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Multi-omic approach identifies a transcriptional network
coupling innate immune response to proliferation in the blood
of COVID-19 cancer patients
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Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated
mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19
present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We
conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients
with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection
peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring
gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13,
IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse
subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK),
and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of
aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of
PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an
increased gene expression linked to Interferon α, γ, α/β response and signaling which paired with aberrant cell cycle regulation in
cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients
independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-
manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in
PBMCs of COVID-19 cancer patients.
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INTRODUCTION
The impact of the COVID-19 pandemic on cancer patients has
become a major focus of the investigation. The association of
COVID-19 and cancer is responsible for a more severe clinical
course with worse outcomes and a lethality rate of up to 25% in
these patients [1, 2], and the risk of adverse outcomes of SARS-
CoV-2 infection is significantly higher for patients with cancer

versus those without. The development of cancer itself, surgical
treatment and related procedures, radiotherapy, and/or sys-
temic treatments may lead to immune suppression [3], thus
increasing the risk of SARS-Cov-2 infection [4–6]. The negative
impact of COVID-19 has been seen across a broad spectrum of
cancers [7–10]. Although cancer by itself may be a risk factor for
the infection and evolution of the COVID-19 disease, the
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biological mechanisms underlying this synergy have been
scarcely investigated.
During SARS-CoV-2 infection, a derailed immune response of

the host is the main cause of tissue damage and the resulting
severity of the disease. Serum cytokines are aberrantly produced
in these patients and circulating subsets of immune cells are
altered compared to healthy donors. In agreement, lymphocytes'
gene expression profiles are deeply modified in Covid-19 patients
and these alterations are further enhanced with disease severity
[11–13]. Being lymphopenia, the strongest predictor for severity of
disease in COVID-19 patients [14]. An impaired interferon-I (IFN-1)
response that leads to a low expression of interferon-stimulated
genes coupled with high levels of cytokines represents a hallmark
of COVID-19 infection [12, 15–17]. Few data are available about
the modulation of immune cells in COVID-19 patients with cancer.
A multicentre study reported a significant decrease in the number
of T and NK cells in COVID-19 patients with hematological
malignancies when compared to COVID-19 patients [18]. Given
the key role of the immune response in both COVID-19 and
cancer, we hypothesized that the presence of SARS-CoV-2 in a
host immunologically compromised by cancer, could result in
specific features useful as prognostic markers of disease progres-
sion. Based on this hypothesis, our main purpose was to find
immunological features specific to cancer patients infected with
SARS-CoV-2 and to unveil how COVID-19 disease impacts the
immune system of these patients. To this purpose, using a multi-
omic experimental approach, we investigated COVID-19 patients
affected by neoplasms, serum cytokines, changes in the propor-
tion of circulating subsets of immune cells, and PBMC immuno-
logical gene expression profiles. Of note, we identified a gene
expression signature, common to different cancer types and
independent from stages of the diseases. Moreover, we identified
for the first time a network including transcription factors (TFs)
known to be relevant for the innate response upon viral infection
and cancer chronic inflammation, such as IRF, STAT, and BATF
and a master regulator of proliferation, E2F, which underlies
aberrant immune and proliferation responses of PBMCs in COVID-
19 cancer patients.

RESULTS
Patients characteristics
We collected blood samples to perform single-cell and molecular
immunological analysis by fCyTOF and NanoString technologies of
ten COVID-19 patients and four healthy donors (HD). In five out of
ten patients, COVID-19 was associated with cancer. We have also
included, in the Nanostring analysis, a cohort of ten patients with
cancer without COVID-19. The Nanostring results have been
further validated by RT-PCR including additional two cancer
patients without COVID-19 and 16 cancer COVID-19 patients
(Supplementary Fig. 1). Clinical and epidemiological characteristics
of this group of patients are reported in Supplementary Table I.
According to the criteria reported by the Chinese National Health
Commission [19, 20], we subdivided COVID-19 patients in five
critical, eight severe, six mild, three moderate, and four asympto-
matic. Among cancer patients, we collected 13 lung cancer, 6
hematological malignancy, 5 gastrointestinal cancer, 2 breast
cancer, 2 clear cell renal cell carcinoma, and 5 other malignancies
(Supplementary Fig. 1 and Supplementary Table I).

