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Abstract

From the analysis of experimental data about starling flocks we can find some
key properties of these biological systems. First of all, flocks are highly polarized
systems, i.e. every individual’s velocity, within one flock, deviates very little from
the average flock velocity; secondly, every flocks has a stable average speed of flight
of about 12m/s, which does not depend on the size of the flock or on the number of
individuals that compose the flock; finally, the most peculiar property, fluctuations
in the vector velocities and speed fluctuations are scale-free correlated. This means
that the correlation length of both directional and speed fluctuations scales with the
linear size of the system. The coexistence of scale-free correlations and moderate
speed fluctuations is an issue of general relevance for collective behaviour, be it of
biological or artificial nature, and yet these two traits set conflicting constraints
on the mechanism controlling the speed of each agent, as the factors boosting
correlations tend to amplify fluctuations, and vice versa.

In this thesis I present and study a new model that is capable of reproducing all
this features without a strong fine-tuning of its parameters. This new theory, the
marginal model, relies on a zero temperature critical point that ensures scale-free
correlations of all the velocities’ degrees of freedom, in the symmetry-broken phase.
This property is achieved by confining the speed of each particle with a flat-minimum
potential, which means that the minimum of the speed-bounding potential has a
vanishing second derivative.

First of all I study the marginal theory at equilibrium, using the mean-field
fully-connected approximation and I find that it displays a divergent susceptibility
for vanishing temperature, which confirms the idea of a zero temperature critical
point. After defining and studying the model from a theoretical point of view, I
validate the theory through numerical simulations of the microscopic self-propelled
marginal model and by comparison with the experiments. I show that the marginal
theory is the only one, so far, compatible with experimental data of natural flocks.
Finally, I derive a statistical field theory for the marginal model and I study it using
momentum-shell renormalization group (RG) at one loop, for vanishing temperature.
I compute the critical exponents that are checked by finite-size scaling analysis of
equilibrium on-lattice simulations.
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1

Guide for the reader

Among the possible topics of interest in physics nowadays, “collective systems” are
widely studied. This name refers to systems that are composed by a usually large
number of elements that interact in a non-trivial way, giving rise to interesting
collective phenomena and showing different characteristic scales in space and time.
The reductionist approach alone is not enough to explain a collective system [2, 37]
and a specific study is needed to understand a phenomenon that is “more than
the sum of its parts”. Spin glasses [82, 89], growing surfaces [71], earth’s climate
[11, 57, 77], artificial neural networks [46, 90] are just some examples of this vast field
of study that was born more than fifty years ago and it keeps growing. In the latest
years, many collective systems that traditionally belonged to the field of biology have
been studied by physicists, using the theoretical tools of statistical mechanics and
the experimental expertise of biology, physics, informatics and engineering altogether.
Some of these systems, which pose interesting and fundamental physics problems,
are bacteria [39, 44], animals’ neural networks [80, 81, 105], immune system [65, 86]
and, going to macroscopic sizes, groups of animals [3, 13, 19, 31, 51, 58].

Among the great variety of problems that belong to the “physics of life” category,
collective motion of animal groups stands out for its complexity and arises some
fundamental theoretical questions. One of the main points to be investigated is how
to include these systems in the framework of non-equilibrium statistical mechanics
[123]. Furthermore it is crucial to determine if some kind of fluctuation-dissipation
relations [78] hold for these systems; even if correlations can be measured [3, 24],
response experiments are tricky, as controlled perturbations are difficult to perform.
Another important point to understand is whether collective behaviour in biological
systems is comparable to ferromagnetic criticality, hence it requires fine-tuning,
or it does not require any precise combination of physical parameters to happen
[34, 83]. To address these questions and many others, several models have been
developed by physicists, biologists and mathematicians. These models are often
called self-propelled particles (SPP) models, because they have to include some
mechanism of self-propulsion for their components to mimic the motion of a living
being. One of the first SPP models is the Vicsek model [49, 111], which can be
thought as a self-propelled version of a ferromagnet, where spins become velocities
and individuals move according to a set of evolution equations. The Vicsek model
has been adapted and modified in many ways to describe different kinds of systems
[35, 49, 101] and following the Vicsek model’s example, many other theories have
been developed to capture the fundamental features of collective motion in biological
systems [33, 34, 38, 60, 106, 108].

This thesis starts from the experimental evidence on common starling (Sturnus
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vulgaris) flocks. In the last decades, observations of starling flocks have been
made [7, 32, 34, 54] and what emerges from them is that flocks move coherently,
which means that each bird’s velocity is very similar to the average flock’s velocity.
Furthermore, also each bird’s speed (which is the velocity’s modulus) is close to
the average speed of the flock that does not vary much from flock to flock [34].
Another striking experimental finding is that, within a flock, directional and speed
fluctuations are correlated over large scales, comparable with the system’s size
[24]; to be more precise, when computed for every flock, the correlation lengths
of directional and speed fluctuations scale with the linear size of the system [24].
These experimental evidences seem to be intuitively very plausible for a collective
group of animals, yet they are difficult to reproduce all within one simple SPP
model. The literature gives us many examples of equilibrium models [102, 122] and
non-equilibrium models [33, 110] that possess a polarized phase with orientational
scale-free correlations. This phenomenon occurs due to the fact that, when the
system is polarized, long-wavelength orientational fluctuations are easy to perform,
since they involve a little energy cost. This property has been studied deeply for
equilibrium systems and it is described by the Goldstone theorem [52, 53]. However,
if we want to combine this phenomenology with also modulus (or speed) scale-free
correlations, while keeping mild speed fluctuations, the task is not easy. In the
equilibrium context, when the thermodynamic limit is valid, we know that a certain
degree of freedom displays scale-free correlations when the Gibbs free energy of the
system becomes flat (i.e. has zero second derivative) in the direction of that degree of
freedom. This is exactly what happens when a system undergoes a phase transition;
at the critical point the minimum of the total Gibbs free energy, which depends on
the total magnetization of the system, is flat in all the possible directions, hence
every degree of freedom is scale-free correlated [91]. However, when we go deep
in the symmetry-broken phase, which is the phase of flocks, the Gibbs free energy
curvature (in the minimum) of standard models is non-vanishing in the modulus’
direction, which implies short-range correlations for modulus’ fluctuations [17, 93].
A partial solution to this situation was find using the pseudo-Gaussian model of
[12]; the idea was to reduce the overall speed-bounding potential amplitude in order
to reduce minimum’s curvature too, but this approach causes other inconsistencies
with experiments, namely too large values for average speed and fluctuations.

A possible and interesting solution to this problem is a new model that we call
“marginal model”. This name is due to the fact that the speed-bounding microscopic
potential has a zero-curvature minimum [27, 34], hence the adjective “marginal”. The
idea behind this model is the following: to obtain scale-free correlations, together
with high polarization, we need a model with a Gibbs free energy that has a flat
minimum in the modulus direction, for low temperature. When the temperature
vanishes, we know that so does the entropy contribution to the free energy; this
means that this thermodynamic potential resembles the bare potential of the theory.
Hence, if we want our low-temperature total free energy to be “marginal” in the
modulus direction we have to choose a bare potential that already possesses this
property. The phenomenology that we expect to see is that, when the temperature
is different from zero, the model has a positive curvature minimum in the modulus
direction and it behaves for all intents and purposes like a standard theory in its
symmetry-broken phase but, as the temperature vanishes, the entropic contribution
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to the free energy becomes zero and the free energy resembles the flat-minimum
potential of the bare pseudo-Hamiltonian. In this way we hope to obtain a model
that can reproduce speed scale-free correlations for vanishing temperature, with a
sharp potential that limits the average speed and its fluctuations to plausible values.
In this thesis I will analyze the marginal theory and compare it with experimental
data, to test the soundness of our idea and to verify that it can describe all the
phenomenology encountered in starling flocks.

In the first chapter I present the main experimental findings about starling flocks,
together with the definition of the experimental observables (e.g. average velocity
and speed, correlation length) [30]. Afterwards, in the second chapter, I describe
the standard theories for equilibrium models of systems with a high-polarization
(or symmetry-broken) phase [17, 18, 92, 93]. Later, in the third chapter I present
an initial effort to reproduce speed scale-free correlations, the pseudo-Gaussian
model [12], and then I introduce and perform a first theoretical analysis of our new
proposal: the marginal model [27, 34]. In order to check the soundness of our new
model, in chapter four I compare experiments, the pseudo-Gaussian model and the
marginal model [34]. Finally, in the last chapter, I study the equilibrium version
of the marginal model using the momentum-shell renormalization group (RG) to
investigate the critical properties of our model for vanishing temperature [28].

Finding an appropriate model to describe the flocking phenomenon lets us
investigate on many questions about biological systems. First of all we need to
comprehend which framework of statistical mechanics is the most appropriate to
describe biological systems [13]. We can ask ourselves which role plays the out-of-
equilibrium nature of these systems in their dynamics and how much it is appropriate
to consider a flock at local equilibrium [85]. Another important point to address is the
role of symmetries in such systems, whether the consequences of symmetries and their
breaking, which we know to be valid for equilibrium ferromagnetic systems [52, 100],
are still valid for flocks or not. Finally, if we are able to create an efficient model for
the flocking phenomenon, it will be possible to develop practical applications, for
example in the field of robotics [47].

Publications and contribution

In this brief section I point out the publications of my PhD. I will also point out
which parts of this thesis are made by the author and which parts are taken from
previous works and publications.

A first introduction to the marginal model with its mean-field analysis (here
in chapter 3) and a first set of simulations on a cubic lattice to find the critical
exponents (last section of chapter 5) can be found in [27]. The comparison between
theoretical models (the marginal SPP model and the pseudo-Gaussian SPP model)
and experimental data (here in chapter 4) is explained in [34], which is under review
for Nature Communications. The RG analysis of the equilibrium marginal model
(here in chapter 5), starting from the mean-field Gibbs free energy, is in [28], which
is currently under preparation.

All the experimental finding of chapter 1 can be found in [24], my work consisted
in extending the analysis, which was only made to the experimental data of the
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Starflag project [31, 32], to all the experimental data that we have now. The keystone
result of this analysis is shown in Fig. 1.6 and it is coherent with the analysis already
made in [24]. All the explanations about how to compute correlations are taken from
the review [30]. In chapter 2 I review the most important results, obtained in [92, 93]
by A. Patashinski and V. Pokrovsky and in [17, 18] by K.G. Wilson, E. Brézin and
D.J. Wallace, about systems with a continuous symmetry. All the calculations and
the main results are taken from the papers and the book I have just cited above, the
last section was made by extending a result of [100]. My original contribution of this
chapter consisted in writing the code and performing the analysis of Monte-Carlo
simulations, to verify the relation between longitudinal and transverse susceptibility.
These results are summed up in Fig. 2.4. The whole part of chapter 3 that concerns
the theoretical equilibrium study of the marginal model (from section 3.3 up to the
end of the chapter) is entirely original and made by me [27]. The first part about the
pseudo-Gaussian model is an improvement on the analysis already performed in [12].
For what concerns chapter 4, the presentation of the Vicsek model is taken from
[30, 49], the comparison between models and experimental data is original and it
was made by me [34]. All the SPP simulations presented in this chapter were made
by adapting a code of Tomás S. Grigera. The simulations and the RG analysis of
chapter 5 were made entirely by me. I have done all my work under the supervision
of Andrea Cavagna (my PhD supervisor), Irene Giardina and Tomás S. Grigera. A
part of the development and analysis on the simulations presented in the chapters 3
and 4 were made in collaboration with other PhD students of our group, Luca Di
Carlo and Giulia Pisegna.
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Chapter 1

Introduction Part I:
Experimental data on natural
flocks of birds

My work starts from the experimental findings about natural flocks of starlings. In
this chapter I will explain some of the main features that have been found in starling
flocks and why a new model is necessary in order to correctly reproduce them. I
will briefly recall the most important information about experimental observations,
then I will present the observables we measure in flocking experiments, with a
particular focus on connected correlation functions and correlation length. In the
end I will show the main findings about scale-free correlations of the full velocity
vector fluctuations and speed fluctuations and I will explain why it is nontrivial to
have simultaneously an average speed that is constant over all the measured systems
together with scale-free correlations of speed fluctuations.

1.1 Experiments

Observations of starlings (Sturnus vulgaris) have been performed in Rome, from
the rooftop of Palazzo Massimo alle Terme, in front of the Termini railway station,
where there is a large roosting site. Multiple synchronized video-sequences of every
flocking event are acquired from different observation points, using a calibrated
multi-camera video-acquisition system [26]. Videos are analyzed using a specifically
developed tracking software [5] that is able to reconstruct 3D trajectories for each
individual within the flock.

The data that we present here were taken over several experimental campaigns,
using different experimental systems that we briefly present. The first field observa-
tions were made between 2007 and 2010, within the Starflag project [32, 31], using
Canon D1-Mark II cameras shooting at 10 frames-per-second (FPS) with a resolution
of 8.2 Megapixels (MP). A second series of observations was performed between 2011
and 2012, using IDT M5 cameras, shooting at 170 FPS with a resolution of 5 MP.
Finally, the most recent observations were made between 2019 and the first months
of 2020, with IDT OS10-4K cameras, shooting at 155 FPS with a resolution of 9.2
MP.
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Figure 1.1. Linear size and number of individuals. a: Histogram of the flock sizes,
the minimum size is about 1 m and the maximum size is 77 m. Every size is the median
size between all the frames of a single flocking event. b: Histogram of the number of
individuals through all the flocking events, the minimum number is 10 and the maximum
is 2559. Every N is the median number of individuals between all the frames in a single
flocking event. The aspect ratio of flocks is non-trivial [7], so a generic relation between
L and N cannot be found.

Considering all the data at our disposal, we have flocks ranging from 10 to about
2500 individuals, with a linear size of flocks going from 1 to about 80 meters. We
would like to stress that a crucial part of our analysis, namely the fact that the
average speed is constant for every system’s size (Fig. 1.3), is possible because of
the new data of the experimental campaigns of 2011-2012 and 2019-2020, which
gave us information about the smallest flocks. This large range of sizes is extremely
useful to investigate the correlation between measurable quantities and systems’ size
or number of individuals.

Every observation was made using trifocal geometry [56] with a three camera
system. The reconstruction of individuals’ trajectory was performed for the first
series of data with the method of [31, 32], while the most advanced algorithm of [5]
was used for second and third generation data.

1.2 Basic observables

From flocks’ trajectories we can compute some simple observables that describe the
most important and intuitive features of our systems. From each frame of each
flocking event we can compute the system’s linear size L as the distance between
the furthest individuals in the flock. We also compute N , the number of individuals
within the flock, and use it to compute averages,

v = 1
N

N∑
i=1
vi average velocity (1.1)
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s = 1
N

N∑
i=1

vi average speed (1.2)

φ = 1
N

∣∣∣∣∣
N∑
i=1

vi
vi

∣∣∣∣∣ polarization (1.3)

where vi is the velocity vector of bird i and vi = |vi|. In the end, we can consider
all the quantities (1.1), (1.2), (1.3), L and N from each frame of a single flocking
event and take the median over all the frames. We prefer the median with respect
to the mean because it is more outlier-resistant.

From Fig. (1.1) we can clearly see that the linear sizes of our flocks extend across
two orders of magnitude (from 1m to 80m) and the number of individuals too (from
∼ 10 to ∼ 2500 individuals). This might seem surprising, because one could expect
that the number of individuals scales as N ∼ Ld where d is the space dimension
(in this case d = 3). In fact, starling flocks have peculiar aspect ratios [7] and the
scaling relation between L and N does not hold. The aspect ratio fluctuates a lot
from flock to flock and also from frame to frame of the same flocking event, but this
is not a problem for our analysis , because the main properties of this system do not
depend strongly on aspect ratios [7, 24].

From the distributions in Fig. (1.2) we notice in panel a that the average speed
do not varies much, from flock to flock. In particular we see that the speed has
a mean value of 11.9 m/s m/s and a standard deviation of 2.3 m/s. This is not
surprising, because the speed of flight of each individual, and therefore their average,
is strongly constrained by the physiology of birds. In order to fly efficiently they
cannot move too slow, but also, due to mechanics of their body, they cannot move
too fast. From panel b of the same figure, we see that flocks have a high polarization,
i.e. the quantity defined in eq. (1.3) is close to its limit value of 1. This implies
that the whole flock is moving coherently in one direction, with small fluctuations
in the velocity of the individuals. To uniform our language with statistical physics,
we can say that this biological system is in a symmetry-broken phase. We can
think that every direction of flight is energetically equivalent but the system is in a
non-symmetric state with respect to the rotational symmetry.

In Fig. (1.3) we see another important feature of starling flocks, the average
speed does not depend on the system’s number of individuals. Regardless of flock’s
size no correlation has been found between the average speed and the size of the
flock. This property would seem quite trivial, but we will see that it is fundamental
to determine which model is the most appropriate to describe experimental data.
The new data of the last two experimental campaigns (presented also in [34]) were
fundamental to populate the section of this plot in the region between N ∼ 10 and
N ∼ 100, that will be of particular importance to determine which theory describes
in the most accurate way the experimental phenomenology. Not all the theories that
presented in this thesis are able to reproduce a constant average speed through all
the system’s sizes and if they fail, they will fail in the small-N region.
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Figure 1.2. Histograms of average speed and polarization. a: Probability distribu-
tion of average speed, eq.(1.2). Every s is the median over all the frames of a single flock
recording. The mean s is 11.9 m/s with a standard deviation of 2.3 m/s. b:Probability
distribution of polarization (1.3). Every polarization is a median between all the frames
of a single flocking event. All the flocks are in the ordered phase, the lowest polarization
is 0.89.

1.3 Connected correlation functions

After the basic measurements explained before, we proceed computing spatial
connected correlation functions [30] for the full velocity and for the speed,

C(r) =

N∑
i,j=1

δvi · δvjδ(rij − r)

N∑
i,j=1

δ(rij − r)
δvi ≡ vi − v (1.4)

Cs(r) =

N∑
i,j=1

δsiδsjδ(rij − r)

N∑
i,j=1

δ(rij − r)
δsi ≡ vi − s (1.5)

where the δ-function counts the number of couples that have a distance rij = r. To
practically compute these functions we define a bin width ∆r and each δ-function is
equal to 1 for all the distances rij that are in the interval [r, r+ ∆r], and 0 otherwise.
The width of the interval ∆r is chosen such that the functions C(r) and Cs(r) appear
as smooth as possible, more details can be found in the appendix 1.A. We have an
example in Fig. (1.4) of both correlation functions, we can see that they have a zero,
which is always true, because, from the definition (1.4),∫ L

0
dr C(r)

N∑
i,j=1

δ(rij − r) =
∫ L

0
dr

N∑
i,j=1

δvi · δvjδ(rij − r) =
N∑

i,j=1
δvi · δvj = 0

(1.6)
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Figure 1.3. Average speed VS number of individuals in the system Scatter plot
of average speed versus number of individuals in the system. The average speed, defined
in eq. 1.2, is not correlated with the number of individuals. Spearman coefficient:
rS = −0.13 P-value: p = 0.21. The mean speed over all the flocks is s = 11.9m/s with a
standard deviation of 2.3m/s.
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Figure 1.4. Experimental connected correlation functions. a: A connected corre-
lation function of the full velocity vector, as it is defined in eq. (1.4), for a flock with
L = 76.1 m. b: A speed connected correlation function, as it is defined in eq. (1.5), for
the same flock. The functions are normalized such that C(r = 0) = Cs(r = 0) = 1, every
function has at least one zero in the interval [0, L] at a certain r = r0.

since the factor
N∑

i,j=1
δ(rij − r) is always positive and the C(r) is not equal to zero

through the whole interval of definition, from the passages above we conclude that
the correlation function must have a zero in its interval of definition [0, L]. The same
holds for the Cs(r).

1.3.1 Spatial average and phase average

We could have defined fluctuations in a different way, namely,

δvi = vi − 〈vi〉 (1.7)
δsi = si − 〈si〉 (1.8)

where 〈·〉 stands for the phase average, i.e. a mean value over a certain stationary
probability distribution. The practical way to compute the average over a certain
observable A would have been to simply compute 〈A〉 = 1/t̄∑t̄

t=1A(t) where t̄
is the total number of system’s configurations to which we have access. In fact,
this is the way to compute averages and fluctuations over observables in numerical
equilibrium simulations. When we deal with biological experimental data or with
self-propelled particle (SPP) simulations we cannot use this procedure. The reason is
that our system is intrinsically out of equilibrium [123], we are not guaranteed that
a stationary distribution exists and even if it existed we do not know if the actual
flock we are observing has reached that stationary state. Moreover, the sequence of
frames that we have to compute an average for a local quantity is not long enough
to grant a fair sampling. Hence, focusing on a single individual to compute a time
average of its velocity (or speed) over all the frames of the experimental acquisition
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is not sensible. On the other hand, a spatial average can be performed to see in
every particular frame the correlation function of fluctuations with respect to the
spatial average, like we do using eq.s (1.4) and (1.5). In the case of an equilibrium
system, the two different average definitions (phase average and space average) bear
qualitatively similar results for the conneccted correlation functions and they can be
linked easily to each other, as it is explained in [30].

1.3.2 Correlation length

Using the definition of connected correlation function eq.s (1.4) and (1.5), we
can define the correlation length ξ, that is a measure of the size of a correlated
region, i.e. a region in which velocity fluctuations have the same direction or speed
fluctuations have the same sign. This quantity can be computed on data in many
ways [1, 20, 21, 91], one of them is ξ = r0, as it was used in [24]. We find that the
most practical definition for our purposes, which can be used both for experimental
data and for simulations, is the following [34],

ξ =

r0∫
0

dr r C(r)
r0∫
0

dr C(r)
(1.9)

ξs =

r0∫
0

dr r Cs(r)
r0∫
0

dr Cs(r)
(1.10)

where r0 is the first point of zero-crossing of the connected correlation functions,
defined in eq.s (1.4) and (1.5). We choose this practical definition for the correlation
function because it gives sensible results in any possible regime of our system. We
could have used simply ξ = r0 (or ξs = r0), and this choice works very well for
scale-free systems that have long range correlations, see Fig. 1.5-b and [24] but, if
the system has short-range correlations, it becomes difficult to determine the value
of r0 because the shape of the correlation function becomes almost an exponential,
see Fig. 1.5-a and [30]. On the other hand, if we choose to use an exponential fit
with the functional form C(r) ∼ e−r/a and we define the correlation length as ξ = a,
it works fine for systems with short-range correlations (Fig. 1.5-a and [30]) while it
performs poorly when correlations are long-ranged and the functional form of the
correlation functions is not exponential (Fig. 1.5-b and [24]). Therefore we decide
to use the definitions (1.9) and (1.10), because they capture the range of correlation
given by r0; they are integrals, hence they are more resistant to fluctuations then a
simple value as r0 and their value depends on the shape of the whole correlation
function up to r0 [34].

Now that we have defined the interesting quantities to measure correlations, we
can explain what results we can expect from the connected correlation functions.
We can write a generic connected correlation function for a certain observable as
[1, 91, 116],

C(r) ∼ r−αf
(
r

ξ
,
a

L
,
ξ

L

)
(1.11)
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Figure 1.5. Speed correlation functions in different regimes. a: Speed correlation
function in a short-range correlation regime [30]. Lattice simulations using the pseudo-
Gaussian model of [12] with g = 1, system’s size L = 30, on a cubic box. The form of
this function is exponential, hence it is easy to find a correlation length via a linear fit in
log scale (solid line in the inset), while the exact location of the zero-crossing point r0 is
difficult to determine, due to fluctuations. b: Speed correlation function in a long-range
(or scale-free) correlation regime. The shape of the function is not exponential, hence a
fit to determine the correlation length is unfeasible, however the zero-crossing point r0
is easy to determine. Lattice simulations using the pseudo-Gaussian model of [12] with
g = 10−3, system’s size L = 30, on a cubic box. The definition of correlation length
of eq. (1.10) is applicable to both these cases. Correlation functions are normalized in
order to have C(r = 0) = 1.
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This function has two contribution, a scale-free one r−α, with α > 0, and the scaling
function f that captures the dependence of correlations from the correlation length,
the system’s size L and the microscopic interaction range a. To have any kind of
correlation at all, an interaction between the microscopic components of the system
is needed. The value of a represents the spatial range of this interaction, it can be
short-range, as it is in many classic statistical mechanics models [91], or it can be
long-range, as in the case of electromagnetic interaction [66]. In our case we assume
that our biological system interacts in a short-ranged fashion [8, 59, 111] and that
the system’s size is sufficiently larger than the interaction range [8], so that we can
drop the dependence of the scaling function on a/L. The meaningful scales that we
have are: the correlation length ξ, which depends on the observable we are studying,
and the trivial scale L, which is the size of the system. If the correlation length is
proportional to the size of the system we say that the system is scale-free [24], the
only meaningful scale left is the system’s size and the correlation function can be
written as simply,

C(r) ∼ r−αf
(
r

L

)
(1.12)

the reason of this definition is that, in the thermodynamic limit L → ∞ [63] the
system is “truly” scale-free, in the sense that its correlation function only displays
the scale-free power law behaviour C(r) ∼ r−α. The physical sense of the scale-free
condition for a finite-size system is that, no matter what the size of the system,
the fluctuations of the degree of freedom that we are analyzing are correlated over
macro-regions that span a large portion of the whole system, eventually growing up
to infinite size when the system’s size itself goes to infinity. Scale-free correlations of
the order parameter are a key feature of a system at a critical point [91]. A similar
phenomenon happens when a system is in a phase where a continuous symmetry is
spontaneously broken [52]; we will see later the differences between this two cases.

1.4 Scale-free correlations in starling flocks

With the definitions of the correlation functions (1.4), (1.5) and the correlation
lengths definitions (1.9) and (1.10) we can investigate the behaviour of correlations in
starling flocks [24]. We compute the correlation lengths for both velocity fluctuations
δvi and speed fluctuations δsi, taking the median over all the frames of each flocking
event, and we plot them against the systems’ sizes. We find that the correlation
length is proportional to the size of the system. This is true both for the full velocity
correlation length (Fig. (1.6)-a) and for the speed correlation length (Fig. (1.6)-b).

There is another way to verify that a system’s observable has scale-free corre-
lations, if we use eq. (1.12), that is a scale-free correlation function, we can see
that,

C(x)/C(x = 0) = x−αf (x) (1.13)

where x = r/L. This equation means that, if a system is scale free and we plot
the normalized correlation functions at various sizes L as a function of the rescaled
space x, we should see all the functions collapsing onto each other. This is the case
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Figure 1.6. Scale-free velocity and speed correlations in starling flocks. a: Veloc-
ity correlation length (1.9) as a function of the system’s size. We can clearly see that the
correlation length scales with the size of the system [24]. b: Speed correlation length
(1.9) as a function of the system’s size. We can clearly see that the correlation length
scales with the size of the system [24, 34]. c:Velocity connected correlation functions
(1.4) as a function of x = r/L for different system’s sizes. All the correlation functions
collapse onto each other. This means that the correlation range is proportional to
the size of the system. d:Speed connected correlation functions (1.4) as a function of
x = r/L for different system’s sizes. All the correlation functions collapse onto each
other. This means that the correlation range is proportional to the size of the system.
All the reported values for correlation lengths are medians on the frames of a single
flocking event, while the displayed error bars are median absolute errors.
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for starling flocks, as we can see in Fig. (1.6)-c,d, where the velocities normalized
correlation functions collapse on top of each other and the same happens for speeds’.
We can conclude that, in starling flocks, the velocity vector fluctuations with respect
to the average velocity are scale-free correlated (Fig. (1.6)-a,c) and speed fluctuations
too are scale-free correlated (Fig. (1.6)-b,d).

Given the fact that starling flocks are in a polarized phase, we are not surprised
about the scale-free correlations of the whole velocity vector’s fluctuations. Since
every direction of flight is equivalent, we can imagine that large wavelength fluctu-
ations of the orientational degree of freedom are easy to perform, due to the fact
that their energy cost is very low. In equilibrium systems, due to the Goldstone
modes [52, 53] that emerge when a continuous symmetry is spontaneously broken,
we find that the phase modes have scale-free correlations [93, 100] once we lower the
temperature enough such that the system is in the ordered phase. We can think that
for starling flocks, even if they are not equilibrium systems, a similar mechanism
could be taking place.

This means that, without invoking any out-of-equilibrium feature, we can easily
reproduce velocity orientational scale-free correlations with an equilibrium model in
its low-temperature ordered phase. However, a further in-depth analysis is needed
if we want to have a clear picture of how the Goldstone mechanism works. It is
non-trivial to understand the behaviour of longitudinal and transverse fluctuations
and how they are linked with phase and modulus fluctuations [17, 93]. We will
discuss and explain these topics in the next chapter.

1.4.1 The anomaly of speed

We have found that natural flocks are polarized systems and that they show scale-
free orientational correlations; even if it is interesting, this last property was not
completely unexpected. Standard equilibrium ferromagnetic systems with an Hamil-
tonian that possesses a continuous symmetry, due to the Goldstone theorem [53],
also show this property, which is linked to the lack of symmetry of the equilibrium
state of the system, in the low-temperature phase. Scale-free speed correlations,
however, are rather surprising; in standard systems with a continuous order param-
eter (e.g. Heisenberg model, O(n) models [102]) the modulus degree of freedom
remains short-range correlated in the whole polarized phase [93, 100]. If the order
parameter has n dimensions, the Gibbs free energy minimization condition defines
a n − 1-dimensional hypersurface of minima with the same energy and the same
modulus but, if we perturb the minimum outside of the surface of minima, the
energy cost rises, hence the modulus mode remains “massive”. In other words, if the
system is far away from the phase transition, the modulus mode, which is equivalent
to the speed of starling flocks, is always short-range correlated. All the degrees of
freedom of a classical spin system become scale-free correlated only at the critical
point, but polarization at the critical point is zero (in the thermodynamic limit),
hence it cannot be compatible with highly ordered flocks. A new idea is needed if
we want a polarized system with scale-free modulus (i.e. speed) correlations, as we
observe in experimental data. A previous attempt has been made using inference
[12] but, as we will explain later, it cannot describe properly all the phenomenology
that we can observe in experimental data, from smallest to largest flocks, without



16 1. Introduction Part I: Experimental data on natural flocks of birds

recurring to fine-tuning. We will introduce in chapter 3 a new theory, the marginal
model, that is capable of reproducing all the experimental features, keeping the
number of parameters involved as low as possible. Our new model does not involve
an explicit fine-tuning of the parameters such that the system is at a sort of critical
point, different for each observed size.
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1.A Appendix: coarse-graining scale for the correlation
functions

In this appendix we explain the heuristic procedure that we used to choose a suitable
binning size ∆r to compute the correlation functions in eq. (1.4) and eq. (1.5). As
we can see from Fig. 1.7, if we choose a really small bin size (green line ∆r = 10−2m)
we capture a lot of noise in the correlation value, this feature of the correlation
function has two side effects: it can make extremely difficult to find a good estimate
of the point at which the correlation function crosses zero and enlarges drastically
the time needed to numerically integrate the correlation function (as we need to
do to compute an estimate of the correlation length, see eq.s (1.9) and (1.10)). To
avoid these problems we increase the bin size, in this way we preserve the shape
of the correlation function but we average out fluctuations (black line of Fig. 1.7).
Therefore we easily find the zero-crossing point of the correlation function and we
can quickly integrate it. If we had increased too much the value of the bin ∆r, we
would have lost details about the shape of the correlation function. Following this
ideas we chose ∆r = 1 m for all the flocks that we analyzed (both for the velocity
and for the speed correlation function), since it guarantees, for all the experimental
data, enough information about the correlation function’s shape, without including
too much noise.

The reason why ∆r = 1 m is suitable for all our data is that, on average, in a
flock the nearest neighbours distance is ∼ 1 m [34]. This means that the “lattice
spacing” of this system should be considered of order ∼ 1 m and that it is not
sensible to try to measure differences in correlations below this length-scale.
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Figure 1.7. Correlation function for different choices of binning ∆r. We plot the
unnormalized velocity correlation function (1.4) for a typical flock of linear size 68.1 m
and about 1500 individuals, using different bin sizes. We can see that if the bin size
is too small with respect to the nearest neighbours average distance of ∼ 1 m(green
and red line) we obtain large fluctuations that do not add any useful information in the
computation of correlation. Once we choose a bin size close to the nearest neighbours
average distance (black line) we average out the fluctuations retaining the shape of the
correlation function.
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Chapter 2

Introduction Part II: Breaking
a continuous symmetry

In the previous chapter we discussed experimental data about natural flocks of
starlings; we have seen that we have data for systems of a wide range of linear sizes
(from 1 m to 76 m) and number of individuals (from 10 to 2600). We pointed out
that the average speed of every flock does not depend on the flock’s size and its mean
value is around 11.9 m/s. Another key feature of the data is that starling flocks are
in a deeply polarized state and they show simultaneously scale-free correlations for
the orientational degrees of freedom (the velocity) and for the modulus (the speed).

In order to build a model that is capable of reproducing what we have found in
experimental data, we start our discussion in the field of equilibrium ferromagnetic
systems with continuous rotation symmetry. In this chapter we delineate the main
features of such models [52, 100, 93], using as a reference the O(n) model [102]
because it is general, yet simple enough.

During this whole chapter, we will also make connections with the phenomenology
of flocks (see sections 2.2.1, 2.3.4 and 2.4.1), in order to show how the ferromagnetic
equilibrium models are capable of reproducing the experimental features of natural
flocks.

