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Abstract
In the absence of stimulus or task, the cortex spontaneously generates rich and consistent functional connectivity patterns
(termed resting state networks) which are evident even within individual cortical areas. We and others have previously
hypothesized that habitual cortical network activations during daily life contribute to the shaping of these connectivity
patterns. Here we tested this hypothesis by comparing, using blood oxygen level-dependent-functional magnetic resonance
imaging, the connectivity patterns that spontaneously emerge during rest in retinotopic visual areas to the patterns generated
by naturalistic visual stimuli (repeated movie segments). These were then compared with connectivity patterns produced by
more standard retinotopicmapping stimuli (polar and eccentricitymapping). Our results reveal that themovie-driven patterns
were significantly more similar to the spontaneously emerging patterns, compared with the connectivity patterns of either
eccentricity or polar mapping stimuli. Intentional visual imagery of naturalistic stimuli was unlikely to underlie these results,
since they were duplicated when participants were engaged in an auditory task. Our results suggest that the connectivity
patterns that appear during rest better reflect naturalistic activations rather than controlled, artificially designed stimuli. The
results are compatible with the hypothesis that the spontaneous connectivity patterns in human retinotopic areas reflect the
statistics of cortical coactivations during natural vision.
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Introduction
In the absence of external stimulation or task, during what is
termed “resting state,” the human cerebral cortex generates

ultra-slow spontaneous fluctuations that are robust and highly
consistent (Fox and Raichle 2007). These spontaneous fluctua-

tions have also been demonstrated to reflect ultra-slow modula-
tions in firing rate (Nir et al. 2008) as well as in local field potential

(Leopold et al. 2003; He et al. 2008; Nir et al. 2008), and were also
found during sleep (Ramot et al. 2013) and anesthesia (Arieli et al.

1996). An important aspect of these spontaneous fluctuations is
the tendency of cortical networks to fluctuate in tandem, gener-

ating a rich and highly informative correlation patterns (also

termed “functional connectivity” patterns; Biswal et al. 1995),

which have been extensively studied in recent years (e.g., Fox
et al. 2005; Nir et al. 2006; Fox and Raichle 2007; He et al. 2008).

However, despite a large body of research, it is not fully estab-
lished what is the information that is actually coded in these
spontaneously emerging correlation patterns. It has been origin-
ally proposed that the correlation patterns reflect an intrinsic
structure of large-scale networks that are activated during vari-
ous tasks (Greicius and Menon 2004; Smith et al. 2009; Deco
et al. 2011; Goñi et al. 2014). However, following the pioneering re-
search of Kenet et al. (2003) in anesthetized animals, further
studies begin to indicate that the spontaneous functional
connectivity patterns can show exquisite patterning also within
specific sensory systems, and even within individual cortical
areas. Thus far, intraregional connectivity patterns have been
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demonstrated within primate (Wang et al. 2013) and human
(Long et al. 2014) somatosensory cortex, as well as within the pri-
mate auditory cortex (Fukushima et al. 2012).

A particularly convenient system to examine such patterns is
the set of retinotopically organized areas in the human visual
cortex. This is because any connectivity pattern that may be
mapped to a visual region can also be projected onto the corre-
sponding visual topographic coordinates. The findings of robust
spontaneous fluctuations in the human visual cortex in the ab-
sence of sensory stimulation (Nir et al. 2006) led to a number of
recent studies that have explored how the functional connectiv-
ity of these regions relates to the retinotopic organization of the
visual cortex. Several studies found that visual regionswith simi-
lar receptive-fields tend to fluctuate in a correlated manner
(Heinzle et al. 2011; Butt et al. 2013; Gravel et al. 2014; Raemaekers
et al. 2014). This was true regardless of areal borders, that is, even
when the voxels were not of the same visual area (Buckner and
Yeo 2014). Additionally, cross-hemispheric connections were
found between homolog topographical locations within the vis-
ual cortex (Raemaekers et al. 2014). Moreover, the spontaneously
formed connectivity patterns, especially in areas V1–V3, were
found to follow eccentricity organization, including even regions
with nonoverlapping receptive fields, but representing iso-eccen-
tricity points (Yeo et al. 2011; Arcaro et al. 2015).While these stud-
ies offer potential principles that may underlie the organization
of resting state connectivity in the human visual cortex, the
processes that may underlie the emergence of these specific
organizing principles rather than others remain unclear.

