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Abstract: Paleoclimatic data are essential for fingerprint-
ing the climate of the earth before the advent of mod-
ern recording instruments. They enable us to recognize
past climatic events and predict future trends. Within this
framework, a conceptual and logical model was drawn
to physically implement a paleoclimatic database named
WDB-Paleo that includes the paleoclimatic proxies data
of marine sediment cores of the Mediterranean Basin.
Twenty entities were defined to record four main cate-
gories of data: a) the features of oceanographic cruises
and cores (metadata); b) the presence/absence of pale-
oclimatic proxies pulled from about 200 scientific pa-
pers; c) the quantitative analysis of planktonic and ben-
thonic foraminifera, pollen, calcareous nannoplankton,
magnetic susceptibility, stable isotopes, radionuclides val-
ues of about 14 cores recovered by Institute for Coastal
Marine Environment (IAMC) of Italian National Research
Council (CNR) in the framework of several past research
projects; d) specific entities recording quantitative data
on δ18O, AMS 14C (Accelerator Mass Spectrometry) and
tephra layers available in scientific papers. Published data
concerning paleoclimatic proxies in the Mediterranean
Basin are recorded only for 400 out of 6000 cores retrieved
in the area and they showavery irregular geographical dis-
tribution.Moreover, the data availability decreaseswhen a
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constrained time interval is investigated or more than one
proxy is required. We present three applications of WDB-
Paleo for the Younger Dryas (YD) paleoclimatic event at
Mediterranean scale and point out the potentiality of this
tool for integrated stratigraphy studies.
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1 Introduction
The Earth’s globally averaged surface temperature rose
by approximately 0.85∘C over the period 1880-2012 [1].
However, regional climates result from complex processes
that meaningfully vary with geographical areas and con-
sequently differently respond to changes in climate oscil-
lations.

Despite conflicting opinions on the reliability of pa-
leoclimatic "proxies" and the consistency of results ob-
tained from simulation models for the reconstruction of
past climates, homogeneous long term time series remain
the only valid analytical tool to study the Earth’s dynamic
processes of the past, mainly in conditions different from
today’s. Moreover, they have proven to be crucial in the as-
sessment of accountability of medium and long term pre-
dictions models [1–4].

Natural archives as tree rings, spelothems, ice and
sediment cores, which contain diatoms, foraminifera,
microbiota, pollen and charcoal, represent valuable re-
sources to recover quantitative information on past re-
gional climates and to define high-resolution climatic re-
constructions for last millennia [1]. The knowledge of past
climatic variations can provide viable insights for predic-
tion of how and towhat extent climatemight change in the
future.

In the last years, many international projects have fo-
cused on the development of marine data infrastructures
for managing different sets of data from in situ and remote
observation of the seas and oceans. In particular, the Eu-
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ropean project Geo-Seas (EU-FP7 Seventh Framework Pro-
gramme) has resulted in an infrastructure that manages
data of 26 institutions working inmarine geology and geo-
physics located in 17 European countries. The Geo-Seas in-
frastructure is alignedwith the European directives aswell
as with the last Framework Program both at the European
and global scale as GEO [5], GEOSS [6], GMES [7], EMOD-
NET [8] and INSPIRE [9]. This system also inherits the SEA-
DATANET infrastructure [10] implemented to manage ma-
rine sediment, geophysical and oceanographic data and
to provide products and services. This infrastructure hosts
the data of the EU SeaSed project [11], which in turn col-
lects data from EuroCore [12], EUMARSIN [13] and EURO-
Seismic [14]. Another important database is published by
the National Geophysical Data Center [15], which stores in-
formation on marine and lacustrine sediment cores pro-
vided by 23 institutions from all over the world. Data from
these archives (data center) aremainlymetadata on the lo-
cation of the marine sites and cruises of the last century.

Recently, Italian National Research Program (PNR
2011-2013) supported the Project of Interest NextData [17]
focused on retrieval, storage, access and diffusion of en-
vironmental and climate data from mountain and marine
areas. Concerning the marine areas, this project aimed at
collecting and storing paleoproxy data useful to achieve
information on past climate of Mediterranean, and to un-
derstand through integrated stratigraphic studies the tim-
ing of the climatic changes and their main features.

Mediterranean Sea is a semi-enclosed basin with an
antiestuarine circulation [18–20] and its geographical lo-
cation between the arid zone of the subtropical high (north
Africa) and the zone affected by westerly air flows [21–23]
makes it very sensitive to respond quickly to atmospheric
forcing and/or anthropogenic influences. These features
make the Mediterranean Sea a natural laboratory for pa-
leoenvironmental studies and past climatic oscillations
monitoring.