The choice of starting our work from equilibrium models, even if the observed
experimental system is out-of-equilibrium, has two main reasons. First of all, we want
to start from simpler models and then add more complex off-equilibrium features,
if they are needed to capture fundamental aspects of flocking systems. Secondly,
we know from previous studies [85] that individuals in a flock can be considered in
a condition of local equilibrium, which means that the local relaxation time is far
shorter then the time needed to rearrange the interaction network. This property
justifies an equilibrium approach and explains why some non-trivial key features of
flocks can be explained by simple ferromagnetic models, e.g. orientational scale-free
correlations. However, as we shall see, standard ferromagnetic models will not be
able to explain all the properties of flocks.



20 2. Introduction Part II: Breaking a continuous symmetry

2.1 The O(n) model

The Landau-Ginzburg Hamiltonian [73, 91] of the O(n) model is,

H =
∫
V

ddr
{1

2 (∇ϕ (r))2 + t

2ϕ
2 (r) + uϕ4 (r)− h ·ϕ (r)

}
(2.1)

where ϕ is a mesoscopic statistical field with n components, ϕ = |ϕ|, the gradient
term is (∇ϕ)2 = ∑

α,β

(
∂ϕα
∂rβ

)2
where α = 1, ..., n and β = 1, ..., d, t is proportional

to the distance of the temperature from the bare critical temperature t ∼ T − T0 (in
traditional nomenclature: t is the “bare mass” of the theory [95]), u is the coupling
constant, h is an external space-independent magnetic field and V is the total
volume of the system. We choose a volume large enough to consider our system
in the thermodynamic limit, such that we can observe its spontaneous symmetry-
breaking properties [91]. At equilibrium, the probability distribution of ϕ is the
Boltzmann-Gibbs distribution [63],

P [ϕ] = 1
Z
e−βH[ϕ] (2.2)

where β is 1/(kBT ), with T as the temperature and kB as the Boltzmann constant
[63] that we define to be equal to one. Z is the partition function and it is defined
as the functional integral Z =

∫
Dϕ e−βH[ϕ].

Our system, at a microscopic level, is made up of n-dimensional spins and ϕ is
a local average of microscopic spins over a volume that is large enough to contain
a large number of spins but small if compared to the total volume of the system,
i.e. our field theory (2.1) is a coarse-graining of an underlying microscopic theory.
We can immediately see that all the terms, except for the external field term h ·ϕ,
are O(n)-symmetric i.e. they are symmetric over a space-independent rotation of ϕ
in the n-dimensional internal space. The external field term explicitly breaks the
O(n) symmetry and forces the magnetization m to be non-zero and parallel to the
external field h.

We can study our model, without the external field (h = 0) in the thermodynamic
limit V →∞, at a Landau level, neglecting all the fluctuations. To do so, we consider
ϕ of equation (2.1) to be constant in space, then to obtain the magnetization m we
just minimize the Landau potential,

V (ϕ) = t

2ϕ
2 + uϕ4 (2.3)

If we call ϕ0 the modulus of the minimum, which is our equilibrium magnetization,
we have

ϕ0 =

0 t ≥ 0√
|t|
4u t < 0

(2.4)

the situation is depicted in Fig. 2.1. When t > 0 (panel a) we are above the bare
critical temperature, hence the magnetization is 0 and the potential has only one
minimum at ϕ = 0, the system is in its disordered state. When t = 0 (panel b)
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a b c

Figure 2.1. O(n) Landau potential for n = 2. a: Potential shape for t > 0. There
is only one minimum at ϕ = 0. b: Potential shape for t = 0. There is only one flat
minimum at ϕ = 0, with zero curvature. c: Potential shape for t < 0, we have a
circumference of minima, everyone with the same distance from the origin. The point
ϕ = 0 is a maximum.

the system is at its critical temperature (at least at bare level), the minimum is
at ϕ = 0 and we have also that the minimum is “flat” (or marginal), which means
that if we compute the first three derivatives of the potential at the minimum, they
are all equal to zero. When we go below t = 0 (panel c) we are in the ordered
symmetry-broken phase, where the potential develops a manifold of minima with
ϕ =

√
|t|
4u and the point ϕ = 0 becomes a maximum. The symmetry is broken in the

sense that our system will be in one state of the infinitely many compatible with
ϕ =

√
|t|
4u , this state is not symmetric with respect to the whole O(n) symmetry, but

only with respect to a smaller subgroup (i.e. the subgroup of rotations in the planes
defined by all the couples of axes that are both perpendicular to the equilibrium
magnetization). To understand what happens at the critical point t = 0, we compute
the scalar susceptibility for t > 0 and h = 0,

χ = ∂m

∂h

∣∣∣∣∣
h=0

(2.5)

that is the variation of the magnetization if we apply a small external magnetic field
in the disordered phase of the system, in the limit of vanishing external field. To
compute it we consider a small external field h pointing along one of the n possible
axes, the Landau potential will be,

V (ϕ) = t

2ϕ
2 + uϕ4 − h ·ϕ (2.6)

if we minimize if with respect to ϕ we obtain the equation, for the component of ϕ0
that is parallel to h,

tϕ0 + 4uϕ3
0 − h = 0 (2.7)

while all the other components follow the (2.4), hence the are zero. If we take the
derivative with respect to h of the above equation, and then we set h = 0, we find
an explicit form for the scalar susceptibility,

χ = 1
2t ∼ t

−1 (2.8)
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We conclude that, even neglecting the fluctuations with the Landau approximation,
at the phase transition point t = 0 our system has a diverging susceptibility. The
behaviour with t tells us that at Landau level, the critical exponent γ [91] is equal to
1. The susceptibility’s divergence implies, using the fluctuation-dissipation relation
(see appendix 2.A and [78]),

χ = β

∫
ddr C(r) ∼

∫
ddr f(r/ξ)

rd−2+η ∼ ξ
2−η (2.9)

from the Gaussian approximation of eq. 2.1 we know that η = 0, hence using eq.s
2.8 and 2.9 we find that the correlation length diverges,

ξ ∼ t−1/2 (2.10)

which means that the critical exponent ν = 1/2 at bare level. This critical point can
be studied, using the Renormalization Group [114, 115] and the epsilon expansion
[117, 118] to find a better estimate for critical exponents.

2.2 Ward identities and Goldstone modes

Using the symmetry properties of our Hamiltonian, we will now derive the Ward
identities [1, 104, 112] that can be used to derive an important property of correlations
in the symmetry-broken phase. We can write the Hamiltonian (2.1) in this fashion,

H[ϕ] = Hs[ϕ]− h ·
∫

ddr ϕ(r) (2.11)

where Hs[ϕ] is the O(n)-symmetric part of the Hamiltonian. By definition, if R is a
generic rotation in the n-dimensional space of ϕ, the following holds,

Hs[Rϕ] = Hs[ϕ] (2.12)

This implies that the per-particle Helmholtz free-energy [63],

f(h) = − 1
βV

ln
∫

Dϕ e−βH[ϕ]

= − 1
βV

ln
∫

Dϕ e−βHs[ϕ]+βh·
∫

ddr ϕ(r) (2.13)

is symmetric too. To show that, we simply compute f in Rh, we use the symmetry
of the Hamiltonian and a change of variable ϕ′ = Rϕ in the functional integral.

f(Rh) = − 1
βV

ln
∫

Dϕ′ e−βHs[ϕ′]+βRh·
∫

ddr ϕ′(r)

= − 1
βV

ln
∫

Dϕ e−βHs[Rϕ]+βRh·
∫

ddr Rϕ(r)

= − 1
βV

ln
∫

Dϕ e−βHs[ϕ]+βh·
∫

ddr ϕ(r)

= f(h) (2.14)
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where Dϕ′ = Dϕ because the transformation R has a Jacobian with unitary
determinant and also RTR = I because rotations preserve the scalar product.We
have shown that the Helmholtz free-energy is O(n)-symmetric in its argument h, just
like the Hamiltonian is symmetric in ϕ. We now perform an infinitesimal rotation R.
This is possible because rotations are continuous transformations and any arbitrarily
small rotation can be written as [120],

R ' I +
n(n−1)/2∑
k=1

εkAk (2.15)

where I is the identity transformation, the Aks are the symmetry’s generators and
the εks are the generalized angles in the n-dimensional space. We can represent the
generators Ak as antisymmetric n× n matrices, they can be constructed following
the procedure: fill a n× n matrix with zeroes, choose a matrix entry in the upper
triangular half and place a 1 in it, place a −1 in the symmetric entry, repeat for all
the entries in the upper triangular half of the matrix. A generic Ak matrix will look
like,

Ak =



0 0 0 0 . . .
0 0 1 0 . . .
0 −1 0 0 . . .

0 0 0 . . . . . .
...

...
... . . . . . .


(2.16)

From the invariance of the Gibbs free energy (2.14) we have,

δf = f(Rh)− f(h) = 0 (2.17)

If we substitute the generic R with its expansion (2.15) and we stop at first order in
the εk we have,

0 = δf =
(∑

k

εkAkh

)
· ∂f
∂h

(2.18)

We obtained the Ward-Takahashi identity [1, 73] only using the symmetry properties
of the Hamiltonian, hence it holds for any value of the temperature, at any level
of perturbation theory, both in the symmetric phase and in the symmetry-broken
phase. If we use directly the (2.18), given that the average magnetization m = − ∂f

∂h
[63] and that the εks are arbitrary, we find,

(Akh) ·m = 0 ∀ k (2.19)

To understand the meaning of this equation we have to remember the form of the
Aks matrices (2.16) and figure out the effect on the vector h. Essentially, if a certain
matrix Ak has a 1 only at column i and row j (and consequently a −1 at column j
and row i), it projects the vector h on the plane spanned by its components hi and
hj and then computes a vector hk that is orthogonal to the projection, remaining on
the same plane. If m is orthogonal to all the vectors hk, such as it is implied by the
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(2.19), this means that m is parallel to h. Hence from this Ward-Takahashi identity
we simply obtained that the magnetization is always parallel to the external field. If
we derive once the (2.19) with respect to the external field h we have,

0 = (Ak)αβ δβµmα + (Ak)αβ hβχαµ ∀ k (2.20)

where we are writing the matrices and vectors components with the Einstein con-
vention of summing over repeated indices. Given that the susceptibility matrix
is symmetric i.e. χαβ = χβα and the rotation’s generators are antisymmetric i.e.
(Ak)αβ = − (Ak)βα, we find,

−Akm+ χAkh = 0 ∀ k (2.21)

where we switched back to matrix notation. From the (2.19) we know that the
magnetization and the external field are parallel, hence we can write m = m

h h,
plugging it into the previous equation we find,(

χ− m

h

)
(Akh) = 0 ∀ k (2.22)

from this Ward identity we learn an important property of the susceptibility. This
equation gives us an eigenvalue (mh ) and its eigenvectors ((Akh) for every k) for
the susceptibility matrix χ. For all the directions spanned by the set of vectors
hk = (Akh), the susceptibility is m

h . Since the Ak are a basis of the space of all the
antisymmetric n× n matrices we can say that the space spanned by the hk is the
space orthogonal to h. In other words, we find that the susceptibility in the directions
that are orthogonal to the magnetic field (and the equilibrium magnetization) is,

χ⊥ = m

h
(2.23)

In the symmetry-broken phase, where the equilibrium magnetization is different
from zero even in absence of an external field, the transverse susceptibility (2.23)
diverges for vanishing magnetic field. This means, via the fluctuation-dissipation
relation, that also the correlation length of transverse fluctuations diverges in the
symmetry-broken phase. At zero external field, below the critical temperature
ξ⊥ =∞. The physical meaning of this phenomenon is the following, if we are in the
polarized phase, even a small external field that is orthogonal to the equilibrium
magnetization at zero field causes a divergent response in the system. This means
that it is energetically very easy to perturb the magnetization in a direction that is
orthogonal to the magnetization itself. If we look at Fig. 2.1-c it is clear why this is
possible, we are perturbing the magnetization (at least in the linear approximation)
along the “valley” of minima, where every point belongs to the same level curve, i.e.
we can change a little the magnetization along the circumference of minima without
raising the energy of the system.

Using the fluctuation-dissipation relation [78] we understand that the transverse
fluctuations are scale-free correlated, we are in the presence of Goldstone modes
[52, 53], i.e. scale-free modes (or massless modes) that appear in the symmetry-
broken phase, at zero external field. These modes involve the transverse fluctuations,
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which are orthogonal with respect to the equilibrium magnetization, and, in the
case of our O(n) rotational symmetry, they are n − 1. More generally, following
the Goldstone theorem [53], we can determine the number of Goldstone modes that
emerges in the symmetry-broken phase of a theory in the following way. A system
that in symmetric under a certain group transformation H in its symmetric phase
(both in the Hamiltonian and in its equilibrium state), may have a phase transition
and posses a certain phase where its equilibrium state is symmetric only with respect
to a subgroup G of the initial group H. The number of Goldstone modes that
emerge in this symmetry-broken phase is then equal to the number of generators of
the full symmetry H minus the number of generators of the subgroup G [100]. We
apply now this theorem to our case, we have that H is the group of rotations in a
n-dimensional space, thus the number of its generators is NH = n(n− 1)/2 (that
is also the dimension of the vector space of all the n× n antisymmetric matrices).
In the symmetry-broken phase this group reduces to the rotations along the planes
that are orthogonal to the equilibrium magnetization, that is G. The number of
planes orthogonal to a certain axis is NG = (n− 1)(n− 2)/2 hence the number of
Goldstone modes is,

# Goldstone modes = NH −NG = 1
2 [n(n− 1)− (n− 1)(n− 2)] = n− 1 (2.24)

as we stated in the beginning. A direct consequence of Goldstone modes is the
Mermin-Wagner theorem [79] which states that a system with a continuous symmetry
undergoes a phase transition from a disordered state to an ordered one only for
d > 2. If d = 2 and n = 2, even if the system has not an ordered phase, it possesses
a Kosterlitz-Thouless phase transition [72], but we are not interested in this peculiar
situation since our biological system lives in a 3D space [23] where n = d = 3.

Fluctuations Hamiltonian

A more intuitive approach to find Goldstone modes for our O(n) Landau-Ginzburg
model (2.1) is to expand the Hamiltonian of the fluctuations around the Landau
minimum [91],

ϕ = ϕ0n̂+ δϕ‖ (r) n̂+ δϕ⊥ (r) (2.25)

ϕ0 '

√
|t|
4u + h

2|t| (2.26)

where we computed ϕ0 using the eq. (2.7) for t < 0, n̂ is the direction of the
mean-field magnetization (and of the external field h), δϕ‖ is the magnitude of
the fluctuation that is parallel to the Landau magnetization ϕ0n̂ while δϕ⊥ is the
perpendicular fluctuation. If we substitute the (2.25) and the (2.26) into the (2.1)
we obtain the Hamiltonian,

H = const +
∫
V

ddr
{

1
2
(
∇δϕ‖

)2
+ 1

2 (∇δϕ⊥)2 +
t‖
2 δϕ

2
‖ + t⊥

2 δϕ
2
⊥+

+u
(
δϕ2
‖ + δϕ2

⊥

)2
+ u3δϕ

3
‖ + u3δϕ‖δϕ

2
⊥

}
(2.27)
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where, up to order h, we have,

t‖ = 2|t|+ 3h
ϕ0

t⊥ = h

ϕ0
u3 = 4uϕ0 (2.28)

If use the Hamiltonian (2.27) to compute the Gaussian propagators in momentum
space for the longitudinal (‖) and transverse (⊥) fluctuations we find,

G0
‖ (p) = T

p2 + 2|t|+ 3h
ϕ0

G0
⊥ (p) = T

p2 + h
ϕ0

(2.29)

where we have the T in the numerator because our distribution is the (2.2), this factor
here is harmless because it is just a total scaling of the propagators’ amplitudes.
Using the fluctuation-dissipation relation [78] we can compute the longitudinal
susceptibility and the transverse susceptibility at tree level,

χ‖ = βG0
‖(p = 0) = 1

2|t|+ 3h
ϕ0

χ⊥ = βG0
⊥(p = 0) = ϕ0

h
(2.30)

At this level of approximation, we find in the (2.30) the same result that we find using
the Ward identity (2.22), the transverse susceptibility diverges in the symmetry-
broken phase, when the external field vanishes.

From eq. (2.30) we note a differing point: at tree level, the longitudinal suscepti-
bility does not diverge, even for h = 0. In fact, while the divergence of the transverse
susceptibility is a general result, which is valid at all perturbative orders, because
it is a consequence of a Ward identity (2.22), that descends from a symmetry of
the Hamiltonian, eq. (2.30) is just derived using the Gaussian approximation of the
fluctuations’ Hamiltonian (2.27), hence we are not guaranteed that the longitudinal
susceptibility will be finite for h = 0 and t < 0, if we improve our approximation.
In fact, in the next section we will see that this result only holds at tree level.
From (2.28) and (2.29) we find that we have two distinct correlation lengths for the
transverse degrees of freedom and the longitudinal one. Because of the fact that the
transverse fluctuations have n− 1 components, we also recover that this theory has
n− 1 Goldstone modes [52], as we find above using the Goldstone theorem.

If we set the external field to zero and then we approach the bare critical
temperature t = 0, we find that both susceptibilities (2.30) diverge, as it should be
because we are approaching the critical point, where all the degrees of freedom of
our system become scale-free. Notice that the longitudinal susceptibility diverges
with the same exponent γ = 1 as its scalar counterpart (2.8), that we defined in the
symmetric phase t > 0. We cannot use the above equations to describe our system
directly at the critical point, we should have set t = 0 from the start in eq. (2.7),
doing so we obtain that, at the bare critical point ,our magnetization is,

ϕ0 =
(
h

4u

)1/3
∼ h1/3 (2.31)

hence we obtain another bare critical exponent δ = 3 [91].
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2.2.1 Back to flocks # 1: Goldstone modes in starling flocks

We want now to connect what we discussed so far with the phenomenology of flocks.
In order to compare the model we have discussed in this section with flocks we
can identify the microscopic spins of the O(n) model with starlings’ velocities. It
becomes immediately apparent that, in order to achieve high polarization (which
corresponds to high magnetization ϕ), we must be in the symmetry-broken (SB),
low-temperature phase with t < 0. We can now explain the panels a and c of Fig.
1.6, using the Goldstone modes theory. As we find using the Ward identity (2.22)
and also the fluctuation expansion (2.25), a system with short-range interactions
and a continuous symmetry develops scale-free transverse modes in its polarized (or
symmetry-broken) phase. Hence we are not surprised to see that in our polarized
(see Fig. 1.2) biological system, the full velocity fluctuations’ correlations, that
contain also the transverse contribution, are scale-free. Any model with a O(3)
symmetry, that lives in d = 3, is capable of reproducing full velocities’ scale-free
correlations as we discovered them in starling flocks [13].

Before tackling the scale-free modulus correlations problem (i.e. the speed scale-
free correlations as we can see in panels b and d of Fig. 1.6) we need to carefully
understand what happens with the longitudinal correlations. We only have the result
of eq. (2.30) that is the equivalent of a mean-field approximation that often does
not give accurate results in the regime of strong fluctuations [91].

We also must underline the fact that the longitudinal susceptibility of eq. 2.30,
which is linked to the correlation length of longitudinal fluctuations, does not coincides
with the modulus susceptibility, which is linked to the modulus correlation length
that we measured in data (Fig. 1.6-b). The Cartesian decomposition of fluctuations
(longitudinal and transverse) is different from the spherical decomposition (modulus
and phases) and correlation properties depend on which kind of decomposition we
are performing, as we shall see later.

The role of gravity and symmetry

We pointed out in the section above that we can describe flocks using a O(3)-
symmetric model. Given the presence of gravity and its importance in the dynamics
of avian flight, this choice is not obvious at all. We support it with two arguments:
one concerning the average velocity of a flock and another concerning the nature of
fluctuations.

First of all we can imagine that the center of mass velocity of a flock can point
in a direction outside the horizontal plane, it is common for flocks to increase or
decrease their altitude during the flight. However some directions are highly unlikely
to be chosen (for example the vertical axis direction upward or downward) due to the
mechanics of flight and the physiology of birds. This means that the average velocity
of a flock, which is the order parameter, is a vector that belongs to the whole 3D
space but only some directions are actually energetically equivalent (approximately).
We could think this situation as an intermediate case between a O(2) symmetry and
a O(3) symmetry for the order parameter.

Secondly, if we plot all the velocity fluctuations for every individual in a flock,
during the whole flocking event (see Fig. 2.2) we can see that fluctuations are
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Figure 2.2. Projections of velocity fluctuations with respect to the average
velocity for a typical flock. We can see in the plot the projection onto three
perpendicular planes of the single-individual velocity fluctuations with respect to the
average velocity of the flock (in each frame). The flock has a linear size of 68m and is
composed of 1548 individuals. None of the three axes δv1, δv2 and δv3 can be identified
with the vertical axis. We can see that fluctuations are present in the whole 3D space,
even if they are denser along the δv3 axis.

present in the whole 3D space. This evidence means that, at least on the time
scale of single-bird fluctuations, there is no preferred plane for fluctuations, hence
there is not an explicit breaking of the O(3) symmetry in favor of a O(2) symmetry.
However, we can see that fluctuations are denser in some directions (see Fig. 2.2,
second and third panel, along the δv3 axis), which can make us think that also from
this point of view we are in an intermediate situation between the O(2) case and
the O(3) case.

Overall, we choose to approximately describe the system with a O(3)-symmetric
theory since this extremely simplifies our discussion with respect to considering the
more accurate description of an intermediate symmetry between O(2) and O(3) and
also because our model has proved to be able to describe correctly experimental
data [27, 34].

2.3 The longitudinal susceptibility’s divergence

We will now prove that the longitudinal susceptibility too diverges, meaning that
longitudinal fluctuations too are scale-free correlated [17, 18, 92, 93]. However,
this does not give us any information about modulus fluctuations correlations, on
the contrary the relation that we will find between longitudinal and transverse
susceptibility (and that I verified with simulations) is based on the fact that we can
neglect modulus fluctuations amplitude [18, 92].

2.3.1 The large-n expansion

Following [17], we compute perturbatively the two susceptibilities, that we previously
computed at tree level in eq. (2.30), using the following setting. First of all we
include the inverse temperature β that appears in the definition (2.2) in the field’s
definition, so that P ∼ e−H, this will lighten the notation. Then we work in the limit
of large n; to be consistent and have all the terms in the Hamiltonian of the same
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order in n we choose u to be of order 1
n . We choose the field h to point along the

first of the n possible axes and we change variable in the Hamiltonian (2.1) using,

L(x) = ϕ1(x)−M (2.32)

where M is the average of ϕ1(x), computed using the full probability distribution.
M is of order

√
n, in order to be coherent with the bare approximation of eq. (2.26).

Then we can write the Hamiltonian as a free part,

H0 = 1
2

∫
ddr

{
(∇L)2 +

n∑
α=2

(∇ϕα)2 + χ−1
‖ L2 + χ−1

⊥

n∑
α=2

ϕ2
α

}
(2.33)

and an interaction part

HI =
∫

ddr
{

1
2
(
t− χ−1

‖ + 12M2u
)
L2 + 1

2
(
t− χ−1

⊥ + 4M2u
) n∑
α=2

ϕ2
α+

+ u

(
L2 +

n∑
α=2

ϕ2
α

)2

+ 4uM
(
L3 + L

n∑
α=2

ϕ2
α

)
+

+ LM
(
t+ 4uM2

)
− hL

}
(2.34)

with the sum and subtraction of the quantities χ−1
⊥
∑n
α=2 ϕ

2
α and χ−1

‖ L2, where we
define the longitudinal susceptibility as χ‖ = ∂M

∂h (coherently with our previous
calculations of eq. (2.30)) and the transverse susceptibility using the Ward identity
(eq. (2.23)) χ⊥ = M/h. We use this procedure of summing and subtracting the
inverse susceptibilities (or “dressed” masses [95]), in order to automatically sum all
the possible insertions of loops on a leg L or ϕα with α > 1 [14]. To investigate the
relation between the two susceptibilities we use the equation,

〈L〉 = 0 (2.35)

that follows from the definition (2.32). We compute the equation above expanding the
exponential of the interaction Hamiltonian eq. (2.34) and computing the Gaussian
averages 〈·〉0 using the free Hamiltonian (2.33). We stop at leading order, hence
including in our expansion only the largest order terms in n, that is O(

√
n) and the

smallest order terms in u. We must also include only the odd interaction terms, in
order to obtain non-vanishing Gaussian averages, once we multiply them for L in
the above equation. If we represent the equation above through diagrams, we have
the leg that represents L of the above equation,

(2.36)

where the solid line represent the field L and the cross on the left indicates that we
can only attach other legs, which will be connected from the interaction vertices, on
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the right. Of all the potential contributions from the interaction Hamiltonian (2.34),
we must consider only the odd vertices,

4uM
tM+4uM3-h

(2.37)
which are of the highest order in n (which is

√
n) and of the lowest order in u. In

the vertex on the left the dashed lines represent the transverse field ϕα, hence if we
connect them in a diagram we have to consider a factor n− 1, that in our limit of
large n can be considered as ∼ n. In the end, the diagrams that give a contribution
to eq. (2.35) are,

(2.38)
In formulas we have,

4uM
〈
L2
〉

0

〈
n∑

α=2
ϕ2
α

〉
0

+M
(
t+ 4uM2

) 〈
L2
〉

0
− h

〈
L2
〉

0
= 0 (2.39)

that can be rewritten as

4u
〈

n∑
α=2

ϕ2
α

〉
0

+ t+ 4uM2 − h

M
= 0 (2.40)

because both M and
〈
L2〉

0 are always non-vanishing in the symmetry-broken phase.
Now we compute the above equation at the critical point, where t = tC will be the
distance between the critical temperature at our order of approximation and the bare
critical temperature and where χ−1

‖ = χ−1
⊥ = h = M = 0. We first send h to zero

while we remain in the ordered phase, and then we let the inverse susceptibilities
and the magnetization vanish at the critical point. We obtain:

4u
〈

n∑
α=2

ϕ2
α

〉
0C

+ tC = 0 (2.41)

where the average 〈·〉0C is made using the Gaussian Hamiltonian (2.33) with χ−1
⊥ = 0.

Now we subtract eq. (2.41) from (2.40) and we obtain,

h

M
= tR + 4uM2 + 4un

∫ ddk
(2π)d

[
1

k2 + χ−1
⊥
− 1
k2

]
(2.42)
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where tR = t− tC is the distance between the temperature of the system and the
critical temperature at our level of approximation. The integral in the expression
above is the explicit expression for

〈∑n
α=2 ϕ

2
α

〉
0 −

〈∑n
α=2 ϕ

2
α

〉
0C , using the free

Hamiltonian (2.33). We can perform it for d < 4, letting k span the whole d-
dimensional space,

I =
∫ ddk

(2π)d

[
1

k2 + χ−1
⊥
− 1
k2

]
= −χ

1−d/2
⊥ Ωd

(2π)d
∫ ∞

0
dx xd−3

x2 + 1

= −χ
1−d/2
⊥ Ωd

(2π)d
∫ ∞

0
dα e−α

∫ ∞
0

dx xd−3e−αx
2

= −χ
1−d/2
⊥ Ωd

2(2π)d
∫ ∞

0
dα α1−d/2e−α

∫ ∞
0

dt td/2−2e−t

= −(h/M)1−ε/2Ω4−ε
2(2π)4−ε

∫ ∞
0

dα αε/2−1e−α
∫ ∞

0
dt t−ε/2e−t

= −(h/M)1−ε/2π2−ε/2Γ(ε/2)Γ(1− ε/2)
(2π)4−ε Γ(2− ε/2)

= −
(
h

M

)1−ε/2 π3−ε/2

(2π)4−ε Γ(2− ε/2) sin (πε/2) (2.43)

where we use the substitution x = k
√
χ⊥ and we express the fraction 1/(x2 + 1)

using the integral,

1
(x2 + 1)p = 1

Γ(p)

∫ ∞
0

dα αp−1e−α(x2+1) (2.44)

After that, we perform another substitution t = αx2, then we write the dimension
as d = 4− ε and the transverse susceptibility χ⊥ = M/h, following eq. (2.22). In
the end we express the final integrals in α and in t using the Euler Gamma function,

Γ(z) =
∫ ∞

0
dy yz−1e−y (2.45)

and we use the in the last passage the Euler reflection formula,

Γ(z)Γ(1− z) = π

sin(πz) (2.46)

The state equation (2.42) then becomes, using the solution of the integral (2.43)

h

M
= tR + 4uM2 − 4un

(
h

M

)1−ε/2 π3−ε/2

(2π)4−εΓ(2− ε/2) sin (πε/2) (2.47)

By rescaling the ϕα fields and the temperature tR, we get rid of the constants in eq.
(2.47). In the symmetry-broken phase, with h→ 0, t < 0 and M 6= 0, we can write
the previous equation as,

tR = −M2 +
(
h

M

)1−ε/2
(2.48)
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from which we can compute the critical exponent β = 1/2 [17], by setting h = 0,
and the critical exponent δ = 3 + ε [17], by setting tR = 0. If we take the derivative
with respect to h of the equation above, we obtain,

0 = −2Mχ‖ + (1− ε/2)M−1
(
1− χ‖/χ⊥

)
χ
ε/2
⊥ (2.49)

Now we make the assumption that χ‖/χ⊥ � 1, which is reasonable, given that at
tree level the longitudinal susceptibility does not diverge (see eq. (2.30)) and that we
expect the transverse fluctuations to cost less energy with respect to the longitudinal
ones, as one can imagine by looking at the bare potential of the theory Fig. (2.1).
Following the consequences of the assumption, we can disregard the term χ‖/χ⊥,
hence the above equation becomes

χ‖ =1
2M

−2(1− ε/2)χε/2⊥

χ‖ ∼ χ
ε/2
⊥ (2.50)

that is consistent with the observation χ⊥ � χ‖ and tells us that, even if more
weakly, the longitudinal susceptibility too diverges in the symmetry-broken phase, for
vanishing external field. The reason of this divergence can be found in the coupling
between the longitudinal degree of freedom L and the transverse one ϕα (for α > 1)
that is expressed in the interaction vertex on the left of eq. (2.37). If we compute
the longitudinal correlation function

〈
L2〉 at k = 0 and h = 0 (that corresponds to

the longitudinal susceptibility via the fluctuation-dissipation theorem, see appendix
2.A), at tree level we have the non-divergent result of eq. (2.30), but if we include
the one-loop diagram built with two cubic vertices (2.37),

(2.51)

we see that this one-loop correction, because of the internal lines that are transverse
(hence massless, see eq. (2.29)) propagators, is infrared divergent at zero external
field [18]. The explicit expression of the diagram above at zero external momentum
is,

D ∼
∫ ddp

(2π)d
1

(p2 + χ−1
⊥ )2 ∼ χ

ε
⊥ (2.52)

hence it is infrared divergent for d < 4. At this level we find just a perturbative
result, in the limit of large n and small coupling u but, if we perform a Monte Carlo
simulation of a O(3)-symmetric system, we can see that the scaling of eq. (2.50)
holds quite well (see section 2.3.3). We could think that this is a general property
of systems with a continuous symmetry in a symmetry-broken phase, hence in the
following subsection we will consider the problem from a wider point of view.
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2.3.2 The longitudinal susceptibility for any n

We will now follow the calculations of [93], generalizing them for any d < 4. A
O(n)-symmetric system, which is coupled with an external symmetry-breaking field,
can be described using its generalized Gibbs free energy (per unit volume),

f̂(m) = g(m2)− h ·m (2.53)

where g(m2) is the Gibbs free energy, that has the same symmetry of the system.
The variable m is the spatial average over the whole system of the fluctuating fields
ϕ(x), hence it is the fluctuating variable that describes the total magnetization
per unit volume of the system. The minimum of f̂(m) identifies the equilibrium
magnetization of the system m0,

h = 2m0g
′(m2

0) (2.54)

and thus expresses the relation between the equilibrium magnetization and the exter-
nal field h. In principle, using the equation above, we can express the spontaneous
magnetization as a function of the external field m0 = m0(h), plug it in eq. (2.53),
and find the Helmholtz free energy f̂(m0(h)) = f(h2), that is also O(n)-symmetric
in its argument h. In the symmetry-broken phase at zero field, the spontaneous
equilibrium magnetization modulus is fixed by the above equation, which simplifies
to,

g′(m2
0) = 0 (2.55)

where we have discarded the solution m0 = 0 since we already know that below the
critical temperature we have non-vanishing spontaneous equilibrium magnetization.
Deriving equation (2.54) with respect to the componentm0β we can find an expression
for the inverse susceptibility matrix,

χ−1
αβ = ∂hα

∂m0β
= 2δαβg′(m2

0) + 4m0αm0βg
′′(m2

0)

=
[
4m2

0g
′′(m2

0) + 2g′(m2
0)
]
nαnβ +

[
2g′(m2

0)
]

(δαβ − nαnβ) (2.56)

where δαβ is the Kronecker delta and n = h/h = m0/m0. From the susceptibility
matrix in this form, we can easily identify the transverse and the longitudinal inverse
susceptibilities,

χ−1
⊥ = 2g′(m2

0) = h

m0
(2.57)

χ−1
‖ = 4m2

0g
′′(m2

0) + 2g′(m2
0) (2.58)

where we recovered, using eq. (2.54), the Ward identity (2.22). Given that we want
to investigate the properties of longitudinal and transverse fluctuations, we expand
the generalized thermodynamic potential (2.53) near the minimum m0, we express
m as,

m = m0 + δm = m0 + δm‖n+ δm⊥ (2.59)
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Figure 2.3. Magnetization fluctuations decomposed A generic phase fluctuation for
n = 2 is decomposed into its longitudinal and transverse component. We can see that
both kinds of fluctuations have a non-zero contribution from a phase fluctuation. The
longitudinal one is smaller ∼ θ2, while the transverse one is bigger ∼ θ for θ � 1.

where δm‖n and δm⊥ are, respectively, the parallel fluctuation to the equilibrium
magnetization and the orthogonal fluctuation to the equilibrium magnetization. The
change in the potential is, at quadratic order,

δf̂ = f(m)− f(m0) = 1
2

∂2f̂

∂mα∂mβ

∣∣∣∣∣
m0

δmαδmβ = 1
2

∂2g

∂mα∂mβ

∣∣∣∣∣
m0

δmαδmβ

= 1
2χ
−1
αβδmαδmβ = 1

2
(
χ−1
⊥ δm2

⊥ + χ−1
‖ δm2

‖

)
(2.60)

where we are summing over repeated indices (from now on, if not stated otherwise,
we always imply the sum over repeated indices). From this expression we can see
that energetic fluctuations are linked to magnetization’s fluctuations through the two
susceptibilities. For vanishing field, the inverse transverse susceptibility vanishes too.
hence it is extremely easy to perform a transverse fluctuation of the magnetization,
because at least at quadratic level, it does not cost in energy terms.