Symptomatic COVID-19 instigates hypercytokinemia
irrespective of cancer status
Overproduction of pro-inflammatory cytokines occurs both in
COVID-19 diseases and cancer [21, 22]. Herein, we aimed to assess
whether COVID-19 modulates differently cytokine production in
infected subjects with or without cancer. With the aid of Bio-Plex
Pro Human Cytokine 27-Plex Immunoassay, we assessed con-
comitantly the expression of 27 cytokines in patient sera. As

shown in Fig. 1a, principal component analysis (PCA) based on the
quantification of the 27 cytokines clearly discriminated a cohort of
mild-to-critical COVID-19 subjects from HD. By focusing on the top
statistically ranked cytokines we evidenced a subset of 8 cytokines
expressed at higher levels in the COVID-19 subjects than in HD
sera (Fig. 1b–d). Interestingly, an increased upregulation of IP-10
could be observed in male COVID-19 subjects compared to the
non-gender segregated group (Fig. 1e) while the same does not
happen in HD (Supplementary Fig. S2). Next, we assessed the
presence of these eight cytokines in sera from COVID-19 subjects
concomitantly affected by cancer, and no statistically significant
differences were evidenced between this group and COVID-19
subjects (Fig. 1d).
In aggregate, we documented that COVID-19 mild-to-severe

patients exhibited cytokine overproduction typical of active viral
infection and this occurs independently from the cancer
comorbidity.

Subclasses of hematopoietic cell populations are modulated
in COVID-19 cancer patients
To characterize the immune phenotyping of COVID-19 patients,
we carried out CyTOF analysis. The immune cellular subsets
identified using a 30 antibody panel are listed in Supplementary
Table II. T cells were reduced in COVID-19 patients compared to
HD. This reduction was mainly due to a decrease of mucosal-
associated invariant T cells (MAIT), NKT, and γδ T cells. The total
amount of CD8+ T cells was almost unchanged, but an imbalance
of cell subpopulations consisting of an increase in terminal
effectors CD8+ T and a decrease of naive CD8+ T was evidenced
(Fig. 2A). Among B cells, the minority subclass, plasmablasts, as
expected robustly increased while B-memory cells slightly
decreased in COVID-19 affected patients compared to HD (Fig.
2B). Within dendritic cells, myeloid and plasmacytoid subpopula-
tions were clearly reduced in COVID-19 patients compared to HD
(Fig. 2C). A slight reduction of NK cells (Fig. 2D) and non-classical
monocytes (Fig. 2E) was observed in COVID-19 patients compared
to HD. The majority of these modifications have been already
reported in the literature confirming the reliability of our results
[12, 23–29]. To search for specific hematopoietic alterations in
COVID-19 patients with cancer, we analyzed their immune
profiling and compared it to that of COVID-19 patients without
cancer. A further slight reduction of T cells was observed in COVID-
19 patients with cancer (Fig. 2A). This reduction was mainly due to
terminal effectors CD8+ T cells that are back to the levels observed
in HD, and MAIT-NKT cells. Regarding B cells, the imbalance
observed in COVID-19 patients became more pronounced in
cancer patients, being plasmablasts further increased and
B-memory decreased (Fig. 2B). The total amount of dendritic
(Fig. 2C) and NK (Fig. 2D) cells were comparable between COVID-
19 patients with cancer and without cancer. The total amount of
monocytes was almost unchanged, whereas the non-classical
monocytes subpopulation was rather increased in COVID-19
cancer patients compared to non-cancer patients (Fig. 2E). A
graphical representation of the CyTOF data in our cohorts is
shown in the Cen-se plot, reporting that different cancer patients
affected by different tumors exhibited peculiar differences in the
quantity of the various immune cell subpopulations (Supplemen-
tary Fig. S3).

Identification of a gene signature associated with COVID-19
patients with cancer
To further dissect the molecular features distinguishing COVID-19
patients with cancer from COVID-19 patients without cancer, we
performed gene expression profiling of total RNA derived from
PBMCs of both patient groups. We used the NanoString
PanCancer IO 360 Panel that allows analyzing simultaneously
the expression of 750 genes involved in the immune response.
First, we identified 236 genes whose expression was modulated
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Fig. 1 Cytokines multiplex analysis. a Principal component analysis based on a set of 27 cytokines separates HD (n= 4) from COV patients
(n= 10) cohorts (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-
BB, RANTES, TNF-α, VEGF, FGF basic, Eotaxin, G-CSF, GM-CSF, IFN-γ). b Principal component analysis based on a set of eight cytokines which
were found to be modulated between HD (n= 4) and COV patients (n= 10). c Unsupervised Hierarchical Clustering of the eight most
modulated cytokines separates HD (n= 4) from COV patients (n= 10), COVID-19 disease severity, and cancer comorbidity are indicated in the
graph. Clustering was built using Euclidean distance and average linkage on standardized expression. Higher values are shown in red, and
lower expression levels are represented in green. d Box plot of the distributions of eight most modulated cytokines between HD (n= 4), COV
(n= 6), and COV/cancer (n= 4) patients. e Box plot of the gender-dependent distributions of the IP-10 cytokine in COV patients (f= 3; m= 7).
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Fig. 2 PBMCs phenotype by CyTOF. Intact live cell percentage of T (A), B (B)*, dendritic (C), NK (D) cell subpopulations, and monocytes (E).
*Sand-006 patient with chronic lymphatic leukemia (CLL) is not included in (B). HD (n= 3) reveals a partially different populations and
subpopulations phenotyping from disease-affected patients, both COV/cancer (n= 5) and COV (n= 6) cohorts. Data represent mean ± SEM.
Student’s t test significance has been reported in graphs.
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between COVID-19 patients (n= 10) and HD (n= 2). To further
validate the robustness of our findings, we accessed the gene
expression raw data of Terrier’s group who analyzed the
immunological transcriptional signature of peripheral white blood
cells of 50 COVID-19 patients with different degrees of severity