For the purposes of the present research, we selected
and analysed about 200 published scientific papers to re-
cover climatic proxies from over 6000 cores drilled in the
Mediterranean Sea. In addition, unpublished data (kindly
provided by two CNR research institutes, Istituto di Ge-
ologia Ambientale e Geoingegneria- IGAG and Istituto per
l’AmbienteMarino Costiero - IAMC) andnew sites retrieved
in the frame of NextData Project, were also taken into ac-
count to implement a new archive suitable for studies on
environmental and climatic changes.

Aiming at sharing metadata and paleoclimatic prox-
ies with the scientific community, a logical scheme of a
database was defined and then implemented according
to the standards required by the project: Geonetwork [24]

and Weather and Water Database [25]. The data was also
recorded into a Microsoft Access personal database man-
aged by the authors.

The main new outcome of this database is to record
for the Mediterranean Basin: a) the cores for which the
paleoproxies have been studied (planktonic and benthic
foraminifera, pollens, diatoms, dinoflagellates, calcare-
ous nannoplankton, magnetic susceptibility, stable iso-
topes, radionuclides, AMS 14C age and tephra layers)
and the associated references; b) the quantitative paleo-
proxy data of marine cores acquired during the projects
CARG [26], VECTOR [27] andNextData; c) quantitative data
on tephra layers, oxygen stable isotope (δ18O) and AMS
14C fromMediterraneanmarine cores published in the sci-
entific literature.

The database also records the describing features of
the oceanographic cruises and cores (metadata) and it
takes advantage of a link with a Geographical Information
System (GIS) to visualize the data distribution and elab-
orate thematic maps that supply a synoptic view of data
disposal for single proxies.

2 Study area
The Mediterranean Sea, divided into western and east-
ern basins connected to each other through the Strait of
Sicily, occupies an area of about 2.5 million km2 (Figure 1).
Two main tectonic structures, the Hellenic Trench and
the Mediterranean Ridge, control the complex physiogra-
phy of the eastern Mediterranean [28]. Neotectonic pro-
cesses and fluvio-sedimentary systems mainly feature the
seascape,which is characterized by a variable bathymetry,
reaching the maximum depths of ca. 4.2 km in the Ionian
Abyssal Plain and of ca. 3.2 km in the Herodotus Abyssal
Plain.

The continental shelf is narrowoffPeleponnese, Crete,
and in southern andnorthern Turkey,whereas it iswell de-
veloped in the areas under the influence of the Nile River
(Levantine Sea) and the Po River (Adriatic Sea), where
large portions are shallower than 100 meter [28].

In the western Mediterranean basin the continental
shelf is narrow, extending more than 50 km in width only
off the Ebro and Rhône Rivers, mainly due to the progra-
dation of deltaic systems (Figure 1); it is also wide off
the north of Tunisia, where its morphology is structurally
controlled. Bathyal plains occupy large areas located be-
tween the Balearic Islands, north of Africa and Sardinia
with depths reaching 2.8 km, and in the Tyrrhenian basin
with depths up to 3.43 km [28]. Basin floors are shallower,
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Figure 1: Location map of study area. Black lines follow the path of sea surface water circulation. The numbers indicate the areas with wide
continental shelf while the capital letters point out the main straits.

but wider, than those in the east. The Mediterranean Sea
is characterized by an anti-estuarine circulation pattern
forced by the negative hydrological balance and density
gradient with the Atlantic Ocean [29]. The oceanic sur-
face water enters from the Atlantic Ocean, spreads into the
Mediterranean Sea, andmixes with “resident” surface wa-
ters, to form the Modified Atlantic Water (MAW) located in
the upper 100–200 m of the water column. It is character-
ized by a salinity range from ~36.5 psu at Gibraltar, 38.0–
38.3 psu in the western Mediterranean to over 39 psu in
the easternmost part of the basin, due to evaporation and
mixing [30, 31]. The surface basin circulation is character-
ized by strong sub-basin scale activity, withmesoscale fea-
tures, eddies and meanders [32]. The overall antiestuarine
circulation of theMediterranean Sea (entering as nutrient-
poor water, out-flowing as nutrient-enriched Levantine In-
termediate Water) makes this basin one of the most olig-
otrophic oceans in theworld [33, 34], which shows a signif-
icantwest–east trophic gradient, with a nutrient depletion
increasing eastward [35].

3 Marine sediment sites collection
and database design

The check of the available data on marine sites, aimed
at recognizing the proxies suitable for paleoclimatic and
environmental studies, represented the first step of this
research. Among all the accessible cores, we considered

only those retrieved by drilling device systems that re-
cover undisturbed samples (i.e. gravity and piston corer
systems). Data of 6000 cores were collected mainly from
the previously quoted sources (Figure 2).