The principle of modulus conservation

To refine our study of fluctuations around the thermodynamic potential minimum
(2.53), we now assume that the “principle of modulus conservation” [92, 93] can
be applied. We will find later that this assumption is reasonable and leads to
self-consistent results. This principle states that the fluctuations of m2 are negligible,
which means,

δ(m ·m) = m ·m−m2
0 ' 0 (2.61)

Using eq. (2.59) and the fact that in the limit of small fluctuations we can neglect
δm2
‖ because it is much smaller than δm‖, the above equation transforms into,

δ(m ·m) ' 2m0δm‖ + δm2
⊥ ' 0 (2.62)

that gives us an important information about the relative magnitude of fluctuations,
namely that δm‖ ∼ δm2

⊥. The geometrical reason of this relation can be understood
by looking at Fig. 2.3; if we neglect modulus fluctuations, only phase fluctuations of
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a certain angular amplitude θ are permitted and we can write both the longitudinal
contribution and the transverse contribution as functions of the angle θ,

δm⊥ = m0 sin (θ) ∼ θ (2.63)
δm‖ = m0 −m0 cos (θ) ∼ θ2 (2.64)

that implies

δm‖ ∼ δm2
⊥ (2.65)

Moreover, we find that, if we assume the conservation of the modulus (2.61), the
scalar product of longitudinal fluctuations and the equilibrium magnetization have
opposite direction, i.em0 · δm‖n < 0 (from eq. (2.62)). This property can be clearly
seen in Fig. 2.3, where a phase fluctuation generates a longitudinal fluctuation that
is always opposite with respect to the equilibrium magnetization. Now that we know
how to compare longitudinal and transverse fluctuations, we proceed expanding up
to the fourth order in δm⊥ (i.e. the second order in δm‖) the generalized Gibbs free
energy (2.53). We already have the quadratic contribution from eq. (2.60), hence
we only need to compute the third order contribution,

δf̂3 = 1
6

∂3f̂

∂mα∂mβ∂mµ

∣∣∣∣∣
m0

δmαδmβδmµ (2.66)

and the fourth order contribution.

δf̂4 = 1
24

∂4f̂

∂mα∂mβ∂mµ∂mν

∣∣∣∣∣
m0

δmαδmβδmµδmν (2.67)

Starting with δf̂3 we have to compute,

∂3f̂

∂mα∂mβ∂mµ

∣∣∣∣∣
m0

= ∂3g

∂mα∂mβ∂mµ

∣∣∣∣∣
m0

= 12δαβm0µg
′′ + 8m0αm0βm0µg

′′′ (2.68)

where we are simply writing explicitly all the derivatives with respect to the various
components mα, we also omit the argument m2

0 of g and its derivatives to lighten
the notation. Plugging the result into the (2.66) we obtain,

δf̂3 = 2g′′m0δm‖
(
δm2
‖ + δm2

⊥

)
+ 4

3g
′′′m3

0δm
3
‖ (2.69)

where we consider only the term 2g′′m0δm‖δm
2
⊥ that is the only one, considering

eq. (2.65), of order δm4
⊥. All the other terms of the above equation are of higher

order. Going on to the contribution of eq. (2.67) we have to compute,

∂4f̂

∂mα∂mβ∂mµ∂mν

∣∣∣∣∣
m0

= ∂4g

∂mα∂mβ∂mµ∂mν

∣∣∣∣∣
m0

= 12δαβδµνg′′ + 48δαβmµmνg
′′′ + 16mαmβmµmνg

′′′′ (2.70)
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and then, plugging it into eq. (2.67), we have,

δf̂4 = 1
2g
′′
(
δm2
‖ + δm2

⊥

)2
+ 2g′′′m2

0δm
2
‖

(
δm2
‖ + δm2

⊥

)
+ 2

3g
′′′′m4

0δm
4
‖ (2.71)

where we consider only the term 1
2g
′′δm4

⊥, because all the others exceed the order
δm4
⊥. Putting together all the terms we have computed so far, up to order δm4

⊥, we
have,

δf̂ = g′δm2
⊥ +

(
g′ + 2m0g

′′) δm2
‖ + 2m0g

′′
[
δm‖δm

2
⊥/m0 + δm4

⊥/(4m2
0)
]

= 1
2χ
−1
⊥ δm2

⊥ + 1
2χ
−1
‖

[
δm2
‖ + δm‖δm

2
⊥/m0 + δm4

⊥/(4m0)
]

= 1
2

[
δm2
⊥

χ⊥
+ [δ(m ·m)]2

4m2
0χ‖

]
(2.72)

where we have made the approximation χ−1
‖ ' 2m0g

′′ from eq. (2.58), because we
want to investigate the limit of h→ 0, hence we know from eq. (2.54) that the first
derivative of the Gibbs free energy g′ vanishes like ∼ h. We are essentially using the
same assumption that we use to go from eq. (2.49) to eq. (2.50), that is, for a small
enough h, χ‖/χ⊥ � 1. If we use eq.s (2.57) and (2.58), we find,

χ‖/χ⊥ = g′

g′ +m0g′′
� 1 (2.73)

that implies,

g′′ � g′ (2.74)

because, even for h = 0, the equilibrium magnetization m0 is a finite quantity.
We now check if our initial assumption eq. (2.61) is sensible. From eq. (2.72) we

can easily compute the above quantities because, from the definition of generalized
Gibbs free energy [63], we have that the probability distribution of our variables is,

P (δm⊥, δ(m ·m)) ∼ exp
{
−V βδf̂ (δm⊥, δ(m ·m))

}
(2.75)

where V is the system’s volume and β = 1/(kBT ) with kB = 1. To find the
correct distribution we have also to compute the Jacobian of the transformation(
δm⊥, δm‖

)
→ (δm⊥, δ (m ·m)), it can be done using eq. (2.62), and it is only a

harmless constant J = 1/(2m0). From the equation above we have,

〈
δm2
⊥

〉
= (n− 1)Tχ⊥

V

〈
[δ(m ·m)]2

〉
=

4m2
0Tχ‖
V

(2.76)

The principle of conservation of the modulus, expressed by eq.s (2.61) and (2.62),
is equivalent to say that squared modulus fluctuations of equation (2.61) are much
smaller than transverse fluctuations squared. Hence, if we square eq. (2.62) we can
see that the following must hold,〈

[δ(m ·m)]2
〉
�
〈
δm2
⊥

〉2
(2.77)
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where we used the fact that δm⊥ is a Gaussian variable (see eq. (2.72)), thus from
Wick’s theorem we have

〈
δm4
⊥
〉
∼
〈
δm2
⊥
〉2. Combining eq.s (2.76) and (2.77) we

have a condition for the system’s volume,

V � (n− 1)2 Tχ2
⊥

4m2
0χ‖

(2.78)

Another condition on the validity of our approximation is that the largest fluctuations
(i.e. the transverse ones) must be small with respect to the equilibrium magnetization,〈

δm2
⊥

〉
� m2

0 (2.79)

that becomes another condition on the volume, using eq. (2.76),

V � (n− 1)Tχ⊥
m2

0
(2.80)

We can see that, if χ‖ does not grow too fast for h→ 0, given a certain volume V , we
can choose an external field h small enough so that both eq. (2.78) and (2.80) hold,
hence validating both the expansion for small fluctuations (2.59) and the principle of
modulus conservation (2.61). The validity of this principle tells us that, for systems
with a continuous symmetry that becomes spontaneously broken, the modulus’
fluctuations in the ordered phase are negligible with respect to the other degrees
of freedom’s fluctuations. Following [93], we can think of extending this principle
to non-homogeneous fluctuations with large enough wavelength i.e. we extend the
principle that we verified for the macroscopic quantity m to the mesoscopic fields
ϕ(r), in the limit of momentum k close to 0. The idea that modulus fluctuations
can be neglected is common in continuous spin models, some of them fix the vectors
moduli, at mesoscopic level (non linear σ-model [122]) and even at microscopic level
(classic Heisenberg model [103]).

Longitudinal susceptibility’s asymptotic behaviour

We compute now the longitudinal susceptibility, applying the principle of modulus
conservation (2.62) to mesoscopic fields. We expand eq. (2.53), bearing in mind
the principle of modulus conservation, and use it as a proxy for a field theory for
fluctuations. Using eq. (2.53) and eq. (2.72) we see that, if we were to expand
further the potential f̂ , we would only obtain higher powers of the squared modulus
fluctuations,

δf̂ = g
(
m2

0 + δ(m ·m)
)
− g

(
m2

0

)
− h · δm

= 1
2

[
δm2
⊥

χ⊥
+ [δ(m ·m)]2

4m2
0χ‖

]
+ g′′′ [δ(m ·m)]3 + g′′′′ [δ(m ·m)]4 + ...

' 1
2
δm2
⊥

χ⊥
(2.81)

Following the above result, we see that the transverse fluctuations decouple from
the negligible squared modulus fluctuations, hence we promote the homogeneous
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magnetization transverse fluctuations δm⊥ to a field δϕ⊥(r) and we write the
Hamiltonian,

H⊥ = 1
2

∫
dr

[ 1
χ⊥

δϕ2
⊥ + c (∇δϕ⊥)2

]
(2.82)

where the gradient term takes into account the non-homogeneous transverse fluctua-
tions. In principle we could add, in the above Hamiltonian, any gradient-dependent
term but we stick to the lowest order because we are interested in the long-wavelength
fluctuations of the system. The constant c is the stiffness of the system, which
quantifies the rigidity of the system with respect to non-homogeneous transverse
fluctuations. From the above equation, using the Boltzmann distribution [63], we
can compute the transverse correlation function, in momentum space,

G⊥(q) = T

cq2 + χ−1
⊥

= T

cq2 + h
ϕ0

(2.83)

The principle of modulus conservation for fields translates from (2.62) to,

2ϕ0δϕ‖(r) + δϕ2
⊥(r) = 0 (2.84)

where ϕ0 is the equilibrium value of the field. The above equations (2.84) and (2.83)
can be used to compute the longitudinal susceptibility,

χ‖ =
∂
〈
δϕ‖(r = 0)

〉
∂h

= − 1
2ϕ0

∂
〈
δϕ2
⊥(r = 0)

〉
∂h

= − 1
2ϕ0

(n− 1)
∫ ddq

(2π)d
∂G⊥(q)
∂h

= (n− 1)Ωd

2(2π)dh2

∫ ∞
0

dq qd−1( cϕ0
h q2 + 1

)2
= (n− 1)Ωd

2(2π)d(cϕ0)d/2

[∫ ∞
0

dx xd−1

(x2 + 1)2

]
h−ε/2

∼ χε/2⊥ (2.85)

where we performed the substitution x = q
√
cϕ0/h. The integral in x can be

computed using eq. (2.44) and then using the Euler Gamma function to express the
dimension-less integrals; it bears a finite result for any d < 4. The above calculation
states that, for any n,

χ‖ ∼ χ
ε/2
⊥ (2.86)

In the end, using only the O(n) symmetry of the theory and assuming that modulus
fluctuations are negligible with respect to the transverse ones, we find that the
longitudinal susceptibility diverges for vanishing external field. Given that its
divergence is weaker than the transverse susceptibility’s, both eq.s (2.78) and (2.80)
are legitimate, for a small enough field h. The whole calculation is indeed self-
consistent and generalizes the result of eq. (2.50) for any n and any O(n)-symmetric
theory.
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Figure 2.4. Longitudinal and transverse susceptibility for a O(3)-symmetric
system a: Longitudinal susceptibility (light blue) and transverse susceptibilities (orange
for y direction and green for z direction) as functions of the external magnetic field.
b: Transverse VS longitudinal susceptibility, parametric in the external field h. The
transverse susceptibility scales with a power law close to h−1, as it is predicted by the
Ward identity (2.22), while the longitudinal susceptibility scales with a power law close
to h−1/2 as it is predicted by eq. (2.50) with ε = 4 − d = 1, because the system lives
in a three-dimensional space d = 3. Simulation parameters: J = 1 and T = 0.5. The
system is in a cubic box of size 10× 10× 10.

2.3.3 Simulations for transverse and longitudinal susceptibilities

In order to see from simulations the relation 2.86 we performed MonteCarlo sim-
ulations of a spin system with the following microscopic O(n)-symmetric pseudo-
Hamiltonian, perturbed by an external field,

H({σi}) = J

2
∑
〈i,j〉

(σi − σj)2 +
∑
i

(σ2
i − 1)2 − h ·

∑
i

σi (2.87)

where the sum ∑
〈i,j〉 is performed over all the couples of nearest neighbours on

the lattice, the external space is three-dimensional d = 3 and also the spin space
has three dimensions, with n = 3 . Once the system is in the polarized phase, we
measured the longitudinal and transverse susceptibilities as functions of the external
magnetic field modulus h = |h|. For this system they can be measured, using the
fluctuation-dissipation relation [78],

χ‖ = β

N

∑
i,j

〈
σ‖iσ‖j

〉
−
〈
σ‖i
〉〈
σ‖j
〉

χ
(α)
⊥ = β

N

∑
i,j

〈
σ

(α)
⊥i σ

(α)
⊥j

〉
−
〈
σ

(α)
⊥i

〉〈
σ

(α)
⊥j

〉
(2.88)

where σ‖i is the component of the spin σi that is parallel to the external field h
and σ(α)

⊥i are the n− 1 = 2 components of the spin σi that are perpendicular to the
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external field. In Fig. 2.4 we can see that the Ward identity 2.23 is verified, because
the transverse susceptibility is compatible with the behaviour χ⊥ ∼ h−1 and also
the relation 2.86 is satisfied, because we can see from the figure that,

χ‖ ∼
[
χ

(α)
⊥

]1/2
∼ h−1/2 (2.89)

We verified in a real finite-size system not only the well-known result of the Ward-
Takahashi identity for the transverse susceptibility but also the highly non-trivial
relation (2.86) that comes from a more detailed study of fluctuations in the symmetry-
broken phase [17, 93].

Regarding finite size effects in the simulations that we present in Fig. 2.4, we can
use eq. (2.78) and eq. (2.80). If we are a bit more careful with numeric constants
we see that (2.80) remains untouched, while (2.78) can be written more precisely as,

V � (n2 + 2n) Tχ2
⊥

4m2
0χ‖

(2.90)

if we check the validity of the equation above and of eq. (2.80) for our simulations, we
see that for small h they are simultaneously valid (we have an average magnetization
m0 ' 0.9), while for large h the above equation fails, while the (2.80) remains valid.
This is reflected in the fact that in Fig. 2.4-a, for large h, the susceptibilities slightly
depart from the predicted behaviour of eq. 2.57 and eq. (2.89).

2.3.4 Back to flocks # 2: a possible misunderstanding

We have no doubt now that with any classical O(3) theory we could reproduce the full
velocities’ scale-free correlations of our experimental biological system (Fig. 1.6-a).
It suffices to place the system in its broken-symmetry phase with high polarization,
which is also compatible with the starling flocks state [24]. One may be tempted
to identify the longitudinal fluctuations with the modulus fluctuations and justify
in this way the speed’s scale-free correlation of Fig. 1.6-b, but the calculations
we have done in the previous sections state otherwise. One can see from Fig. 2.3
and equations (2.63)-(2.64) that longitudinal and transverse fluctuations, i.e. the
Cartesian fluctuations, mix together the spherical fluctuations (phase and modulus).
Moreover, to compute the divergence of the longitudinal susceptibility we have used
eq. (2.61) (and checked its self-consistency) that clearly states that the modulus
fluctuations are negligible with respect to the other degrees of freedom. This means
that, even if we know that both the longitudinal and the transverse degree of freedom
are scale-free correlated, we do not know yet which role has been played by the
phase and modulus fluctuations. In the next section we will see what happens if
we consider our system from the point of view of modulus and phase fluctuations,
to discover if we can obtain speed scale-free correlations just with a standard O(n)
symmetric model.

2.4 Modulus and phase fluctuations

We can expand near the Landau minimum, in the spirit of eq. (2.25) and (2.26),
but using modulus and phase fluctuations, instead of longitudinal and transverse
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fluctuations [100]. We imagine that the equilibrium homogeneous field (that now we
call ρ0) points along the nth axis, hence we can write the generic field as,

ϕ1 = [ρ0 + δρ(r)] sin(θ1(r))
ϕ2 = [ρ0 + δρ(r)] cos(θ1(r)) sin(θ2(r))
ϕ3 = [ρ0 + δρ(r)] cos(θ1(r)) cos(θ2(r)) sin(θ3(r))
. . .

ϕn−1 = [ρ0 + δρ(r)] cos(θ1(r)) cos(θ2(r)) . . . cos(θn−2(r)) sin(θn−1(r))
ϕn = [ρ0 + δρ(r)] cos(θ1(r)) cos(θ2(r)) . . . cos(θn−2(r)) cos(θn−1(r)) (2.91)

where δρ(r) is a generic space-dependent modulus fluctuation and θi(r) are the n−1
phase fluctuations possible in a n-dimensional space. Fluctuations are small, which
means that δρ� ρ0 and θi � 1 for every i. We substitute the above expression in
the Hamiltonian (2.1) with zero external field h. In order to obtain the fluctuations
Hamiltonian, we have to compute the homogeneous part and the squared gradient of
the field ϕ in eq. (2.1) as a function of the variables δρ and θi, defined in eq. (2.91).
To simplify our notation we write,

ϕi = (ρ0 + δρ(r))fi({θk(r)}) (2.92)

where each function fi is defined using eq. (2.91). The following relation descends
from the definition,

n∑
i=1

f2
i = 1 (2.93)

To verify the relation above it suffices to sum the various squared fi, starting from
the nth function and going backward, from n to 1, using sin2(θi) + cos2(θi) = 1 for
every i. The homogeneous part of eq. (2.1) is easy to express in terms of modulus
and phase fluctuations, we have,

t

2ϕ
2 = t

2

n∑
i=1

ϕ2
i = t

2 (ρ0 + δρ(r))2
n∑
i=1

f2
i = t

2 (ρ0 + δρ(r))2

= const + tρ0δρ+ t

2δρ
2

uϕ4 = u
(
ϕ2
)2

= u (ρ0 + δρ(r))4

= const + uδρ4 + 4uρ0δρ
3 + 6uρ2

0δρ
2 + 4uρ3

0δρ (2.94)

For the gradient we have,

1
2 (∇ϕ)2 = 1

2
∑
i,α

(
∂ϕi
∂xα

)2
= 1

2
∑
i,α

[
(ρ0 + δρ) ∂fi

∂xα
+ ∂δρ

∂xα
fi

]2

= 1
2(ρ+ δρ)2∑

i,α

(
∂fi
∂xα

)2
+ 1

2
∑
α

(
∂δρ

∂xα

)2

+ (ρ+ δρ)
∑
α

∂δρ

∂xα

∑
i

fi
∂fi
∂xα
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= 1
2
[
(ρ+ δρ)2 (∇f)2 + (∇δρ)2

]
(2.95)

where i goes from 1 to n, α goes from 1 to d, we wrote (∇f)2 = ∑
i,α

(
∂fi
∂xα

)2
and

(∇δρ)2 = ∑
α

(
∂δρ
∂xα

)2
. The third line of the above expression is equal to zero because

we can write,

∑
i

fi
∂fi
∂xα

= 1
2
∂

∂xα

∑
i

f2
i = 0 (2.96)

using the (2.93). We can further simplify the expression of the gradient, computing
the following,

(∇f)2 =
∑
i,α

(
∂fi
∂xα

)2
=
∑
i,α

(∑
k

∂fi
∂θk

∂θk
∂xα

)2

=
∑
i,α,k,q

∂fi
∂θk

∂θk
∂xα

∂fi
∂θq

∂θq
∂xα

=
∑
α,k,q

∂θk
∂xα

∂θq
∂xα

∑
i

∂fi
∂θk

∂fi
∂θq

=
∑
α,k,q

∂θk
∂xα

∂θq
∂xα

δkq
∏
l<k

cos2(θl)

'
∑
α,k,q

∂θk
∂xα

∂θq
∂xα

δkq =
∑
α,k

(
∂θk
∂xα

)2

= (∇θ)2 (2.97)

that plugged into eq. (2.95) gives some gradient-dependent terms. We made the
approximation cos(θl) ' 1 because we are in the regime of small fluctuations. One
could include higher power of the cosine expansion, but this does not change the
final result of the analysis. In the above equation we used the relation,

∑
i

∂fi
∂θk

∂fi
∂θq

= δkq
∏
l<k

cos2(θl) (2.98)

To verify the above relation, one must use the definition (2.91). When k = q we
have,

∑
i

(
∂fi
∂θk

)2
=
∑
i≥k

(
∂fi
∂θk

)2
(2.99)

because for i < k the function fi does not depend on θk. We can compute the above
expression starting from the nth component in eq. (2.91) and then going backward
up to the kth component. During the calculation we see that due to the property
cos2(θi) + sin2(θi) = 1 we obtain,

∑
i≥k

(
∂fi
∂θk

)2
=
(
∂fn
∂θk

)2
+
(
∂fn−1
∂θk

)2
+ · · ·+

(
∂fk
∂θk

)2

= cos2
1 cos2

2 . . . sin2
k . . . cos2

n−2 cos2
n−1

+ cos2
1 cos2

2 . . . sin2
k . . . cos2

n−2 sin2
n−1

+ cos2
1 cos2

2 . . . sin2
k . . . sin2

n−2
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. . .

+ cos2
1 cos2

2 . . . cos2
k

= cos2
1 cos2

2 . . . cos2
k−1 =

∏
l<k

cos2(θl) (2.100)

where cosi = cos(θi). When k 6= q a similar mechanism bears a different result, we
have,

∑
i≥max(k,q)

∂fi
∂θk

∂fi
∂θq

(2.101)

where once again we do not include the fi for i < max(k, q) because they do not
depend on θk or θq, if respectively k > q or k < q. The above expression can be
computed and it gives, if we consider k > q,

∑
i≥max(k,q)

∂fi
∂θk

∂fi
∂θq

= ∂fn
∂θk

∂fn
∂θq

+ ∂fn−1
∂θk

∂fn−1
∂θq

+ · · ·+ ∂fk
∂θk

∂fk
∂θq

= cos2
1 cos2

2 . . . (− sinq cosq) . . . cos2
p . . . (− sink cosk) . . . cos2

n−2 cos2
n−1

+ cos2
1 cos2

2 . . . (− sinq cosq) . . . cos2
p . . . (− sink cosk) . . . cos2

n−2 sin2
n−1

+ cos2
1 cos2

2 . . . (− sinq cosq) . . . cos2
p . . . (− sink cosk) . . . sin2

n−2

. . .

+ cos2
1 cos2

2 . . . (− sinq cosq) . . . cos2
p . . . (sink cosk)

= 0 (2.102)

where q < p < k. Putting together the results (2.100) and (2.102) we obtain eq.
(2.98). Finally, putting together the homogeneous contribution and the gradient
expansion, the Hamiltonian of modulus and phase fluctuations can be written as a
free part,

H0 = 1
2

∫
ddr

{
(∇δρ)2 + ρ2

0 (∇θ)2 + tδρ2
}

(2.103)

and an interaction,

HI =
∫

ddr
{

2ρ0δρ+ δρ2

2 (∇θ)2 + (tρ0 + 4uρ0) δρ+ 6uρ0δρ
2 + 4uρ0δρ

3 + uδρ4
}

(2.104)

where (∇δρ)2 = ∑
α

(
∂δρ
∂xα

)2
and (∇θ)2 = ∑

i,α

(
∂θi
∂xα

)2
. From the Hamiltonian

(2.103) we see that, at tree level the modulus mode δρ has a mass, that is equal
to t while the n − 1 phase modes are massless (they are the Goldstone modes
[52]). Moreover, if we look at the interacting part (2.104), we can see that we
cannot produce corrections that involve a phase propagator at zero momentum to
the modulus correlation function. The only term that mixes δρ and θ is (2ρ0δρ+
δρ2)(∇θ)2, but it vanishes at zero momentum, thus it cannot give a contribution to
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the modulus connected correlation function at k = 0. This means that, contrarily to
the longitudinal fluctuations of eq. (2.59), the modulus fluctuations always remain
massive i.e. short-range correlated. This is reflected in the free energy that, in the
whole symmetry-broken phase, has a positive-curvature minimum in the modulus
direction. Given this perspective we can say that the “true” representation of
the Goldstone modes are the phase modes [100], while the modulus is the degree
of freedom that remains untouched by any transformation belonging to the O(n)
group. In the previous setting of longitudinal and transverse fluctuations we find
that at bare level the transverse fluctuations coincide with phase ones, but if we
compute fluctuations at a more refined level, we find that longitudinal fluctuations
too receive a contribution from the phase modes, hence the longitudinal susceptibility
is divergent (2.86).

2.4.1 Back to flocks # 3: new physics is needed

Our task is to reproduce the phenomenology of starling flocks, with the simplest
model possible. In this chapter we have reviewed the current knowledge about
equilibrium models that describe polarized systems to find out if any existent model
can achieve the goal.
Focusing on standard O(n) models, we have found that the Goldstone modes (that
are phase modes) are responsible for the divergence of longitudinal and transverse
susceptibility. Through fluctuation-dissipation relations we can link these divergences
with the diverging correlation length of phase fluctuations, hence the orientational
scale-free correlations of Fig. 1.6-a,c can be reproduced with equilibrium Goldstone
modes. We lack an explanation for the scale-free correlations of speed (modulus)
fluctuations of Fig. 1.6-b,d. The scale-free longitudinal modes receive a contribution
from modulus fluctuations, but they are not the cause of the longitudinal suscepti-
bility divergence. In fact, to prove that the longitudinal susceptibility diverges in
the symmetry-broken phase we resorted to the “principle of modulus conservation”
[93], which tells us quite the opposite: in the symmetry-broken phase modulus
fluctuations of a standard O(n) theory are negligible with respect to transverse and
longitudinal fluctuations. We also checked what happens to modulus fluctuations by
directly computing the Hamiltonian of phase and modulus fluctuations around the
Landau minimum and we have seen that the modulus mass term is not corrected by
any interaction that involves a phase term. Hence, we conclude that an ordinary
O(n) theory cannot produce scale-free correlated modulus (i.e. speed) fluctuations
as we have found in biological data of Fig. 1.6-b,d.

We must resort to a new idea in order to reproduce the experimental findings.
In the next chapter we will introduce a novel model that is capable of doing so, and
we will study its properties under different approximations.
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2.A Appendix: the susceptibility and the fluctuation-
dissipation relation

In general the susceptibility is a matrix,

χαβ = ∂mα

∂hβ
(2.105)

that describes how the magnetization component α varies when an external small
magnetic field is applied in the direction β. Definition 2.105 can be further generalized,
for local magnetization and for a local external field [91] or for non-equilibrium
dynamical systems [78], but for simplicity we will assume that the external field acting
on our system does not vary in space and we will stick with the definition (2.105).
Using the thermodynamic relations between the partition function Z, the Helmoltz
free-energy f(h) and the Gibbs free energy g(m) we can write the susceptibility
matrix also as [63],

χαβ = − ∂2f

∂hα∂hβ
=
(

∂2g

∂mα∂mβ

)−1

(2.106)

From the definition (2.105) we can derive the fluctuation-dissipation theorem for
the susceptibility, given that mα = 1/V

∫
ddx 〈ϕα(x)〉 and that our probability

distribution is eq. (2.2) we have,

χαβ

∣∣∣∣∣
h=0

= 1
V

∂

∂hβ

[ 1
Z

∫
Dϕ

(∫
ddx ϕα(x)

)
e−βH[ϕ]

] ∣∣∣∣∣
h=0

= β

V

∫
ddx ddy

[
〈ϕα(x)ϕβ(y)〉 − 〈ϕα(x)〉 〈ϕβ(y)〉

]∣∣∣∣∣
h=0

= β

∫
ddr

[
〈ϕα(0)ϕβ(r)〉 − 〈ϕα(0)〉 〈ϕβ(r)〉

]∣∣∣∣∣
h=0

(2.107)

where the last passage was possible because our system is homogeneous, hence the
connected correlation function in square brackets only depends on the distance vector
r between the observables. If the system is also isotropic the connected correlation
function in square brackets can be computed using an appropriate adaptation of eq.
(1.4), if possible phase averages can be used instead of space averages (see section
1.3.1). This relation links a response function (the susceptibility), in the limit of
vanishing external field, with the correlation function of the same observable at zero
field. At the critical point, in an infinite system, when the correlation length diverges,
so does the susceptibility [91] and we can use the fluctuation-dissipation theorem to
find the Fisher relation [14] between critical exponents γ = ν(2− η). Applying these
results to a finite-size system, we find that, when a system is scale-free, i.e. when
the correlation length of a certain observable scales with the size of the system,

ξ ∼ L (2.108)
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we have that the susceptibility of the same observable must scale,

χ ∼
∫ L

0
dr C(r) ∼

∫ L

0
dr g(r/ξ)

rd−2+η ∼ L
2−η (2.109)

where C(r) is the connected correlation function of the analyzed observable, we can
write it as a product of a scale-free power law r−d+2−η and a scale-dependent part
g(r/ξ).
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Chapter 3

The Marginal model

In the previous chapters we have seen that natural starling flocks are polarized
systems, with average speed around 12 m/s and they show scale-free correlations of
full velocity vector fluctuations and of speed fluctuations. We also have revised the
O(n) model and we have seen that it can reproduce all the experimental features,
except speed’s scale-free correlations.

We present now two models: the “pseudo-Gaussian” model [12, 34], a first
attempt to reproduce speed scale-free correlations, that has some shortcomings, and
the Marginal model which, as we shall see in the next chapters, it will prove to be
the solution of the problem [27, 34]. In this chapter I will present the theoretical
analysis that I have made of these two model, namely the spin-wave analysis of
the pseudo-Gaussian model and the mean-field analysis of the marginal model. We
introduce these model using an equilibrium approach, hence we will use on-lattice
n-dimensional spins σi instead of velocities vi. This approach is needed in order to
simplify calculations and it is also justified because flocks have been proven to be in
a state of local equilibrium [85].

In the next chapter we will promote the spins to velocities and introduce a set of
dynamics equations for velocities and positions, then we will compare theoretical
results with numerical off-equilibrium simulations and experimental findings. The
agreement between off-equilibrium simulations, experiments and our theoretical pre-
dictions (see chapter 4) will confirm a posteriori that the equilibrium approximation
of this chapter is valid.

3.1 Microscopic models for flocking

In the spirit of Heisenberg spin models [102] we define the Hamiltonian (or cost
function) of the model we will present here as,

H ({σi}) = J

2
∑
i,j

nij (σi − σj)2 +
∑
i

V (σi) (3.1)

where J is the alignment strength, i, j go from 1 to the number of spins in the system
N and nij is the interaction matrix, which is defined as nij = 1 if i and j are nearest
neighbours and nij = 0 otherwise. The nearest-neighbours alignment interaction
is sensible, since it resembles the topological imitation mechanism that has been
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observed in starling flocks [8]. We stress the fact that in the above Hamiltonian the
modulus of every σi is not fixed, because we are interested in modulus’ fluctuations.
Each particle’s modulus is bounded by a “potential” V (σi) that acts independently
on every particle and it is a function of the spin modulus σi = |σi|. In this way,
configurations with extremely large modulus values are energetically disfavored, just
like in a real flock, where the speed of each bird cannot deviate too much from a
reference value (for physiological and aerodynamical reasons). For simplicity’s sake
we consider a cubic lattice, then if we fix on a certain site i, its nearest neighbours
will be the 2d spins that are directly connected to the site via the cubic lattice links.
We define the side of the cubic lattice to be L, such that N = L3.

If we were dealing with an active system, the matrix nij = nij(t) would have
depended on time, because in natural flocks individuals change their position in
space hence nearest neighbours may vary during the time evolution of the system.
However, it has been shown in [85] that, due to the large polarization of real
flocks, the relaxation time scale of nij(t) is significantly larger than that of the
velocities, so that a quasi-equilibrium approach to the problem is reasonable and it
is sound to consider a time-independent nij . The validity of this approach will be
retrospectively confirmed by the remarkable agreement between the predictions of
the approximate equilibrium theory derived here and the results from self-propelled
particles simulations presented in the next chapter.

In this equilibrium setting, the probability distribution of the spins is the Boltz-
mann distribution [63],

P ({σi}) = e−βH({σi})

Z(β) (3.2)

Z(β) =
∫ ∏

k

dnσk e−βH({σi}) (3.3)

where β = 1/(kBT ); we set kB = 1 and all the integrals in dnσk span the whole
n-dimensional real space. The interaction term we considered in eq. (3.1) is different
from the Heisenberg model’s (that is only ∑i,j nijσi · σj) because if the modulus
fluctuates the correct way to take into account imitation of both orientation and
modulus is to use the discrete Laplacian matrix, that is defined for a generic graph
as,

Λik = −nik + δik
∑
j

nij (3.4)

and gives, ∑
i,k

Λikσi · σk = 1
2
∑
i,k

nik(t)(σi − σk)2 (3.5)

in a model were the spins’ moduli are fixed (e.g Ising, Heisenberg) the term above is
equivalent to the classic interaction term, apart from an additive constant.