Recently, we and others have proposed that the spontaneous
connectivity patterns are not the exclusive consequence of
intrinsic anatomical structuring, but that, in addition, Hebbian-
like shaping of the cortical connectivity patterns that occur
during daily life may play an important role in their detailed or-
ganization. In other words, the connectivity patterns that appear
during rest may actually constitute a record of habitual past cor-
tical coactivations (Fiser et al. 2010; Harmelech and Malach 2013;
Sadaghiani and Kleinschmidt 2013). A number of recent experi-
mental results support this hypothesis. For example, it has
been shown that the spontaneous connectivity patterns carry a
long-term trace of prior training and activation patterns (Lewis
et al. 2009; Tambini et al. 2010; Taubert et al. 2011; Harmelech
et al. 2013). Similarly, the level of interhemispheric motor-cortex
connections has been shown to reflect the habitual bimanual
hand usage in congenital amputees (Hahamy, Sotiropoulos
et al. 2015). In addition, aberrant task-evoked activation patterns
in the visual system have been shown to be recapitulated in rest-
ing state functional connectivity (Gilaie-Dotan et al. 2013).

It occurred to us that the spontaneously emerging patterns in
retinotopic visual areas could provide a powerful testing ground
for the above-mentioned hypothesis. If indeed the spontaneous
connectivity patterns in the visual cortex were shaped by the ha-
bitual coactivations produced by natural visual stimulation, then
wewould expect these patterns to bemore similar to the patterns
produced by naturalistic visual stimuli compared with the more
controlled stimuli typically employed in visual experiments.

In the present study, we set out to examine whether the con-
nectivity patterns evoked by laboratory-designed stimuli resem-
ble those that emerge during resting state, and how these
compare with the patterns evoked by a naturalistic stimulus. To
that end, we directly compared resting state connectivity pat-
terns with movie-driven ones and with patterns generated by
stimuli optimal for retinotopic mapping. Our results reveal that
the patterns of connectivity driven by free viewing of a movie
segment showed significantly higher similarity to the resting

state spontaneous connectivity patterns compared with other,
artificial stimuli, including eccentricity mapping stimuli. Our re-
sults are thus compatible with the hypothesis that spontaneous
connectivity patterns reflect the habitual cortical activations that
occur during natural viewing conditions.

Materials and Methods
Experimental Procedure

Fourteen participants took part in 2 experimental sessions (mean
± SDage 28 ± 2 years, 5males, 2 left handed); none had neurologic-
al or attentional disorders. Participants gave written informed
consent prior to the experimental sessions and all procedures
were approved by the Hertzog Hospital Ethics Committee.

In the main experimental session (Fig. 1A), participants were
instructed to close their eyes and rest without thinking of any-
thing in particular for 8 min (the session always began with a
resting state period). Next, eight of the participants performed 2
runs of an 8-min beep detection task, in which they were in-
structed to press a button every time they heard a beep (pure
tone, low volume beeps were played every 4–12 s). The stimuli
presentation and button press recordings were implemented in
Matlab using the Psychophysics Toolbox extensions (Brainard
1997; Pelli 1997). Additionally, participants freely viewed 2 repeti-
tions of an 8-min segment of a naturalistic feature film in Hebrew
(“Broken Wings”). The movie segment contained several highly
emotional scenes, which included people conversing and using
tools, and also contained music, and landscape shots. The
movie segment was preceded by 15 s of blank screen and a 15-s
visual adaptation stimulus (alternating colorful patterns). Only
the 8-min movie segment was used for the analyses.

All participants underwent an additional session of standard
retinotopic mapping. The order of the 2 sessions (main experi-
mental session and retinotopicmapping session)was counterba-
lanced between participants. The retinotopic mapping session
included 2 repetitions of a flickering black and white checker-
board rotating wedge stimulus (“polar angle”), and of an expand-
ing ring stimulus (maximum diameter 17° of visual angle;
“eccentricity”; Figure 1A; similar to Sereno et al. 1995). The stim-
uli were generated using a modified version of a Matlab program
originally created by Dr Samuel Schwarzkopf (https://sampendu.
wordpress.com/retinotopy-tutorial/). The duration of one com-
plete polar angle or eccentricity cycle was 60 s; 8 cycles were pre-
sented during each functional magnetic resonance imaging
(fMRI) run, to a total of 8 min. Participants were required tomain-
tainfixation on a central dot, and press a buttonwhen thefixation
changed its color to red (a rare event, meant to keep the partici-
pants alerted). This retinotopic mapping (polar angle and eccen-
tricity) allowed us to define the boundaries of retinotopic cortical
areas (V1, V2, V3) on the cortical surface for each individual par-
ticipant on the basis of the visual field sign (Sereno et al. 1995).