[12]. Out of the 236 genes identified in our analysis, we could
match 114 genes that overlap with those analyzed by Terrier’s
group (Fig. 3a and Supplementary Table III). Notably, we found
that the group of genes that differentiates COVID-19 patients (n=
50) from HD (n= 18) in the cohort reported in Hadjadj J. et al.,
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2020 is also able to discriminate COVID-19 subjects versus HD in
our cohort (Fig. 3b). Of note, in the last analysis, our gene
signature is clearly able to cluster COVID-19 patients on the basis
of clinical severity, too.
Next, we aimed to identify genes whose expression was

selectively modulated between COVID-19 patients with cancer
or without cancer. Gene Set Enrichment Analysis (GSEA) carried

out by looking at all ranked genes revealed surprisingly that
genes belonging to interferon α, γ, and β pathways were
upregulated in COVID-19 cancer patients (Fig. 3c, upper panel).
Since it has been described that one hallmark of the SARS-CoV-
2 infection is the ability of the virus to imbalance the IFN
pathways [12, 15–17], this result surprisingly suggests that the
concomitant presence of COVID-19 and cancer triggers a

Fig. 3 NanoString gene expression analysis. a Hierarchical clustering of 114 genes significantly modulated between HD (n= 2) and COV
patients (n= 10) in Sant’Andrea Hospital cohort. Patients were sorted for the gravity of disease from healthy to critical status. HD reveals a
different gene expression profile from disease-affected patients. b The same panel of genes was validated on a published cohort of
45 samples, including 13 HD and 32 COV patients. Hierarchical clustering showed a very similar expression profile. c Gene Set Enrichment
Analysis (GSEA) was conducted considering a ranked list of all 750 genes of the NanoString PanCancer IO 360 Panel. Ranking was based on a
score evaluated considering the sign of the modulation and the P value from permutation test between COV/cancer (n= 5) and COV patients
(n= 5). Enriched gene set for activated genes and deactivated genes are represented on the left and on the right panel, respectively. Statistical
significance is shown by a false discovery rate and represented as a color scale. Dimension of circles indicates the percentage of genes
included in the gene set enrichment and all the pathways are sorted by the negative or positive normalized enrichment score (NES).

Fig. 4 Evaluation of cytokines & chemokines and type I IFN-related genes signature on NanoString gene expression profile. a, b Principal
component analysis and hierarchical clustering of a cytokines & chemokines gene signature reported in Hadjadj J. et al., 2020. The signature is
able to discriminate HD (n= 2) from COV patients (n= 5). Cancer patients are also indicated (n= 5). c, d Principal component analysis and
hierarchical clustering of a type I IFN gene signature reported in Hadjadj et al., 2020. The signature is able to discriminate HD (n= 2) from COV
patients (n= 5). A difference is also evident between COV/cancer (n= 5) and COV patients (n= 5).
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specific inflammatory response. Intriguingly, GSEA enriched for
E2F cell cycle-related targets gene, cell cycle, G2M checkpoint,
and DNA repair resulted to be upregulated in COVID-19 cancer
patients when compared to those without cancer (Fig. 3c, upper
panel).

Hadjadj et al. reported two gene signatures, which were related
to type I IFN-related genes and cytokine/chemokines, respectively,
and allowed to classify COVID-19 symptomatic patients in three
groups: mild-to-moderate, severe, and critical. By applying these
signatures to our patient cohort, we found that they were able to
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discriminate COVID-19 patients from HD (Fig. 4a, b). Interestingly,
unlike the cytokines/chemokines signature, type I IFN-related
genes were modulated in COVID-19 cancer patients when
compared to COVID-19 patients (Fig. 4c, d). This was evident in
both principal component (PC)1 (53.5%) and PC2 (16.5%) analysis
components (Fig. 4c).
Based on these findings, we looked for a gene expression