3.2 Pseudo-Gaussian model

The pseudo-Gaussian model is defined by the cost function 3.1 with the potential,
V (σi) = g(σi − 1)2 (3.6)
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where the parameter g controls the stiffness of the potential. The Hamiltonian of
this model was introduced in [12], where it was derived using a maximum entropy
approach [67, 68]. I will now show some of the calculations that were contained
in [12] with some new contributions. We will try to understand how the average
modulus of the pseudo-Gaussian model changes as a function of the parameter g
and as a function of the number of individuals in the system N . Similarly, we will
study the modulus correlation length of this model, to capture its dependence on
the parameter g, in order to understand when the system becomes scale-free. Our
aim is always to reproduce the experimental findings of chapter 4.

3.2.1 Spin-wave approximation and modulus Hamiltonian

In this section I describe how to derive an approximation for the average modulus
distribution and for the modulus correlation length. The approximation I am going
to use was first applied in [12]. The starting point is the Hamiltonian 3.1 with the
pseudo-Gaussian potential 3.6,

H({σi}) = J

2
∑
i,j

nij(σi − σj)2 + g
∑
i

(σi − 1)2 (3.7)

Our aim is to marginalize the (3.2) to get a probability distribution for the average
modulus (notice that, although the confining potential is Gaussian, it is so in the
modulus, hence the model is in fact not Gaussian). It is convenient to rewrite (3.7)
in terms of the individual moduli σi = |σi| and flight directions σ̂i = σi/σi. In
the deeply ordered phase, one can use the spin-wave approximation (SW) [41], as
already done in previous analysis of starling flocks [12, 13]. When the polarization
is large (enforced in our model by choosing J � 1), every spin is very close to the
polarization vector. Hence:

σi = σiσ̂i with |σ̂i| = 1 (3.8)

σ̂i ' n
(

1− π2
i

2

)
+ πi (3.9)

where n is the unit vector along the polarization vector Φ = 1
N

∑
i σ̂i, and the πi are

the fluctuations orthogonal to n. The constraint ∑i πi = 0 holds by construction
and, in the high ordered regime, π2

i � 1 for every i. The Hamiltonian (3.7) then
becomes, up to order π2

i :

H({σi}, {πi}) = J
∑
i,j

Λijσiσj + g
∑
i

(σi − v0)2 + J
∑
i,j

Λ̃ij({σk})πi · πj , (3.10)

where we defined the matrices:

Λij = −nij + δij
∑
k

nik (Discrete Laplacian) (3.11)

Λ̃ij({σk}) = −nijσiσj + δij
∑
k

nikσiσk (3.12)
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In terms of the variables {σi} and {πi}, the probability density (3.2) becomes,

P ({σi}, {πi}) =
δ

(∑
k
πk

)∏
i
σn−1
i e−βH

∫
Dσ′Dπ′δ

(∑
k
π′k

)
e−βH

∏
i
σ′n−1
i

(3.13)

where Dσ′ ≡ ∏k dσ′k, Dπ′ ≡
∏
k dπ′k and n is the dimension of the spin vector. We

now need to integrate out the fluctuations πi, to obtain the marginalized distribution
of the individual moduli σi. Let us define

Ω({σi}) ≡
∏
j

σn−1
j

∫
Dπ exp

−βJ∑
i,j

Λ̃ij({vk})πi · πj

 δ(∑
k

πk

)
(3.14)

The integral can be easily performed upon a change of integration variables from
the {πi} to the eigenvectors {π̃α} of the matrix Λ̃. Both Λ and Λ̃ inherit the
translational invariance of the original Hamiltonian and have a constant eigenvector
corresponding to a zero mode, since ∑j Λij = ∑

j Λ̃ij = 0. The constraint on the
{πi} becomes a constraint on the zero mode, i.e. δ(π̃0), making the integral finite
and leaving out only n− 1 eigenvalues. We get

Ω({σi}) =

∏
j

σn−1
j

∏
α 6=0

λ̃α({σk})

−
n−1

2

(3.15)

where the {λ̃α} are the eigenvalues of Λ̃ and depend on the {σi} in some complicated
way. Since we are interested in the distribution of the average modulus s =
(1/N)∑i σi, we will now estimate the behaviour of Ω to leading order in s. Once
again, it is convenient to make a change of variables, going from real space to
the space of the eingenvectors {σ̂a} of the discrete Laplacian Λ. Each σi can be
decomposed into its σ̂a components using the formula σi = ∑

aw
(a)
i σ̂a, where w(a)

i

is the change of basis matrix. As mentioned above, the zero-mode has constant
coefficients w(0)

i = 1/
√
N and the zero-mode eigenvector is therefore proportional to

the mean modulus, i.e. it is exactly
√
Ns =

(
1/
√
N
)∑

i σi. This also implies that
for each σi we have

σi = s+ δσi = s+
∑
a6=0

w
(a)
i σ̂a . (3.16)

We can now express the function Ω, in terms of this new representation

Ω ∼

∏
j
σn−1
j[ ∏

α6=0
λ̃α({σk})

]n−1
2

=

∏
j

[
s+ ∑

a6=0
w

(a)
j σ̂a

]n−1

f

({
s+ ∑

a6=0
w

(a)
k σ̂a

})

= sn−1

∏
j

[
1 + ∑

a6=0

w
(a)
j σ̂a

s

]n−1

f

({
1 + ∑

a6=0

w
(a)
k
σ̂a

s

}) = sn−1h

1 +
∑
a6=0

w
(a)
k σ̂a
s


 . (3.17)
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Here h is a generic rational function of its argument. The function f is a generic
polynomial of order (N − 1)(n − 1) in its argument (from dimensional analysis),
hence it is safe to extract a s(N−1)(n−1), because s is present in the expansion of
every σk.

The term Ω describes the contribution to the measure coming from the integration
of the directional fluctuations. Once we integrate the directional fluctuations, we
have an Hamiltonian that only depends on the moduli {σi}. Also in this case, we can
express everything in terms of s and the non-zero modes {σ̂a} of Λ. Remembering
that ∑iw

(a)
i w

(b)
i = δab, we get:

H = J
∑
i,j

Λijσiσj + g
∑
i

(σi − 1)2 =
N∑
a=1

(Jλa + g)σ̂2
a + gN(s− 1)2 (3.18)

where, with a slight abuse of notation, we still indicate with H the marginalised
Hamiltonian depending only on the moduli.

3.2.2 Average modulus distribution

After the manipulations above we obtain the distribution for the average modulus
and all the other modes σ̂a,

P ({s, σ̂a}) = Ω({s, σ̂a}) e−βH∫
ds′ Dσ̂′ Ω({s′, σ̂′b}) e−βH

(3.19)

with a 6= 0 and Dσ̂′ ≡ ∏b 6=0 dσ̂′b. We can now derive the distribution of the mean
modulus s = 1

N

∑
i σi by marginalizing over all the non-zero modes σ̂a. To this end,

we note that since
∣∣∣w(a)

i

∣∣∣ < 1 for every i and a, we have σ̂a = ∑
iw

(a)
i σi <

∑
i σi = Ns.

The domain of the variables appearing in (3.19) is therefore:

0 ≤ s <∞ (3.20)
−Ns ≤ σ̂a ≤ Ns for a 6= 0 (3.21)

We then get

P (s) = 1
Zs

exp
[
−Nβg(s− 1)2

] ∫ Ns

−Ns
Dσ̂ Ω(s, {σ̂a}) exp

[
−β

N∑
a=1

(Jλa + g) σ̂2
a

]

= 1
Zs
sn−1 exp

[
−Nβg(s− 1)2

]
×

×
∫ Ns

−Ns
Dσ̂ h

1 +
∑
a6=0

w
(a)
k σ̂a
s


 exp

[
−β

N∑
a=1

(Jλa + g) σ̂2
a

]
(3.22)

where Zs is the normalization of the distribution and the integral in Dσ̂ is over all
the non-zero modes. We omitted all the irrelevant constants that cancel out through
simplification between the distribution and its normalization. In the approximation
where the relative fluctuations of the individual moduli are small, we can expand the
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function h appearing in the above expression and compute the remaining Gaussian
integral for large values of N . We obtain, at leading order,

P (s) = 1
Z
sn−1 exp

[
−Ng
T

(s− 1)2
]

(3.23)

which is the probability distribution for the modulus zero mode s = 1
N

∑
|σi|. This

is a new result that tells us an important information about the mean value of
the spatial average of the modulus. The above distribution can be obtained in
a simpler but less rigorous way, explained in appendix 3.A. We stress that the
above approximation is quite reasonable in the deeply ordered phase. The quantity
δσi = ∑

a6=0w
(a)
i σ̂a indeed represents the fluctuation of the individual modulus with

respect to the mean modulus of the system, s, and it must not be confused with
the fluctuations of the mean modulus itself. At low noise, when mutual interaction
is strong, spins efficiently coordinate both their orientation and modulus so that
we expect small individual deviations of both orientation and modulus from their
spatial average. On the other hand, if the value of g is small, i.e. the control on the
individual moduli is loose, the {σi} can remain coordinated and at the same time
strongly fluctuate (e.g. every modulus increases), giving rise to large fluctuations of
s, while keeping the relative deviations δσi small.

To get an analytical estimate of the typical modulus, we can compute the
maximum of the distribution. By imposing ∂P

∂s = 0 for n = 3, we obtain the
following equation:

s2
typical − stypical −

T

Ng
= 0 (3.24)

that gives us the expression for the maximum:

stypical = 1
2 + 1

2

√
1 + 4T

Ng
(3.25)

This result shows that the typical modulus is substantially different from the reference
value 1 for small N , if g is small. The same happens to the mean of the distribution,

〈s〉 =

∞∫
0

ds s3 exp
[
−Ng

T (s− 1)2
]

∞∫
0

ds s2 exp
[
−Ng

T (s− 1)2
] (3.26)

which we can see in Fig. 3.1. When N and g are small, the mean modulus 〈s〉 grows
to large values that are very different from the minimum of the pseudo-Gaussian
potential s = 1. This result makes us think that, if we want the typical (and mean)
modulus to be close to 1 for every system, regardless to their size N , the parameter
g must be large. This is a crucial condition that the pseudo-Gaussian theory must
satisfy if we want it to describe real flocks, where for every N the average modulus
is around the same value (∼ 12m/s), as it is shown in Fig. 1.2-a. We wish to draw
the reader’s attention on the fact that, despite the approximations we used to derive
them (in particular the fixed network assumption), the analytical results of this
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Figure 3.1. Mean and typical value of the modulus distribution. We present the
mean value of the modulus distribution of eq. 3.26 (solid lines) for two values of the
potential parameter g as functions of the system’s number of spins N . We also plot the
typical value of the modulus of eq. 3.25 (dashed line) only for the smallest g because,
at this scale, for g = 1 the typical s is not distinguishable from 〈s〉. We can see that
for small values of N and g the mean modulus and the typical modulus grow up to an
order of magnitude above the reference value s = 1.

section are in perfect agreement with numerical simulations performed by using an
actual self-propelled particle model (see Fig.4.2 of the next chapter). This is not
surprising, considering that in the deeply ordered flocking phase the time scale to
reshuffle the interaction network is much larger than the time of local relaxation
[85].

3.2.3 Modulus correlation length

In the previous section we have computed the distribution of the average modulus;
now we will se what condition is required in order to have scale-free correlations of
the modulus fluctuations. Starting from the modulus Hamiltonian 3.18, disregarding
couplings between moduli and phases and shifting every variable σi by 1 we obtain,

H =
∑
i,j

[JΛijσiσj + gδijσiσj ] (3.27)

In order to have an idea of the modulus correlation length’s behaviour with the
system’s parameters, we imagine to take the limit of continuous space. If our system
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lives on a cubic lattice the Hamiltonian then becomes,

H =
∫

dr
[
J

2 nc (∇σ(r))2 + gσ2(r)
]

(3.28)

where nc is the number of nearest neighbours of a spin (in the cubic lattice geometry
nc = 2d). If we compute the propagator in the infinite volume limit and then the
correlation length we have,

Gmod(q) ∼
1

q2 + ξ−2
mod

(3.29)

ξmod ∼
√
Jnc
g

(3.30)

that is an approximation in the thermodynamic limit of the bulk modulus correlation
length. If we want the system at finite size to display scale-free correlations, i.e. a
correlation length that scales with the size of the system, the bulk correlation length
must be much greater then the system’s size, which means,

ξmod � L (3.31)

that gives, using eq. 3.30,

g � 1
L2 (3.32)

Hence, if we want our system to have scale-free correlations of modulus fluctuations,
we conclude that the parameter g must be small such that the bulk correlation
length in eq. (3.30) is much greater than the linear size of the system.

3.2.4 Pros and cons of the pseudo-Gaussian model

The pseudo-Gaussian model (or Gaussian for short) can reproduce some key features
that we find in experimental data. It has a symmetry-broken phase with scale-free
orientational correlations (due to Goldstone modes, see [52, 53] and the previous
chapter) and scale-free modulus correlations can be achieved if the stiffness g is
small enough.

However, the pseudo-Gaussian model has some shortcomings that we will over-
come with the marginal model. First of all, in the thermodynamic limit, the system
is scale-free only when g = 0, i.e. when the potential vanishes and the energy of
the system becomes unbounded. We would prefer a model that is well defined in
every phase and that displays scale-free correlations in the infinite-volume limit
without incurring into a singular limit like g → 0. This is not a problem for starling
flocks, since in those systems we never reach the thermodynamic limit, but if we
want a theory that could be generalized to physical systems this is a reasonable
requirement. Secondly and most importantly the results we have just shown from
the spin-wave approximation for the typical modulus (eq. 3.25) and the modulus
correlation length (eq. 3.30) pose an even bigger problem. We see that, in order to
achieve a reasonable modulus for any system’s size, g must be large enough; on the
other hand the scale-free condition forces as to have a small g. Whether this two
conflicting conditions can be simultaneously satisfied will be discussed in the next
chapter, comparing the results of the pseudo-Gaussian model with experiments.
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The λφ4 model and the pseudo-Gaussian model

The Hamiltonian (3.7) is not analytical, since the potential depends on the modulus
σ =

√
σ2
x + σ2

y + σ2
z ; this could be avoided by squaring the modulus and having a

potential like,

V (σ) = (σ · σ − 1)2 (3.33)

that is essentially the λφ4 potential of classical Landau-Ginzburg field theory [91].
Several works that study collective behaviour with variable modulus indeed use this
kind of potential [40, 42, 55, 88]. Although this may seem a potential genuinely
different from the pseudo-Gaussian one that we considered in the previous section
(after all, it generates a cubic, rather than linear, modulus-confining force), in fact it
is not. In highly polarized and coherent systems individual modulus fluctuations are
relatively mild, so that for σ ∼ 1 we can rewrite the potential above as,

V (σ) = g(σ2 − 1)2 ' 2g(σ − 1)2 + . . . (3.34)

which is nothing else than the harmonic potential that we already took into consider-
ation. Hence, the λφ4, or standard, theory is not suitable for our purposes, because
it has a non-zero quadratic expansion around 1, which gives a non-zero curvature,
leading to a saturation of the correlation length, and therefore to a violation of the
scale-free phenomenology. Using the potential above we fall once again into the
standard O(n) phenomenology described in chapter 2. The only way to avoid this
would be to put a vanishing amplitude (i.e. stiffness) g in front of the whole quartic
potential; but this is exactly what we do in the pseudo-Gaussian case, and it would
give us the same kind of conflicting constraints on g that we have just described.
Incidentally, the fact that the pseudo-Gaussian or quadratic theory is essentially
identical to the standard O(n) model, shows that that theory is not Gaussian at all
in the actual vectorial degrees of freedom, σ.

We have found that with a bounding potential that can be expanded quadratically,
be it pseudo-Gaussian (eq. (3.6)) or standard O(n) (eq. (3.33)), we have some
difficulties in obtaining both scale-free modulus correlations and an average modulus
that does not grow to implausible values for small systems. Hence we introduce in
the next section the marginal model and we explain its main features, showing that
it can potentially reproduce the phenomenology without any conflict.

3.3 The marginal Hamiltonian

We know that, when a theory has a renormalized potential with a flat direction,
fluctuations with respect to the equilibrium value of the order parameter in that
direction are scale-free. This phenomenon happens at the critical point for any
theory for all the possible directions of the order parameter [14]. It also happens
automatically in the symmetry-broken phase of a O(n)-symmetric theory [53], but
only for the directions that are perpendicular to the equilibrium magnetization (see
Fig. 3.2-a). In order to have a flat modulus direction in the symmetry-broken
phase we can use a flat-minimum single-particle potential that, deep in the ordered
phase where the entropy is negligible, is the main contribution to the renormalized
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a b

Figure 3.2. Potentials for n = 2, in the polarized phase. a: Standard O(2) potential
with a flat angular direction and a non-vanishing mass in the modulus direction. b:
Marginal potential in n = 2, both modulus and phase directions are flat (or marginal).

potential (i.e. the free energy). With this choice, for T → 0 (i.e. decreasing variance
of the noise), we obtain both high polarization and a flat-minimum free energy
that ensures scale-free modulus correlations (see Fig. 3.2-b). In order to select the
simplest flat-minimum potential we can guess its form by writing a generic analytic
O(n)-symmetric potential with a non-vanishing minimum value,

V (σ) =
(
σ2 − 1

)p
(3.35)

where p is an even number, otherwise the potential does not have an absolute
minimum and it does not bound the modulus value. We immediately see that for
p = 2 we recover the standard O(n) theory of eq. (3.33), with a potential shaped
as in Fig. 3.2-a. On the other hand, for p = 4 we have a O(n)-symmetric theory
that has a vanishing second (and third) derivative in its minimum, the first nonzero
contribution for a small displacement around the minimum is quartic, just what
we expect from a potential of the shape such as Fig. 3.2-b. Hence the microscopic
Hamiltonian of our model will be,

H({σi}) = J

2
∑
i,j

nij(σi − σj)2 + λ
∑
i

(σ2
i − 1)4 (3.36)

where the parameter λ controls the strength of the potential. We call this model
“marginal” due to the fact that the minimum of its potential is marginal, in the sense
that it has a zero curvature minimum that is flat in every direction. For a different
derivation of the marginal potential, see appendix 3.B.

3.3.1 Mean-field approximation

In order to investigate whether marginal model’s free energy, for vanishing tempera-
ture, resembles the flat-minimum shape of Fig. 3.2-b I performed the fully-connected
mean-field approximation of the marginal model. I will report here all the main
passages of the calculations I made for a generic model with an arbitrary number
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of spin components n, while in [27] the results only for n = 1 are reported. We
abandon the regular cubic lattice and we link every spin with all the other N − 1
spins in the system, i.e. nij = 1 for every i, j. The mean-field Hamiltonian is,

H ({σi}) = J

2N
∑
i,j

(σi − σj)2 +
∑
i

V (σi)

= − J
N

∑
i,j

σi · σj +
∑
i

W (σi)

= − J
N

(∑
i

σi

)2

+
∑
i

W (σi) (3.37)

W (σi) ≡ Jσ2 + V (σ) (3.38)

where we changed the interaction strength J → J/N , in order to have an extensive
Hamiltonian. We wrote a generic potential V (σ) so that we can substitute in the
end of the calculation the marginal expression 3.154 or any other potential, in order
to make comparisons. To compute the Gibbs free energy we start from the partition
function Z(β),

Z(β) =
∫

Dσ e−βH =
∫

Dσ e−βH
∫

dnm δn
(
m− 1

N

∑
i

σi

)

=
∫

dnm
[∫

Dσ δn
(
m− 1

N

∑
i

σi

)
e−βH

]

=
∫

dnm e−βNg(m) (3.39)

hence we have (disregarding irrelevant constants),

g(m) = − 1
βN

log
∫

Dσ δn
(
Nβm− β

∑
i

σi

)
e−βH (3.40)

where Dσ = ∏
k dnσk and g(m) is the intensive Gibbs free energy. Even if it is not

evident from the equation above, we know that the Gibbs free energy depends only
on the modulus of its variablem, because the Hamiltonian (3.37) is O(n)-symmetric.
If we plug into the above expression the mean-field Hamiltonian (3.37) we obtain
(writing m = |m| and σi = |σi|),

g(m) = − 1
βN

log
∫

Dσ δn
(
Nβm− β

∑
i

σi

)
exp

βJN
(∑

i

σi

)2

− β
∑
i

W (σi)


= − 1

βN
log

[
eβNJm

2
∫

Dσ δn
(
Nβm− β

∑
i

σi

)
e−β

∑
i
W (σi)

]

= −Jm2 − 1
βN

log

∫ Dσ
+i∞∫
−i∞

dnx exp
{
βNm · x− βx ·

∑
i

σi − β
∑
i

W (σi)
}

= −Jm2 − 1
βN

log
[∫

dnx eβNm·x
(∫

dnσ exp {−βσ · x− βW (σ)}
)N]
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= −Jm2 − 1
βN

log
[∫

dnx eNS(x,m)
]

(3.41)

S(x,m) = βm · x+ log
[∫

dnσe−β(σ·x+W (σ))
]

(3.42)

where we express the δ-function using its integral form,

δn(y) ∼
+i∞∫
−i∞

dnx e−x·y (3.43)

Since we want to investigate the critical properties of this theory, we perform the
thermodynamic limit N → ∞. This implies that we can solve the above integral
in dnx using the saddle point method, using N as a large parameter, disregarding
corrections for finite N . The saddle point equation for the saddle point x0 is,

∂S

∂x

∣∣∣∣∣
x=x0

= 0 (3.44)

which gives,

m =
∫

dnσσ exp {−β(σ · x0 +W (σ))}∫
dnσ exp {−β(σ · x0 +W (σ))} (3.45)

that is the equation that links the Gibbs free energy variablem with the saddle point
value x0. Performing the integral in eq. (3.41) using the saddle point expression
S(x0,m) we can write the mean-field Gibbs free energy in the thermodynamic limit,

g(m) = −Jm2 −m · x0 −
1
β

log
∫

dnσ exp {−β(σ · x0 +W (σ))} (3.46)

We can compute numerically the above expression for any temperature (that is, any
β) to have an idea of the free energy’s shape when the temperature goes to zero.
We can find the result for n = 3 in Fig. 3.3, where we compare the expression above
with the free energy of a standard O(n) model (we simply use a quadratic-minimum
potential V = (σ2− 1)2). As we can see from the figure, the marginal model exhibits
a flat minimum both at the standard critical temperature Tc common to the O(n)
model, and for T = 0. On the other hand the standard O(n) model has a positive
curvature for vanishing T . If the Gibbs free energy’s minimum is truly flat in the
modulus direction (i.e. it has a zero second and third derivative), the model has
scale-free correlations of all its degrees of freedom, both phase and modulus, thus
reproducing the experimental findings in starling flocks.

3.3.2 Low-temperature expansion

In order to compute the curvature of the free energy’s minimum of Fig. 3.3 we
perform a low-temperature expansion of the Gibbs free energy of eq. (3.46). The
expansion consists in evaluating the integrals in dnσ of eq.s (3.45) and (3.46) using
the saddle point method, for β → ∞. This time, since we are interested in the
behaviour for vanishing T we will not stop at leading order, but we will compute the
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Figure 3.3. Mean-field Gibbs free energy for n = 3, as function of its variable
m, for some temperature values. a: Standard O(n) model with a bare potential
V = (σ2 − 1)2. The Gibbs free energy becomes flat for a certain critical temperature
Tc, when all the degrees of freedom of the order parameter become scale-free. For
T = 0 the curvature in the minimum is finite. b: Marginal model with a bare potential
V = (σ2 − 1)4. The Gibbs free energy becomes flat for a certain critical temperature Tc,
when all the degrees of freedom of the order parameter become scale-free. For T = 0 too
the curvature in the minimum becomes zero, suggesting the same phenomenology as the
finite critical temperature.

corrections to the free energy up to T 2. The saddle point equation for the integrals
of eq.s (3.45) and (3.46) is the same and it defines the saddle point value σ0,

x0 + ∂W

∂σ

∣∣∣∣∣
σ=σ0

= 0 (3.47)

that links the value x0 from the previous saddle point for large N with the value of
the saddle point for small temperature σ0.

Now we make use of the system’s symmetries, in order to simplify our calculations;
from eq. (3.46) we see that, due to the fact that the free energy depends only on
the modulus of m, m and x0 must be parallel. Furthermore, from eq. (3.45) we see
that also σ0 must be parallel to m, otherwise the integral on the numerator would
vanish. Noticing these properties we can write, without loss of generality,

m = mn̂ σ0 = σ0n̂ x0 = x0n̂ (3.48)

where n̂ is a unit vector. This simplification will help us reducing many relations
between vectors into simpler scalar equations.

In order to have an explicit expression in m for the free energy of eq. (3.46) we
have to expand eq. (3.45) and use eq. (3.47) in order to express both σ0 and x0 as
functions of m; this procedure will be simplified by using eq. (3.48). Then we have
to plug the expressions of σ0(m) and x0(m) into eq. (3.46) and solve the integral in
dnσ. In the end we will obtain the g(m) as an expansion with a term for T = 0 and
corrections of order T and T 2. Expanding eq. (3.45) for large β, we expect to find
an expression for σ0 of this form,

σ0 = m+ TAm + T 2Bm (3.49)
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where Am and Bm are two functions of m that we will compute later. If we plug
the above expression into eq. (3.47) we find for x0,

x0 = −W ′σ0 = −W ′(m+ TAm + T 2Bm)

' −W ′m − TW ′′mAm − T 2
[
W ′′mBm + 1

2W
′′′
mA

2
m

]
(3.50)

where f ′ indicates the first derivative of the function f with respect to its argument
and fm indicates that the argument of the function is m. From now on we will
indicate ordinary derivatives with superscripts f ′,f ′′,f ′′′, etc. and the argument of
functions either with subscripts fm,fσ0 , etc.. or with brackets f(m),f(σ0). Greek
letters in subscripts will indicate derivation with respect to a certain component, i.e.
fαβ(x) = ∂2f

∂xα∂xβ
. In order to find an expression for the Gibbs free energy we need

to perform the integral of eq. (3.46), that will have a form like,∫
dnσ exp {−β(σ1x0 +W (σ))}

' exp {−β(σ0x0 +Wσ0)} (detWµν(σ0))−1/2(1 + TCσ0) (3.51)
where we used the saddle point method to approximate the integral. Wµν is the
Hessian matrix of the function W and C is the first correction to the Gaussian
approximation of the integral, which will be computed later. We now put together
eq.s (3.49), (3.50) and (3.51) and we use them to expand eq. (3.46) as a function of
m, up to order T 2,

g(m) ' −Jm2 − x0m− T log
[

exp {−β(σ0x0 +Wσ0)} (detWµν(σ0))−1/2(1 + TCσ0)
]

= −Jm2 − x0m+Wσ0 + x0σ0 + T

2 log [detWµν(σ0)]− T log (1 + TCσ0)

' −Jm2 − x0m+W (m+ TAm + T 2Bm) + x0 · (m+ TAm + T 2Bm)+

+ T

2 log [detWµν(m+ TAm)]− T log(1 + TCm)

' −Jm2 +Wm + TW ′mAm + T 2W ′mBm + T 2

2 W ′′mA
2
m − T (W ′m + TW ′′Am)·

· (Am + TBm) + T

2 log(detWµν(m)) + T 2

2
Am(detWµν(m))′

detWµν(m) − T 2Cm

= λVm + T

2 log(detWµν(m)) + T 2
[
Am(detWµν(m))′

2 detWµν(m) − Cm −
W ′′mA

2
m

2

]
(3.52)

From the equation above we see that we do not need to compute the term Bm from
the expansion (3.49), since it disappears from the final expression of g(m). Before
computing the needed terms, we stress the fact that in the limit of T → 0 the
mean-field low-temperature free energy (3.52) simplifies to the bare potential, that
in the case of the marginal model means g(m) ' Vm = λ(m2 − 1)4. This implies
that even at mean field level, i.e. disregarding fluctuations, the marginal model’s
free energy develops a zero-curvature minimum in the modulus direction, when
the temperature drops to zero. This result suggests that in a finite-dimensional
system with short-ranged interactions, for low enough temperature, the modulus’
fluctuations will develop scale-free correlations.
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3.3.3 Expanding the integrals for low temperature

We now compute explicitly all the terms of the above expansion, in order to calculate
the behaviour of the equilibrium magnetization and of susceptibilities as functions
of the temperature. For practical purposes we fix the direction of the unit vector n̂
to be along the first axis.

Determinant of Wµν and its derivative

The Hessian matrix Wµν(m) is,

Wµν(m) = ∂2W

∂mµ∂mν
= ∂

∂mµ

(
mν

m
W ′
)

=
(
δµν −

mµmν

m2

)
W ′

m
+ mµmν

m2 W ′′ (3.53)

which means that Wµν is diagonal and it gives W ′′ in the direction of n̂ and W ′/m
in the other orthogonal directions. The determinant is easily computed,

detWµν = W ′′
(
W ′

m

)n−1
(3.54)

and also its derivative,

(detWµν)′ = W ′′′
(
W ′

m

)n−1
+ (n− 1)(W ′′)2(W ′)n−2

mn−1 − (n− 1)W
′′ (W ′)n−1

mn

(3.55)

Using eq. (3.54) we can express the term of order T in eq. (3.52), that is,

T

2 log (detWµν) = T

2

[
log
(
W ′′

)
+ (n− 1) log

(
W ′

m

)]
= T

2

[
log
(
2J + V ′′

)
+ (n− 1) log

(
2J + V ′

m

)]
(3.56)

where we can see that the second term in square brackets vanishes for a scalar order
parameter, i.e. when n = 1. The determinant derivative in eq. (3.55) will be useful
for the order T 2 term in eq. (3.52), but first we need to compute the other terms
from the expansion of the σ integrals in eq. (3.45) and (3.46).

Am and Cm

From eq. (3.45) and (3.48) we have,

m =

∫
dnσσ1 exp {−β(σ1x0 +W (σ))}∫
dnσ exp {−β(σ1x0 +W (σ))}

(3.57)

We will now expand the above equation using the saddle point method. We will
expand up to order T (or β−1) both the numerator and the denominator, because
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the latter is none other than the integral in eq. (3.46) that also needs to be computed
in order to obtain the term Cm. After defining the quantity δσµ = σmu− σ0µ, we
can expand the exponential’s argument above,

m '

∫
dnσ σ1 exp

(
−βWµν

2
∣∣
σo
δσµδσν − β

Wµνα

6
∣∣
σo
δσµδσνδσα − β

Wµναγ

24
∣∣
σo
δσµδσνδσαδσγ + . . .

)
∫

dnσ exp
(
−βWµν

2
∣∣
σo
δσµδσν − β

Wµνα

6
∣∣
σo
δσµδσνδσα − β

Wµναγ

24
∣∣
σo
δσµδσνδσαδσγ + . . .

)
(3.58)

where we are implying the sum over repeated indices. Performing the change of
variable yµ =

√
βδσµ we obtain,

m '

∫
dny

(
y1√
β

+ σ0

)
exp

(
−Wµν

2
∣∣
σo
yµyν −

Wµνα

6β1/2
∣∣
σo
yµyνyα −

Wµναγ

24β
∣∣
σo
yµyνyαyγ

)
∫

dny exp
(
−Wµν

2
∣∣
σo
yµyν −

Wµνα

6β1/2
∣∣
σo
yµyνyα −

Wµναγ

24β
∣∣
σo
yµyνyαyγ

)

' σ0 + T 1/2

∫
dny y1e

−Wµν2

∣∣
σo
yµyν

[
1− T 1/2Wµνα

6
∣∣
σo
yµyνyα − T

Wµναγ

24
∣∣
σo
yµyνyαyγ+

∫
dny e−

Wµν
2

∣∣
σo
yµyν

[
1− T 1/2Wµνα

6
∣∣
σo
yµyνyα − T

Wµναγ

24
∣∣
σo
yµyνyαyγ+

+1
2

(
T 1/2Wµνα

6
∣∣
σo
yµyνyα + T

Wµναγ

24
∣∣
σo
yµyνyαyγ

)2
+ . . .

]

+1
2

(
T 1/2Wµνα

6
∣∣
σo
yµyνyα + T

Wµναγ

24
∣∣
σo
yµyνyαyγ

)2
+ . . .