This information was used to identify the data objects
(entities), the attributes of the data objects (domains), the
relation between objects and the integrity constraints. Fig-
ure 3A and 3B illustrate the main entities of the database
providing both the metadata and quantity data, the pri-
mary and the foreign keys, the relation and the cardinal-
ity between the entities. Appendix 1 describes in detail the
codes structured for the primary keys.

The principal entity of the logical model is labelled
“site” and it records the geographical position of a single
site as well as the main information describing the core
samples. The entity “cruise” archives the attributes on ves-
sels and cruises (box on the left in Figure 3A).

The entity “references” records the information from
published scientific literature, such as: the author name,
the journalwhere the articlewas published and the type of
studied paleoproxy. The last field, labelled “note”, is ded-
icated to additional information such as the occurrence of
sapropel, geochemical analysis, alkenones analysis, age
modelling.

The entity “site” is correlated to other entities de-
signed to record quantitative data on AMS 14C age,
stable isotopes, tephra proxies, benthic and planktonic
foraminifera, pollens, diatoms, dinoflagellates, calcareous
nannoplankton, magnetic susceptibility and radionuclides
(box on the right in Figure 3A). The core of these entities is
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Figure 2: Overview of the location of marine sediment cores (black circles) drilled in the Mediterranean Sea and of their abundance in the
single sectors of Mediterranean Sea.

the element "sample", towhich each information is linked;
the table organization slightly changes in response to the
features of the single proxies.

Particular attention was focused on AMS 14C, δ18O
and tephra proxies and on their key role in the paleocli-
matic studies.

AMS 14C ages and tephra layers are mostly aimed
at evaluating the synchrony/diachrony of the climatic
changes [36] and to carry out paleoenvironmental stud-
ies [37]. For these two proxies, several tables were imple-
mented to register the information reported in the scien-
tific papers.

For the AMS 14C, the depth of sampling, radiocarbon
age, calibrated age including error, were recorded in spe-
cificfields. Thefield “note” contains anyother useful infor-
mation (e.g. alkenones, Mg/Ca) characterized by a low re-
peatability and that therefore cannot be registered in a the-
matic field. Moreover, in the present work all the radiocar-
bonageswere re-calibrated through theuseof the software
OxCal 4.2 using the INTCAL13 and MARINE13 dataset [38]
and reported in the field “re-calibrated age” (Figure 3B).

The tephra samples were classified as tephra or cryp-
totephra and for each one the eruption name, source, com-

position, age, references and correlation with other equiv-
alents were registered (Figure 3B).

For the oxygen isotope, the depth, the age and δ18O
values measured on the planktonic foraminifer Globigeri-
noides ruber var. white and Globigerina bulloides were
recorded in a specific table (Figure 3B). The frame of the
database is very flexible, other proxies and new quantita-
tive data (e.g. presence of sapropel, chemical analysis of
tephra, quantitative data on radionuclides) can be added
following an analogous scheme. In Figure 3A, the entities
“holder”, “device type” and “physiographic province” rep-
resent three important dictionaries for: a) ensuring that
the values entered into a field are legal to prevent the
recording of erroneous values, b) guaranteeing the mean-
ing of each term used within the database, avoiding a dif-
ferent data interpretation, c) sharing information across
multiple projects [39, 40].

The databasewasnormalized to avoid the redundancy
of data. The performed normalization followed three nor-
mal forms: a) the first, a database contain only atomic
value (value cannot be divided) and there are no repeating
groups (more fields containing the same type of informa-
tion); b) the second, all non-key attributes are fully func-
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Figure 3:Marine sites entity-relationship diagram, the double asterisk shows the primary key and the single asterisk shows the foreign
key. The entities enclosed in the box on the left record the metadata, those in the box on the right record quantitative data from CNR-IAMC
projects and from scientific literature.

tional dependent on the primary key and c) the third, there
is no transitive dependencies between tables, it arises
when one non-key attribute is functionally dependent on
another non-key attribute [39, 40].

4 Application programs to
implement a database and share
data

WDB-Paleo and SHARE GeoNetwork are the systems
adopted in the frame of NextData Project to record and
share paleoclimatic data (Figure 4A, 4B).

4.1 WDB-Paleo

WDB-Paleo is an adapted version of WDB [25] created to
satisfy the need to record paleoclimatic data [41]. This
database is initialized in two different ways according
to the required data (SEACORE-SDB and ICECORE-IDB).
The WDB is an open-source database (GNU Public Li-
cense) for the collection of hydrological and oceano-
graphic data, based on the open-source PostgreSQL rela-

tional database [42]. This database was founded in 2008
within the PROFF Project of the NorwegianMeteorological
Institute (met.no) and is now availablewith source code in
version 1.5.0. The server architecture is composed of a com-
mand interface (WDB Command Interface orWCI - loading
programs), the core of WDB database itself (developed in
Postgresql) and a series of programs to load data from the
Data Storage System (Figure 4A).