signature capable to discriminate between COVID-19 patients with
cancer or without cancer. Bioinformatics analysis allowed us to
identify a signature composed of 19 genes whose expression was
statistically significantly modulated in COVID-19 cancer patients
(n= 5) with respect to both HD (n= 2) and COVID-19 subjects
without cancer (n= 5) (Fig. 5a–d). Of note, the PCA analysis
performed with COVID-19 cancer, COVID-19, and cancer patients
clearly separates the three groups from each other and from HDs
(Fig. 5b). A group of six genes was upregulated, whereas 13 were
downregulated (Fig. 5a, c, d).
To further validate the specificity of the genes significantly

modulated in COVID-19 cancer patients, we carried out a similar
analysis on the RNA from PBMCs of ten cancer patients negative for
COVID-19. Notably, we found that 10 out of the 19 genes previously
identified were also differentially regulated comparing COVID-19
cancer patients with cancer patients without COVID-19 (Fig. 6a–c).
The majority of upregulated genes belong to the interferon signaling
and cytotoxicity pathways while several downregulated genes fall
into antigen presentation functional annotated category (https://
www.nanostring.com/products/ncounter-assays-panels/oncology/
pancancer-io-360/) (Supplementary Fig. S4)). To further validate the
robustness of the gene signature obtained by Nanostring, we
analyzed by real-time PCR the expressions of the ten genes of
interest. In total, 18 new patients were included in the analysis with a
final validation cohort consisting of 12 cancer and 21 COVID-19
cancer patients (Supplementary Fig. 1 and Supplementary Table I).
Overall, the entire gene signature was confirmed, being down-
regulated and upregulated genes differentially expressed in the
validation cohorts (Fig. 6d). Focusing on single genes, five out of ten
genes (AXIN1, IFIT1, PTGS2, IFIT3, MX1) are significantly deregulated
in the new COVID-19 cancer patient cohort (Fig. 6e). Interestingly, the
validated gene signature is independent of cancer type comparing
the gene signature in the lung cancer cohort (being the most
representative) versus the other types of cancer (Supplementary Fig.
S5). Intriguingly, two genes, PTGS2 and CXCL1, are upregulated in
COVID-19 cancer patients in a gender-dependent-manner being
upregulated in males but not in females (Supplementary Fig. S6).
In aggregate, our findings identify a restricted gene signature

that was able to discriminate, in a confirmatory consecutive
cohort, COVID-19 cancer patients from both COVID-19 patients
without cancer and cancer patients without COVID-19.
Next, we subdivided COVID-19 cancer patients according to

COVID-19 disease severity. Notably, the ten gene signature shows
a severity-dependent trend for downregulated genes (Fig. 7a),
while the same was not observed for upregulated genes (Fig. 7b).
Focusing on single-gene expression, we observed that two genes
LILRA1 and CD1C were significantly downregulated in a disease
severity-dependent-manner (Fig. 7c). CXCL1 was downregulated

in asymptomatic subjects while it was upregulated in mild/
moderate, severe, and critical patients (Fig. 7d). IFIT1, IFIT3, and
MX1 were upregulated in all severity degrees and further
increased in asymptomatic subjects (Fig. 7e). These results indicate
that a specific PBMC gene signature occurs in asymptomatic
COVID-19 cancer patients, suggesting its usefulness in the
identification of this status.

An immune and proliferation transcriptional network is
activated in COVID-19 cancer patients
Taking advantage of the Genome Browser ChIP-seq databases at
the University of California Santa Cruz (UCSC) (ENCODE tracks), we
looked for a common binding signature of transcription factors to
the promoters of the genes modulated in COVID-19 cancer
patients. The query to the UCSC genome browser has been
restricted to the available cells of blood origin (Supplementary
Table IV). Since in the GSEA analysis IFN α, γ, and β pathways as
well as E2F cell cycle-related targets were the most significantly
modulated, we focussed our attention on the IRF and E2F family
members (Supplementary Table V). Up to nine IRF members have
been identified [30]. We focused on IRF1–5 for which ChIP-seq
data are available and found that IRF and E2F family members
bind to 12 and 10 promoters out of 19, respectively. Of note, all
upregulated genes in the COVID-19 cancer signature contain a
binding site for IRF family members in the promoter region
spanning 10.000 kb upstream the start site and the first intron
(Fig. 8). IRF family members bind 5 out of 13 promoters of the
downregulated genes (Table 1 and Supplementary Fig. S7). Based
on the role of STAT family members on the interferon pathways
[31], we also investigated their recruitment onto the 19 promoters.
STATs form a family of 7 members while STAT ChIP-seq available
data are for STAT1, 2, 3, and 5a (Supplementary Table V). STAT
members are recruited on 14 out 19 promoter regions and, as in
the case of IRF, all upregulated genes in the COVID-19 cancer
signature contain a binding for STATs (Table 1 and Fig. 8). It has
been recently shown that either cancer or SARS-CoV-2 infection
mediates the activity of the IRF4-BATF pathway [32, 33] activating
IRF-mediated transcription. In agreement, among the ten promo-
ters bound by BATFs, eight are also bound by IRFs. On the
contrary, the binding of E2F family members occurs on the
regulatory regions of three upregulated and eight downregulated
genes (Table 1, Fig. 8 and Supplementary Fig. S7). We also
assessed the binding of acetylases (p300) and deacetylases
(HDACs) proteins and observed both enzymes mostly bind the
same promoter regions in agreement with the knowledge that the
proper transcriptional activity of target promoters depends on the
balanced activities of the two enzymes [34, 35] (Table 1, Fig. 8 and
Supplementary Fig. S7). Reassuringly, the analysis of ChIP-seq
datasets revealed in vivo direct binding of IRF, STAT, and E2F
family members onto the indicated promoters. The concomitant
binding of IRF and STAT on all promoters of the upregulated
genes and five of the downregulated once indicates a transcrip-
tional immune signature specifically acting on COVID-19 cancer
patients. Moreover, the binding of promoters of both up- and
downregulated genes suggests that IRFs, STATs, and E2Fs