Imaging Setup and fMRI Analysis

Images were acquired using a 3 Tesla scanner (Tim Trio, Sie-
mens), equipped with a receive-only 12–channels head matrix
coil. Functional T2*-weighted images were acquired with a gradi-
ent echo EPI sequence with a repetition time (TR) of 2000 ms, an
echo time (TE) of 27 ms ,a 75° flip angle, a resolution of 3 × 3 × 3.3
mm, acquiring 34 transverse slices tilted to the anterior commis-
sure–posterior commissure plane, covering thewhole brainwith-
out gaps. Two 3D gradient echo T1-weighted anatomical images
were acquired to facilitate the incorporation and registration of
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the functional data into the 3Dnative anatomical space. The ana-
tomical images were acquired with a resolution of 1 × 1 × 1 mm
using the 3D-MPRAGE sequence with TR/TE/inversion time (TI)/
flip angle of 2300 ms/2.98 ms/900 ms/9°. During preprocessing

anatomical imaged were averaged in FreeSurfer to improve sig-
nal-to-noise ratio (Dale et al. 1999).

All fMRI data were processed using FSL 5.0.2.1 (www.fmrib.
ox.ac.uk/fsl), FreeSurfer (Dale et al. 1999; Fischl et al. 1999;

Figure 1. Experimental design and methodological approach. (A, left) The experiments in the main experimental session included resting state, auditory task, and free

viewing of amovie segment. Note that each condition had 2 repetitions, and the session always beganwith resting state. (A, right) In the retinotopicmapping session each

visual condition was presented twice. These stimuli were used to define retinotopic visual areas for each participant (see Materials and Methods). The order of the 2

sessions was counterbalanced between participants. (B) In order to avoid non stimulus-driven effects in analyzing visually induced conditions, an inter-run approach

was used. Stimulus-driven functional connectivity was calculated by taking the seed voxel from one movie repetition and correlating it with all the other voxels in

the other movie repetition (see Materials and Methods). (C) Schematic illustration of the sorting procedure of the correlation matrices according to the resting state

correlations (see Materials and Methods).
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http://surfer.nmr.mgh.harvard.edu/, last accessed November 5,
2015), AFNI, SUMA (Cox, 1996; http://afni.nimh.nih.gov/, last ac-
cessed November 5, 2015) and in-houseMatlab code (Mathworks,
Natick, MA, USA). Functional data were analyzed using FMRIB’s
expert analysis tool (FEAT, version 6). The following prestatistics
processingwas applied to the data of each individual participant:
motion correction using FMRIB’s Linear Image Registration Tool
(MCFLIRT) (Jenkinson et al. 2002); brain extraction using BET
(Smith et al. 2004); and high-pass temporal filtering with a cut-
off frequency of 0.01 Hz. Functional images were aligned with
high-resolution anatomical volumes initially using linear regis-
tration (FLIRT), then optimized using Boundary-Based Registra-
tion (Greve and Fischl 2009). The nonneuronal contributions to
the BOLD signal were removed by linear regression of motion
parameters, ventricle andwhitematter timecourses for each par-
ticipant (Fox et al. 2009). The white matter and ventricles of each
participant were automatically defined using FSL’s FAST (Zhang
et al. 2001), and manually refined to avoid boundaries between
tissues (Hahamy, Behrmann et al. 2015). Global signal regression
was not performed, as this procedure has been shown to distort
connectivity patterns and remove potential neural signals
(Murphy et al. 2009; Saad et al. 2012; Hahamy et al. 2014).

The cortical surface of each subject was reconstructed and
inflated using FreeSurfer, based on the mean anatomical image
of the 2 MPRAGE scans (Fischl et al. 1999; Fischl and Dale 2000).
The individual surfaces of each subject were then imported to
SUMA in subject space. Then the functional data were projected
onto the native cortical surface of each participant using SUMA.
Time courses were extracted from each vertex of each visual
region defined by the retinotopic mapping.

Functional Connectivity Maps Within and Between Runs

A standard functional connectivity analysis was applied to the
resting state condition: single voxels in the ventral part of regions
V2 and V3 were each taken in turn as a seed (one-voxel seeds),
and Pearson’s correlation was calculated in Matlab between
each seed voxel’s timecourse and all the other cortical voxels’
timecourses. The aim of the example functional connectivity fig-
ures was to visually illustrate the existence of long-range correla-
tions between ventral to dorsal portions, and their change across
conditions. Since the ventral and dorsal parts of V1 are adjacent
in the cortex, seed voxels were only taken from the ventral parts
of V2 and V3 to illustrate long-range connections. This procedure
resulted in multiple maps with an r value for each voxel, from
which one example map is depicted in Figure 2A. A functional
connectivity map based on a single voxel as a seed was obtained
for each of the 2 resting state runs. The map of the first resting
state and themap of the second resting statewere then averaged,
to reduce the noise in the representation of the resting state cor-
relation pattern. For visualization purposes only, prior to aver-
aging, the maps were transformed into standard MNI space and
the average map was back-transformed to native space. These
transformations resulted in a better registration to the FreeSurfer
surface without the excessive up-sampling that accompanies
performing the Matlab calculations directly on the surface. The
native map was then projected onto each participant’s native
inflated cortical surface.