The data can be extracted from the WDB-Paleo in csv
(comma-separated values) files; they canbeopened in sev-
eral programs, even if spreadsheet programs such as Mi-
crosoft Excel, Open Office Calc and Google Docs, are the
most used by users.

In addition, we chose to implement also a personal
database [43] recording the tables previously quoted in the
logical model (Figure 3A, 3B).

To date, we implemented the tables, reported in the
box on the right of Figure 3A, for all paleoclimatic proxies
defined for the cores C90 and C836 (collected in the frame
of CARG Project), C90-1m core (collected in the frame of
VECTOR Project), and cores C5, C5-2-SW104, C6-SW104,
C13-SW104, ND2, ND5, ND6, ND9, ND10, ND11, ND13 (col-
lected in the frame of NextData Project). An example of the
quantitative data for planktonic foraminifera and calcare-
ous nannoplankton recorded in WDB-Paleo was reported
in Table 1A,B. Several tableswere also implemented to reg-
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Table 1: Example of planktonic foraminifera (A) and calcareous nannoplankton (B) data recorded into WDB-Paleo.

id_sample id_planc section sample
level

top
(cm)

bottom
(cm)

globigerina
bulloides (%)

globigerinita
glutinata (%)

gobigerinoides
elongatus (%)

IAM00A080 C5_A139 F 100-99 246 247 26,03 4,79 -
IAM00A080 C5_A140 F 99-98 244 245 23,48 6,35 14,92
IAM00A080 C5_A141 F 98-97 243 244 17,44 9,3 -
IAM00A080 C5_A142 F 97-96 241 242 20,57 13,91 14,2
IAM00A080 C5_A143 F 96-95 240 241 32,16 4,02 13,07
IAM00A080 C5_A144 F 95-94 238 239 30,96 3,55 14,21

id_sample id_nanno section sample
level

top
(cm)

bottom
(cm)

emiliana huxley
(%)

small
Gephyrocap (%)

small Placoliths
(%)

IAM00A080 C5_A001 F 100-99 246 247 - - 99.00
IAM00A080 C5_A002 F 99-98 245 246 65.72 2.123 27.56
IAM00A080 C5_A003 F 98-97 243 244 52.92 0.92 44
IAM00A080 C5_A004 F 97-96 241 242 50.29 0.29 43.19
IAM00A080 C5_A005 F 96-95 240 241 - - 99.0
IAM00A080 C5_A006 F 95-94 239 240 67.97 3.59 23.20

Figure 4: Schematic representation of WDB-Paleo architecture (A) and parent-child scheme adopted to publish marine sediment cores
metadata on SHARE GeoNetwork (B).

ister quantitative data on tephra layers, AMS 14C and δ18O
paleoproxies from scientific literature (Figure 5A, B, C).

4.2 SHARE GeoNetwork

SHAREGeoNetwork,which currentlymanages also the pa-
leoclimatic metadata produced by the NextData Project,
was implemented to share information on Stations at
High Altitude for Research on the Environment [44]. The
GeoNetwork software [24] is widely used as the basis of
Spatial Data Infrastructures [45–50]; it is part of the Open

Source Geospatial Foundation (OSGeo). This software has
been developed following the principles of a Free and
Open Source Software (FOSS) and is based on Interna-
tional andOpenStandards for services andprotocols, such
as the ISO-TC211 and the Open Geospatial Consortium
(OGC) specifications.

The architecture is focused on spatial data, metadata
and interactive map visualisation. The system is also fully
compliant with the OGC specifications in order to query
and retrieve information from Web catalogues (CSW). It
supports the most common standards to specifically de-
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Figure 5: Frames representative of data storing into WDB-Paleo for tephra layers (A), AMS 14C (B) and δ18O (C) paleoclimatic proxy.
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Figure 6: Plot of the availability of information on single proxies for
Mediterranean sites, expressed as the percentage of cores where a
specific proxy has been investigated over the total number of cores
that contain paleoclimatic data.

scribe geographic data (ISO19139 and FGDC) and the in-
ternational standard for general documents (Dublin Core).
Moreover, it uses standards (OGS WMS) to visualise maps
through the Internet [51].

The metadata of marine sediment cores were linked
together by a parent/child relation according to the
scheme reported in figure 4B. The parent is represented
by theMediterranean Basin, while the child is represented
by the Western and Eastern Mediterranean basins in turn
linked to the child of second order represented by the
Mediterranean seas, according to the boundaries pub-
lishedby the InternationalHydrographicOrganization [52]
and the names list of the vocabulary “C16” [11]. SHARE
GeoNetwork allows to visualize the geographic location of
all cores and of related data reported in the pale grey box
in Figure 3A.