]

' σ0 + T
−Wµνα

6
∣∣
σo
〈y1yµyνyα〉G +O(T )

1 + T
[
WµναWµ′ν′α′

72
∣∣
σo

〈
yµyνyαyµ′yν′yα′

〉
G −

Wµναγ

24
∣∣
σo
〈yµyνyαyγ〉G

]
+O(T 2)

(3.59)

where the Gaussian average 〈·〉G is made with the measure dny e−
Wµν

2

∣∣
σo
yµyν , which

means that we have,

〈yµ〉G = 0
〈yµ1yµ2 . . . yµp〉G = 0 for p odd

〈yµyν〉G = [Wµν ]−1
∣∣∣
σ0

=


(W ′′σ0)−1 for µ = ν = 1
σ0/W

′
σ0 for µ = ν 6= 1

0 otherwise

〈yµ1yµ2 . . . yµp〉G = 〈yµ1yµ2〉G . . .
〈
yµ(p−1)yµp

〉
G

+ permutations for p even
(3.60)

where we easily computed the inverse of the matrix Wµν because it is diagonal (see
eq. (3.53)) and we can compute any product of an even number of variables via
Wick’s theorem [121]. We remark that in eq. (3.59) we already omitted the averages
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with an odd number of variables, due to the rules of (3.60). If we approximate eq.
(3.59) up to order T we can compute the function Am (defined in eq. (3.49)),

m ' σ0 − T
Wµνα

6

∣∣∣∣∣
σ0

〈y1yµyνyα〉G

σ0 ' m+ T
Wµνα

6

∣∣∣∣∣
m

〈y1yµyνyα〉G (σ0 = m)

Am = Wµνα(m)
6 〈y1yµyνyα〉G (m) (3.61)

To compute the above expression we need to find the expression of Wµνα, we do it
taking the derivative of Wµν of eq. (3.53),

Wµνα(m) = ∂Wµν(m)
∂mα

= ∂

∂mα

[(
δµν −

mµmν

m2

)
W ′m
m

+ mµmν

m2 W ′′m

]
= (δµνmα + δµαmν + δναmµ) 1

m2

(
V ′′m −

V ′m
m

)
+

+ mµmνmα

m3

(
3V
′
m

m2 − 3V
′′
m

m
+ V ′′′m

)
(3.62)

looking at eq. (3.61), the rules from (3.60) and the equation above we understand
that only some combinations of indices give nonzero contribution to Am. We have,

Am = 1
6

W111 〈y1y1y1y1〉G + 3
∑
µ6=1

Wµµ1 〈y1y1yµyµ〉G


= 1

2
V ′′′m

(2J + V ′′m)2 + (n− 1) V ′′m − V ′m/m
2m(2J + V ′′m)(2J + V ′m/m) (3.63)

that is a term needed for the order T 2 correction to the free energy in eq. (3.52).
In order to compute the last part that we need, the term Cm, we notice that its
definition from eq. (3.51) coincides with the denominator of eq. (3.57), hence using
the denominator of (3.59) we can identify,

Cm = WµναWµ′ν′α′

72

∣∣∣∣∣
m

〈
yµyνyαyµ′yν′yα′

〉
G (m)− Wµναγ

24

∣∣∣∣∣
m

〈yµyνyαyγ〉G (m) (3.64)

We can compute the first part of Cm using the expression (3.62), remembering the
rules (3.60),

WµναWµ′ν′α′

72

∣∣∣∣∣
m

〈
yµyνyαyµ′yν′yα′

〉
G (m) = 1

72

[
W111W111 〈y1y1y1y1y1y1〉G +

+ 6W111
∑
µ6=1

Wµµ1 〈y1y1y1y1yµyµ〉G + 9
∑

µ 6=1,ν 6=1
Wµµ1Wνν1 〈y1y1yνyνyµyµ〉G

]

= 5
24

(V ′′′m )2

(2J + V ′′m)3 + n− 1
4

V ′′′m (V ′′m − V ′m/m)
m(2J + V ′′m)2(2J + V ′m/m)+
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+ (n− 1)(n+ 2)
8

(V ′′m − V ′m/m)2

m2(2J + V ′′m)(2J + V ′m/m)2 (3.65)

To this expression, we have to add the second term of the expression (3.64), hence
we need to compute the fourth derivatives of W , using eq. (3.62),

Wµναγ = ∂Wµνα

∂mγ
= ∂

∂mγ

[
(δµνmα + δµαmν + δναmµ) 1

m2

(
V ′′m −

V ′m
m

)
+

+ mµmνmα

m3

(
3V
′
m

m2 − 3V
′′
m

m
+ V ′′′m

)]

= (δµνδαγ + δµαδνγ + δµγδνα) 1
m2

(
V ′′m −

V ′m
m

)
+ (δµνmαmγ + δµαmνmγ + δµγmνmα+

+ δναmµmγ + δνγmµmα + δαγmµmν) 1
m3

(
V ′′′m − 3V

′′
m

m
+ 3V

′
m

m2

)
+

+ mµmνmαmγ

m4

(
V ′′′′m − 6V

′′′
m

m
+ 15V

′′
m

m2 − 15V
′
m

m3

)
(3.66)

which gives,

Wµναγ

24

∣∣∣∣∣
m

〈yµyνyαyγ〉G (m) = 1
24

[
W1111 〈y1y1y1y1〉G + 12

∑
µ 6=1

Wµµ11 〈yµyµy1y1〉G +

+
∑

µ6=1,ν 6=1
Wµµνν 〈yµyµyνyν〉G

]

= 1
8

V ′′′′m

(2J + V ′′m)2 + n− 1
2

V ′′′m − 2V ′′m/m+ 2V ′m/m2

m(2J + V ′′m)(2J + V ′m/m)+

+ (n− 1)(n+ 1)
24

V ′′m − V ′m/m
m2(2J + V ′m/m)2 (3.67)

Now that we have computed Am ((3.63)) and Cm ((3.64), (3.65) and (3.67)) we can
write explicitly the term of order T 2 of the Gibbs free energy (3.52). We can do it
for any n (see appendix 3.C); here we write the expression for n = 1,

T 2
[
Am(detWµν(m))′

2 detWµν(m) − Cm −
W ′′mA

2
m

2

]

= T 2
[

1
4

(V ′′′m )2

(2J + V ′′m)3 −
5
24

(V ′′′m )2

(2J + V ′′m)3 + 1
8

V ′′′′

(2J + V ′′m)2 −
1
8

(V ′′′m )2

(2J + V ′′m)3

]

= T 2
[

1
8

V ′′′′m

(2J + V ′′m)2 −
1
12

(V ′′′m )2

(2J + V ′′m)3

]
(3.68)

where we used eq. (3.55) to express the determinant’s derivative. We can see,
confronting eq.s (3.52), (3.56) and (3.68), that the term above is the lowest-order
term in T that contains the term V ′′′′m , the lowest derivative of V that does not
vanish for m = 1.
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3.4 Comparison between standard O(n) model and marginal
model

Now we use the explicit form of the mean-field Gibbs free energy, computed in the
previous subsection, in order to study the critical behaviour of the marginal model
for T → 0. Since we express the free energy as a function of the potential V , we can
use a standard O(n)-model potential,

V (std)
m = λ(1−m2)2 (3.69)

to have a reference for the behaviour that a generic non-marginal model has for
vanishing temperature. We point out that the above “standard” O(n) potential can
be expanded in the vicinity ofm = 1 and it has the same form of the pseudo-Gaussian
potential V ∼ (m − 1)2. If we had a pseudo-Gaussian potential in eq. (3.37), we
would have encountered the same phenomenology of the standard O(n) model, hence
we will not report the exact results of the mean-field pseudo-Gaussian model here
because they are a replica of the standard’s.

3.4.1 Magnetization and longitudinal susceptibility

We compare the marginal and the standard O(n) model by computing their equilib-
rium magnetization as an expansion for vanishing temperature,

meq = m0 + Tm1 + T 2m2 +O
(
T 3
)

(3.70)

using the Gibbs free energy’s property [63],

dg
dm

∣∣∣∣∣
m=meq

= 0 (3.71)

Then, we will compute the longitudinal susceptibility as an expansion for vanishing
T , using [93],

χ‖ = 1
4m2

eq

 d2g

dm2

∣∣∣∣∣
m=meq

−1

(3.72)

that can be recovered by using eq. (2.57) and (2.58) for h = 0.

Equilibrium magnetization

Using together eq.s (3.70), (3.71) and (3.52) we find that, for both models, , at zero
order (which means T = 0),

V ′(m0) = 0 (3.73)
4m0(m2

0 − 1) = 0 standard
8m0(m2

0 − 1)3 = 0 marginal
(3.74)
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that means m0 = 1, as we expect for the magnetization at zero temperature. Going
to the first order in T we have,

λV ′(meq) + T

2

 V ′′′(meq)
2J + V ′′(meq)

+ (n− 1)
V ′′(meq)/meq − V ′(meq)/m2

eq

2J + V ′(meq)
meq

 = 0

(3.75)

Tm1V
′′(m0) + T

2

[
V ′′′(m0)

2J + V ′′(m0) + (n− 1)V
′′(m0)

2Jm0

]
= 0 (3.76)

where we expanded meq in order to have an equation of order T , to find the value of
m1. For the standard model we have,

m
(std)
1 = − 1

2V ′′(m0)

[
V ′′′(m0)

2J + V ′′(m0) + (n− 1)V
′′(m0)

2Jm0

]
= −1

4

[ 3
(J + 4λ) + n− 1

J

]
(3.77)

that is sensible because it tells us that the average magnetization decreases when the
temperature increases and that the deviation from 1 is smaller when the interaction
strength J is larger. If we want to use the same procedure to find the value of
m

(mrg)
1 , for the marginal model, we cannot use eq. (3.76), because the left hand side

identically vanishes. This happens due to the fact that the marginal potential is flat,
hence V ′′ = V ′′′ = 0 in the “bare” minimum m0. For the marginal case, we must
use the expression of the Gibbs free energy up to order T 2 in order to compute the
correction m1. The expression (3.75) then becomes,

V ′(meq) + T

2

 V ′′′(meq)
2J + V ′′(meq)

+ (n− 1)
V ′′(meq)/meq − V ′(meq)/m2

eq

2J + V ′(meq)
meq

+

+ T 2D(meq) = 0 (3.78)

where the term D(meq) includes the corrections of order T 2 coming from the
derivative with respect to m of eq. (3.52). To compute this contribution we have to
include the terms Cm ((3.64)), Am ((3.63)) and (detWµν)′ ((3.55)). If we expand
the above equation at order T 2 we can see that all the terms of order 1 and order T
vanish and we remain with,

T 2

2

[
m1V

′′′′(m0)
2J

]
+ T 2D(m0) = 0 (3.79)

that gives,

m
(mrg)
1 = −4JD(m0)

V ′′′′(m0) = − 1
2J

[5
2 + (n− 1)

]
(3.80)

computations for D(m0) are in the appendix 3.C. In the end we have, using eq.s
(3.70), (3.77) and (3.80),

m(std)
eq ' 1− T

4J

[ 3
(1 + 4λ/J) + (n− 1)

]
(3.81)
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m(mrg)
eq ' 1− T

2J

[5
2 + (n− 1)

]
(3.82)

where we can see that, for the two models we are comparing, the structure of the
equilibrium magnetization is the same near zero temperature. In both cases we have
a negative linear correction in T that decreases when the interaction strength J
increases; the numerical coefficients are different but the qualitative behaviour of
the equilibrium magnetization is the same. We see that, if we want to be in the
polarized phase, we just have to choose a small temperature, as it is for standard
ferromagnetic models [63].

Longitudinal susceptibility

We use now eq. (3.72) with eq.s (3.81) and (3.82) to find the longitudinal suscepti-
bility for both the standard O(n) model and the marginal model. Once again we
use eq. (3.52) up to order T , plugging it into eq. (3.72),

χ‖ = 1
4m2

eq

{
V ′′(meq) + T

2

[
V ′′′′(meq)

(2J + V ′′(meq))
− (V ′′′(meq))2

(2J + V ′′(meq))2 +

+ (n− 1)
(V ′′′(meq)/meq − 2V ′′(meq)/m2

eq + 2V ′(meq)/m3
eq)

(2J + V ′(meq)/meq)
+

− (n− 1)
(V ′′(meq)/meq − V ′(meq)/m2

eq)2

(2J + V ′(meq)/meq)2

]}−1

' 1
4m2

0
(1 + 2Tm1/m0)−1

{
V ′′(m0) + Tm1V

′′′(m0)+

+ T

2

[
V ′′′′(m0)

(2J + V ′′(m0)) −
(V ′′′(m0))2

(2J + V ′′(m0))2 +

+ (n− 1)
2J

(
V ′′′(m0)/m0 − 2V ′′(m0)/m2

0

)
− (n− 1)

4J2
(
V ′′(m0)/m0

)2 ]}−1

' 1
4m2

0

{
V ′′(m0) + 2T V

′′(m0)m1
m0

+ Tm1V
′′′(m0)+

+ T

2

[
V ′′′′(m0)

(2J + V ′′(m0)) −
(V ′′′(m0))2

(2J + V ′′(m0))2 +

+ (n− 1)
2J

(
V ′′′(m0)/m0 − 2V ′′(m0)/m2

0

)
− (n− 1)

4J2
(
V ′′(m0)/m0

)2 ]}−1

(3.83)

If we plug in the expressions (3.81) and (3.82) and the models’ potentials (3.69) and
(3.154) we find,

χ
(std)
‖ ' 1

4m2
0V
′′(std)(m0)

+O(T ) = 1
32 +O(T ) (3.84)
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χ
(mrg)
‖ ' J

Tm2
0V
′′′′(mrg)(m0)

+ const = 1
T

J

384 + const (3.85)

Hence we have that, following the mean-field approximation, for the standard O(n)-
model the longitudinal susceptibility is constant in the limit of vanishing temperature,
while for the marginal model the longitudinal susceptibility diverges for T → 0. The
first result is not unexpected, we already know from the Landau approximation
of a generic O(n)-model (see chapter 2) that the longitudinal susceptibility at
tree level (that is equivalent to mean.field) stays finite in the whole symmetry-
broken phase (eq. (2.30)), because this kind of approximation is unable to capture
phase modes’ divergent contribution to the longitudinal susceptibility. The result
about the marginal model is, on the other hand, promising. Even at mean-field
level the marginal longitudinal susceptibility diverges for vanishing temperature.
Since this divergence cannot be caused by phase fluctuations, because the mean-
field approximation cannot capture the contribution of phase fluctuations to the
longitudinal degree of freedom, another effect must be present. The other degree of
freedom that is involved in longitudinal fluctuations is the modulus hence, as we
will see in the next section, the contribution of modulus fluctuations in this theory
plays a crucial role for T → 0.

3.4.2 The modulus susceptibility

We show now that, at mean field level, the longitudinal susceptibility captures the
collective behaviour of moduli correlations. From the fluctuation-dissipation relation
(2.107) applied on a lattice we can write the longitudinal susceptibility as,

χ‖ = β

N

∑
i,j

[〈
σ‖iσ‖j

〉
−
〈
σ‖i
〉〈
σ‖j
〉]

(3.86)

where σ‖i is the component of the spin σ at lattice site i that is parallel to the
equlibrium magnetization. Given this definition we have that

〈
σ‖i
〉

= m. If we
define θi as the angle between σi and m, we can write the above equation as,

χ‖ = β

N

∑
i,j

[〈σiσj cos θi cos θj〉 − 〈σi cos θi〉 〈σj cos θj〉] (3.87)

If we assume that modulus fluctuations are decoupled from phase fluctuations (that
is reasonable given our generic results of chapter 2, that apply to any O(n)-symmetric
system), we can simplify the above expression,

χ‖ = β

N

∑
i,j

[〈σiσj〉 〈cos θi cos θj〉 − 〈σi〉 〈cos θi〉 〈σj〉 〈cos θj〉]

= β

N

∑
i,j

[
〈σiσj〉 〈cos θi cos θj〉 − 〈σi〉 〈σj〉 〈cos θi cos θj〉+

+ 〈σi〉 〈σj〉 〈cos θi cos θj〉 − 〈σi〉 〈cos θi〉 〈σj〉 〈cos θj〉
]
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' β

N

∑
i,j

[
(〈σiσj〉 − 〈σi〉 〈σj〉)

(
1−

〈
θ2
i

〉
+ 1

4
〈
θ2
i θ

2
j

〉
+ . . .

)
+

+ 〈σi〉 〈σj〉
1
4
(〈
θ2
i θ

2
j

〉
−
〈
θ2
i

〉〈
θ2
j

〉
+ . . .

) ]

= β

N

∑
i,j

[ (
〈σiσj〉 − σ2

)(
1− vθ + 1

4
〈
θ2
i θ

2
j

〉
+ . . .

)
+ σ2 1

4
(〈
θ2
i θ

2
j

〉
− v2

θ + . . .
) ]

(3.88)

where σ = 〈σi〉 and vθ =
〈
θ2
i

〉
. From the equation above we see that in general

the longitudinal susceptibility is a complex combination of modulus and phase
fluctuations of various orders. In a standard O(n) theory modulus fluctuations are
massive (see section 2.4) and the leading contribution that makes the longitudinal
susceptibility diverge for vanishing external field, in the symmetry-broken phase,
comes from phase fluctuations. The results of eq.s (3.84) and (3.85)], however, are
computed in the mean field approximation scheme and cannot take into account the
second order phase fluctuations that are present in the above equation. Moreover, if
the temperature is low enough, the amplitude of phase fluctuations is small, hence
we can also disregard vθ. In the end we can assume that, in mean-field we can write,

χ
(MF )
‖ ' β

N

∑
i,j

[
〈σiσj〉 − σ2

]
≡ χσ (3.89)

where χσ is the modulus susceptibility, that can be computed with the formula
above or adding a term in the Hamiltonian like,

hσ
∑
i

|σi| (3.90)

and computing,

χσ

∣∣∣∣∣
hσ=0

= ∂σ

∂hσ

∣∣∣∣∣
hσ=0

(3.91)

with σ = 1/N∑
i 〈σi〉 = 〈σi〉 as we defined before. Finally, if we put together the

result of eq. (3.89) with the mean-field approximations (3.84) and (3.85) we can
have an idea of what happens, at least at mean-field level, at the modulus degree of
freedom in both the standard O(n) model and the marginal model, for vanishing
temperature. To sum up the results we have,

χ(std)
σ ∼ const

χ(mrg)
σ ∼ 1

T

(3.92)

(3.93)

The first relation tells an information that was already discovered in section 2.4:
in a standard O(n) model the modulus does not develop scale-free correlations for
vanishing temperature, and given the result of section 2.4 this property holds for any
temperature below the critical one Tc. On the other hand, we see from the second
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relation that the marginal modulus susceptibility, within the mean-field approxima-
tion and in the thermodynamic limit, diverges for vanishing temperature. Given
the fluctuation-dissipation relation (3.89), this implies that the modulus connected
correlation function of the marginal model is scale-free when the temperature drops
to zero at mean field level; the exponent may be corrected in finite dimension, but
hopefully the divergence is robust. If that was the case, it would imply that, for a
sufficiently low temperature, any finite-size system would have a modulus correlation
length that is proportional to the size of the system. The marginal model would
be capable of reproducing then the experimental findings of Fig. 1.6, just lowering
enough the temperature parameter. In the nest chapter we will show the results of
numerical simulations to see if the predicted mean-field behaviour implies scale-free
correlations of modulus (speed) fluctuations.

3.5 Spin-wave modulus distribution

Let us now consider what happens to the marginal model average modulus distribu-
tion. We can follow a similar procedure as the one used for the pseudo-Gaussian
model, i.e. we apply the SW approximation to deal with directional fluctuations
and we decompose in normal modes for the modulus fluctuations. We end up with a
distribution with the same structure as the one of (3.19) with

H =
N∑
a=1

Jλaσ̂
2
a + λ

∑
i

∑
a,b

w
(a)
i w

(b)
i σ̂aσ̂b − 1

4

(3.94)

Integration over the non-zero modes with this effective Hamiltonian is clearly a hard
task, due to the non-Gaussian contributions. However, in the approximation where
the relative modulus fluctuations are small, things simplify: we can easily extract
the zero mode contribution ' Nλ(s2 − 1)4 in the exponent, while at leading order
the integration over the remaining modes (which is non Gaussian in this case) will
produce a constant integral. The distribution for the average modulus s will then
be:

P (s) = 1
Z
sd−1 exp

{[
−Nλ
T

(s2 − 1)4
]}

(3.95)

The agreement between theory and simulations is less accurate than in the pseudo-
Gaussian case, but we still have a satisfying match between the predicted average
mean modulus and the value measured from numerical simulations (Fig.4.3 of the
next chapter). Once again we can compute the maximum of the distribution to
estimate the typical mean modulus. For d = 3 we get:

1− 4Nλ
T

(stypical)2
(
(stypical)2 − 1

)3
= 0 (3.96)

Since we are interested in the behaviour of stypical in N at fixed T and λ, we can
solve this equation in the two limits of big N and small N , obtaining:

stypical '

1 +
(

T
32Nλ

)1/3
for N � T

λ(
T

4Nλ

)1/8
for N � T

λ

(3.97)
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Here we can see that, in order to obtain a typical modulus close to the reference
value s = 1 we just need to choose a small enough temperature T , that is the same
requirement for the system to have scale-free correlations (see section above). While
with the Gaussian model we had two conflicting conditions over the parameter g,
here we have just to choose a small enough T and then adjust the value of λ in order
to obtain the right polarization, according to experimental data and we gain both
an average modulus close to a reference value (in this case s = 1) for every system’s
size N and scale-free modulus correlations for every system’s linear size L.

3.6 The amplitude of the correlation function

From the expression of the modulus susceptibility (3.93) and its derivation of the
previous sections it may not be clear whether the divergence for vanishing T is a
trivial effect of the prefactor β in eq. (3.89) or it really comes from a divergent
correlation length, hence from a critical phenomenon. Here I address this problem
by computing the contribution to modulus susceptibility that comes from the trivial
correlation amplitude and the prefactor β. We can analyze the modulus susceptibility
of eq. (3.89) to separate the contribution from the correlation function’s amplitude
and the actual correlation range. If we define δσi = σi − σ, with σ = 1/N 〈∑i σi〉
and ,we have,

χσ = β

N

∑
ij

〈δσiδσj〉 = β

N

∑
i

〈
δσ2

i

〉
+
∑
i 6=j
〈δσiδσj〉

 (3.98)

We define the single particle fluctuation (or variance),

C0 ≡ 1/N
∑
i

〈
δσ2

i

〉
(3.99)

hence we have,

χσ = βC0

(
1 +

∑
i 6=j 〈δσiδσj〉
NC0

)
(3.100)

For a common critical point at a certain finite Tc, β and C0 separately go to constant
values and the only source of divergence for the susceptibility (in the thermodynamic
limit) is the sum of the connected correlations between different spins, ∑i 6=j 〈δσiδσj〉.

Let us see what happens for T → 0 (β → ∞). There might be two sources of
divergences, the factor βC0 and the term

∑
i 6=j〈δσiδσj〉
NC0

. One might be tempted to say
that all the divergence is contained in the denominator C0 = 1/N∑

i

〈
δσ2

i

〉
, because

the modulus fluctuations of the single spin go to zero for T → 0, but the connected
correlations between different spins also do so. Furthermore, using the following
inequality, 〈

(δσi − δσj)2
〉
≥ 0 (3.101)

one obtains, 〈
δσ2

i

〉
+
〈
δσ2

j

〉
≥ 2 〈δσiδσj〉 (3.102)



72 3. The Marginal model

due to translational invariance one has
〈
δσ2

i

〉
=
〈
δσ2

j

〉
, in the end we have,〈

δσ2
i

〉
≥ 〈δσiδσj〉 (3.103)

C0 = 1
N

∑
i

〈
δσ2

i

〉
≥ 〈δσiδσj〉 (3.104)

So we define the “normalized” connected correlation functions between different
spins’ moduli as,

〈δσiδσj〉N = 〈δσiδσj〉
C0

≤ 1 (3.105)

where, because of the (3.104), we are assured that, for each i 6= j and for any T it is
true that 〈δσiδσj〉N < 1. There is no problem with C0 in the denominator, indeed
we can write the susceptibility as,

χσ = βC0

1 + 1
N

∑
i 6=j
〈δσiδσj〉N

 (3.106)

Now it is clear that the divergence of χσ can come either from βC0, where C0 is
the correlation function amplitude, or from the infinite sum (in the thermodynamic
limit) of all the “normalized” connected correlation functions between different spins’
moduli; in this sum each term 〈δsiδsj〉N is finite and smaller than 1 but, of course,
if N →∞, the sum might diverge, that is the case of the marginal model, for T → 0.
The sum can diverge if the correlation function is long-ranged, and this happens
close to a critical point, where the correlation length diverges. Now we will show that
in the marginal model the quantity βC0 is finite in the thermodynamic limit, hence
the divergence of the modulus susceptibility comes exclusively from the correlation
length divergence.

We write the generic form of C0, both for the standard model and for the marginal
model, using the mean-field approximation. In the end we will see that, for both
models, the contribution of βC0 does not change the behaviour of the susceptibility
for vanishing temperature. To compute C0 (3.99) we need to know the average spin
modulus, that is,

s ≡ 〈σj〉 =
∫ ∏

k dσk σje
−βH∫ ∏

k dσk e−βH
(3.107)

where the Hamiltonian H is the mean-field Hamiltonian (3.37). This time we
decouple the interaction term of the Hamiltonian through the Hubbard-Stratonovich
transformation [121],

e
βJ
N (∑i

σi)2
=
(
βN

4πJ

)n/2 ∫
dx e−

βN
4J x

2+βx·(∑i
σi) (3.108)

that gives us the following expression for the average spin modulus,

s =
∫ ∏

k dσk σj
∫

dx e−β
∑

i[Jσ2
i+V (σ2

i )−x·σi]−βN4J x2∫ ∏
k dσk

∫
dx e−β

∑
i[Jσ2

i+V (σ2
i )−x·σi]−βN4J x2

(3.109)



3.6 The amplitude of the correlation function 73

Now we use the notation,

[...]σ,x ≡
[
Jσ2 + V

(
σ2
)
− x · σ

]
(3.110)

to lighten the notation. In the numerator of eq. (3.109) we can group together N − 1
integrals in σk and in the denominator we can do the same for N integrals,

s =
∫

dσj σj
∫

dx e
−β[...]σj,x−

βN
4J x

2 (∫
dσ e−β[...]σ,x

)N−1

∫
dx e−

βN
4J x

2
(∫

dσ e−β[...]σ,x
)N (3.111)

=
∫

dσj σj
∫

dx e
−β[...]σj,x

(∫
dσ e−β[...]σ,x

)−1
exp

(
N
{
− β

4J x
2 + log

(∫
dσ e−β[...]σ,x

)})
∫

dx exp
(
N
{
− β

4J x
2 + log

(∫
dσ e−β[...]σ,x

)})
(3.112)

Now we perform the x integral with the saddle point method, with the condition
N →∞ (i.e. the thermodynamic limit), keeping only the term of the lowest order.
The saddle point value of the variable x is x0 and it is defined by the equation that
maximizes the exponent of exp (N{...}):

x0
2J =

∫
dσ σe

−β[...]σ,x0∫
dσ e

−β[...]σ,x0
(3.113)

Plugging the saddle point value into the equation for s (and dropping the index j)
we finally have:

s =
∫

dσ σe
−β[...]σ,x0∫

dσ e
−β[...]σ,x0

(3.114)

That we want to solve in the limit β → ∞ that leads to another equation for a
saddle point value for σ that we call σ0:

∂

∂σ
[...]σ,x0

∣∣∣∣
σ=σ0

= 0 (3.115)

2Jσ0 + 2σ0V
′
(
σ2

0

)
= x0 (3.116)

Now we have (in a similar way of eq. (3.52)) three variables to determine s, x0,
σ0 and three equations to obtain them, (3.113), (3.114) and (3.116). The last two
variables are vectors so we have 2n+ 1 scalar variables and scalar equations. Here we
can make the same observation that we used for the computation of the Gibbs free
energy and notice at that, given the form of eq. (3.113) and (3.116), x0 and σ0 are
parallel, furthermore there is no constraint on the direction of the two vectors, it is
not fixed by the two equations just mentioned. Once again, giving the arbitrariness
of x0’s direction we fix it to be along the x-axis (one of the n possible axes), i.e.:

x0 = (x0, 0, ..., 0) (3.117)

hence eq. 3.116 gives:

x0 = 2Jσ0x + 2σ0xV
′(|σ0|2) (3.118)
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0 = 2Jσ0j + 2σ0jV
′(|σ0|2) for j 6= x (3.119)

which implies for σ0:

σ0 = (σ0x, 0, ..., 0) ≡ (σ0, 0, ..., 0) (3.120)

Indeed x0 and σ0 are parallel, just like magnetization and external field. Hence our
equations are:

x0 = 2Jσ0 + 2σ0V
′(σ2

0) (3.121)

x0
2J =

∫
dσ σx e

−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.122)

s ≡ 〈σ〉 =
∫

dσ σ e−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.123)

v ≡
〈
σ2
〉

=
∫

dσ σ2e−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.124)

Notice that in the case with generic n we have s 6= 〈σx〉. Hence we have to compute
the relation between the two, it suffices to do that up to order T . Since we will
use the saddle point method for β →∞ we shall expand the modulus σ near the
saddle point σ0 up to quadratic order, to have corrections up to O(T ) (remember:
we always do the substitution y = β1/2 (σ − σ0)). Given that we obtain:

σ = (σ · σ)1/2 = {[σ0 + (σ − σ0)] · [σ0 + (σ − σ0)]}1/2 (3.125)

= σ0

[
1 + 2σ0 (σx − σ0)

σ2
0

+ (σ − σ0)2

σ2
0

]1/2

(3.126)

' σ0

[
1 + σ0 (σx − σ0)

σ2
0

+ (σ − σ0)2

2σ2
0

− σ2
0 (σx − σ0)2

2σ4
0

]
(3.127)

= σx + σ2
n−1

2σ0
(3.128)

σ2
n−1 ≡

∑
i 6=x

σ2
i (3.129)

Plugging this expression into eq. 3.123 and looking at eq. 3.122 we discover:

s ' x0
2J + 1

2σ0

∫
dσ σ2

n−1 e
−β[Jσ2+V (σ2)−x0σx]∫

dσ e−β[Jσ2+V (σ2)−x0σx] (3.130)

= x0
2J + n− 1

2σ0

∫
dσ σ2

α e
−β[Jσ2+V (σ2)−x0σx]∫

dσ e−β[Jσ2+V (σ2)−x0σx] with α 6= x (3.131)

Using a similar procedure we can compute v ≡
〈
σ2〉 up to order T , indeed, expanding

σ2 near σ0:

σ2 = (σ · σ) = [σ0 + (σ − σ0)] · [σ0 + (σ − σ0)] (3.132)
= σ2

0 + 2σ0 (σx − σ0) + (σ − σ0)2 (3.133)
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= σ2
0 + 2σ0 (σx − σ0) + (σx − σ0)2 + σ2

n−1 (3.134)

Plugging it into eq. 3.124 and looking at eq. 3.122 we have:

v = σ2
0 + 2σ0

(
x0
2J − σ0

)
+
∫

dσ (σx − σ0)2 e−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] +

+
∫

dσ σ2
n−1 e

−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.135)

For the computation of all the previous multi-dimensional integrals (eq.s (3.122),
(3.131) and (3.135)) with the saddle point approximation, see appendix 3.D. We will
go on with the calculations assuming the saddle-point integrals to be done. Hence
our set of equations becomes:

x0 = 2Jσ0 + V ′(σ0)
s ' x0

2J + (n−1)
2(2Jσ0+V ′(σ0))T

x0
2J ' σ0 − TAn (σ0)− T 2Bn (σ0)
v ' σ2

0 + 2σ0
( x0

2J − σ0
)

+ T
2J+V ′′(σ0) + n−1

2J T

(3.136)

An (σ0) ≡ 1
2

[
V ′′′0

(2J + V ′′0 )2 + (n− 1)(σ0V
′′

0 − V ′0)
σ0(2Jσ0 + V ′0)(2J + V ′′0 )

]
(3.137)

Bn (σ0) ≡ 1
8

[
V ′′′′′0

(2J + V ′′0 )3 + 2(n− 1)V ′′′′0
(2Jσ0 + V ′0) (2J + V ′′0 )2 + terms inV ′0 , V ′′0 , V ′′′0

]
(3.138)

where we didn’t write the terms in V ′0 , V ′′0 , V ′′′0 inside Bn (σ0) because they will not
contribute to the expansion; they vanish at σ0 = 1. First of all, we can compute C0,
that is, up to order T , using the equations of 3.136:

C0 =
〈
σ2
〉
− 〈σ〉2 = v − s2

' σ2
0 + 2σ0

(
x0
2J − σ0

)
+ T

2J + V ′′ (σ0) + n− 1
2J T −

[
x0
2J + (n− 1)

2 (2Jσ0 + V ′(σ0))T
]2

' σ2
0 + 2σ0 (−TAn (σ0)) + T

2J + V ′′ (σ0) + n− 1
2J T −

[
σ0 − TAn (σ0) +

+ (n− 1)
2 (2Jσ0 + V ′(σ0))T

]2

(3.139)

' T

2J + V ′′ (σ0) + n− 1
2J T − (n− 1)σ0

2Jσ0 + V ′ (σ0)T (3.140)

Now we write σ0 as 1− aT (calculations for a in appendix 3.D)with a > 0 and we
obtain, always up to order T for C0:

βC0 = β

[
T

2J + V ′′ (1) + n− 1
2J T − (n− 1)

2J + V ′ (1)T +O(T 2)
]

(3.141)
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Figure 3.4. βC0 for vanishing temperature. Nearest neighbours interaction on
a cubic lattice. Standard: Monte Carlo simulations for the standard O(n) model
with a bare potential V = (σ2 − 1)2. The factor βC0 goes to a constant value, in
the limit of vanishing temperature. Results for a box of size L = 10, at bigger sizes
the result is the same. Simulation parameters: J = λ = 1. Marginal: Monte Carlo
simulations for the marginal model with a bare potential V = (σ2 − 1)4. The factor
βC0 moderately grows for vanishing temperature but the growth is suppressed as the
size of the system increases. Simulation parameters: J = λ = 1. Error bars have been
computed using the blocking procedure described in [1], together with the Jackknife
method. To ensure thermalization for the whole range of temperatures and for both
models that we analyzed we performed 20000 Monte Carlo steps without measuring and
then we measured the quantities of interest on a thermalized simulation of 106 steps.
The soundness of the thermalization was checked by looking at the energy and the
average modulus as functions of the Monte Carlo step (an example of the thermalization
for a system at low temperature can be found in the appendix 3.E).