Fig. 5 Gene expression signature modulated between COVID-19 patients affected by cancer and COVID-19 patients without cancer.
a Volcano plot shows P values and related log2 fold change of genes comparing cancer patients and no-cancer patients, both affected by
COVID-19. Statistically significance was evaluated by permutation test setting the threshold at 5%. Significant genes are highlighted.
b Principal component analysis of the 19 genes on HDs (n= 2), COV (n= 5), cancer (n= 10), and COV/cancer (n= 5) patient groups.
c Unsupervised Hierarchical Clustering of the 19-gene signature found to be significantly modulated between COV/cancer (n= 5) and COV
patients (n= 5). The signature seems to be able to clearly separates the two groups of patients. d Box plot of the distributions of the 19-gene
signature in HDs (n= 2), COV (n= 5), cancer (n= 10), and COV/cancer (n= 5) patient groups. Six genes were statistically significant
upregulated:IFI6 (P= 0.042918), IFT1 (P= 0.042844), IFT3 (P= 0.042039), MX1 (P= 0.038236), SLC1A5 (P= 0.019546), and TNFRSF17
(P= 0.046937), while 13 were downregulated: AXIN1 (P= 0.038559), BATF3 (P= 0.051956), BID (P= 0.034231), CD1C (P= 0.0075958), CD8A
(P= 0.036176), CDH2 (P= 0.038292), CXCL1 (P= 0.027772), LILRA1 (P= 0.040285), ICAM3 (P= 0.047029), DTX4 (P= 0.045546), PDGFB
(P= 0.028081), PTGS2 (P= 0.032919), and SNAI1 (P= 0.020527).
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Fig. 6 Evaluation of the gene signature on COVID-19 cancer patients. a Box plot of the distributions of 10 out 19-gene signature on HDs
(n= 2), COV (n= 5), cancer (n= 10) and COV/cancer (n= 5) patients. b Principal component analysis of the 10 genes on HDs (n= 2), COV
(n= 5), cancer (n= 10) and COV/cancer (n= 5) patient groups. c Unsupervised hierarchical clustering based on ten gene signature. The gene
signature shows a different profile between cancer patients in presence or in absence of COVID-19 infection. d Box plot of the distributions of
gene signature in cancer (n= 12) and COV/cancer (n= 21) validation cohorts. e Box plot of the distributions of AXIN1, IFIT1, PTGS2, IFIT3, MX1
in cancer (n= 12) and COV/cancer validation cohorts (n= 21).
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contribute to aberrant gene regulation in COVID-19 cancer
patients either activation or repression of transcription. This effect
has been already shown for other diseases [31, 36, 37].
In aggregate, we identify a transcriptional network coupling

innate immune response and cell proliferation in COVID-19 cancer
patients.

DISCUSSION
In the present manuscript, we aimed to provide initial insights on
the impact of COVID-19 on immune-circulating cells in cancer
patients. Unexpectedly we unveiled a common gene signature in
patients with different neoplasms and different degrees of COVID-
19 disease. Albeit limited in number (COVID-19 n= 12 and COVID/

Cancer n= 21), our COVID/Cancer cohort is to date the largest
described where gene expression has been investigated in depth.
We are aware that the heterogeneity of our COVID/Cancer cohort
may result in the loss of cancer-specific gene signatures, however,
we believe that the finding of a gene expression signature
common to different cancer types and diseases stages could
reveal interesting aspects worth further investigation.
To date, there are still scarce evidence on the molecular basis of

the severe adverse effects to which COVID-19 cancer patients
undergo. Uncertain results emerge from the comparison of both
ACE2 and TMPRSS2 expression and functional activities between
COVID-19-positive subjects and cancer patients [38, 39]. The
aberrant immune response is a common event for both SARS-CoV-
2 infection and cancer. This prompted an unprecedented research