5 Data quering and mapping
The main purpose of WDB-Paleo is to pinpoint and im-
prove the state of knowledge on the Mediterranean Sea
by recovering biotic and abiotic published proxy data of
marine sediment cores useful for reconstructing the past
climate of the last ca. 50 kyr. In addition, the spatializa-
tion of paleoclimatic proxies, made possible by the link
of WDB-Paleo with a GIS framework, allows to draw into
maps the geographical distribution of data over the whole
Mediterranean basin. This last issue represents an impor-
tant keypoint to understand the different response of the
Mediterranean to climate forcing but also to correctly plan
the futureMediterranean oceanographic expeditionsmin-
imizing cost and survey time operation.

At present, the about 6000 sites realized in the whole
Mediterranean Basin are not uniformely distributed (Fig-
ure 2), being denser close to the Italian coasts (Tyrrhe-
nian and Adriatic seas) and in the Eastern Mediterranean
Basin (Table 1, Figure 2). This might be a consequence of
the utmost scientific interest toward basins characterized
by high sedimentation rates, sapropel depositions [53–58]
and thermoaline circulation [59].

Apart from the location (ocean/sea field) known for
all the cores, and the data source holder available for the
58% of sites, the other information (device type, oceano-
graphic cruise, vessel name, core length, water depth) are
retrieved for less than the 40% of the sites. Moreover, only
for about 400 sites paleoclimatic proxies are available;
planktonic foraminifera (54%) and δ18O data (46%) are
the most investigated followed by tephra characterization
and AMS14C data (Figure 6). Additionally, multriproxy in-
vestigations were very often restricted to the comparison
of two proxies.

In the next sub-sections, three applications of WDB-
Paleo are illustrated in several maps which provide the
spatial distribution and the key role of tephra layers,
AMS14C ages and δ18O data for climatic studies of the
past. The last 15 kyr is the time interval considered for
these applications and the attention was focused on the
Younger Dryas or Greenland Stadial I (GS-I) climatic event
(11.7-12.95 kyr BP) [60–62]. The recordable outcomes of this
event are documented over a wide area in the late glacial
period and is recorded as a cold interval [60, 63–66].

5.1 Tephra

The juvenile particles making up tephra layers, together
with a minor lithic component, are mostly made of glass
fraction and minerals which can be “fingerprinted” by
chemical and isotopicmethods thus allowing to define the
source and sometimes the eruptive event. Since they are
the result of “instantaneous” events in terms of geological
times [67], tephras are considered powerful “isochronous
time-lines” to link archives from different settings and,
if a numerical age can be attributed, they become the
most suitable proxy used for the agemodeling of sedimen-
tary records. Along with the contribution to the paleoen-
vironmental and paleoclimate research, tephras can also
provide a detailed record of volcanic activity and recur-
rence rates during the Quaternary. This is particularly true
when dealing with tephras interbedded within deep sea
and lacustrine successions (characterized by continuous
records) with no or little sedimentary disturbances. In this
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case, even thin tephras associated with small, local erup-
tions or large distal eruptions can be preserved.

In this framework, the WDB-Paleo database provides
a number of striking outcomes for correlation of marine
archives through tephra deposits. In fact, it makes easy to
identify the occurrence of a particular tephra as a result of
a simple query, which might either be a specific volcanic
source, chemical composition, age or distal equivalent.

Dealing with widespread markers, which represent
powerful isochrones, different archives can be linked
throughout the Mediterranean. The most representative is
Y-5 [68], i.e. the tephra corresponding to the huge Campa-
nian Ignimbrite eruption from Campi Flegrei (ca. 39 ka -
Figure 7A) [69]. The use of such correlating tools allows to
bypass issues from any possible leads or lags of climate
changes evidenced by other proxies (e.g. foraminiferal dis-
tribution, oxygen isotope) at both regional and Mediter-
ranean scales, provided the tephra correlation is cor-
rect [70].

Since the database stores all the occurrences of a sin-
gle tephra, irrespective of the source and the size of the
event, it can be useful also for strictly volcanological pur-
poses. Actually, it can help to implement current datasets
on ash dispersal, e.g. providing new information about
the thickness of deposits, rapidly detecting the sites of
distal occurrences, and supplying further data to refine
the extent of the emplacement area also for the low to
medium size explosive events, vital for volcanic hazard as-
sessment.