For the visually driven conditions (movie viewing and retino-
topic mapping) we chose not to perform a within-run functional
connectivity analysis, in order to avoid effects on the correlation
pattern which are not stimulus-driven (Golland et al. 2007;
Hasson et al. 2010). Therefore, functional connectivity was calcu-
lated only between the 2 runs of each participant in the following

manner: each seed voxel’s timecourse was taken from the first
movie presentation and was correlated with all the voxel time-
courses of the second movie presentation (see Fig. 1B). The
same procedure was then applied to the second versus first
movie presentation, that is, each seed voxel’s timecourse was
taken now from the second movie presentation and was corre-
lated with all the voxel timecourses of the first movie presenta-
tion. Thus for each seed voxel 2 maps were created, which were
then averaged and projected onto FreeSurfer cortical surface
using the same procedure described above.

Figure 2. Example of the similarity between resting state and natural movie seed-

based connectivity maps. Inflated representation of the posterior portion of the

left hemisphere in a representative participant is presented, overlaid with a

functional connectivity map of (A) Within resting state functional connectivity

map with a seed voxel in ventral V2 (marked with a blue dot). Note the

widespread correlations spanning the anterior section of up to dorsal V1 and

V3. (B) Connectivity map between movie presentations (see Fig. 1C), using

the same seed voxel. Note that the same patches arising spontaneously in

the resting state map were driven coherently in this movie-driven map.

(C) Connectivity map between eccentricity mapping repetitions using the same

seed voxel. Note some similarity between the positive correlations in this map

and the resting state correlations, as well as some anticorrelations (in blue)

induced by the timing parameters of the visual stimulus. (D) Connectivity map

between polar angle mapping repetitions using the same seed voxel. Here a

different correlation pattern was generated with positive correlations mainly

confined to the ventral visual areas, and negative correlation in the dorsal

areas. V1–V3 borders are denoted by meridians lines (The dotted and solid lines

indicate vertical and horizontal meridians, respectively). Maps were overlaid on

the participant’s native cortical surface (see Materials and Methods).

Thresholds were chosen so as to equalize the number of positive voxels

between maps, in order to emphasize similarity of correlation pattern and not

strength. pos, posterior; ant, anterior.
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Because wewere interested in correlation patterns and not in
overall correlation strengths, the thresholds of the maps pre-
sented in Figure 2 were chosen so that the maps contained simi-
lar number of positively correlated voxels (except for polar angle
condition, which had a large spread of negatively correlated vox-
els, in which case the threshold was set according to the lowest
threshold obtained from the other maps conditions).

Creating Area-Specific Vertex-by-Vertex Correlation
Matrices

The complete pattern of correlations in each experimental
condition within a given visual region (defined according to the
retinotopic mapping run) was obtained as follows. The analysis
examined areas V1, V2, V3 separately, either while joining to-
gether dorsal and ventral sections and both hemispheres (to a
total of 2380 ± 151, 2581 ± 127, 2254 ± 89 vertices in V1, V2, V3 re-
spectively), or by joining only the dorsal and ventral sections
and keeping the hemispheres separated (1240 ± 80, 1337 ± 68,
1179 ± 62, 1140 ± 95, 1244 ± 75, 1075 ± 46 vertices in LH_V1,
LH_V2, LH_V3, RH_V1, RH_V2, RH_V3, respectively). To obtain
the full pairwise correlation matrix within each retinotopic
area, the timecourses of all vertices within a retinotopic area (de-
fined by the retinotopic mapping experiments) were extracted.
Then, a pairwise Pearson’s correlation matrix was calculated
for all the vertices in each visual area. For experiments in
which a visual stimuluswas presented, the correlation of the ver-
tices activity was calculated between and not within runs (the
timecourses of all the vertices in the first stimulus presentation
were correlated with the timecourses of all the vertices in the
second stimulus presentation and vice versa; see “functional
connectivity” section). This formed an asymmetrical matrix,
such that the diagonal represented the timecourse correlation
of the same vertex across the 2 stimuli presentations (similar to
Golland et al. 2007). Values below the diagonal represented corre-
lations of each of the seed vertices taken from the first stimuli
presentation with all the vertices taken from the second stimuli
presentation (and vice versa for values above the diagonal).