Fig. 7 Evaluation of the gene signature on COVID-19 cancer patients in COVID-19 disease severity-manner. a Box plot of the COVID-19
disease severity-dependent distributions of downregulated gene signature in cancer (n= 12) and COV/cancer (n= 21) (asympt (n= 4), mild/
mod (n= 7), severe (n= 7), critical (n= 3)) validation cohorts. b Box plot of the COVID-19 disease severity-dependent distributions of
upregulated gene signature inn cancer (n= 12) and COV/cancer (n= 21) validation cohorts. c Box plot of the COVID-19 disease severity-
dependent distributions of LILRA1 and CD1C in cancer (n= 12) and COV/cancer (n= 21) validation cohorts. d Box plot of the COVID-19
disease severity-dependent distributions of CXCL1 in cancer (n= 12) and COV/cancer (n= 21) validation cohorts. e Box plot of the COVID-19
disease severity-dependent distributions of IFIT1, IFIT3, and MX1 in cancer (n= 12) and COV/cancer (n= 21) validation cohorts.
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focus to identify immune factors that discriminate COVID-19
patients with or without cancer. Herein, we observed that serum
production of well-recognized inflammatory mediators of the
“hypercytokinemia” typical of COVID-19-positive subjects [40]
were not differentially affected by the cancer status of SARS-
CoV-2-infected patients. CyTOF cell subpopulation immune-profile
revealed a small reduction of T cells in COVID-19 patients, further
evidenced in COVID-19 cancer patients. This reduction was mainly
due to terminal effectors CD8+ T cells whose amount in COVID-19
cancer patients became similar to that of HD, and MAIT-NKT cells
[41, 42]. A strong reduction of T cells has been described in
severe/critical COVID-19 patients [43], while we observe a small
reduction of these cells. One explanation should reside in the
clinical severity heterogeneity in our COVID-19 cohort. Regarding
B cells, the imbalance observed in COVID-19 patients became
worse in COVID-19 cancer patients, being plasmablasts further
increased and B memory decreased.
Notably, we identified a five-gene signature that was modulated

between COVID-19, cancer, and COVID-19 cancer patients. From a
functional point of view, genes involved in interferon signaling
and cytotoxicity (IFIT1, IFIT3, and MX1) are upregulated in COVID/
cancer cohort. On the other end, genes involved in antigen
presentation are downregulated, indicating that in patients with
both diseases the inhibition of the immune response is even more
pronounced than in patients with only one of the two, suggesting
a synergy of action of the two diseases.
GSEA analysis highlighted that the most significantly upregu-

lated pathways between COVID-19 and COVID-19 cancer patients

are those induced by interferon. In agreement with the fact that
upregulated gene signature in COVID-19 cancer patients is
enriched for interferon-regulated genes, their promoters are
bound by key regulators of interferon gene expression, IRF, STAT,
and BATF TFs. This further supports that. IFN pathways are
deregulated in COVID-19 patients [17, 44]. On the other side, IFN
pathways are usually active in cancer [45, 46]. Their further
induction in COVID-19 cancer patients could indicate a functional
synergy between COVID-19 and cancer suggesting that the active
IFN pathways in these patients may be one of the factors
influencing the increased disease severity observed in COVID
\cancer patients.
Another pathway significantly upregulated in the GSEA analysis

is that of E2F cell cycle-related targets. E2F family members are
key regulators of proliferation and several promoters of upregu-
lated genes in COVID-19 cancer patients are bound by one or
more of these proteins. An in vitro phospho-proteomic approach
on cells infected with SARS-CoV-2 indicates that cell cycle kinases
are downregulated, suggesting a general mitotic arrest [47]. On
the contrary, the aberrant regulation of the cell cycle is a hallmark
of cancer [48]. We can speculate that the concomitant binding of
TFs regulating the inflammatory response and TFs regulating
proliferation on many of the gene promoters modulated in COVID-
19 cancer patients may lead to a wide dramatic rearrangement of
different signaling pathways.
The analysis of the TFs in vivo binding on the promoters of the

gene signature suffers of limitations. First, the data deposited in
the database are referring to cells different from the PBMCs of our