= 1
2J + V ′′(1) +O(T ) (3.142)

We can say, looking at the formula above, that the value of βC0 in mean field,
at the first relevant order, is n-independent and finite for vanishing temperature.
Computing it for the standard and the marginal model we finally have,

βC
(std)
0 ' 1

2J + 8λ
βC

(mrg)
0 ' 1

2J

(3.143)

(3.144)

where we see that the factors βC0 go asymptotically to a constant value. In Fig.
3.4 we can see both systems’ βC0s computed from a simulation on a cubic lattice,
with nearest neighbours interaction. We can see from the figure that our mean field
prediction is, at least qualitatively, correct. For vanishing temperature βC0 goes to
a constant value; for the marginal model we can see that the factor grows for the
smallest sizes, but this effect vanishes as the size increases. The finite-size effect on
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βC0 can be computed at mean field, expanding the saddle-point integral in N up to
first order corrections, one can find for the marginal model,

βCmrg0 ' 1
2J +AT + B

TN
+ C

N
+ . . . (3.145)

where A,B and C are three numeric constants that depend on n,J and λ. We can
see that the third contribution B/(TN) vanishes in the thermodynamic limit but
when the number of particles is not strictly infinite, it gives a divergent contribution
for T → 0. This fact does not change the result of (3.144), which tells us that
the divergence of the modulus susceptibility (3.93) (which can happen only in the
thermodynamic limit) is not a trivial effect of the factor β in the definition of the
susceptibility. However, if we wanted to measure the critical exponents of our theory
(as we will do in chapter 5) using the finite-size scaling of the modulus susceptibility,
the finite-size divergence in eq. (3.145) could be problematic. The scaling with the
temperature of the modulus susceptibility at finite size could be modified by the
contribution of the divergent part of the amplitude of correlation functions (3.145).
Nonetheless, we see from Fig. 3.4 that the divergence of βC0 in the realistic case of
nearest neighbours interaction is way weaker than ∼ 1/T and almost non-existent as
the system’s size is bigger than L = 20, hence the measurements on the susceptibility
(see Fig. 5.1 of last chapter) will not be affected by it. Furthermore, for what
concerns comparison between the marginal model and data, we do not need to
compute the susceptibility, we measure only the correlation length defined by eq.
(1.10), which is not affected at all by the amplitude of the correlation function,
since it appears both in the numerator and in the denominator, hence it does not
contribute to our estimate of the correlation length.

In the end we can say that the divergence in the marginal model’s modulus
susceptibility, computed in the mean-field approximation (3.93), is not determined
by the prefactor β in the definition (3.89), because the prefactor’s divergence is
tamed by the vanishing correlation amplitude C0. Hence we believe that the presence
of a “marginal critical point” for T → 0 is a bone-fide collective effect and it explains
the divergence of the modulus susceptibility. This property suggests that, for a finite
size system with short range interaction, the marginal model will show scale-free
modulus correlations, just like the experimental data. In the next chapter we will
compare our theoretical results and expectations with the appropriate off-equilibrium
simulations and with experimental data, to see what our theory can add to the
state-of-the-art flocking models.
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3.A Appendix: mean-field argument for the average
modulus distribution

We can also find the average modulus’ distribution 3.23 using a quick mean-field
argument. We claim that, due to the high polarization of the system, we can write
every individual spin as:

σi = σ + εi (3.146)

where σ is the average spin σ = 1/N∑
i σi, and εi is the deviation of each individual

spin from the average, with |εi| � |σ|. By definition we have ∑i εi = 0. We plug
(3.146) into the Hamiltonian 3.7, disregarding εi (hence enforcing a mean-field spin
for every particle) and we obtain,

H({σi}) = g
∑
i

(1− σ)2 = Ng(1− σ)2 (3.147)

To compute the distribution of the collective variable σ, we need to change vari-
able from {σi} to {{εi},σ} (enforcing the constraint δ (∑i εi)). This computation
produces a constant that will cancel with the normalization of the probability
distribution; in the end we have,

P ({εi},σ) = e−
Ng
T

(1−σ)2

∫
dσ
∏
i
dεiδ

(∑
i
εi

)
e−

Ng
T

(1−σ)2
(3.148)

We integrate over the {εi} and then we change variable from dσ = dσxdσydσz to
dσdφdθ, gaining the jacobian σ2. After integrating over the angular variables we
have the probability distribution for σ:

P (σ) = σ2e−
Ng
T

(1−σ)2∫
dσ σ2 e−

Ng
T

(1−σ)2
(3.149)

the variable σ, if we use its definition from (3.146), is σ = |σi − εi|. Since we
decided to completely ignore fluctuations, we conclude that σ = σi and therefore
σ = 1/N∑

i σi = σ. After the identification of s and σ, the equation above coincides
with the SW-approximation distribution 3.23.

3.B Appendix: an alternative derivation for the marginal
potential

We derive now the form of the marginal potential in a more careful way, assuming only
that it must be a polynomial. The potential must also have only even powers of the
modulus of σ, otherwise the Hamiltonian would not be analytic (σ = |σ| =

√
σ · σ).

Other constraints on the potential’s form are on its derivatives in the minimum,

∂V

∂σ

∣∣∣∣∣
σ=1

= 0 ∂2V

∂σ2

∣∣∣∣∣
σ=1

= 0 ∂3V

∂σ3

∣∣∣∣∣
σ=1

= 0 (3.150)
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∂4V

∂σ4

∣∣∣∣∣
σ=1

> 0 minimum condition (3.151)

One has three equations from (3.150) and one inequality from (3.151), so the potential
shall have four parameters to be determined,

V (σ) = A+Bσ2 + Cσ4 +Dσ6 + λσ8 (3.152)

where A is an additional arbitrary constant term of no relevance. If we plug the
potential (3.152) into (3.150) and (3.151) we obtain,

B + 2C + 3D + 4λ = 0
B + 6C + 15D + 28λ = 0
C + 5D + 14λ = 0
C + 15D + 70λ > 0

that gives,

B = −4λ C = 6λ D = −4λ λ > 0 (3.153)

Plugging this result into the (3.152) and fixing the arbitrary constants A = λ one
has,

V (σ) = λ
(
1− 4σ2 + 6σ4 − 4σ6 + σ8

)
= λ

(
σ2 − 1

)4
(3.154)

The inequality λ > 0, coming from the minimum condition, is also consistent with
the fact that, for σ2 →∞, the potential must diverge to +∞, in order to bound the
energy of the system. In principle, any potential of the form (3.35) with p = 2q and
q ≥ 2 satisfies eq.s (3.150) and (3.151), but the result of eq. (3.154) is the simplest
one, which involves the lowest powers of σ2.

3.C Appendix: terms of order T 2 of the Gibbs free en-
ergy

The generic (i.e for any n) term of order T 2 of the free energy (3.52), for the marginal
model that has V (m) = (1−m2)4, is,

T 2
[
Am(detWµν(m))′

2 detWµν(m) − Cm −
W ′′mA

2
m

2

]

= T 2λ

2

{
6J2λ

(
m2 − 1

)2[
m6

(
14n2 + 564n− 487

)
− 6m4

(
5n2 + 128n− 85

)
+

+ 3m2
(
6n2 + 76n− 37

)
− 2

(
n2 + 12n− 4

) ]
+ J3

[
m4

(
n2 + 60n+ 44

)
+

− 2m2
(
n2 + 36n+ 8

)
+ n2 + 12n− 4

]
+ 48Jλ2

(
m2 − 1

)5
·

·
[
7m6

(
7n2 + 144n− 153

)
+m4

(
−63n2 − 564n+ 534

)
+
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+ 3m2
(
5n2 + 48n− 41

)
− n2 − 12n+ 4

]
+ 32λ3

(
m2 − 1

)8
·

·
[
49m6

(
14n2 + 12n− 29

)
− 42m4

(
7n2 + 32n− 37

)
+

+m2
(
42n2 + 348n− 381

)
− 2

(
n2 + 12n− 4

) ]}
/

/

{[
J + 4λ

(
m2 − 1

)3
]2 [

J + 4λ
(
7m2 − 1

) (
m2 − 1

)2
]3
}

(3.155)

where we used the expressions for Am, Cm and detWµν that we computed in the
section 3.3.3 and we plugged them into Mathematica. If we take the derivative with
respect to m of the above expression (without the T 2), we obtain the term D(m) of
eq. (3.78),

D(m) = −2λm
{
− 16J2λ3

(
m2 − 1

)6 [
7m8

(
448n2 − 20316n+ 16967

)
+

+m6
(
−2464n2 + 169236n− 89273

)
− 3m4

(
352n2 + 19308n− 2251

)
+

+m2
(
416n2 + 11100n+ 2725

)
− 2

(
16n2 + 468n+ 479

) ]
− 4J3λ2

(
m2 − 1

)3
·

·
[
m8

(
952n2 − 11604n− 17047

)
+m6

(
−1984n2 + 20412n+ 50605

)
+

+ 3m4
(
368n2 − 3204n− 12323

)
+m2

(
−64n2 + 948n+ 9703

)
+

− 4
(
2n2 + 36n+ 133

) ]
− J4λ

(
m2 − 1

) [
m6

(
104n2 + 2100n− 11969

)
+

− 3m4
(
72n2 + 1316n− 4533

)
+ 3m2

(
40n2 + 724n− 1297

)
− 8n2 − 324n+ 53

]
+

+ J5
[
−m2

(
n2 + 60n+ 44

)
+ n2 + 36n+ 8

]
+ 64Jλ4

(
m2 − 1

)9
·

·
[
49m8

(
28n2 + 5820n− 5875

)
− 7m6

(
1456n2 + 27324n− 24223

)
+

+m4
(
4200n2 + 68292n− 51333

)
+m2

(
−592n2 − 12732n+ 6523

)
+

+ 28n2 + 864n+ 692
]

+ 256λ5
(
m2 − 1

)12 [
1372m8

(
14n2 + 12n− 29

)
+

− 49m6
(
224n2 + 972n− 1139

)
+ 21m4

(
112n2 + 1188n− 1225

)
+

+m2
(
−224n2 − 4404n+ 3761

)
+ 8n2 + 252n+ 181

]}
/

/

{[
J + 4λ

(
m2 − 1

)3
]3 [

J + 4λ
(
7m2 − 1

) (
m2 − 1

)2
]4
}

(3.156)

once we compute it at m = m0 = 1 we have,

D(m0) = D(1) = λ

J2 [120 + 48(n− 1)] (3.157)

that appears in eq. (3.80).



3.D Appendix: computation of the correlation amplitude 81

3.D Appendix: computation of the correlation ampli-
tude

We compute all the saddle point integrals we use to have the equations in the system
3.136. We start from the 3.122 and we expand everything near the saddle point
σ0 = (σ0, 0, ..., 0):

σx = σ0 + (σx − σ0) (3.158)
f(σ) ≡ Jσ2 + V (σ2)− x0σx (3.159)

f(σ) ' f(σ0) + fij
2 (σi − σ0i)(σj − σ0j) + fijk

6 (σi − σ0i)(σj − σ0j)(σk − σ0k)+

+ ...+ fijklm
5! (σi − σ0i)(σj − σ0j)(σk − σ0k)(σl − σ0l)(σm − σ0m) + ...

(3.160)

where fij...k = ∂
∂σi

∂
∂σj

... ∂
∂σk

f
∣∣∣
σ=σ0

and we are using the Einstein summation conven-
tion. Hence we make into the integral of the 3.122 the expansion near σ0, followed
by the substitution z = β1/2(σ − σ0):

x0
2J = σ0+ (3.161)

+ β−1/2

∫
dz zxe

−
fij
2 zizj

[
1−

(
β−1/2 fijk

6 zizjzk + ...+ β−3/2 fijklm
5! zizjzkzlzm + ...

)
+ 1

2 (...)2 + ...
]

∫
dz e−

fij
2 zizj

[
1−

(
β−1/2 fijk

6 zizjzk + ...+ β−3/2 fijklm
5! zizjzkzlzm + ...

)
+ 1

2 (...)2 + ...
]

(3.162)

From now on we will not write some terms, mainly because they do not contribute
for symmetry reasons in the integral or because they vanish once calculated in the
marginal case (e.g. V ′′(σ0 = 1)). Expanding x0 up to T 2 order we have,

x0
2J ' σ0 − T

1
6
∑
ijk

fijk 〈zxzizjzk〉0 − T
2 1
5!

 ∑
ijklm

fijklm 〈zxzizjzkzlzm〉0 + “irrelevant” terms


(3.163)

where,

〈(...)〉0 =
∫

dz (...) e−
fij
2 zizj∫

dz e−
fij
2 zizj

(3.164)

To compute the Gaussian averages we will use Wick’s theorem, hence we need to
know the Gaussian average 〈yayb〉0 = (f−1)ab, where f−1 is the inverse of the matrix
of the second derivatives of the function f(σ), evaluated for σ = σ0. We will discover
that the matrix is diagonal, hence (f−1)ab = (fab)−1. We start computing fab,

fab = ∂2f(σ)
∂σa∂σb

∣∣∣∣∣
σ=σ0

= ∂

∂σa

∂

∂σb

[
Jσ2 + V (σ)− x0σx

] ∣∣∣∣
σ=σ0

(3.165)
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= ∂

∂σa

[
2Jσb + σb

σ
V ′(σ)− x0δbx

] ∣∣∣∣
σ=σ0

(3.166)

= 2Jδab + δab
V ′(σ0)
σ0

− δaxδbx
V ′(σ0)
σ0

+ δaxδbxV
′′(σ0) (3.167)

the only non-zero terms of the matrix are on the diagonal,

fxx = 2J + V ′′0 ≡M−1
x (3.168)

fjj = 2Jσ0 + V ′0
σ0

≡M−1
j for j 6= x (3.169)

Hence we have,

〈yayb〉0 = (f−1)ab = δabMa (3.170)

Now we can start to compute the corrections in T and T 2 from the 3.163. The term
of the first order in T (we called it before An(σ0), see 3.136) according to Wick’s
theorem and the calculation we just performed reads,

An(σ0) = 1
6
∑
ijk

fijk 〈zxzizjzk〉0 = 1
6
∑
ijk

fijk
(
〈zxzi〉 〈zjzk〉0 + all the other contractions

)
(3.171)

= 1
6
∑
ijk

fijk (δixδjkMxMj + all the other contractions) (3.172)

looking at the 3.169 we notice that the term is constant in j so, by a simple renaming
of indices, we can simplify further the previous expression,

An(σ0) = 1
2
∑
ijk

fijkδixδjkMxMj = 1
2
∑
j

fxjjMxMj (3.173)

To obtain our result we need to compute fxjj (we can start from the previous
computation with two derivatives),

fxjj = ∂

∂σx

∂

∂σj

∂

∂σj
f(σ)

∣∣∣∣∣
σ=σ0

= ∂

∂σx

(
2J + V ′(σ)

σ
−
σ2
jV
′(σ)
σ3 +

σ2
jV
′′(σ)
σ2

) ∣∣∣∣∣
σ=σ0

(3.174)

=
[
−V

′
0
σ2

0
+ V ′′0
σ0

+ δjxV
′

0
σ2

0
− δjxV

′′
0

σ0
+ δjxV

′′′
0

]
(3.175)

Here too we have two possibilities,

fxxx = V ′′′0 (3.176)

fxjj =
[
V ′′0
σ0
− V ′0
σ2

0

]
for j 6= x (3.177)

where the term fxjj does not depend on j, hence our order T correction is,

An(σ0) = 1
2
∑
j

fxjjMxMj = 1
2
[
fxxxM

2
x + (n− 1)fxjjMxMj

]
(3.178)
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= 1
2

[
V ′′′0

(2J + V ′′0 )2 + (n− 1)(σ0V
′′

0 − V ′0)
σ0(2Jσ0 + V ′0)(2J + V ′′0 )

]
(3.179)

as stated before.
For the second order the correction coefficient is, without unnecessary terms,

Bn(σ0) = 1
5!
∑
ijklm

fijklm 〈zxzizjzkzlzm〉0 = 1
5!
∑
ijklm

fijklm (〈zxzi〉 〈zjzk〉 〈zlzm〉0 + all cont.)

(3.180)

= 5!!
5!

∑
ijklm

fijklmδixMxδjkMjδlmMl = 1
8
∑
ij

fxiijjMxMiMj (3.181)

= 1
8[fxxxxxM3

x + 2(n− 1)fxxxjjM2
xMj+

+ (n− 1)(n− 2)fxiijjMxMiMj + (n− 1)fxiiiiMxM
2
i ] (3.182)

we did the last passage because we know for sure that each term with some indices
i or j different from x it’s i(or j)-independent. We know it because the i(or j)
dependence can only be expressed through σ0js and they are all zero if j 6= x. Of
course in the previous formula it is always i 6= x and j 6= x and in the third term
also i 6= j. To figure out which terms we do really need and to avoid computing too
many derivatives we should keep in mind the fact just stated before that σoj = 0
for any j 6= x and the fact that Bn(σ0) will be needed only for the marginal model,
at σ0 = 1, hence we can completely disregard all terms with V ′(σ0), V ′′(σ0) and
V ′′′(σ0). Guided by these ideas we can compute only the terms,

fxxxxx = V ′′′′′0 (3.183)

fxxxjj = V ′′′′0
σ0

+ other terms vanishing at σ0 = 1 (3.184)

fxiijj = 0 + other terms (3.185)
fxiiii = 0 + other terms (3.186)

(3.187)

Hence we remain only with,

Bn(σ0) = 1
8
[
fxxxxxM

3
x + 2(n− 1)fxxxjjM2

xMj

]
(3.188)

= 1
8

[
V ′′′′′0

(2J + V ′′0 )3 + 2 (n− 1)V ′′′′0
(2Jσ0 + V ′0) (2J + V ′′0 )2

]
(3.189)

that is what we used in 3.136.
In the end we compute the corrections for s and v, they appeared in eq. 3.131

and 3.135, here we can stop at order T . They are very easy to compute, the first
one is:

C1 ≡
∫

dσ σ2
n−1 e

−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.190)
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= (n− 1)
∫

dσ σ2
k 6=x e

−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.191)

' (n− 1)T
∫

dz z2
k 6=x e

−
fij
2 zizj∫

dz e−
fij
2 zizj

(3.192)

= (n− 1)T
〈
z2
k 6=x

〉
0

= (n− 1)TMk 6=x = (n− 1)σ0
2Jσ0 + V ′0

T (3.193)

and the other, that we find only in the 3.135 is:

C2 ≡
∫

dσ (σx − σ0)2 e−β[Jσ2+V (σ2)−x0σx]∫
dσ e−β[Jσ2+V (σ2)−x0σx] (3.194)

' T
∫

dz z2
x e
−
fij
2 zizj∫

dz e−
fij
2 zizj

(3.195)

= T
〈
z2
x

〉
0

= TMx = T

2J + V ′′0
(3.196)

We start from the standard model, hence we can consider from the start only terms
up to order T , using the first and the third equation of the system 3.136 we have an
equation for σ0:

V ′ (σ0) = −2JTAn (σ0) (3.197)

If σ0 ' 1− aT we have:

aT δV ′′(1) = 2JTAn(1) (3.198)

hence we have:

σ0 ' 1− 2JAn(1)
V ′′(1) T (3.199)

Using again the equations of 3.136 we can compute s and x0
2J . Notice that, if we

look at eq. 3.113 we can say that x0
2J = 〈σ〉 i.e. the magnetization vector. Given

the arbitrary choice we made for the direction of x0 in the beginning, also the
magnetization has only the x component different from zero and equal to x0

2J , as one
can see in eq. 3.122. Only in the n = 1 case the average of the spin modulus and the
spin average (if one chooses x0 > 0) are the same, indeed in the mono-dimensional
case s = x0

2J . For generic n they are different and they are expressed as functions of
σ0 in the equations of 3.136. From there we have, up to order T :

〈σx〉 = x0
2J ' σ0 − TAn(σ0) ' 1− 2JAn(1)

V ′′(1) T − TAn(1) (3.200)

= 1−
( 3

4 (J + 4λ) + n− 1
4J

)
T (3.201)

Hence the magnetization depends on n, at first order in T . On the other hand, if we
compute s = 〈|σ|〉 at the same order, the n dependent term is exactly canceled:

s = 〈|σ|〉 ' x0
2J + (n− 1)

2 (2Jσ0 + V ′(σ0))T (3.202)
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' 1− 2JAn(1)
V ′′(1) T −An(1)T + (n− 1)

4J T (3.203)

= 1− 3
4(J + 4λ)T (3.204)

The value of s is the same for all ns, up to order T , in the standard model.
The results for the marginal model will be similar, always using the first and the

third equation from 3.136, this time keeping terms up to order T 2, we obtain:

V ′(σ0)
2J = −TAn(σ0)− T 2Bn(σ0) (3.205)

Remembering that in the marginal case V ′(1) = V ′′(1) = V ′′′(1) = An(1) = 0 and
using the usual σ0 ' 1− aT :

0 = −aT 2A′n(1)− T 2Bn(1) (3.206)

that gives a = Bn(1)/A′n(1). In the n = 1 case we discovered that, up to order T
we had σ0 ' x0

2J , here is exactly the same, just use the equation liking x0 and σ0
from the system 3.136. Hence if we want to compute the quantities of interest, up
to order T we have:

〈σx〉 = x0
2J ' σ0 ' 1− Bn(1)

A′n(1)T (3.207)

= 1−
(
V ′′′′′(1)

8JV ′′′′(1) + n− 1
4J

)
T (3.208)

= 1− n+ 4
4J T (3.209)

again, it is n-dependent, while the average modulus:

〈|σ|〉 = s ' x0
2J + (n− 1)

2 (2Jσ0 + V ′(σ0))T (3.210)

' 1− Bn(1)
A′n(1)T + n− 1

4J T (3.211)

= 1− 5
4J T (3.212)

does not depend on n.

3.E Appendix: thermalization at low temperature

We show in Fig. 3.5 the thermalization at low temperature of the simulation that
we used for the results in Fig. 3.4. We see that if we start from a cold configuration,
i.e. a configuration with all parallel spins of modulus 1, the thermalization is almost
instantaneous. Given that, we started all our simulations in a cold configuration
and we discarded for precaution the first 20000 Monte Carlo steps. In this way
we are sure that our system has thermalized, even at the lowest temperatures. In
these simulation we used a standard Monte Carlo simulation with the Metropolis
algorithm [9].
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Figure 3.5. Thermalization at low temperature. We show minus the energy and
the average spin modulus during a simulation. Size is L = 60 and T = 10−5 while
J = λ = 1. We initialize the system with all parallel spins of modulus 1 (black), with
random spins of modulus 1, such that the average magnetization is 0, (red) and in a
spin-wave configuration, i.e. σi = (cos(2πnx/L), sin(2πny/L), 0) where nx and ny are
the (x, y) coordinates in the cubic lattice and go from 0 to L−1 (green). We can see that
if we start from a cold configuration (black) the thermalization is almost instantaneous.
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Chapter 4

Experimental and numerical
validation of the marginal model

In the previous chapters we presented the main findings in flocks experimental data
about scale-free correlations in a polarized phase. We described the properties of
ferromagnetic models that are able to reproduce a part of flocks’ phenomenology,
pointing out that scale-free modulus correlations cannot be explained using standard
equilibrium models; a new idea was needed. In the last chapter we described a
first attempt in reproducing modulus (that in starling flock is the speed) scale-free
correlations, the pseudo-Gaussian model and the marginal model. In this chapter,
via the direct comparison between theory, simulations and experimental data, we will
show that the marginal model retains all the positive aspects of the pseudo-Gaussian
model, yet none of its problems and thus it is the most suitable model for describing
starling flocks scale-free speed correlations.

In order to carry out this comparison we adopt the following validation strat-
egy. We perform numerical simulations of self-propelled particles (SPP), using an
appropriate dynamics, of both the pseudo-Gaussian model and the marginal model.
In this way we can compare directly the models with the experimental data and
see what theory is best. Doing SPP simulations is of course more appropriate than
just relying on equilibrium results, since all biological systems are out-of-equilibrium.
It is also an opportunity to confirm the validity of the local equilibrium approach
[85] for a SPP system in its polarized phase. Hence, we need to find a suitable set
of dynamics’ equations that can include all the marginal model’s properties that
we described in the previous chapter. We have to promote spins σi to velocities vi
and find a way to describe the off-equilibrium dynamics of starlings. In order to do
so, we will take inspiration from the most influential model of flocking behaviour,
i.e. the Vicsek model [49, 110, 111], that will be briefly presented. Secondly we will
introduce the pseudo-Gaussian SPP model [12, 34] and finally we will develop an
SPP version of the marginal model. The SPP pseudo-Gaussian and marginal models
will be compared with experimental data to see if they are capable of reproducing
scale-free correlations of speed fluctuations in a regime where the average speed and
polarization are compatible with the experimental ones.

The results that we will find in the SPP framework will be similar to the
equilibrium ones that we discussed in the previous chapters, even if the interaction
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between individuals is time-dependent.

4.1 A paradigm: the Vicsek model

The Vicsek model was introduced in [110], a review of the model and of some of
its most recent upgrades can be found in [49]. The model describes a group of
N self-propelled particles that move according to a discrete-time dynamics into a
volume V . The main mechanism of this model is the alignment of velocities, each
particle tends to align its velocity with the velocity of a group of neighbours, which
can be defined in many ways, as we shall see later. The dynamics of this system is
synchronous, i.e. all particles’ positions and velocities are updated at the same time.
To better understand the bulk properties of this system, periodic boundary condition
are commonly used in simulations. The evolution equations for the particle i with
coordinate ri and velocity vi is,

ri(t+ ∆t) = ri(t) + ∆tvi(t+ ∆t)

vi(t+ ∆t) = v0Rη
[ ∑

k nik(t)vk
|
∑
k nik(t)vk|

]
(4.1)

where Rη is an operator that rotates the argument of a random solid angle extracted
from a uniform distribution of amplitude 4πη, ∆t is the time step of the system
and v0 is the fixed value of every velocity modulus. η is a tunable parameter of the
system and it goes from 0, when the system is purely deterministic, to 1, when the
noise completely dominates the system, thus giving a set of independent random
walkers. nik(t) is the connectivity matrix, determining the interactions between
neighbours. It is defined by,

nik(t) =
{

1 if |ri(t)− rk(t)| < rint

0 if |ri(t)− rk(t)| > rint
(4.2)

where rint is the radius of interaction of the particles. We can see that the connectivity
matrix is time dependent, which means that this is an off-equilibrium model. However,
if the modulus of the velocity v0 is not too big the reshuffling time is much larger than
the equilibration time [85]. This means that for suitable time scales this model can
be approximated by an equilibrium model with a fixed connectivity matrix. Vicsek
model’s dynamics is represented in Fig. 4.1, at each time step, every individual
computes the average velocity of its neighbours vavg (the individuals in the sphere
of radius rint), then its next step’s velocity will be vavg normalized in order to have
modulus v0 and rotated of a random solid angle extracted from a uniform distribution.
This process mimics the imitation mechanism that is thought to be happening in real
flocks, where each bird tries to align its velocity with its neighbours’; the biological
mechanism is not perfect, hence the presence of the random rotation.

After fixing arbitrarily time and space units (for example rint = ∆t = 1), one
must figure out the control parameters to determine the behaviour of the system. For
the Vicsek model the control parameters are the particles speed (velocity modulus)
v0, the density of particles into the volume ρ0 = N/V and the noise magnitude η.
Tuning these parameters, one can explore this system’s phases. The Vicsek model
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a b c
Figure 4.1. Picture of the Vicsek dynamics. Each particle tends to uniform its velocity

with the average of the velocities within its radius of interaction (its own previous velocity
included). This operation cannot happen perfectly, due to the noise enforced in eq. (4.1)
through the random rotation Rη. a: Each particle computes its new velocity (red arrow)
as the normalized average of all the particles’ velocities within the interaction radius
rint. b: Then, the new velocity is rotated by a random quantity defined by the noise
magnitude η. c: Finally, the particle moves in the direction of the new velocity with a
displacement v0∆t.

possesses various phases, and a spontaneous symmetry-breaking takes place for
specific combinations of its parameters [111]. In particular, if the noise amplitude
is low enough, the system develops a global orientation, i.e. the polarization (1.3)
becomes non-zero [49].

This ordered phase of the Vicsek model, studied by Toner and Tu [106, 108, 109]
is a symmetry-broken phase of a system with a continuous symmetry. This means
that in this phase the system orientational degree of freedom has scale-free connected
correlations functions due to massless Goldstone modes [52]. The reasons of this
feature is explained in chapter 2 for generic continuous symmetry systems. The
peculiarity of this Toner and Tu phase is also the presence of scale-free correlations
in density fluctuations, but this feature has not been detected by analysing the flocks’
spatial fluctuations [23].

The Vicsek model, as it has just been pointed out, can accurately reproduce
the high polarization and the scale-free correlations of the orientational degree of
freedom. Of course, by construction, it cannot show speed fluctuations, so a different
model must be used to describe this phenomenon.

4.1.1 Topological interaction

Among the many possible versions of the Vicsek model [50], we mention the topologi-
cal Vicsek model, in which the interaction rule described in eq. (4.2) is abandoned in
favor of a topological interaction rule. This means that each individual interacts with
a fixed number of neighbours, regardless to their distance from the focal bird. This
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choice for the interaction rule is more consistent with the actual mechanism found in
starling flocks [8] and other groups of animals [48]. However, in the deeply polarized
phase (the Toner-Tu phase [106, 107]), at fixed density, the phenomenology of the
topological Vicsek model (i.e. the emergence of Goldstone modes and giant density
fluctuations) is very similar to the metric version of the model [49]. Substantial
differences are observed when the model undergoes a phase transition from the
symmetrical disordered state to the symmetry-broken ordered one, but this regime
is not useful to describe starling flocks, that live in the ordered phase, with very
high polarization (see chapter 1).

4.1.2 Continuous time Vicsek model

The first formulation of the Vicsek model [110] was crucial to understand the
fundamental properties of active particles and collective motion. It is also easy to
perform numerical simulation with the original form of the Vicsek model, due to
its discrete time. However, a continuous time version is more suitable to perform
analytical calculations and to generalize the model to include speed fluctuations.
A possible continuous version of the Vicsek model is defined by the differential
equations,

dri
dt = vi

1
γ

dvi
dt = J

v2
0

∑
k

nik(t)vk + λivi + ηi (4.3)

where the term γ fixes the timescale of the system’s dynamical update, the constant
J is the interaction strength (that was not present in the discrete time model), the
term ∑

k nik(t)vk is the short-range interaction term with the matrix nik(t) defined
by eq. 4.2, λi is a Lagrange multiplier that enforces the constraint |vi| = v0 for every
i and ηi is a Gaussian white noise with zero mean and variance,

〈
ηiα(t)ηjβ(t′)

〉
= 2T

γ
δijδαβδ(t− t′) (4.4)

where α, β are η’s dimensions. While in the discrete case we quantified the noise
variance with the scalar η, here we use the temperature T . We can express the
velocity equation of 4.3 as,

1
γ

dvi
dt = −dH

dvi
+ λivi + ηi (4.5)

thus introducing the pseudo-Hamlitonian,

H = − J
v2

0

∑
i,k

nik(t)vi · vk (4.6)

that resembles the pseudo-Hamiltonian of a spin model [63].
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4.2 Fluctuating speed SPP models

Following the idea of equations 4.5 and 4.6 we can think of a model that contains
the Vicsek nearest-neighbours interaction and that allows fluctuating speed [12, 34].
The evolution equations will be,

dri
dt = vi

1
γ

dvi
dt = −dH

dvi
+ ηi (4.7)

that are simply eq.s 4.5 without the Lagrangian multiplier to fix the speed. The
noise η is a Gaussian white noise with the same variance as the Vicsek model (see
eq. 4.4). The Hamiltonian H, that now must contain an interaction term and a
speed-buonding potential, can be chosen between the pseudo-Gaussian Hamiltonian
(3.7) and the marginal Hamiltonian (3.36). If we convert spins into velocities and
we introduce a reference value v0 for the speed we have,

HGauss({vi}) = J

2v2
0

∑
i,j

nij(t)(vi − vj)2 + g

v2
0

∑
i

(vi − v0)2 (4.8)

HMrg({vi}) = J

2v2
0

∑
i,j

nij(t)(vi − vj)2 + λ

v8
0

∑
i

(
v2
i − v2

0

)4
(4.9)

We point out that the interaction matrix depends on time nij = nij(t), this is
the main feature that keeps the system out-of-equilbrium. There is a continuous
reshuffling of the individuals inside the interaction radius that defines the matrix,
following eq. 4.2. For a more detailed connection between the stochastic equations
(4.7) and the equilibrium distribution (3.2) presented in the previous chapter, see
appendix 4.A. In appendix 4.B we will present a more complex version of the
Gaussian model, the StarDisplay model, introduced in [59, 60]. The StarDisplay
model makes use of a different approach to biological system’s modeling, but it is
nevertheless based on some common ideas.

In order to check the theoretical results of the previous section and to compare
our models with data, we performed numerical simulations using the Euler scheme
[97] on the system of differential equations 4.7, our discretized equations are,

ri(t+ ∆t) = ri(t) + vi(t)∆t
vi(t+ ∆t) = vi(t) + Fi∆t+ δηi (4.10)

where we set γ = 1 through a rescaling of time and the force is the derivative of the
pseudo-Hamiltonians eq. 4.8 and 4.9,

FGauss
i = −dHGauss

dvi
= − J

v2
0

∑
k

nik(vi − vk) + 2g
v2

0

vi
|vi|

(v0 − |vi|) (4.11)

FMrg
i = −dHMrg

dvi
= − J

v2
0

∑
k

nik(vi − vk) + 8λ
v8

0
vi
(
v2

0 − v2
i

)3
(4.12)

and the noise δηi is a random gaussian variable with zero mean and variance,

σ2
η = 2dT∆t (4.13)
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often in literature one can find references to the single-particle part of eq. 4.11 as
“linear speed control”, even if the actual form of this term is not linear. This name
refers to the fact that the potential is pseudo-quadratic (or pseudo-Gaussian), hence
the force is “pseudo-linear” that becomes, for brevity, “linear”. Using the equations
4.10 we simulated the pseudo-Gaussian model and the marginal model. Both models
where simulated for various sizes and for the Gaussian model we report the results
for some values of the parameter g. All the other parameters (see appendix 4.C for
further explanation) were kept fixed.