These latters are often punctuated in the marine
record at medial to distal sites by cryptotephras [65]. As
an example, Figures 7B, 7B1 present the progressive detail
of the outcome of a query regarding the occurrence of the
deposits related to the protohistoric interplinian activity,
which occurred at Somma-Vesuvius between the Avellino
(ca 4.0 cal ka) [71] and the 79 A.D. explosive events. This
activity has been throughoutly described fromon land sec-
tions, but it was almost unknown in the marine settings
until the use of cryptotephras has been enhanced in the
last decade.

As far as the age range considered in the present pa-
per is concerned, a query to the database with the en-
try criterion of the YD climatic event, enables the user to
detect if any tephra is available to link archives from the
different subsets of the Mediterranean Sea. The resulting
output (Figure 7C) refers to the Agnano Pomici Principali
tephra (11.9–12.1 cal ka) [72], linked to a sub-plinian event
occurred at Campi Flegrei and widespread in the Adriatic
Sea [73–76], and to Soccavo 1 (12,644 ± 709 cal yr BP, mod-
eled age), recently found in several cores of the Tyrrhenian
Sea [77, 78]. According to these results, it is evident that the

different dispersal of the two tephras does not allow link-
ing the two marine archives for the YD time span, unless
future findings may open new scenarios.

5.2 Oxygen stable isotopes

Stable oxygen isotope (δ18O) analysis are performed on
tests of planktonic foraminiferal species retrieved fromdif-
ferent size of washing residues (>90 µm, >125 µm and
>150 µm) related to the marine environment from which
the fossil archives are recovered [60, 65, 79–83]. The oxy-
gen isotopes represent a valid tool for paleoclimate andpa-
leoceanographic studies, because planktonic foraminifera
record the changes of the environmental parameters of
the water masses in which they live [84–89]. In partic-
ular, the oxygen isotope composition of the calcareous
tests of foraminifera provides information on water salin-
ity and temperature oscillations [64, 90, 91] and reflects
hydrological changes, as the increase in continental run
off [79, 82, 83, 92, 93].

Detailed age control for δ18O records has been es-
tablished for a discrete number of Mediterranean marine
records [60, 65, 79, 82, 83, 91, 94–97], consequently, oxy-
gen isotope stratigraphy has become not only a global cor-
relation tool, but also an established dating tool [60, 83,
94, 95, 98].

In this work, we analyse the oxygen isotopic values for
two planktonic foraminiferal taxa: Globigerina bulloides
and Globigerinoides ruber var. white, in order to observe
the geographical variation of isotopic composition of sea
water during the YD climatic event in the Mediterranean
basin.

A different isotopic behavior characterizes the two
species, since, notwithstanding the same trend of δ18O
data and the abrupt positive shift corresponding to the YD
interval (Figure 8) [60, 94–96], G. bulloides δ18O values
are more positive than those of G. ruber, reflecting a differ-
ence in the ecological niches [99, 100]. In addition, pub-
lished data on δ18O G. bulloides span from 5∘ (Alboran
Sea) to 20∘ (Adriatic Sea) of Longitude (Figure 9A1), while
δ18O G. ruber data range from 10∘ (Tyrrhenian Sea) to 35∘

(Cyprus) of Longitude (Figure 9B1). In this frame, twomaps
showingwith different simbols the δ18Ovariations, for the
Western (more studied taxon:G. bulloides) and the Eastern
(more studied taxon: G. ruber var. white) Mediterranean
seas, were drawn (Figure 9A1, 9B1).

Notwithsatnding few information concerning the spe-
cific range of tests size ofG. bulloides andG. ruberwhite va-
riety are available for the Mediterranean Sea, the greatest
part of samples used for the elaboration of δ18Omapshave
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Figure 7: Tephra outcomes from the data stored in WDB-Paleo (gray dots). In detail, the red dots represent: the Y-5 tephra (ca. 39 ka) (A); the
protohistoric eruptions tephras (B) and the tephra related to the protohistoric eruption AP2 (ca. 3.2 ka cal age in Santacroce et al., 2008-
B1); the Agnano Pomici Principali (ca. 12 ka) and Soccavo 1 (ca. 12.5 ka) tephras (C). See text for age details.
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Figure 8: Comparison in time domain between δ18O G. bulloides signals from cores MD95 20-43 (Alboran Sea; [81]), MD99 23-46 (Gulf of
Lion [77]), MD04 27-97 (Sicily Channel; [65]) and δ18O G. ruber signals from core MD 84 632 (southeast of Cyprus; [65]). The grey stripe
represents the position of the YD event.

a size > 125 micron and only twelve samples were higher
than 200 micron. The recent scientific literature [101–103]
evidenced no significant differences in δ18Owith size frac-
tions of G. ruber var. white and no systematic differences
with size fractions of G. bulloides. In the eastern Mediter-
ranean area, a study on oxygen isotope composition mea-
surements carried out on different morhotypes of G. ruber
has been performed by Numberger et al. [104] sinceMIS12.
The authors stated that the strong similariety in δ18O com-
position, over the Holocene records, suggests that the G.
ruber type b “platys” (G. ruber var. white sensu lato) ap-
pears to share a similar habitatwith type a “normal” (G. ru-
ber var. white sensu strictu) at ODP Site 964 (Ionina Sea).
Recently, Antonarakou et al. [105], in the Gulf of Mexico,
documented different δ18O composition in G. ruber mor-
photype ss and sl, but the very low resolution measure-
ments during the time interval of YD event, make difficul
any consideration.