When no visual stimulus was presented (i.e., during resting
state and beep detection runs), the correlation matrices were cal-
culatedwithin each run, and an average of the 2within-runmatri-
ces was calculated to emphasize consistent correlation patterns,
and reduce noise (forming a symmetrical matrix).

Creating Area-Specific Vertex-by-Vertex Distance
Matrices

Five different topographic models were computed based on dif-
ferent types of distances betweenpairs of vertices: 1) Volume dis-
tancemodel: for each pair of vertices in thematrix the volumetric
Euclidean distance in the 3D anatomical space was calculated to
form a distances matrix, keeping the same vertex order as in the
correlationmatrices. 2) Surface distancemodel: in a similarman-
ner, SUMA was used to calculate the shortest distance between
each pair of vertices along the cortical surface. This analysis
was only done for matrices containing vertices within a single
hemisphere. 3) Polar angle distance model: the polar angle pref-
erence of each vertex was extracted based on the retinotopic
mapping. Then the angular distance between each pair of verti-
ces was calculated and assigned to its proper position in the ma-
trix. 4) Eccentricity distance model: the eccentricity visual angle
preference of each vertex was extracted based on the retinotopic
mapping, and the angular distance of each pair was calculated. 5)
Retinotopic location distance model: the preferred polar angle

and eccentricity angle were combined for each vertex to create
a single vector representing its preferred receptive field represen-
tation. These vectors were then used to compute the retinotopic
distance between each pair of vertices.

Distances in all themodelswere inverted ð1= distanceÞ so that
close vertices would be represented by higher values, and farther
away vertices would be represented by lower values.

Sorting Area-Specific Matrices According to Resting State
Matrices

In order to better visualize the level of resemblance between the
resting state and stimulus-driven connectivity patterns, the rest-
ing state correlation matrix of each visual area was sorted from
strongest to weakest correlations in the following manner:
since these matrices are symmetrical, only values below the di-
agonal were taken. These values were sorted according to their
correlation strength, and were then arranged within a shape of
a square so as to generate a salient pattern of correlation gradual-
lymoving from strongest toweakest values along awinding diag-
onal path (see Fig. 1C for demonstration). Critically, the index of
the location of each value in the original resting state matrix
was kept, so exactly the same index order could be applied to
the stimulus-induced matrices as well (see Fig. 1C). Thus, the
stimulus-induced and the distance matrices of each participant
were rearranged not according to their own correlation strength,
but according to the resting state matrix correlation strength.
This ensured that if the original correlation pattern of a certain
condition was similar to resting state, the new sorted square
would present a gradual diagonal pattern similar to that of the
corresponding resting state square.

In order to average the sorted squares across participants, the
squares had to have similar dimensions. Because different parti-
cipants had different original matrix sizes, the size of the mean
square was determined by the smallest original matrix. There-
fore, only a subset of the sorted correlation values was taken, to
form for each participant a 1081 × 1081, 1371 × 1371, 1328 × 1328
size squares for V1, V2, V3, respectively. The squares were then
averaged across participants and used for visualization.

Because the cross-runmatrices were not symmetrical, values
both below and above the diagonal had to be taken into account.
This was done by averaging each value below the diagonal with
its homolog value above the diagonal before creating the sorted
square (i.e., the correlation of vertex i from the first run with ver-
tex j from the second run was averaged with the correlation of
vertex j from the first run with vertex i from the second run).

To better visualize the connectivity pattern regardless of over-
all correlation strength (which may differ between participants),
the correlation values in each matrix were normalized by divid-
ing each correlation value by the mean absolute value of the 2.5
and 97.5 percentiles (thus reducing the effect of the 5% outlier
values on the matrix color range).

Correlation Between Spontaneous Connectivity Patterns
and Stimulus Induced Patterns

For each participant, we examined the similarity between the
resting state connectivity patterns (as well as patterns emerging
during beep detection) and each of the stimulus-driven patterns.
To that end, each unsorted matrix was transformed into a vector
in the following manner: for the nonsymmetrical stimulus-dri-
ven matrices, the values below and above the diagonal were
transformed into vectors, and then averaged (such that values
were averaged symmetrically). For the averaged resting state
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(and beep detection) matrices, only values below the diagonal
were transformed into a vector as matrices were symmetric.
The values along themain diagonal were disregarded in the com-
parison because the resting state diagonal is uninformative. The
symmetrical distances matrices were also turned into a vector in
a fashion similar to the resting state matrices. Then Pearson’s
correlation between the resting state vector and each of the
stimulus-driven vectors was calculated for each participant
separately in each region. For comparison between resting state
vector and the different distance vectors, a nonparametric
Spearman correlation was used (the correlation was done after
the distances were inverted to 1= distance).