4.3 Gaussian incompatibility

Adapting the equilibrium results of eq. (3.23) we can predict the form of the
distribution of the average speed s = 1/N∑

i vi,

P (s) = 1
Z
sd−1 exp

{[
−Ng
Tv2

0
(s− v0)2

]}
(4.14)

We stress that the above approximation is reasonable even in our out-of-equilibrium
simulations, as we can see from the match between coloured points and solid lines in
Fig (4.2-b). This means that all the approximations in the previous chapter remain
legitimate. Given that, the typical speed is (adapting eq. (3.25)),

stypical = v0

[
1
2 + 1

2

√
1 + 4T

Ng

]
(4.15)

This result shows that the typical speed is substantially different from v0 for small
N , if g is too small, the same happens for the mean speed as it is clearly shown in
Fig. (4.2). This result makes us think that, if we want the typical (and mean) speed
to be close to the reference value v0 for every flock, regardless to their size N , the
parameter g must be big. From the equation above we can say,

g � 1
N

(4.16)

We do not bother with the value of T , because if we look at the structure of the
model, both the Hamiltonian and the evolution equations and we stay within the
quasi-equilibrium approximation, we can see that actually the group of parameters
T ,J and g is redundant and can be simplified by fixing T = 1 while moving only J
and g.

We wish to draw the reader’s attention on the fact that, despite the approxi-
mations we used to derive them (in particular the fixed network assumption), the
analytical results above in perfect agreement with numerical simulations performed
by using an actual self-propelled particle model (Fig. (4.2)). This is not surprising,
considering that in the deeply ordered flocking phase the time scale to reshuffle the
interaction network is much larger than the time of local relaxation [85]. For what
concerns the speed correlation length, we adapt the equilibrium result of eq. (3.30),

ξspeed ∼ rc

√
Jnc
g

(4.17)
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Figure 4.2. Gaussian model simulations and experimental data. a: Natural flocks
show a clear scale-free behaviour of the speed correlation length, ξsp, which scales linearly
with L (Pearson coefficient rP = 0.97, p < 10−9). SPP simulations with linear speed
control yields scale-free correlations over the entire range of L only at the smallest value of
the stiffness g (dark red). b: Natural flocks show no detectable dependence of their mean
speed on the number of birds in the flock (Spearman coefficient rS = −0.13, p = 0.21;
the black line is the average over all flocks). SPP simulations with linear control give
a near-constant speed compatible with experiments only at the largest value of the
stiffness g (light yellow); coloured lines represent the theoretical prediction, computed
using the distribution (4.14). Linear speed control is therefore unable to reproduce both
experimental traits at the same time.

where rc is the average nearest neighbour distance. Once again, if the system at
finite size shows scale-free correlations, i.e. a correlation length that scales with
the size of the system, the bulk correlation length must be much greater then the
system’s size, which means,

ξspeed � L (4.18)

that gives a constraint on the parameter g,

g � L−2 (4.19)

the relation above is only asymptotic, we are not including all the other constants
that appear in eq. (4.17) because they are fixed by experimental data. This means
that nc and rc can be directly matched, while J can be determined by matching the
model’s polarization with the experimental value. If we compare the result of the
typical speed eq. (4.16) and the above relation (4.19) we have that g must satisfy
simultaneously,

N−1 � g � L−2 (4.20)

if for simplicity we imagine that our system is isotropically distributed in the 3D
space we have N ∼ L3 and thus,

L−3 � g � L−2 (4.21)

The relation above makes very hard for a single value of g to suit our needs for every
value of L. To see if it is still manageable with this model to achieve simultaneously
an average speed value coherent with experimental results while having scale-free
speed correlations, we perform numerical simulations and we directly compare them
with experimental data from starling flocks.
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4.3.1 Pseudo-Gaussian model and data

The comparison between data and the Gaussian model is shown in Fig. (4.2), where
experimental points are in black, simulations points are colored and the theoretical
prediction of the average speed is represented by solid colored lines. Looking at
panel a of the figure we can immediately see that, when g is small enough (dark red
points), the model reproduces the scale-free behaviour of experimental data, for every
size L in the accessible experimental range, just as we expected from the theoretical
prediction of eq. (4.19). On the other hand, if g is too small (orange points and
yellow points), from a certain size L̄ the system’s correlation length saturates to its
bulk value and stays almost constant for every L > L̄. Looking at panel b, however,
gives us exactly the opposite problem; when g is large enough (yellow points) the
speed stays almost constant for every number of individuals N and it is compatible
with the experimental data while if g is too small (orange and dark red points) the
average speed grows to unrealistically large values for the smaller Ns. This means
that the pseudo-Gaussian model (or linear speed control model [34]) is not capable
of reproducing with a single set of parameters the scale-free behaviour of the speed
correlation length together with the constant value of the speed over all the flocks
available.

A possible solution is to use a different value of g for every flock in order to
ensure that each single system possesses this two properties simultaneously. This
idea assumes the existence of a tuning mechanism such that the speed stiffness g
depends on the size L of the flock, in a way to satisfy the condition,

1
L3 � g(L)� 1

L2 (4.22)

This is a rather narrow strip for g(L) to live in, so that a biological mechanism
fulfilling (4.22) would require some very tricky size-dependent fine-tuning. But in
fact, even that could be insufficient: the two inequalities in (4.22) are asymptotic,
namely they require the stiffness g to stay well clear of both boundaries, 1/L3 and
1/L2, not just between them; for medium-small values of L this becomes harder
and harder to achieve. We can think of condition (4.22) as a wedge on the (g, L)
plane, a wedge that closes rapidly when L decreases; the only way to keep this
wedge open also for small values of L would be to tune also all other parameters,
r1, J, nc, v0 etc, beside tuning the stiffness g. Such a grandiose tuning seems unlikely,
if not impossible, to achieve. We believe it is more realistic to turn to some other,
tuning-free, control mechanism.

Given this problems with the pseudo-Gaussian model, a novel approach is needed
in order to reproduce a constant average speed over all the observed system’s sizes
and scale-free correlations too. From the previous chapters 2 and 3 and the Gaussian
model’s results we can learn that, if we want to obtain scale-free speed correlations,
we must have a free energy that is flat in the direction of the speed fluctuations.
This is achievable for the Gaussian model, but at the cost of decreasing the stiffness
of the whole bounding potential, eventually arriving at the singular limit g → 0,
where the energy is unbounded and the system is ill-defined. In the next section we
will overcome this problem using the marginal model in its SPP version.
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Figure 4.3. Marginal model simulations and experimental data. a: The correlation
length in SPP simulations with marginal speed control scales linearly with L over the full
range, provided that the temperature/noise T is low enough to have a polarization equal
to the experimental one. b: At the same value of the parameters as in panel a, SPP
simulations with marginal control give mean group’s speed very weakly dependent on
N , fully compatible with the experimental data; the blue line represents the theoretical
prediction of (4.23). Inset: same data over a smaller range to appreciate the agreement
between theory and simulations.

4.4 Marginal SPP model

From the equilibrium analysis of the marginal model of chapter 3 we see that, at
least at mean field level, the marginal model presents a critical regime for T → 0,
where we expect for the speed degree of freedom to be scale-free. This phenomenon
happens without the need to lower the potential stiffness, we only need to select
a temperature low enough for the largest system to be scale-free. Let us see if
this property is preserved when we transform the equilibrium spins of the previous
chapter into velocities of self-propelled particles. We substitute the pseudo-Gaussian
Hamiltonian with the marginal one. Hence the evolution equations will be the
same, i.e. eq. (4.7), with the white noise variance of eq. (4.4) and the marginal
Hamiltonian of eq. (4.9). Following the idea that the marginal model should
presents scale-free speed correlations in the polarized phase just lowering enough
the temperature T , we proceed to compute the approximate speed distribution via
the spin-wave approximation [41] to see what happens for the marginal case. We
performed numerical integration over the system of differential equations of the
marginal SPP model, using the same Euler scheme of eq. (4.10), but this time the
force is the marginal one, defined in eq. (4.12). Our theoretical prediction for the
probability distribution of the average speed will be (adapting eq. (3.95)),

P (s) = 1
Z
sd−1 exp

{[
−Nλ
Tv8

0
(s2 − v2

0)4
]}

(4.23)

which gives a typical speed (from (3.97)),

stypical ' v0

1 +
(

T
32Nλ

)1/3
for N � T

λ(
T

4Nλ

)1/8
for N � T

λ

(4.24)

Simulation and theoretical results, compared with experimental data, are shown
in Fig. (4.3). We can see that, with a single set of parameters, the marginal SPP
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model is capable of reproducing, for the whole range of experimental data, both
scale-free speed correlations (panel a) and almost constant speed for every N (panel
b and inset). Once again we can also see from panel b that the theoretical prediction
(solid blue line) is accurate with respect to the simulation results (blue points), thus
confirming the validity of the quasi-equilibrium approximation [85].

Another evidence that confirms the strength of the marginal model, is that
individual speed distributions have a good match with experimental ones. In Fig.
(4.4) we can see that, once we choose for the Gaussian model a low enough g such
that the correlation length scales with the size if the system, the individual speed
distribution does not resemble at all the experimental individual speed distribution.
On the other hand, the marginal model can reproduce effectively, with the same
parameter choice that guarantees scale-free correlations, the experimental individual
speed distributions.

One could expect that the single-individual speed distribution of the marginal
model would have a vanishing second derivative in its maximum, just like the bare
marginal potential’s minimum or the Gibbs free energy minimum (in Fig. 3.3 we
see its mean-field approximation) in the vanishing temperature limit. In fact, our
expectations are different, we know that if we put our system exactly at T = 0,
our marginal model is built in order to produce a system in its lowest energy state,
where all the velocities are parallel with a modulus equal to v0, hence the speed
probability distribution of a single-individual for zero temperature is a delta function
P (si) = δ(si − v0). This limit distribution does not have a flat maximum, its
curvature in the maximum goes to −∞ while we decrease the temperature. Given
that, our system should not have a finite temperature at which the probability
distribution has a flat maximum, the “flatness” of the Gibbs free energy does not
come from the single individual’s probability distributions but it is linked to the
divergence of the modulus susceptibility, a collective quantity that is not captured
by any single-individual observable. We think that this point is quite solid but it
could be strengthened by calculations and simulations.

We have achieved our goal; with the marginal model we can reproduce all the
relevant phenomenology that is encountered in experimental data, with a single set
of a small number of parameters (details about simulations in appendix 4.C). Using
this model, we have a low-temperature phase where the polarization is high, the
speed is around the reference value v0 and the modulus fluctuations are scale-free
correlated. We do not need any kind of fine-tuning, a single set of parameters is valid
for all the sizes we analyzed in experimental data because the “critical” temperature
of reference is T = 0. This means that, if we were to extend the model to bigger
sizes, we would not need to tune the parameters to a particular finite value, we only
need to lower the temperature and then adjust the other parameters to obtain the
right polarization. This idea is simpler from a biological point of view and can be
reversed in the following way: each individual from a flock has the same T , which
measures the noise of the procedure of alignment with its neighbours and of its
own speed control, the largest flock that can be formed is then the largest flock
that has scale-free correlations with that given magnitude of noise T . We stress
once again that all the main flocking phenomenology that we described in the first
chapter is achieved by the marginal theory by doing just one very sensible thing,
namely pushing the system into the ordered phase real flocks naturally belong to.
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Figure 4.4. Individual speed distributions for some sizes. Histograms of individual
speed distributions for experimental data (grey bars) superimposed with the result
from marginal SPP simulations (blue line and points) and Gaussian (or linear) model
simulations with g = 10−3 in order to match the scale-free beahviour (orange line and
points). The experimental speeds have been normalized by the total average speed
(vbio ' 11.9m/s) while the simulations speed have been normalized by the reference value
v0. We show the results for three sizes, 70 individuals (panel a) 200 individuals (panel
b) and 1000 individuals (panel c). It is evident that the marginal model matches the
experimental data while the Gaussian model is not compatible, both for the mean value
and for the variance. One may ask if we expect to see the single-individual distribution
to be flat in the maximum, mimicking the marginal potential minimum. In fact this is
not the case as we explain in the main text.

The entropy-triggered conflict between scale-free correlation and moderate group
speed that hinders linear control is therefore resolved by the marginal theory without
any fuss. One could say that the choice of the theory’s potential, i.e. the marginal
potential, is itself a sort of fine-tuning, since every power of v2

i in the explicit form of
the potential must be exactly that precise number, in order to obtain a zero-curvature
minimum. This is true, but we stress the fact that any kind of soft potential with
a vanishing second derivative in its minimum (which must be different from zero)
can give the same result, since this is the most important ingredient of the model.
Hence, we have potentially an infinite space of valid potentials which should bear the
same result of our marginal theory, we could think also of non-polynomial potentials
and other different kind of functions. Moreover, what we really think is a “weaker”
fine-tuning is to define a set of parameters, which is anyway small, that define a
theory that is capable of reproducing all the observed experimental systems without
any size-dependent adjusting. We cannot say the same for the pseudo-Gaussian
model that does not posses this same property, and requires a size-dependent choice
of the parameters in order to reproduce the experimental results.
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4.A Appendix: Fokker-Planck equation for the SPP
model

In order to clarify the link between the stochastic equations (4.7) with the equilibrium
models we described in the previous chapter, we will now derive, under a reasonable
approximation, the Fokker-Planck equation for the probability distribution of the vi
and we will see that the invariant probability distribution coincides with the Botz-
mann distribution 3.2, given the identification σi ≡ vi/v0. The main approximation
we need to use is the "fixed network" approximation, i.e. the interaction matrix does
not depend on time nij(t) = nij . This approximation is reasonable since in the state
of the system we want to investigate the typical reshuffling time of the interaction
network is greater than the equilibration time [85]. Given this approximation the
Hamiltonian ((4.8) or (4.9)) does not depend anymore on the particles’ positions,
hence, if we want to study the velocities distribution, we can ignore the first equation
of (4.7) and we are left with the velocity equation that we write in its discrete-time
form (4.10),

vi(t+ ∆t) = vi(t) +−dH({vk})
dvi

∆t+ δηi(t) (4.25)

with the noise distribution that is,

Pη (δη(t)i) = e−
δη2
i

4T∆t
√

4πT∆t
(4.26)

and since the noise is uncorrelated we have that P (δη(t)i, δη(t′)j) = P (δη(t)i)P (δη(t′)j).
To find an evolution equation for the probability distribution of the vi trajectories
we can use the Chapman-Kolmogorov equation [123],

P (vi, t+ ∆t) =
∫
Rn

dnv′i P (v′i, t)W (vi,v′i,∆t) (4.27)

where P (vi, t) is the probability distribution for the velocity vi at time t and
W (vi,v′i,∆t) is the transition probability from a velocity v′i to a velocity vi in a
time ∆t. Given the noise distribution (4.26) we conclude that,

W (vi,v′i,∆t) = Pη

(
δηi = vi − v′i + dH({v′k})

dv′i
∆t
)

= e−

(
vi−v

′
i+

dH({v′k})
dv′i

∆t

)2

4T∆t
√

4πT∆t
(4.28)

Now we plug the equation above into the Chapman-Kolmogorov equation (4.27) and
we expand the equation for small ∆t, up to the first order. After some passages we
obtain,

∂P (vi, t)
∂t

= ∂

∂vi
·
[dH

dvi
P (vi, t)

]
+ T∆viP (vi, t) (4.29)
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hence if we want the invariant distribution we have to solve the equation,

∂P (vi, t)
∂t

= 0 = ∂

∂vi
·
[dH

dvi
Pinv(vi) + T

∂

∂vi
Pinv(vi)

]
(4.30)

which gives,

Pinv = 1
Z
e−βH({vi}) (4.31)

where Z is determined by the normalization. The equation above is equivalent to
the equilibrium Boltzmann distribution 3.2, given that we used the fixed network
approximation to decouple the velocity equation from the positions equation (4.7)
that otherwise would have been too difficult to manipulate.

4.B Appendix: the StarDisplay model

Another possible approach to model scale-free speed correlations is presented in
[59, 60], where the StarDisplay model is presented and studied. The core of the
model is still a pseudo-Gaussian potential on the speeds and a short range interaction
term but a lot of other terms have been added in the equations of motion in order
to reproduce in great detail the flocking dynamics. While the purpose of the original
pseudo-Gaussian model [12, 34] and of the marginal model [27, 34] is to capture
the most important features of the flocking phenomenon while using the minimum
number of parameter possible, in order to understand the fundamental mechanisms
behind the studied biological system, for the StarDisplay model the final purpose
is to reproduce the phenomenon in the most accurate way, matching the largest
number of details, regardless to the number of parameters needed to do it. The
model is defined in discrete time via the equations,

ri(t+ ∆t) = ri(t) + vi(t+ ∆t)∆t

vi(t+ ∆t) = vi(t) + 1
m

[
FSteeringi (t) + FFlighti (t)

]
∆t (4.32)

the two forces in the evolution equation of the velocity can be decomposed in,

FFlighti = Li +Di + T0 +mg (4.33)
FSteeringi = F Social

i + f τi + fRoosti + f ζi (4.34)

The first force, the “flight” force FFlighti is composed by the contributions coming
from the standard modeling of fixed wing aerodynamics that are the lift Li, the
drag Di,the thrust T0 and the gravity force mg. Precise definitions of these forces
can be found in [59], each force contains details about the wing length, density of air
and other coefficients related to flight dynamics [59]. The steering force FSteeringi is
composed by many different contributions. The social force F Social

i contains a term
that pushes each individual away from its neighbours, in order to avoid collisions; a
term that aligns the velocity of a bird with its neighbours’ (the same of the Vicsek
model eq. 4.1 without the random rotation) and a cohesion force to prevent the
flock from breaking apart. Then we have the force f τi that is the linear speed control
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(just like the Gaussian model), the roosting force fRoosti that changes the velocity of
each individual to point on a precise “roosting site”, both horizontally and vertically
and the random force f ζi that is a Gaussian white noise. Every force that is present
in the steering term has its own parameter that is tuned to an appropriate value to
reproduce flocking dynamics [59]. In [60] is shown the same result of [12] and of Fig.
4.2-a (dark red points), for a small enough speed control parameter the system is
scale-free correlated both in the speed and in the orientation, hence this model is
able to reproduce the key features of experimental data. However, we do not know
if the StarDisplay model encounters the same problem of the Gaussian model for
what concerns average speed value for small systems (i.e red point in Fig. 4.2-b). It
would be interesting to know if the other terms that are present in this model are
able to maintain a reasonable speed for every system’s size, even when the speed
control is very small.

4.C Appendix: simulations details

Every SPP simulation has been made with a program made by Tomás S. Grigera
adapted by me and my colleague Giulia Pisegna to the Gaussian and the marginal
model. The evolution of the system has been performed in a cubic box with periodic
boundary conditions, the starting configuration of each simulation was a simple cubic
configuration, where each individual was placed at a distance of 1 simulation units
from its nearest neighbours, with all the velocities pointing in the same direction.
The sizes of the boxes’ side goes from L = 2 up to L = 70 (in simulation units), with
a number of individuals going from N = L3 = 8 to N = 343000. After eliminating
the initial steps of equilibration, measures were made every 1000 steps of integration
for a total number of measurement of at least 1000 for every simulation.

Now we will explain the choice of the parameters for our SPP simulations for both
the Gaussian and the marginal model. We will also point out the methodology we
followed in order to compare simulations’ results with experimental ones, especially
regarding the systems’ linear sizes and number of individuals.

The values of the main parameters we used in both Gaussian and marginal
model’s simulations are listed in Tab. 4.1, the other parameters we used are listed
in the table’s caption. As we already partially explained in the main sections of the
chapter, the parameters J and v0 for the Gaussian model and the parameters λ and
v0 for the marginal model are chosen in order to match the experimental value of
the polarization 1.3 that is between φ ' 0.89 and φ ' 0.99. For the Gaussian case g
is chosen in order to have either scale-free correlations or average speed close to v0,
for the marginal model T is chosen in order to be in the scale-free regime. Due to
the redundancy of the parameters, for the Gaussian model the temperature is fixed
to T = 1 while for the marginal model we fixed J = 1.

For all the simulations we used a metric interaction rule like eq. 4.2, with
rint = 1.2, such that each bird interacts, in its starting configuration, with its first
6 nearest neighbours because from experimental evidence the average number of
interacting birds is close to 6 [8]. When working at fixed average density and in the
very low temperature region where density fluctuations are small, there is not great
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Speed control g λ T J

Linear 0.001 - 1 10

0.03 - 1 10

0.1 - 1 10

1.0 - 1 10

Marginal - 0.001 0.05 1

Table 4.1. Parameters of simulations. In this table we report the values of relevant
parameters used in the numerical SPP simulations. The other parameters are the
interaction radius rint = 1.2, the speed reference value v0 = 1 and the integration time
step ∆tMRG = 0.01, ∆tGAUSS = 0.001.

difference between metric and topological interaction. Even though natural flocks
are known to have topological interactions [8, 13], we therefore decide to perform
simulations with the metric rule, which are much less expensive computationally. In
this way, we are able to study systems in d = 3 with N up to 3× 105 particles. We
consider a metric connectivity matrix with interaction radius rc = 1.2, such that the
number of nearest neighbours at the time t = 0 is nc = 6, close to the biological value
[8, 13]. We then check a posteriori that the system remains spatially homogeneous
in time by computing the distribution of the number of nearest neighbours for every
simulation, and verifying that it is always sharply peaked around the initial value
nc = 6.

Later in the simulation we measured the average number of interacting birds, to
check if there was any significant change during the evolution of the system. With
our choice of the interaction range, the number of interacting individuals remains
around the reference value of 6. Even if there are evidences that flocks’ individuals
interacts in a topological fashion [8], we decided to use the metric interaction rule.
This decision was made in order to speed up the simulation time, that otherwise
would have been extremely long, due to the computation of topological neighbours.
Our choice is justified also by the fact that, in the polarized phase, when the quasi-
equilibrium approximation is valid [85] we expect the metric connectivity matrix to
be almost fixed, which means that the number of neighbours stays the same, just
like in the topological interaction. This hypothesis is confirmed by checking the
number of particles that are into the interaction radius of a focal particle through a
whole simulation. This number does not change from its starting value of 6, hence
mimicking the same effect of a topological interaction.

The integration time steps ∆tMRG = 0.01 and ∆tGAUSS = 0.001 were chosen
as the largest time steps possible that guarantee energy’s stability (the pseudo-
Hamiltonian value) during the whole simulation, an example of the procedure we
used is presented through Fig. 4.5.
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Figure 4.5. Energy as a function of time for different time steps ∆t. a: Gaussian
model. L = 6,g = 10−3,J = 10 and T = 1. We can see that if we choose a time step
∆t = 0.001 the energy is stable and its average value and fluctuations are compatible
with the energy with a much smaller ∆t = 10−5. Hence we can choose the ∆t = 0.001
as a reasonable time step for our simulations at this size. We repeated this procedure
for all our simulations b: Marginal model. L = 6, λ = 10−3,T = 0.05 and J = 1. Here
the same arguments apply, a suitable time step for this model is ∆t = 0.01.

4.C.1 Comparing simulation sizes with experimental sizes

We have a large set of simulations that span from a handful of particles (N = 8)
to O(106) individuals. We performed this simulations in a cubic box with periodic
boundary conditions and we must find a sensible way to compare our simulations
with experimental data.

In order to compare models and data for what concerns the average speed versus
the number of particles in the system, the identification is quite straight forward:
we compare the simulation with a certain number of particles N with data from
a flock that has the same number of individuals Nbio = N . Since simulations are
performed in cubic boxes, the box side L of a simulation corresponding to a certain
Nbio will be the closest integer to (Nbio)1/3.

To compare the average speeds’ values we divide every simulation speed by the
reference value v0 and we multiply it for the total mean speed of all the flocking
events, which is sbio ' 11.9 m/s. This last operation is sensible because we can
consider average flocks’ speeds to be independent from the number of individuals
in the system. The Spearman coefficient rSp = −0.13 and the Spearman p-value
pSp = 0.21 are high, which means that is highly unlikely that the average speed is
correlated with the number of individuals in the system (black points of Fig. 4.2-b
and 4.3-b). Using this procedure we could realize the coloured plots in Fig. 4.2-b
and 4.3-b.

The situation is more sophisticated when we want to compare real sizes in
meters with the arbitrary simulation units of length. We decided to use the nearest
neighbours distance as the equivalence measure, hence we computed the average
nearest neighbour distance in data, which is rbioc ' 1.2 m, and we put it equal to
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the same quantity computed in simulations rc ' 1 (simulation units). Now the
procedure is similar to what we did for speeds, to convert a simulation length to
compare it with an experimental length we just have to divide it by rc and multiply
it by rbioc . Now that we know how to compare lengths we must choose the same
method to measure a system linear size. For natural flocks we used the largest
distance between two birds in the same flock, that here we call Lbio, if we want to
use the same rule for simulation we must take into account the fact that we are using
periodic boundary conditions, hence the largest distance possible in our box of side
L (already in meters) is the half diagonal of the cube Lsim =

√
3L/2. In the end if

we want a correspondence from L in simulation units to Lbio in meters we have,

Lbio →
√

3Lrbioc
2rc

(4.35)

For the correlation length, which is computed both for simulations and for data in
the same way (eq. 1.10), we just have,

ξbio →
ξsimr

bio
c

rc
(4.36)

this last correspondence is, however, redundant because our goal is not to match
exactly the value of the correlation length, but to capture the correlation length’s
linear dependence on the system’s size. The precise value of the slope and intercept
may vary due to specific details on how correlations are computed, the exact geometry
of the system and other details we are not interested in. Given that, we are allowed
to add a constant and multiply for another constant the value of the simulations’
correlation length, for every model we must obviously use the same set of constants,
even if we change the model’s parameters. Hence, Fig. 4.2-a was made following this
procedure: at first we matched the value of system’s sizes using the correspondence
4.35, then we multiplied and added a constant to the value of the simulations
correlation lengths in order to overlap the straight line points from the scale-free
Gaussian model (dark red points with g = 10−3) with the experimental ones and in
the end we used the same constants to rescale the correlation lengths of the other
Gaussian models (orange and yellow points). The same procedure was followed for
the marginal model in Fig. 4.3-a.

Another aspect of simulations that must be clarified is the difference of aspect
ratio between simulations and data. For every simulations we have a fixed aspect
ratio that is determined by the structure of the box where the system is enclosed,
in our case the volume in which the simulation takes place is a cube, the system
density remains constant, hence we have that the aspect ratio is 1 : 1 : 1. In natural
flocks this is not the case, the standard situation is that flocks are elongated towards
a particular direction that is perpendicular to the vertical axis [7]. However, the
scale-free properties that we are analyzing do not depend on the aspect ratio [7], as
we show in Fig.4.6, where the dependence of the correlation length from the system’s
size is shown for simulated systems with aspect ratios that vary from 1 : 1 : 6 to
1 : 1 : 9. We can see from the plot that the phenomenology observed for the cubic
case is reproduced even if we perform simulations with a different aspect ratio. The
fact that the system’s interaction rule is always isotropic gives the same scale-free
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Figure 4.6. Correlation length for simulations with biologically plausible aspect
ratios. We present in this plot the correlation length against the size of the system
(computed as the largest distance between two individuals) for the case of non-cubic
aspect ratios. Each system has a major axis and two equal minor axes, starting from
the smallest systems and going up in size L the aspect ratios between the major and
the minor axis are: 6, 6, 6, 6, 6.67, 6.25, 7.5, 7.78, 8, 8, 8.33, 8.62, 8.57. These aspect ratios
are comparable with natural flocks’ ones, measured in [7]. We can see that the results
are similar to the isotropic 1 : 1 : 1 aspect ratio case of Fig. 4.2 and 4.3, hence the
correlation length of the system is correctly compared with the system’s size and does
not depend on the aspect ratio of the system in a relevant way.

phenomenology, regardless of the shape of the available volume. Once we fix the
speed of the Gaussian model to be physical (i.e. we choose a large enough g), no
matter how elongated or not is the flock, the system does not shown scale free
correlations and the correlation length for a certain small L saturates to a bulk value.
On the other hand the marginal model always shows scale-free correlations for all
the available experimental sizes.



105

Chapter 5

Renormalization Group analysis
of the marginal model

In the previous chapters we introduced the marginal model (chapter 3) and we studied
its non-equilibrium SPP version, comparing simulations’ results with experimental
data (chapter 4). We have seen that the marginal model is capable of reproducing
the speed scale-free correlations that we find in experiments (chapter 1) while having
reasonable values for the average speed. These peculiar properties are achieved
because the marginal model possesses a critical point for T = 0 [27]; for vanishing
temperature the system’s free energy, which we computed for the equilibrium model
in the mean field approximation eq. 3.52, has a zero-curvature minimum that implies
a divergent modulus susceptibility.

In this chapter I go back to the equilibrium case and I study in more detail
the nature of this zero-temperature critical point, casting the marginal model as a
statistical field theory and using the renormalization group in the momentum shell
formulation of K.G.Wilson [70, 114, 115].

5.1 Derivation of field theory

In order to build a field theory for the marginal model, we start from the fully-
connected mean field approximation of the marginal model that gave us a closed
form for the Gibbs free-energy (3.52) [27]. Expanding the mean-field Gibbs free
energy near m = 1, which is the equilibrium magnetization at T = 0, we obtain,

g(m) =λ
(
1−m2

)4
+ T

[
a2
(
1−m2

)2
+ a3

(
1−m2

)3
+ ...

]
+

+T 2
[
a1
(
1−m2

)
+ a4

(
1−m2

)2
+ ...

]
(5.1)

where the an are some constants of O(1), which depend on the parameters J and λ
of the Hamiltonian (3.37). The free energy, given that the Hamiltonian is symmetric
under space-independent rotations of all the spins, is O(n) symmetric too, hence it
only depends on the squared modulus of its variable m. For T = 0 we recover the
functional form of the marginal potential, that has a zero-curvature minimum. In
order to find a guide to build a consistent statistical field theory, we start from eq.
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(5.1) and we reorder the terms in a different way: we write each power of (m2 − 1),
keeping the lowest order in T of each constant in front of the m-dependent terms,

g(m) =a1T
2
(
1−m2

)
+ a2T

(
1−m2

)2
+ a3T

(
1−m2

)3
+ λ

(
1−m2

)4
+ ...

(5.2)

We will start from this free-energy in order to build a Landau-Ginzburg Hamiltonian
[91] for our model. Since our procedure is heuristic, we do not need to know the exact
value of the an, it suffices to know that they do not depend on the temperature T .
Inspired by the functional form of the free energy (5.2) we promote the magnetization
to a field m → ϕ(x). The average magnetization modulus at zero temperature is
1, hence we perform the shift ψ(x) = 1 − ϕ(x), because we are interested in the
system’s properties near the marginal critical point at T = 0. We ignore the angular
degrees of freedom, focusing only on modulus fluctuations, because we know that
modulus and phase fluctuations are weakly coupled [17, 93, 100]. We thus obtain
the following Landau-Ginzburg Hamiltonian,

βH = 1
T

∫
ddx

{1
2 (∇ψ)2 + aT

2 ψ2 + cT 2ψ + vTψ3 + uψ4 + . . .

}
(5.3)

where a,c,v and u are constants that do not depend on temperature. In conventional
field theories [52] we would ignore the factor 1/T in front of the Hamiltonian, because
at the critical point goes to a harmless constant 1/Tc. Here, however, we should
focus our attention on it because the critical point is Tc = 0 [27]. In the next section
we show how to deal with this peculiarity.

5.1.1 Initial field rescaling

If we focus on the results of the mean-field approximation of the marginal model
(chapter 3), we can see from eq. (3.144) that the modulus connected correlation
function at r = 0 behaves like,

C0 =
〈
s2
i

〉
− 〈si〉2 ∼ T (5.4)

that can also be obtained by computing the connected correlation function in the
Gaussian approximation of eq. (5.3),

〈
ψ(k)ψ(k′)

〉0
c = δ(k + k′) T

k2 + aT
∼ δ(k + k′) C0

k2 + aT
(5.5)

we can see that this situation is problematic, since in the limit of vanishing tempera-
ture the correlation function’s amplitude C0 vanishes. We want to investigate the
regime of small T where the modulus correlation length is big but at the same time
we do not want the amplitude of the correlation function itself to vanish. For this
reason it seems natural to re-define the field ψ in this way,

ψ′ = ψ√
T

(5.6)
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such that the correlation function of ψ′ has a fixed amplitude for every temperature,〈
ψ′(k)ψ′(k′)

〉0
c = δ(k + k′) 1

k2 + aT
(5.7)

at least in the Gaussian (and mean-field) approximation. We do not expect great de-
viations of C0 from the mean field behaviour, given the simulations results presented
in chapter 3 (Fig. (3.4)). Hence if we write the Hamiltonian for ψ′, following the
definition (5.6), and we switch back to the name ψ the resulting Landau-Ginzburg
Hamiltonian is,

βH =
∫

ddx
{1

2 (∇ψ)2 + T

2 ψ
2 + vT 3/2ψ3 + uTψ4

}
(5.8)

where we also dropped the linear term in ψ because it is unimportant in the study of
the critical behaviour of this theory. It can be eliminated with an appropriate shift of
the field and, even if we include it in our theory, it doesn’t give any correction to the
critical exponents (see Appendix 5.A). We also dropped the higher order terms in ψ
for notation’s clarity, they are discussed in Appendix 5.A. The quadratic coupling
a was put equal to 1, it is equivalent to a harmless redefinition of the temperature
and the other couplings. The novelty of this field theory is that every coupling
is composed by a certain power of T (that here plays the role of a mass) and a
T -independent contribution (u and v), a rather uncommon occurrence for standard
field theories where usually all the couplings (at tree level) are independent from
the temperature (i.e. the mass) [14]. Now we will discuss the potential ambiguities
of this situation, to see in which way the critical behaviour of this theory can be
analyzed.