The G. bulloides δ18O values range from 3.64%�
(north Adriatic and Tyrrehian seas) to 1.38%� (Alboran
Sea) (Figure 9A1). Thehighermean δ18Ovalues are located
in the Adriatic and Central Tyrrhenian basins, the for-
mer being one of the coldest areas of Mediterranean. Both
areas are characterized by high density of water masses
that sink creating the Eastern Mediterranean Deep Wa-
ter [20] and the Tyrrhenian Deep Water, respectively (Fig-
ure 9A1). Moreover, a detailed geographical reconstruc-
tion, based on theuse of InverseDistanceWeithed Interpo-
lation method, of G. bulloides δ18O data shows a tripartite
subdivision of the Tyrrhenian Sea with two areas, in the
north and in the south, wich are characterised by lighter
values than the central one (Figure 9A2).

The G. ruber δ18O mean values, ranging from 3.21 to
0.35%�, are higher in the Sicily channel and Aegean Sea
than elsewhere in the Mediterranean (Figure 9B1). This G.
ruber δ18O signal could be linked to the passage of the
Modified Atlantic Water through the Sicily channel and
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Figure 9:Maps showing the geographical distribution of samples and averaged changes of δ18O measured on G. bulloides (Figs. 9A1, A2)
and on G. ruber var. white (Figs. 9B1, B2), respectively.
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to the lower temperature and salinity concentration of
AegeanSeawaterswith respect to those of the neighboring
zones (Figure 9B1). A grid map similar to that realized for
theG. bulloides δ18Owas drawn forG. ruber δ18Odata, the
geographical reconstruction shows two areas with lighter
values located in the Ionian-Sirte Gulf and in the south
of Cyprus, and two areas with heavier values in the south
Aegean Sea and Sicily Channel (Figure 9B2).

5.3 Accelerator mass spectrometry (AMS)
14C radiocarbon datings

The AMS14C radiocarbon datingmethod is widely used for
integrated stratigraphic studies carried out on the last ca.
30 kyr. In particular, AMS14C data provide tie-points use-
ful to construct age-models and define the sedimentation
rates of different sectors of the Mediterranean Basin [82,
106, 107]. For the integrated stratigraphic approach at
the Mediterranean scale, it is crucial to know the geo-
graphical distribution of the data useful for geochrono-
logical and paleoclimatic studies. The distribution map of
the AMS 14C data, defined on both benthonic and plank-
tonic foraminifera, at disposal for 88 cores (a total of 572
samples) was hence drawn (white and red points in Fig-
ure 10A). The collected AMS 14C data are heterogeneous
because of lacking error ranges and calibrated ages that,
when available, were achieved through different calibra-
tion softwares (calib 4.1 program- [108]; CalPal – [109]).
All the available AMS 14C data were here recalibrated by
using the latest version of the OxCal software 4.2 with INT-
CAL13 and MARINE13 dataset [38], and using the mean
Mediterranean regional reservoir age of 400 yr [106]. The
un-calibrated 14C ages and the associated error are the in-
put parameters used to calculate the new ages reported as
1 and 2σ deviations in cal yrs BP.

It is important to note that only 15 out of 88 cores
contain AMS14C dated samples pertaining the Younger
Dryas climatic event (red points in Figure 10A). For this
cores, AMS14C measurement were performed on plank-
tonic foraminifera with the exception of two cores for
which two distinct measurements on benthic foraminifera
and pteropods were realized. Age differences between
these pairs are minimal and apparently random, indi-
cating that planktic and benthic organisms are equally
suitable for 14C-dating in the central Mediterranean re-
gion [111]. A multiproxy approach was chosen to integrate
the AMS14C data with the depth (cm below sea floor) of
oxygen isotope signature corresponding to the position of
YD event and a map was drawn for identifying the differ-
ent position (depth cm bsf) of this event in the Mediter-

ranean Basin (Figure 10B). It is important to point out
that the planktonic foraminifera represent an additional
valid tool for the determination of the chronostratigraphic
framework associated to the YD event. In particular, this
time interval is characterised in the Mediterranean by ab-
sence and/or strong reduction in abundance of Globigeri-
noides ruber var. white, Globorotalia inflata and G. trun-
catulinoides associated with strong abundance increase of
Neogloboquadrina pachyderma [54, 82, 110, 112–116].