All further statistical tests were performed after correlation
values underwent Fisher’s r to z transformation. One-sample
t-tests were used to establish whether the correlations between
the matrices of each condition and the resting state matrices
were significantly greater than zero, and P-values were Bonferro-
ni corrected (taking into account number of areas × number of
conditions). Then, a 2-way repeated-measures analysis of vari-
ance (ANOVA) was performed taking visual area and condition
as factors, to compare the level of similarity to resting state pat-
terns between the different conditions, followed by Bonferroni
corrected post hoc tests.

Controlling for Negative Correlations

We next aimed to eliminate the effect of negative correlations
during retinotopy runs on the similarity between stimulus-
driven matrices and resting state matrices. For this purpose, all
negative values in the cross-run vectors of stimulus-evoked con-
nectivity were transformed into zero before correlating them
with the resting state connectivity vectors. Similar statistical
tests were then applied on these nonnegative vectors, as previ-
ously described.

Plotting Average Cross-Run Correlations Against Binned
Resting State Correlations

As a different way to visualize the relation between the resting
state connectivity pattern and the stimulus-induced connectiv-
ity pattern, stimulus-induced connectivity values were plotted
against resting state binned connectivity values in the following
manner: vertex pairs were binned according to their resting state
correlation, using 100 equally spaced bins (from r = −1 to r = 1)
within each participant. Pairs with extreme correlation coeffi-
cients (top and bottom 99% and 1% of the values) were excluded
from this analysis in order to reduce the effect of noisy or partial-
ly volumed voxels. The average cross-run correlation for each bin
was calculated and plotted against each respective bin of resting
state connectivity. An average line across participants was calcu-
lated for each experimental condition in each visual region,while
considering only bins that were common to all participants.

The fit of each plot to a linear function wasmeasured by a lin-
ear regression for each participant, and the R2 value extracted in
each experimental condition.

Reliability Measurement

A quantitative estimate of the reliability of our correlation pat-
terns was obtained, to assess if indeed there was a stable stimu-
lus-driven response between each 2 run repetitions. Note that for
each pair of vertices we obtained 2 independent correlationmea-
sures—one valuewas obtainedwhenwe correlated the first voxel
timecourse during the first stimulus presentation with the

second voxel’s timecourse during the second movie presenta-
tion. The second value was obtained by correlating the first
voxel timecourse during the second movie presentation with
the second voxel’s timecourse during the first movie presenta-
tion. By comparing these 2 values we could get a measure of reli-
ability of the overall correlation set. Thus, the vector of values
below the diagonal was correlated with the vector of values
above the diagonal to give the reliabilitymeasure for eachmatrix.
A 2-way repeated-measures ANOVA was performed on the
single-subject correlations taking visual area and condition as
factors, followed by Bonferroni corrected post hoc tests.

Comparing Resting State Before and After the Movie
Presentation

In an additional analysis, the original data from the 2 resting state
periods were not averaged. Instead, after the matrices of the first
and the second resting state periods were turned into vectors (as
described above), the vectorswere each correlatedwith the cross-
movie vector separately.

Results
In the current study, we aimed to compare between spontan-
eously emerging connectivity patterns in the visual cortex and
patterns that emerge during both naturalistic and laboratory-de-
signed visual stimuli. Therefore, our experiment consisted of 2
resting state periods with eyes closed, and 2 repetitions of a nat-
uralistic movie segment (14 participants). A subset of 8 partici-
pants performed an auditory beep detection task (Fig. 1A; see
Materials andMethods). All participants also took part in an add-
itional session for standard retinotopic mapping using 2 presen-
tations of rotating wedge and expanding ring stimuli (see Fig. 1A
and Materials and Methods).

In agreement with previous reports, examining the correl-
ation patterns that emerged during rest with eyes closed revealed
awide spread and intricate pattern, that spanned long anatomic-
al distances both within and across cortical areas. Figure 2A pre-
sents an example of seed-based correlations obtained from a
single voxel’s timecourse located in ventral area V2 (blue dot)
while a participant rested in the scanner with eyes closed. As
can be seen, the correlation to the seed voxel spanned well be-
yond its neighboring voxels in the anterior section of ventral
V2, and reached as far as dorsal parts of V1 and V3, while forming
a series of distinct patches in the anterior section of the primary
visual areas.