5.1.2 Naive dimensional analysis

First of all, we write the Landau-Ginzburg Hamiltonian in momentum space,

βH = 1
2

∫ ddk
(2π)d

[(
k2 + T

)
ψkψ−k

]
+ vT 3/2

∫ ddk1ddk2
(2π)2d ψk1ψk2ψ−k1−k2+

+ uT

∫ ddk1ddk2ddk3
(2π)3d ψk1ψk2ψk3ψ−k1−k2−k3 (5.9)

where every momentum integral is performed up to a cutoff Λ, that is the inverse of
the microscopic lattice spacing. Using the momentum-space Hamiltonian we can
compute the naive dimensions,

[k] = 1 [ψk] = −d2 − 1 [T ] = 2 [v] = −d2 [u] = 2− d (5.10)

We immediately see that for d > 2 the naive scaling dimension of v and u is negative,
hence one may think that for d = 3 our model could behave like an infrared-free
theory, but at this step it is far from obvious. In fact, if we compute the naive
dimensions of the products vT 3/2 and uT , which appear in front of the interaction
terms of the Hamiltonian (5.9), we find,

[vT 3/2] = 3− d

2 [uT ] = 4− d (5.11)
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hence if we consider the products above, for d = 3, the naive scaling dimension
is positive, like a standard ϕ4 theory [70]. A more careful analysis is needed to
understand which point of view is more informative on the critical behaviour of
our system. We need to understand in which way our theory’s parameters enter in
the critical exponents. We will study this property of the marginal theory using
momentum shell renormalization group [114].

5.2 Renormalization group

We perform the Renormalization Group in the Wilson fashion [114], here we will
briefly recall the main passages. Our probability distribution is a Boltzmann
distribution [63] of the form,

P [ψk] = 1
Z
e−βH[ψk] (5.12)

where the Hamiltonian H is defined in eq. 5.9. We now separate each integral over
the fields in a part inside the shell (with the momentum k going from 0 to Λ/b) and
a part on the shell of thickness b (with k from Λ/b to Λ). The field with momentum
smaller than Λ/b will be ψ<k and the field in the shell will be ψ>k . The probability
distribution is then written as,

P
[
ψ<k , ψ

>
k

]
= 1
Z
e−βH[ψ<k ]e−βHG[ψ>k ]e−βHINT [ψ<k ,ψ>k ] (5.13)

where we divided the original Hamiltonian eq. 5.9 in three parts: the internal k
part,

H
[
ψ<k
]

= 1
2

Λ/b∫
0

ddk
(2π)d

[(
k2 + T

)
ψ<k ψ

<
−k

]
+ vT 3/2

Λ/b∫
0

ddk1
(2π)d

Λ/b∫
0

ddk2
(2π)d ψ

<
k1
ψ<k2

ψ<−k1−k2
+

+ uT

Λ/b∫
0

ddk1
(2π)d

Λ/b∫
0

ddk2
(2π)d

Λ/b∫
0

ddk3
(2π)d ψ

<
k1
ψ<k2

ψ<k3
ψ<−k1−k2−k3

(5.14)

the shell Gaussian part,

HG
[
ψ>k
]

=
Λ∫

Λ/b

ddk
(2π)d

[(
k2 + T

)
ψ>k ψ

>
−k

]
(5.15)

and the remaining interaction part HINT
[
ψ<k , ψ

>
k

]
that contains all the cubic and

quartic terms that have at least one integral over the shell. Now the first step of the
momentum shell renormmalization group can take place, we integrate the exponential
of the interaction Hamiltonian HINT

[
ψ<k , ψ

>
k

]
using the Gaussian measure, defined

by the Hamiltonian HG
[
ψ>k
]
, in order to marginalize the probability distribution,

P [ψ<k ] = 1
Z
e−βH[ψ<k ] 〈e−βHINT [ψ<k ,ψ>k ]〉

G

= 1
Z

exp
{
−βH

[
ψ<k
]

+ log
〈
e−βHINT [ψ<k ,ψ>k ]〉

G

}
(5.16)
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If we expand diagramatically the logarithm and the exponential of the interaction
Hamiltonian, we obtain all the one-particle irreducible [14, 121] diagrams with
external legs that are ψ<k fields, while the internal integrated legs are ψ>k fields. All
this diagrams give an additive correction to the bare coupling constants that are
contained in the Hamiltonian H

[
ψ<k
]
, thus giving a renormalized Hamiltonian that

can be written as,

Hr
[
ψ<k
]

= 1
2

Λ/b∫
0

ddk
(2π)d

[(
k2 + Tr

)
ψ<k ψ

<
−k

]
+ (vT 3/2)r

Λ/b∫
0

ddk1
(2π)d

Λ/b∫
0

ddk2
(2π)d ψ

<
k1
ψ<k2

ψ<−k1−k2
+

+ (uT )r
Λ/b∫
0

ddk1
(2π)d

Λ/b∫
0

ddk2
(2π)d

Λ/b∫
0

ddk3
(2π)d ψ

<
k1
ψ<k2

ψ<k3
ψ<−k1−k2−k3

(5.17)

then we rescale all the momenta k→ k/b,

Hr
[
ψ<k/b

]
= 1

2

Λ∫
0

ddk
(2π)d b

−d
[(
k2b−2 + Tr

)
ψ<k/bψ

<
−k/b

]
+

+ (vT 3/2)r
Λ∫

0

ddk1
(2π)d

Λ∫
0

ddk2
(2π)d b

−2dψ<k1/b
ψ<k2/b

ψ<−k1/b−k2/b
+

+ (uT )r
Λ∫

0

ddk1
(2π)d

Λ∫
0

ddk2
(2π)d

Λ∫
0

ddk3
(2π)d b

−3dψ<k1/b
ψ<k2/b

ψ<k3/b
ψ<−k1/b−k2/b−k3/b

(5.18)

and finally we change variable rescaling the field ψb(k) = b−d/2−1ψ<k/b and including
the rescaling factor (that is a power of b), inside the coupling constants, which gives,

Hb [ψb(k)] = 1
2

Λ∫
0

ddk
(2π)d

[(
k2 + Tb

)
ψb(k)ψb(−k)

]
+

+ (vT 3/2)b
Λ∫

0

ddk1
(2π)d

Λ∫
0

ddk2
(2π)d ψb(k1)ψb(k2)ψb(−k1 − k2)+

+ (uT )b
Λ∫

0

ddk1
(2π)d

Λ∫
0

ddk2
(2π)d

Λ∫
0

ddk3
(2π)d ψb(k1)ψb(k2)ψb(k3)ψb(−k1 − k2 − k3)

(5.19)

From the above Hamiltonian we have the resursive RG equations Tb = Tb(b, T, u, v),
(vT 3/2)b = (vT 3/2)b(b, T, u, v) and (uT )b = (uT )b(b, T, u, v). In the next section we
will compute the terms of the recursive equations, via Feynman diagrams at one
loop.

5.2.1 Diagrams and recursive equations

Considering the marginal field-theory Hamiltonian eq. 5.9, we have two vertices:
the cubic one with coupling vT 3/2 (N) and the quartic one with coupling uT (•),
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uTvT 3/2

(5.20)

We can combine these two vertices, in order to form all the possible one-loop
diagrams with an arbitrary number of external legs. Since we are going to evaluate
the renormalized couplings only up to the term ψ4, we stop at four external legs.
All the diagrams with more than four external legs give a correction to higher order
terms that we do not include in Hamiltonian (5.8) because they are all RG-irrelevant
(see Appendix 5.A). Diagrams that give a contribution to the renormalization of
temperature T are,

q

k -k

16uT
Λ∫

Λ/b

ddq
(2π)d

1
q2 + T

(5.21)

k -k

q

k-q

− 18v2T 3
Λ∫

Λ/b

ddq
(2π)d

1
(q2 + T ) [(k − q)2 + T ]

(5.22)

then we have contributions for vT 3/2,

k1

k2

-k1-k2

q

k1-q

− 36uvT 5/2
Λ∫

Λ/b

ddq
(2π)d

1
(q2 + T ) [(k1 − q)2 + T ]

(5.23)
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k1 k2

-k1-k2

q

q+k1

q+k1+k2

36v3T 9/2
Λ∫

Λ/b

ddq
(2π)d

1
(q2 + T ) [(k1 + q)2 + T ] [(k1 + k2 + q)2 + T ] (5.24)

and finally for uT ,

-k1-k2-k3

k3k2

k1 q

k1+k2-q

− 36u2T 2
Λ∫

Λ/b

ddq
(2π)d

1
(q2 + T ) [(k1 + k2 − q)2 + T ]

(5.25)
-k1-k2-k3

k3

k2

k1
q

k1+k2-q
k1+k2+k3-q

216uv2T 4
Λ∫

Λ/b

ddq
(2π)d

1
(q2 + T ) [(k1 + k2 − q)2 + T ] [(k1 + k2 + k3 − q)2 + T ] (5.26)

-k1-k2-k3

k3k2

k1 q

k1+q

k1+k2+q

k1+k2+k3+q

− 162v4T 6
Λ∫

Λ/b

ddq
(2π)d

1
(q2 + T ) [(k1 + q)2 + T ] [(k1 + k2 + q)2 + T ]×
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× 1
(k1 + k2 + k3 + q)2 + T

(5.27)

where dashed lines represent fields with momentum k < Λ/b inside the shell, while
solid lines represent integrated fields with momentum Λ/b < k < Λ on the shell.
The resulting RG recursive equations are,

Tb = b2
[
T + 12uTA1 − 18v2T 3A2

]
(5.28)(

vT 3/2
)
b

= b3−d/2
[
vT 3/2 − 36uvT 5/2A2 + 36v3T 9/2A3

]
(5.29)

(uT )b = b4−d
[
uT − 36u2T 2A2 + 216uv2T 4A3 − 162v4T 6A4

]
(5.30)

where we have, for a small shell with b close to 1,

Al =
∫ Λ

Λ/b

ddq
(2π)d

1
(q2 + T )l '

ΩdΛd
(2π)d(Λ2 + T )l log b ' Ωd

(2π)dΛd−2l log b
[
1− lT

Λ2

]
(5.31)

where Ωd is the solid angle in d dimensions and we are computing every diagram at
zero external momentum. Considering the heuristic procedure we used to build our
Landau Hamiltonian eq. (5.8), where we “inherited” the constants dependence on
T from the mean-field free-energy (5.2), we conclude that v and u do not depend
explicitly on the temperature, nor from each other, they descend from the heuristic
coarse-graining procedure [91]. For this reason it seems reasonable to combine
eq.s (5.28), (5.29) and (5.30) to extract recursive equations for vb and ub alone (we
already have eq. (5.28) for T ). We write each equation for T , v and u, keeping only
the lowest order terms in T , because we expect that the criticality will be present
as T → 0, as we already discovered through simulations and mean-field [27]. The
resulting equations are,

Tb = b2
[
T + 12uTA1 − 18v2T 3A2

]
' b2

[
T + 12uT Ωd

(2π)dΛd−2 log b
]

(5.32)

vb =

(
vT 3/2

)
b

(Tb)3/2 =
b3−d/2

[
vT 3/2 − 36uvT 5/2A2 + 36v3T 9/2A3

]
b3[T + 12uTA1]3/2

' b−d/2
[
v − 18uv Ωd

(2π)dΛd−2 log b
]

(5.33)

ub = (uT )b
Tb

=
b4−d

[
uT − 36u2T 2A2 + 216uv2T 4A3 − 162v4T 6A4

]
b2 [T + 12uTA1]

' b2−d
[
u− 12u2 Ωd

(2π)dΛd−2 log b
]

(5.34)

Then we expand the recursive equations for b close to 1, defining b = 1 + x with
x� 1. We end up with the equations,

dT
dx = 2T

(
1 + 6uΛd−2

)
dv
dx = −d2v − 18uvΛd−2
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du
dx = (2− d)u− 12u2Λd−2 (5.35)

where we have rescaled the cutoff Λd−2Ωd/(2π)d → Λd−2 (Ωd is the solid angle in
d dimensions) in order to get rid of all the numerical constants coming from the
angular part of the integrals (5.31). Now we choose d to be the physical dimension
of our system, i.e d = 3 and we solve the system (5.35), obtaining,

T (x) = T0(12Λu0 + 1)e2x − 12ΛT0u0e
x

v(x) = v0e
− 3

2x

(12Λu0 + 1− 12Λu0e−x)3/2

u(x) = u0e
−x

12Λu0 + 1− 12Λu0e−x
(5.36)

where T0, v0 and u0 are the initial values of the constants (i.e. at x = 0) that
are the “physical” values of the theory’s parameters, the starting point of the RG
transformation.

5.2.2 Critical exponents

We find from the system (5.35) and also from the explicit solutions (5.36), that
our flow has only a physically meaningful (T ≥ 0 and u ≥ 0) fixed point for
T ∗ = v∗ = u∗ = 0. This fixed point is unstable for the direction T , and stable for the
directions v and u, as we can see from the linear terms in the eq.s (5.35). Normally
we could place ourselves at the fixed point and we could perturb our position to
investigate the relevant eigendirection, in order to compute the critical exponent ν
[70]. However, this is a quite pathological situation for our model, because the whole
Hamiltonian (5.8) vanishes (except for the gradient term) if we are at the fixed point
with T = 0. Hence we decide to proceed in a different way, we start the RG flow
close to the critical manifold T = 0 and, by using the exact solutions eq.s (5.36),
we study the critical exponents dependence on the initial conditions of T , u and v.
More specifically, we fix the values of v0 ∼ O(1) and u0 ∼ O(1), thus selecting a
particular theory, and then we try to figure out the value of T0 such that the theory
is in the critical regime that is controlled by the fixed point T ∗ = v∗ = u∗ = 0.

We want to be in the critical regime for the whole flow, so we impose a “stop
condition”: we start the flow close enough to the critical manifold, so that the
physical correlation length is way bigger than the lattice spacing ξ0 � 1/Λ and we
stop the flow when the correlation length approaches the lattice spacing size,

ξ(xstop) = ξ0e
−xstop ' 1/Λ (5.37)

Given that the fixed point of this theory is Gaussian, i.e v∗ = u∗ = 0, we assume
that the critical exponent for the divergence of the correlation length is ν = 1/2.
This value for ν implies that ξ0 ∼ T−1/2

0 , then the stop condition becomes,

T0 ∼ Λ2e−2xstop (5.38)
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We can check the self-consistency of our assumption by computing ν [22], using eq.s
(5.36) and (5.38),

1/ν =
(d log T

dx

) ∣∣∣∣
xstop

= 2 +
√
T0u0

Λu0 + 1 (5.39)

given this result we can say that if the term
√
T0u0

Λu0+1 is negligible with respect to 2
our assumption holds and we have a Gaussian critical exponent for the correlation
length divergence. In the worst case scenario with Λu0 � 1 we find that we should
choose a physical temperature (and consequently a correlation length),

T0 � u−2
0 ∼ O(1) (5.40)

ξ0 � u0 ∼ O(1) (5.41)

that is a completely reasonable condition for the temperature; it is essentially telling
us that, given any reasonable quartic coupling u0, we can choose a small enough
temperature T0 to place our system in the critical regime such that the correlation
length diverges with ν = 1/2.

We check also the critical exponent η, which is determined by the diagram with
two external legs and two cubic vertices (5.22), which corrects the field scaling, at
one loop. We have to compute the k2 contribution of the diagram (5.22), which is,
in d = 3,

d
dk2

−18v2T 3
Λ∫

Λ/b

d3q

(2π)3
1

(q2 + T ) [(k − q)2 + T ]

 ∣∣∣∣∣
k=0

(5.42)

= Av2T 3Λ−3 log b (5.43)

where A is a numeric constant. The above term corrects the field scaling,

ψb(k) = b−5/2
(
1 +Av2T 3Λ−3 log b

)1/2
ψ<k/b ' b

−5/2+Av2T 3Λ−3/2ψ<k/b (5.44)

and using the scaling of the correlation function,〈
ψb(k)ψb(k′)

〉
c = δ3(k + k′)Cb(k) (5.45)

C(k/b) = b2−ηCb(k) (5.46)

we can find that the anomalous dimension is,

η ∼ v2T 3Λ−3 (5.47)

Once we compute v(x) and T (x) at x = xstop, using eq. (5.36) and (5.38) we find,

η ∼ v2
0T

3/2
0 (5.48)

hence we have another condition for the physical temperature to ensure that the
anomalous dimension is as small as pleased,

T0 � v
−4/3
0 ∼ O(1) (5.49)
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ξ0 � v
2/3
0 ∼ O(1) (5.50)

In the end we discovered that, if we have any marginal theory like (5.8) with physical
values v0 ∼ O(1) and u0 ∼ O(1), it suffices to choose a temperature T0 � O(1) to
be in the critical regime, that is controlled by a Gaussian fixed point with,

ν = 1/2 η = 0 (5.51)

These calculations can be generalized for any d > 2, hence we conclude that our
marginal theory is infrared-free [100] with an upper critical dimension dc = 2

5.3 Lattice MonteCarlo simulations and finite-size scal-
ing

In order to check the critical exponents of the Marginal theory, we perform numerical
Monte Carlo simulations ona cubic lattice, using the microscopic marginal Hamilto-
nian 3.36, with nearest neighbours interaction and periodic boundary conditions.
We expect our theory to be infrared-free, as we have seen in the previous sections.
This means that the finite-size scaling [9], which normally can be used to estimate
critical exponents for theories that are not asymptotically free, is not granted [16].
However, we assume that it holds and we will see a posteriori if the result is coherent
with this assumption. In general we have, for large enough L and small enough
t = T − Tc,

χ = t−γf(Ltν) (5.52)

where f() is a scaling function. With some manipulations we obtain,

χ = t−γL−γ/ν

L−γ/ν
f(Ltν) = Lγ/ν(Ltν)−γ/νf(Ltν) = Lγ/νg(Ltν) (5.53)

where g() is another scaling function. Since we are interested in the marginal model’s
critical point with Tc = 0 we obtain, for the modulus susceptibility,

χmod
Lγ/ν

= g(LT ν) (5.54)

hence if we plot χmod
Lγ/ν

as a function of LT ν , for all the finite systems we have
simulated, with the true critical exponents γ and ν, all the curves must collapse onto
each other. This is what happens in Fig. 5.1 with the choices γ = 1 and ν = 1/2,
that are the same critical exponents that we found via the renormalization group
analysis of this chapter.

This result deserves some comments and further investigations. On one hand
we see that relation (5.54) holds quite well for our theory, with the free exponents
γ = 1 and ν = 1/2 but on the other hand we know that usually for free theories the
(5.54) does not hold. The reason of this result could be either our theory is not free
and it has non-trivial critical exponents, but this is not what we expect from the
renormalization group calculations and from the free exponents that produce such a
good collapse (Fig. 5.1), or the theory is free and simultaneously the relation 5.54
holds. We think the second explanation could be the most plausible but we still do
not have more solid evidences to prove our point. Further study on the Marginal
theory is needed in order to clarify this point.
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Figure 5.1. Finite size scaling for the marginal model. Plot of eq. 5.54 with ν = 1/2
and γ = 1 for Monte Carlo simulations of the microscopic equilibrium marginal model
3.36 with periodic boundary conditions on a cubic lattice. The edge of the cubic lattice
goes from L = 10 up to L = 60. We can observe a good collapse of the curves on top of
each other, using the general finite-size scaling relation (5.54). This is peculiar since for
generic free theories finite-size scaling breaks down [16]. Error bars have been computed
using the blocking procedure described in [1], together with the Jackknife method.
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5.A Appendix: other terms in the Landau-Ginzburg
Hamiltonian

For what concerns the linear term of the statistical field theory 5.3, after the initial
field rescaling 5.6 it becomes,

cT 3/2ψ (5.55)

that gives the naive dimensions [c] = d/2− 2 and
[
cT 3/2

]
= d/2 + 1. This term can

be eliminated by a simple shift of the field, that must include the one-loop diagram
that corrects the linear term. In this way we can get rid of the linear term and we
can simplify the Hamiltonian that becomes eq. 5.3. We can also include the linear
term in the field theory, without doing any field shift. The result will be the same,
the linear term does not produce any diagram to correct eq.s 5.32, 5.33 and 5.34,
hence eq.s 5.35 are left untouched. Which means that all our calculations to obtain
the critical exponents do not change. On the other hand the linear coupling constant
cT 3/2 obtains a contribution from the diagram,

k=0
q 3vT 3/2

Λ∫
Λ/b

ddq
(2π)d

1
(q2 + T ) (5.56)

which gives,

(cT 3/2)b = bd/2+1
[
cT 3/2 + 3vT 3/2A1

]
(5.57)

that can be divided by T 3/2
b to obtain, at the lowest order in T ,

cb = bd/2−2[c+ (3v − 18uc) Ωd

(2π)dΛd−2 log b] (5.58)

Once we expand b ' 1 + x we have the differential equation for c(x),

dc
dx = (d2 − 2)c+ 3vΛd−2 − 18ucΛd−2 (5.59)

which gives, for d = 3,

c(x) = c0e
−x/2 + 3Λv0e

−x/2(1− e−x)
(12Λu0 + 1− 12Λu0e−x)3/2 (5.60)

where c0 = c(x = 0). The behaviour of c(x) during the RG flow is influenced by the
other couplings initial values u0 and v0 but, since the coupling c does not appear
in the evolution equations 5.35 of all the other couplings, it does not change the
analysis we did in the previous sections.

In order to check the terms of order higher than ψ4, we need to know the naive
scaling dimension of their T -independent couplings. To see that, we need to go
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back to eq. 5.2, which tells us the dependence on T of each coupling, based on the
mean-field Gibbs free energy 3.52. We find that, before the rescaling 5.6, the higher
order terms can be written as,

βHhigh = 1
T

∫
ddx

{
u5ψ

5 + u6ψ
6 + · · ·+ u8ψ

8+

+ u9Tψ
9 + u10Tψ

10 + · · ·+ unTψ
n + . . .

}
(5.61)

where every ul is a constant independent of T . We find this dependence on T from
eq. 3.52, where we can see that the lowest order (in T ) that generates the terms
from (m− 1)5 up to (m− 1)8 is the first term (the bare marginal potential) hence
their couplings do not depend on T . On the other hand, the lowest order term that
generates powers from (m − 1)9 and above is the logarithm of order T . Once we
perform the rescaling 5.6, we have,

βHhigh =
∫

ddx
{
u5T

3/2ψ5 + · · ·+ u8T
3ψ8 + u9T

9/2ψ9 + · · ·+ unT
n/2ψn + . . .

}
(5.62)

which can be expressed as,

unψ
n →

{
Tn/2−1 for 4 < n < 9
Tn/2 for n ≥ 9

(5.63)

Using the expressions above we can compute the naive scaling dimensions of the un
couplings, that are,

[un] =
{

2 + d
(
1− n

2
)

for 4 < n < 9
d
(
1− n

2
)

for n ≥ 9
(5.64)

For d = 3 we can see that [un] < 0 for every n, hence the Gaussian fixed point
T ∗ = v∗ = u∗ = u∗n = 0, for every n, is still stable.
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Through the marginal model, it is possible to reproduce the most important traits
of starling flocks experimental phenomenology – large polarization, large correlation
length, moderate speed at all group sizes – without the need of a strong size-
dependent fine-tuning [34]. If we were dealing with a traditional critical point [91],
at each size we would have been forced to tune the temperature in order to obtain
scale-free correlations, but in the case of the marginal model this is not necessary. In
the framework of this theory, given the fact that its critical point is at temperature
T = 0, it suffices to choose a low enough temperature such that the largest finite-size
system that we are observing displays scale-free correlations and automatically all
the systems with smaller size will satisfy this property. This means that, at least
in the case of starling flocks, we do not need to choose a size-dependent set of
parameters to reproduce the system’s peculiar experimental features. We have
achieved the considerable result of finding a model that is suitable to reproduce
biological experimental data.

We will now underline the physical and biological meaning of choosing the
marginal potential over the pseudo-Gaussian. The highly non-linear marginal
potential implies that small speed fluctuations elicit nearly zero restoring force
(see single particle term of eq. (4.12)), while larger speed fluctuations are pushed
back extremely sharply, in contrast with the constant slope of a pseudo-linear
confining force (see eq. (4.11)). In bird flocks, small speed fluctuations are not
prevented by biomechanical constraints, but they could be depressed by energetic
expenditure concerns, as changing the speed requires extra energy consumption;
however, starlings prove to be very liberal about their energy expenditure habits
while flocking [6, 54, 61]: although their metabolic rate is dramatically higher in
flight than on the roost [54], these birds will spectacularly wheel every day for half
an hour before landing, expending energy at a ferocious rate; this suggests that
small extra energy expenditures due to small speed fluctuations may indeed be
weaker-than-linearly suppressed. On the other hand, large speed fluctuations clash
against biomechanical and aerodynamic constraints, which are set very stringently
by anatomy, physiology and physics [94, 98, 99]; therefore, a stronger-than-linear
suppression of large speed fluctuations also seems quite reasonable. This implies
that an harmonic (or quadratic) potential is not adequate to describe individual
fluctuations. Our way to reproduce flocks experiments is based on a marginal
potential that has zero curvature in its minimum, hence it cannot be expanded
quadratically [27]. This situation seems to suggest that, if we want to build a theory
on how a single individual controls its own velocity, we cannot assume Gaussian
fluctuations but we have to look for a more complex explanation.
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Even though we tested our conclusions on the experimental case of starling
flocks, it seems that our results do not depend on that specific system: it is not
just starlings data to be incompatible with linear speed control, but rather that
linear control would blow the group’s speed out of proportion in any collective
system; marginal control, on the contrary, is one simple way (possibly not the
only one) to reconcile data with theory. Given this expectation of generality, it
would be extremely useful to test these ideas within other biological systems. Field
experiments reporting the dynamical trajectories within animal groups are quite rare,
especially in three dimensions, and beyond starlings the only data are for pigeons
(Columba livia) [45, 87, 113], jackdaws (Corvus monedula) [69, 74, 75] and chimney
swifts (Chaetura pelagica) [43]. Monitoring the mean speed of these groups should
be straightforward, while checking the speed correlations may be somewhat more
laborious, as only a study of correlation at different group’s size L would reveal
whether or not scale-free correlations are present also in these systems; and yet, this
seems to us an essential step to establish on a firmer basis the connection between
speed control and correlation, which is the cornerstone of our results.

A further crucial issue to consider when we think about real biological systems,
is that the dynamical phases of natural collective behaviour are diverse: starlings’
aerial display studied in our data (sometimes called murmurations) is characterized
by a very compact drop-like structure, moving coherently over the roost, often
subject to predation [96]; chimney swifts display a remarkable circling geometry [43],
while the jackdaws data collected in [74] display two group-level phases, namely a
cruising-to-roost dynamics and an anti-predator mobbing dynamics. It would be
helpful to understand what are the properties that these different phases have in
common. This is particularly relevant for correlation, which - as we have seen - is a
tricky trait to sustain. Consider, for example, correlations in the velocity orientations
of animals: statistical physics tells us [53] that when the rotational symmetry is
spontaneously broken by the group, namely when out of many equivalent directions
of motion only one is selected, scale-free correlations of the orientations emerge
automatically in the system. If spontaneous symmetry-breaking seems certainly
to be the relevant case for starling flocks swirling over the roost, jackdaws flocks
traveling to the roost [69, 74, 75] and homing pigeons [45, 87, 113] need to follow
one specific direction, hence there is no spontaneous symmetry breaking; similarly,
in the case of migrating birds, when longer duration flight carry the individuals
along one well-defined route, there is no spontaneous symmetry breaking. In these
cases, correlations of the orientations could be quite different from those of starlings.
However, speed requires a different correlation mechanism than orientation, as
no physical reason automatically grants long-range correlation; hence, it would
be really helpful to investigate the link between correlation and speed control in
different phases. Our impression is that long-range speed correlations are essential
to propagate information in all phases of collective motion, in order to keep a good
degree of cohesion in the face of natural variations of the individual speeds; we
therefore expect that the interplay between speed control and speed correlation is a
very general concern of collective motion. But only experiments can confirm this.

Experimental data on two-dimensional collective motion are somewhat more
accessible than 3D data. The recent study about sheep herds [51] presents a case
where exactly the same interplay between correlation and speed control could be at
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work, and the presence of intermittency - with its huge speed fluctuations - could
make even more urgent the issue of speed control; again, obtaining correlations at
different groups size could require some nontrivial work, but the two-dimensional
nature of the systems makes the tracking somewhat simpler than in the case of bird
flocks. Intermittent motion and large speed distributions have also been observed in
locust swarms [10]. Similarly, 2D data of fish schools in shallow water have been
studied for a long time, both numerically [64] and experimentally [62, 76]; as in
the case of sheeps - and unlike the case of birds - speed fluctuations in fish schools
are substantial, hence the issue of speed control can be quite different than in bird
flocks. In fact, there may exist a rather profound difference between animals that
cannot change much their speed, as birds within a flock, for which not only very
large speeds are forbidden, but also very low ones, because of the very aerodynamics
of flight, and animals that can reduce considerably their speed, down to halting, as
mammal herds or fish schools, at least to a certain extent; apart from a significantly
larger asymmetry in the control mechanisms, the very possibility to reduce the speed
to zero could be a game changer. However, our calculation shows that - in absence
of marginal control - the entropic push drives the group’s speed to absurdly large
values, not small ones, and this is something no group can afford to do. And yet
again, one should check whether or not this is true at the experimental level.

We have discussed the biological plausibility of the marginal model and some
possible extensions of our work for other biological systems. Furthermore it is
also possible to improve our model in order to catch other peculiar aspects of
the biological system that we observed. Regarding the accuracy of our model in
describing the dynamics, our theory can be further improved. In systems that evolve
following dynamics equations like the one we have written and used here (eq.s 4.7)
information propagates very differently from how it propagates in real flocks while
they perform turns [33]. In order to resemble the observed propagation, a second
order differential equation for the velocity is needed [33]. A second order model,
the inertial spin model (ISM), has been implemented and studied using a standard
λφ4 Landau Hamiltonian [33]. It would be very interesting to see what happens if
we combine together the marginal potential and the second order dynamics, they
might give rise to some interesting effects concerning the system’s dynamics at low
temperature. Furthermore, another dynamical effect that has been studied is the
existence of speed waves and their interaction with density waves [25], but only
for the pseudo-Gaussian model. A similar investigation could be done in order to
see if any changes in the speed waves phenomenology occur if we use the marginal
pseudo-Hamiltonian instead of the pseudo-Gaussian.

Another peculiar feature of flocks is that the power law decay of their connected
correlation functions have a really low exponent [24], this can be explained with the
presence of continuous random external perturbations and a model that reproduces
them has been studied in [29]. To investigate further this topic, it would be
interesting to apply random external perturbation on an artificial flock that obeys
to the marginal theory’s pseudo-Hamiltonian to see how correlation functions are
affected by the perturbation in the marginal case.

An interesting topic that we partially addressed in the second chapter is the
effect of gravity in partially breaking the O(3) symmetry of the system. We decided
to disregard this effect in order to simplify our work and we found that our theory
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can describe the experimental system. However, a way to include this partial explicit
breaking of the three dimensional rotation symmetry could be included in our model,
to see if it adds some new interesting features to be studied.

Finally, beyond the horizon of broadening our study to include biological systems
other than starling flocks, experiments on artificial self-organized swarms would be
the next essential step forward. Artificial swarms would allow first to assess at the
embodied level (which is quite different from the numerical one) to what extent
group’s cohesion depends on the range of the correlation: the fact that long-range
correlations (quite rare a condition in physical systems) are so frequent in biological
collective behaviour - from bird flocks [24], to midge swarms [4] and down to bacterial
clusters [36] - has prompted biophysicists to connect this trait to collective response
and cohesion, with both theoretical [84] and numerical backup [60]; yet, biology is
one thing, engineering another one, and no matter how much inspiration the latter
takes form the former, it is crucial to check whether the link between correlation and
response holds at the technological level. Secondly, in artificial collectives it would
be possible - at least to some extent - to tune the reference agents’ speed v0 and
to tweak the manner individual speed can fluctuate around v0 in a controlled way,
which is impossible to achieve in natural systems. Having the possibility to operate
on both arms of the problem (correlation and speed control) would be invaluable,
given the growing technological relevance of self-organized collective behaviour.

Showing some examples, already some drones or vehicles make use of the pseudo-
Gaussian or similar potentials to regulate the machine’s speed [47, 119]. It would be
fascinating to see if the speed correlation induced by the marginal potential could
improve the performance of these machines. Furthermore in the flourishing field of
neural networks and deep learning cost functions are often regularized by a quadratic
term that has the aim of preventing overfitting by limiting the values of the network
parameters to fluctuate around zero [15]. Since we have seen that a quartic term has
the same effect and also grants scale-free correlations through the system it might
be relevant to see if a neural network with a quartic regularization term showed
some differences with respect to networks with standard regularization.
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