Fig. 8 UCSC genome browser ChIP-seq analysis of the 6 upregulated promoters in COVID-19 cancer patients. Analysis on IFI6, IFIT1, IFIT3,
MX1, SLC1A5, TNFRSF17 promoters using UCSC genome browser and selecting available cells of blood origin (GM12878 and K562 cell line).
The analysis has been performed on a region spanning 10Kb upstream TSS (highlighted in light blue) and the first intron of the gene. The
binding for the following transcriptional factors have been searched: BATF, E2F family, P300, GATA family, HDAC family, IRF family, RUNX family,
STAT family, TEAD4, RB1. NFY, and SP1 ubiquitous factors were used as control. The H3K4me1, HeK4me3, and H3K27ac have been used to
identify the euchromatin region around the start sites. The same analysis for the downregulated genes is shown in Supplementary Fig. S7.
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patient cohort. Furthermore, there are no ChIP-seq experiments
for all members of the TF families we analyzed. For example, there
are data only for IRF1 to 5 and STAT1–3 and 5a. However, we
consider that the bindings we have identified are not artifacts. We
have indeed also looked for other TFs related to inflammation [44],
proliferation (NFY) [49], and ubiquitously expressed (Sp1) [50]
(Supplementary Table IV) and none of them bind the promoters of
interest.
The introduction of vaccination is rapidly progressing and

cancer patients are among the fragile subjects who have been
prioritized to receive it. We are already seeing a reduction in
severe COVID-19 patients and therefore also in cancer patients.
However, it is becoming more and more clear that not all cancer
patients are responding properly to vaccination. In particular,
onco-hematologic patient cohorts, undergoing different treat-
ments, do not respond adequately [51, 52]. In the light of these
evidence, it is still of great importance to study the molecular
mechanisms and to collect information on the interaction
between the SARS-CoV-2 virus and cancer diseases.

MATERIALS AND METHODS
Multiplex cytokine immunoassay
The Bio-Plex Pro Human Cytokine 27-Plex Immunoassay (Bio-Rad
Laboratories S.r.l. Segrate, Milan, Italy) was used to characterize Cytokine
Immunoassay of human sera samples. Samples were prepared following
the manufacturer’s instructions. The following Cytokine were analyzed: FGF
basic, Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-
8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, IP-10, MCP-1 (MCAF), MIP-1α,
MIP-1β, PDGF-BB, RANTES, TNF-α, VEGF. Sample acquisition was performed
using the Bio-plex Manager MP software with the MagPix instrument. Data
were analyzed with xPONENT software.

Isolation of peripheral blood mononuclear cells (PBMCs)
Isolation of Human PBMCs was done from peripheral blood, supplemented
with anticoagulants (EDTA), obtained from both COVID-19 patients and
HD. All patients voluntarily agreed to participate to the study and signed
an informed consent form. The detailed procedure is described in the
Supplementary informations.

Immune phenotyping by CyTOF and data analysis
Maxpar Direct Immune Profiling Assay was used to characterize immune
phenotyping of PBMC samples. Samples were prepared following the
manufacturer’s instructions. Sample acquisition was performed using the
Helios system. A list of used antibodies is presented in Supplementary
informations.
Data were analyzed by MaxparR Pathsetterrh (Fluidigm, South San

Francisco, CA, USA), powered by Gem Stone™ 2.0.41 (Verity Software
House, Topsham, ME, USA), and normalized using the CyTOF Software
v.6.7.1016. The high-dimensional Cen- se′™ (next-gen t-SNE) map has been
used to identify and visualize all populations of immune cells in our
samples.

Gene expression analysis
Total RNA was extracted from blood samples, using Qiazol (Qiagen, Hilden,
Germany), purified from DNA contamination through a DNase I (Qiagen)
digestion step, and further enriched by Qiagen RNeasy columns profiling
(Qiagen). The quantity and purity of the RNA were assessed with the
NanoDrop spectrophotometer. In the case of low 260/230 ratios, the
samples were re-purified by chloroform and subsequent ethanol
precipitation. The quality of the RNA was controlled with the Bioanalyzer
employing the Agilent RNA 6000 Pico or Nano Kit (Agilent Technologies,
Santa Clara, CA, USA). Gene expression was measured using the
NanoString PanCancer IO 360 Panel. As input 30–100 ng total RNA was
used following the manufacturer’s instructions. After the Codeset
hybridization, the samples were washed and loaded on the cartridge

Table 1. Binding of IRF, STATs, BATF, HDACs, p300 and E2Fs to the regulatory region of upregulated and downregulated genes specifically modulated
in COVID-19 cancer patients compared to COVID-19 patients.