Our goal was to compare the resting state correlation pattern
to the pattern produced by each of the various visually induced
conditions. Hence correlation maps from the same seed voxel
were generated for each condition as depicted in Figure 2B–D.
Panel 2B depicts the correlation of a single seed voxel timecourse
during the first movie presentation with the timecourses of all
other voxels during the second movie presentations, and vice
versa (see Fig. 1B and Materials and Methods). It is important to
emphasize that the correlation pattern calculated in thismanner
was strictly driven by the movie-stimulation and was not “con-
taminated” by the spontaneous signals that likely co-occur dur-
ing the movie viewing. The timecourses of such spontaneous
fluctuations were not phase-locked to the movie onset and did
not share a common sequence and hence were not expected to
show consistency across movie presentations. Panel 2C depicts
the correlation pattern of the same seed voxel across repetitions
of concentric ring stimulations (“eccentricity mapping”, see Ma-
terials and Methods). Finally, Panel 2D depicts the same seed
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correlation but across repetitions of a rotating wedge stimulation
whose apex coincided with the fixation point (“polar angle map-
ping”, see Materials and Methods). As evident, even by visual
inspection, both the free viewing of the movie as well as the ec-
centricity mapping produced functional connectivity maps that
were remarkably similar to the spontaneously emerging resting
state functional connectivity. In contrast, the polar stimulation
produced a correlation pattern that was only partially similar to
the resting state one, mainly at short cortical distances.

To obtain the entire set of pairwise correlations during the
various conditions, we calculated, separately for each area (V1–
V3), a matrix of all pairwise vertex correlations (the correlations
were calculated for all vertex pairwise combinations within
each area including both dorsal and ventral parts in the 2 hemi-
spheres). To allow a better visualization of the potential similar-
ity between the patterns during the various conditions, the
matrix cells were rearranged such as to show a gradient from
high-to-low correlations during the resting state (see Fig. 1C
andMaterials andMethods). The indices (locations in the original
matrix) of all cells in the rearranged resting state matrix were
kept unchanged across all other conditions, but the values of cor-
relations were replaced according to their values in each condi-
tion (see Fig. 1C and Materials and Methods). This allowed a
direct visual comparison to the artificially sorted resting state
matrices. It should be emphasized that this rearrangement
of the resting state matrix is artificial and was conducted for
visualization purposes only. The cross participant mean of
these artificially constructed matrices can be seen in Figure 3A
(see Materials and Methods). Note that similarity in correlation
patterns between the resting state and other conditions should
be revealed under this visualization scheme as a reappearance
of the correlation gradient in the other conditions.

Figure 3B depicts the rearranged mean matrix of pairwise
correlations driven by the movie stimulation. The movie-driven
correlations were generated by taking the timecourse of one
member of a vertex pair during movie 1 and correlating it with
the timecourse of the second member of the pair during movie
2 and vice versa (see Materials and Methods and Fig. 1B,C), thus
ensuring that the correlation will be driven by the movie and
not “contaminated” by potentially ongoing spontaneous fluctua-
tions. Although some degradation in the similarity to the resting
state pattern can be discerned, the reemergence of the under-
lying structure is clearly evident. Panels 3C–3D depict the rear-
ranged matrices of pairwise correlations for the correlation
values, across repeats, of the eccentricity and polar angle stimuli.
Both these conditions appear to show some traces of the resting
state patterns, however, therewas amarked reduction in similar-
ity to the resting state pattern across all 3 retinotopic areas com-
pared with the movie-driven correlation matrix. Note also that
due to the nature of the retinotopic visual stimuli, a large extent
of the pairwise correlations in these matrices were negative as
opposed to the resting state and movie matrices. Finally, to as-
sess the effect of the anatomical distance between vertices on
the correlation pattern, the inverted Euclidean distance between
each pair of vertices was measured (Fig. 3E; see Materials and
Methods for details) and assigned to the rearranged matrix. As
expected, as evident in Figure 3E, there was some contribution
of anatomical distance to the resting state correlation pattern,
but this effect could not account for the full richness of the rest-
ing state correlation pattern.

