the interval (∆, L), supplemented by the essential
conditions:

v(∆) = 0, φ(∆) = 0, v′(∆) = 0, (88)

and by the natural conditions:

n2(L)− n2m(L)− p′2(L) = 0,

p2(L) = 0,

m2(L) = 0.

⇔
µ(v′(L)− φ(L))−HMv′(L)− 2µ`2v′′′(L) = 0,

2µ`2v′′(L) = 0,

− 4µ`2φ′(L) = 0.
(89)

As already point out, the term proportional to HM has a destabilizing effect, as a quadratic
expansion of the energy would confirm. The mechanical interpretation is the following: the
magnetic fibers would like to be aligned with the applied field, but their rotation is hindered
by the stiffness of the structure. Buckling occurs when the destabilizing effect of the magnetic
torques equals the stabilizing effect of the rod stiffness.

The critical value of the intensity of the magnetic field are determined by imposing that
the linearized equilibrium problem has non-trivial solutions. To this aim, we integrate (87)
to obtain:

2µ`2v′′′ − µ(v′ − φ) +HMv′ = c1. (90)

From the first of (89) we deduce c1 = 0. Using (87a) in (90) and integrating once we obtain:

4µ`2φ′ +HMv + 2µl2v′′ = c2. (91)

Using (87) to eliminate the unknown φ from (91) and integrating once to arrive at the
following equation:

2`2
(
(3µ− 2HM)v′′ − 4µ`2v′′′′

)
+HMv = c2, (92)

where c2 is a constant. The general solution of (92) is

v(x) = C0 +
4∑
i=1

Ci exp(λix1/`), (93)
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where λi, i = 1 . . . 4, are the roots of the characteristic polynomial of (92), given by

λi = ± 1

2
√

2

√(
3− 2HM

)
±
√(

3− 2HM
)2

+ 2HM

with HM = HM/µ. The possible values of the constants Ci, i = 0 . . . 4 in (93) are then
filtered by the three boundary conditions in (88), and the second and the third boundary
conditions in (89), which result into a linear system whose coefficients depend on the triplet
(HM/µ, `/L). The system is singular when a characteristic equations of the form

Φ

(
HM

µ
,
`

L

)
= 0

holds true, with Φ a function whose expression has been determined using Mathematica®
[29]. We used the same package to performs a numerical root finding procedure. Table 7
shows the renormalized critical value (HM)c with `/L ranging from 0.1 to 0.2 with step-
size 0.01, which confirms size-dependent behavior, with increasing values of material scale `
associated to increasing critical values of the magnetic field.

`/L 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

(HM)c/µ 0.46 0.47 0.49 0.51 0.53 0.56 0.58 0.61 0.63 0.66 0.68

Table 1: Size dependence of the critical value HMc.

8. Numerical verification

The weak form equation (71) of the proposed model was implemented into the COMSOL

Multiphysics ® software [11], the objective of this being the numerical verification of the
convergence of the 2D-model for t→ 0 to the 1D one.

The geometry of the specimen is the same as in Fig. 2. However, the magnetic field has
different orientation, as shown in Fig. 3 with the 2D domain defined by

Ωt = (0, L)×
(
− t

2
,
t

2

)
.

For the reader’s convenience we show the arrangement again in the following figure:

∆ L

t ϕ

h
a(x1)x2

x1

(a) (b)

∆

Figure 3: Geometry parameters of the actuators in its reference (a) and deformed (b) shapes. h is the
external magnetic field.
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A condition u = 0 is specified in the region ∂Ωu = ∂Ωt ∩ {(x1, x2) ∈ Ωt|x1 ≤ ∆} so that
∆ is the width of the clamped region and L = L − ∆ is the actual length of the rod. As
already pointed out in Sec. 7, such a clamping condition is used to impose in the 2D model
a condition equivalent to

z(∆) = 0, z′(∆) = 0, b(∆) = e2

which is indeed used in the 1D model.
The magnetic part of the energy is the one in Eq. (2) with

M(x) = M, h = H cos(ϕ)e1 +H sin(ϕ)e2

i.e., the magnetization is assumed constant and H is the intensity of the magnetic field.
For the elastic part of the energy, we focus on the widely used Saint Venant–Kirchhoff

model (SV-K) with a transversely isotropic elasticity tensor; this choice is legitimate, since
the presence of the higher-order term in (3) renders the problem well posed even if the strain-
energy density We(F ; a⊗a), is not polyconvex. In addition the SV-K energy depends on the
same number of constitutive parameters of the linear theory: the four material parameters
µ, λ, α1,, α2, which we have defined in terms of Ŵe through (69), (78), and (82). The SV-K
energy can be equivalently written as (see also [37]):

We(F ; a⊗ a) = Ŵe(G; a⊗ a), G =
1

2
(F TF − I),

where

Ŵe(G; a⊗ a) =
(λ

2
+ µ
)
J2

1 (G)− 2µJ2(G) +
α1

2
J2

4 (G, a⊗ a) + α2J1(G)J4(G, a⊗ a),

The first Piola-Kirchhoff stress tensor for this model can be obtained as P = F∂We/∂G,
i.e.,

P =λJ1 F + 2µFG+ α1J4FA+ α2

(
J1FA+ J4F

)
,

where A = a⊗ a.
In order to implement the regularizing strain gradient term in the 2D model, we follow

[23] and we introduce an auxiliary second-order tensor field χ and its gradient. Subsequently,
the continuum constraint χ = F is enforced weakly using penalty approach1. Accordingly,
for the 2D formulation we consider the following enhanced functional