Upregulated genes in COVID-19
cancer patients compared to COVID-
19 patients

IRF STAT BATF HDAC p300 E2F

IFI6 IRF1, IRF2,
IRF4, IRF5

STAT1, STAT2 ---- HDAC1, HDAC2 p300 E2F1, E2F6, RB1

IFIT1 IRF1, IRF2, IRF4 STAT1, STAT2 ---- HDAC1 p300 ----

IFIT3 IRF1, IRF2, IRF4 STAT1, STAT2,
STAT3, STAT5a

BATF HDAC1, HDAC2, HDAC6 p300 ----

MX1 IRF1, IRF2 STAT1, STAT2, STAT3 BATF HDAC1, HDAC2 p300 ----

SLC1A5 IRF1, IRF2, IRF3 STAT1, STAT3, STAT5a BATF HDAC1, HDAC2,
HDAC3, HDAC6

p300 RB1, E2F1, E2F4,
E2F6, E2F7, E2F8

TNFRSF17 IRF4 STAT3, STAT5a BATF HDAC1 p300 RB1

Downregulated genes in COVID-19
cancer patients compared to COVID-
19 patients

IRF STAT BATF HDAC p300 E2F

Axin1 IRF1 STAT5a ---- HDAC1, HDAC2 p300 E2F6, RB1

BATF3 IRF4 STAT3, STAT5a BATF HDAC1 p300 ----

BID (3 kb) ---- STAT3 ---- HDAC1, HDAC2 E2F6, RB1

CXCL1 ---- STAT3 ---- HDAC2 p300 E2F1, E2F6, RB1

PDGFb ---- ---- BATF HDAC1, HDAC2,

CDH2 BATF HDAC1, HDAC2 p300 ----

CD1C IRF4 STAT3, STAT5a BATF ---- p300 ----

ICAM3 ---- ---- ---- HDAC1,2 P300 E2F1

PTGS2 ---- STAT3 ---- ---- p300 ----

CD8a IRF3, IRF4 STAT1 BATF HDAC1, HDAC2 ---- E2F6, RB1

DTX4 IRF1, IRF3,
IRF4, IRF5

STAT1, STAT3, STAT5a BATF HDAC1, HDAC2 p300 E2F1,E2F6,
E2F8, RB1

LILRA1 ---- ---- ---- ---- ---- ----
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within the Prep Station and subsequently analyzed with the nCounter
Digital Analyzer.

Bioinformatics analysis
RCC files were analyzed using nSolver analysis software (Version 4.0) as the
manufacturer’s protocols. Negative and positive controls included in probe
sets were used for background thresholding and a geometric mean of
internal reference genes was used for normalization. Normalized counts
were further analyzed by MATLAB R2019b. Hierarchical clustering by
Euclidean distance and average linkage and principal component analysis
were performed on z score transformed counts. Differentially expressed
genes were detected using a permutation test and confirmed by a
Wilcoxon rank-sum test. Kruskal–Wallis test was applied to evaluate
differences among more than groups. A false discovery rate procedure was
applied for multiple comparisons.

Pathway analysis
A Gene Set Enrichment Analysis (GSEA software; https://www.gsea-msigdb.
org/gsea/index.jsp) was conducted by using the curated gene sets of the
Molecular Signature Database (MSigDB) derivated from KEGG, Hallmark,
Reactome, and Biocarta collections. GSEA was run in preranked mode
using classic as metric and 1000 permutations.
CHIP data were consulted from Transcription Factor ChIP-seq Clusters

ENCODE 3 database (Source data version: ENCODE Nov 3, 2018) in UCSC
Genome Browser (on Human Dec. 2013 (GRCh38/hg38) Assembly). A
detailed description of the used strategy is reported in Supplementary
informations.

RNA extraction, cDNA synthesis, and RT-qPCR
Total RNA from PBMC samples was extracted using the Qiazol Lysis
Reagent (Qiazol) and miRNeasy Mini Kit (Qiazol) following the manufac-
turer’s instructions. The first-strand cDNA was synthesized according to the
instructions for the M-MLV RT kit (Invitrogen). Real-time quantitative PCR
(RT-qPCR) was performed using TaqMan Fast Advanced Master mix
(Applied Biosystems) on an ABI Prism 7900 apparatus (Applied Biosystems).
Following TaqMan Gene Expression Assay (FAM)(ThermoFisher) were used:
AXIN1 (Hs00394718_m1); CD1C (Hs00233509_m1); CD8A (Hs00233
520_m1); CXCL1 (Hs00236937_m1);IFIT1 (Hs00356631_g1); IFIT3 (Hs00155
468_m1); LILRA1 (Hs04401156_gH); MX1 (Hs00182073_m1); PTGS2
(Hs00153133_m1); SLC1A5 (Hs00194540_m1); PUM1 (Hs00472881_m1);
SDHA (Hs00188166_m1). mRNA expression was normalized for PUM1 and
SDHA geometric means. Relative mRNA expression was calculated using
the comparative Ct method (10-deltaCT).

DATA AVAILABILITY
The authors declare that all data supporting the findings of this study are available
within the paper and its Supplementary informations files. NanoString data are
available at Gene Expression Omnibus database with access ID GSE164571.
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