This map can be used to estimate the different sed-
imentation rates over the last ca. 13 kyr in the Mediter-
ranean Sea. The highest sedimentation rate were obtained
for the Alboran Sea, Balearic Islands, Sicily Chanel, South
Tyrrhenian Sea and in the North Adriatic Sea (Figure 10B).
In addition, a detailed reconstruction of samples depth
pertaining to the YD event (cmbsf) between 10∘ to 20∘ lon-
gitude documents a reduction of sedimentation rate mov-
ing from the south Adriatic Sea vs Ionian Sea (Figure 10C).

A shallower position of samples pertaining the YD
event also characterizes the central Tyrrhenian Sea than
the north and south sectors (Figure 10C). Moreover, the
deep position of the YD event in the Sicily Channel evi-
denced that this zone is a sill separating the Tyrrhenian
and the Ionian seas (Figure 10C).

6 Conclusive remarks
WDB-Paleo database proved to be a flexible and easily
upgradable tool for past climatic and environmental stud-
ies of Mediterranean Sea. Single stored proxies can be pro-
cessed one at time or integrated to join information and
reduce the effects of the lack of data.

At present, WDB-Paleo improves the possibility to:

– recognize the available climatic paleoproxies for
both geographical area and specific time interval;

– rapidly identify the availability and distribution of
tie-points (dated tephra layers, AMS14C datings);

– draw “isochronous time-lines” needed to link
archives from different settings;

– assess the variability of available proxies in re-
sponse to their geographical distribution, allowing
to better understand the potential effects of local
conditions on their behaviour;

– rapidly integrate data for multi-proxy investigation
in a defined time range.

Moreover in the light of data sharing, the WDB-Paleo
canprovide the basic informationuseful to know the avail-
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Figure 10: Geographical distribution of AMS14C dated samples (A). Depth (cmbsf) of the Younger Dryas climatic event in all the cores by
integrating AMS14C ages and oxygen isotope signature (B). Conturing map of YD depth (cmbsf) in the Tyrrhenian, Ionian and Adriatic seas
(C).
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able cores and associated proxies, thus it helps to correctly
plan future Mediterranean oceanographic expeditions.

Future developments for WDB-Paleo will aim to
record: a) new proxies (e.g. sapropel, chemical analysis of
tephra, quantitative data on radionuclides, Mg/Ca ratio),
specifically since theyhave been alreadyused in the recent
literature for relevant reconstructions along the Mediter-
ranean Sea [53, 117–120]); b) new quantitative biotic data,
at present in WDP-PALEO are recorded only those re-
trivied during the cruises of CARG, VECTOR and NEXT-
DATA projects, c) the possible relations between huge vol-
canic eruptions and extreme climatic variations recording
tephra occurrence at least for the Quaternary Periodan.
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Appendix
The primary key of the entity “site” was defined follow-
ing the structure of the International Geo Sample Num-
ber (IGSN) code (http://www.geosamples.org/aboutigsn,
2014), because several sites, considered in the present
work, already have an IGSN code. Moreover it represents
a standard that univocally identifies the single site on a
global scale. The first three digits of the IGSN represent
a name that uniquely identifies the institution registering
the site. The last 6 digits of the IGSN are a random string of
alphanumeric characters. The IGSN follows the syntax of
the URN (Uniform Resource Name), which is composed of
a “Namespace Identifier” (NID), a unique short string, and
of the “Namespace Specific String” (NSS). The IGSN is a 9-
digit alphanumeric code that uniquely identifies samples
taken from natural environment (for example: rock spec-
imens, water samples, sediment cores) as well as the re-
lated sampling information (sites, stations, stratigraphic
sections, etc.). The IGSN is long enough for large institu-
tions to register large numbers of samples (with 10 num-
bers plus 26 letters for the 6 random digits after the user
code, a total of 36^6 = 2,176,782,336 sample identifiers
per registrant is available) (http://www.geosamples.org/
aboutigsn, 2014).

Furthermore, we adopted a similarly structured code
to define the primary key of the identity “cruise”. The first
three digits identify the vessel name and the other six dig-
its represent a progressive code formed by two numbers,
followed by one letter and two other numbers.

For the identity “reference” we used a code formed
by a count number while for the other entities that record
quantity data, we used a structured number formed by
7 digits: the first four identify the site while the other
three refer to the sample used for quantitative analysis (i.e.
recognition and counting of foraminifera, isotopic data).
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