W̌ (F, χ,∇χ; a⊗ a) = We(F ; a⊗ a) +
1

2
Hχ(F − χ)2 +

1

2
K∇χ · ∇χ

1The constraint χ = F was implemented in Comsol through the option Weak Constraint, rather than
directly defining it in the energy. The lagrangean multiplier Hχ was automatically determined by the
software.
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in which Hχ represents a new material parameter acting as a penalization forcing the new
auxiliary field χ to remain as close as possible to F , whence for the limit case Hχ → ∞
a standard strain-gradient model is recovered. When dealing with such a strain gradient
regularization, it is well known that using the same interpolation of the displacement and of
the auxiliary field χ may lead to locking, in the sense that the results may become insensitive
to the internal length parameter and strongly dependent upon the penalty parameter. This
is mainly due to the incompatibility between finite element approximation and kinematic
requirements that links χ to F which has the same order as the gradient of displacement.
To overcome this issue, Hermite quartic polynomials were used for the interpolation of the
(first)gradient term, whereas Argyris quintic polynomials for the second gradient part. In ad-
dition, the number of elements N used for the discretization were set to be N = Min{`, t}/3,
in order to guarantee an accurate approximation of the solution when either the internal
length ` or the thickness t becomes very small. For all simulations, the geometry of the
specimen was set to ∆ = 0.3L, and the following values of the constitutive parameters were
used

λ = 10µ, α1 = α2 =
µ

5

for the (first)gradient part,
Kχ = 2µ `2, ` = 0.1L .

for the second gradient terms, whereas

HM = µ

is the equivalent magnetic stiffness.
We assess the numerical convergence of the model in three cases:

(a) a purely mechanical problem (H=0) with an external body force applied in the e1 direc-
tion,

(b) for inclusions uniformly distributed, such that a(x1) = e1 and ϕ = π
3
,

(c) for inhomogeneously oriented inclusions, a(x1) = cos(θ)e1 + sin(θ)e2, θ = π
2

+ π
L

(x1−∆)
and ϕ = π.

The results of the simulations for case a are shown in Fig. 4 . In this simplified analysis,
no reinforcing fibres were considered, i.e., a1 = a2 = 0, and a body force with intensity
q = µ was applied in the direction e1. As seen from the figure, the results are rather
insensitive to the thickness of the model and in fact the different curves obtained for t/L ∈
{0.001, 0.01, 0.05, 0.1} are almost indistinguishable. The 1D model perfectly matches the
results of the numerical 2D simulations. Figure 4.1 shows that the director field b2 obtained
from the numerical simulations.
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Figure 4: Horizontal displacement of the center line (left) and director field (right) for the analysis (a) with
a a distributed load q, without any reinforcing fibres.

To assess further the numerical convergence of the model cases (b) and (c) are examined
in Fig. 5. The results are shown in terms of the deformation of the centreline Γ = {(x1, x2) ∈
Ωt | x2 = 0}, which is plotted for t/L ∈ {0.001, 0.01, 0.05, 0.1}. The insets in the figure
show the deformed configuration of the 2D model for t/L = 0.05. The convergence of the
2D model to the 1D one is apparent in the figure and in both (b) and (C) the deformed
configurations are practically indistinguishable for thickness to length–ratio lower than 0.01,
with the 1D model being represented with a dashed line.

For the sake of completeness we show in Fig. 6 the director field b corresponding to the
solutions in Fig. 5. It is noted that in case (b) (left of Fig. 6) the vector b practically does
not change its length, whereas for the deformation of case (c) (right of Fig. 6), close to the
clamp, the vector b is compressed by 20 %.
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Figure 5: Center line deformation for different values of the ratio t/L ∈ {0.001, 0.01, 0.05, 0.1} between the
thickness and internal length, for case (b) - left (θ = 0 and ϕ = π/3) and (c) - right (θ = π

2 + π
L

(x1−∆) and

ϕ = π). The inset shows the deformed configuration for the case t/L = 0.05 with the color code representing
the values of the higher order term χ11.
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Figure 6: Intensity of the vector field b for the solutions of case (b) (left) and (c) (right) in Fig. 5.

Appendix

Definition 1 (Polyconvexity in dimension 2). We say that ϕ : R2×2 → R ∪ {+∞} is
polyconvex if there exists a convex and lower semicontinuous function ϕ̂ : R2×2 × R →
R ∪ {+∞} such that ϕ(F ) = ϕ̂(F, detF ).

Proposition 4. There exist a, h ∈ R2 with |a| = 1 such that the map ϕ : R2×2 → R defined
by

ϕ(F ) =
h · Fa
|Fa|

is not rank-1 convex.
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Proof. Let b, c ∈ R2. For |λ| small, we have det(I + λb⊗ c) > 0, hence the function

f(λ) = ϕ (I + λb⊗ c)

is well defined and twice coutinuouly differentrable. Then

f(λ) =
h · a+ λ(c · a)(b · h)

|a+ λ(c · a)b|
=

h · a+ λ(c · a)(b · h)√
1 + 2λ(c · a)(b · a) + λ2(c · a)2|b|2

=
α + λβ√

1 + 2γλ+ λ2δ2
,

where we have set α = h ·a, β = (c ·a)(b ·h), γ = (c ·a)(b ·a) and δ = (c ·a)|b|. Note that f is
not necessarily convex, i.e., ϕ is not rank-one convex and it implies that it is not polyconvex
[12].
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[22] Healey, T.J., Krömer, S. (2009). Injective weak solutions in second-gradient nonlinear
elasticity. ESAIM Control Optim. Calc. Var. 15, 863–871. https://doi.org/10.1051/
cocv:2008050
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