Next we quantified the similarity between resting state pat-
terns and the stimulus-drivenpatterns under all other conditions
(see Materials and Methods). Figure 4 depicts a summary histo-
gram of the similarity between the connectivity patterns under

the different conditions. The Y axis depicts how similar the
stimulus-driven pairwise correlation pattern in each condition
was to the pairwise correlation pattern during rest, separately
for areas V1–V3. Two aspects can be discerned: First, all stimu-
lus-driven visual correlations showed a significant similarity to
the resting state pattern (smallest t(13) = 8.9; P < 0.001 for all condi-
tions ; one-sample t-test, Bonferroni corrected). Second, the
movie-driven correlation pattern showed a significantly higher
similarity to the resting state pattern comparedwith all other vis-
ual conditions. Overall, this similarity was significantly higher in
V1 compared with the other regions (repeated-measures ANOVA
showed F2,26 = 5.04, P = 0.02 for visual area; F3,39 = 38, P = 0.000005
for condition; and no interaction; post hoc tests show that the
movie-driven correlations were more similar to rest compared
with all other conditions P < 0.0001). As a control, we computed
a correlation matrix between resting state periods, assuming no
consistent pattern should emerge. Indeed, this cross-rest condi-
tion failed to show a significant similarity to the within-rest
condition, in accordancewith the spontaneousnature of thefluc-
tuations in each of the resting state runs. These effects were not
limited to the pattern of each area individually. Integrating the
correlation matrix of areas V1–V3 into a single matrix (which in-
cluded the cross-area correlations as well) showed an even more
pronounced effect (see Supplementary Fig. 1; F3,39 = 31.4,
P = 0.00005 for condition; movie higher than other conditions
P < 0.0005, post hoc tests).

In addition, we have depicted the pairwise correlations be-
tween each of the cross-condition matrices and the resting
state matrices in a line plot. In this plot, the x axis represented
the resting state pairwise correlations (binned at 0.02 intervals),
while the y-axis represented the pairwise correlations across
conditions (see Supplementary Fig. 2). In this analysis, a better
matching of the pattern of the matrices between rest and a con-
dition should be expressed as a closer to linear function. Quanti-
tative analysis in each of the cortical areas revealed that the
cross-movie correlations showed a significantly more linear
function compared with the cross-polar or eccentricity condi-
tions (P < 0.005, P < 0.05, P < 0.005 for V1, V2, V3, respectively,
t-tests on linear fit values, Bonferroni corrected). These results
further confirm that the cross-movie correlations showed a
significantly higher similarity to the resting state correlations.

However, as can be seen (Figs 2 and 3) the correlations during
both the eccentricity mapping and polar mapping conditions in-
cluded a substantial number of negative (anticorrelated) values,
while the movie and the resting state correlations did not. To
examine whether the existence of these negative values could
explain the lower similarities between the retinotopic patterns
and the resting state pattern, we repeated the analysis, but this
time we replaced all negative values with zeros. Importantly,
this manipulation did not substantially affect the results, (see
Supplementary Fig. 3) and the correlation between the resting
state patterns and movie patterns remained significantly higher
than the correlations between the resting state patterns and any
other condition (P < 0.0001, post hoc tests after repeated-
measures ANOVA).

Additionally, to further examine the relative contributions of
different topographic principles to the resting state patterns, the
following analysis was performed (seeMaterials andMethods for
more details): The preferred receptive field location of each
cortical vertexwas defined by the eccentricity and polarmapping
results. Then an eccentricity model was constructed, which was
inversely proportional to the visual field distance (in degrees of
visual angle) between each 2 cortical vertices along the eccentri-
city dimension (i.e., ignoring changes along the polar dimension).
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In a similar manner, a polar model in which the values
were inversely proportional to visual field distances along the
polar dimension was constructed. Finally, we constructed a ret-
inotopic distance model, in which the values were inversely pro-
portional to actual Euclidean visual field distance between the

representations of each 2 cortical vertices. Note that these mod-
els did not contain any negative values, since the shortest pos-
sible distance between 2 vertices was zero. The results of this
analysis are shown in Figure 5. Nonparametric statistics were
used to get a measure of the ordinal correlation between the

Figure 3. Similar resting state and movie patterns revealed in sorted mean correlation patterns of all vertices in each of the visual regions V1, V2, and V3. (A) The resting

state pairwise correlationmatrix of all vertices in a given visual area (V1, V2, V3) was sorted according to correlation strength to form a gradual pattern (see Materials and

Methods). Themeanmatrix across all participants is presented (N = 14). (B) The same vertex order of the resting state matrix was kept but the pairwise correlation values

were derived from the cross-movie matrix. The individual patterns were then averaged across participants. Note that the same gradual pattern reemerged in the

naturalistic movie condition. (C,D) Same as B, but for eccentricity (C) and polar angle (D) conditions. Note that some similarity to resting state pattern remains, but it

was less salient than that produced by the natural movie. Additionally, these conditions contain many negative correlation values. (E) Euclidean volumetric distance

between each vertex pair (1/distance; high values represent nearby vertices). Values were normalized individually for each condition to demonstrate correlation

pattern irrespective of amplitude (see Materials and Methods).
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resting state patterns and these topographic distance models.
This waywe could assess howwell each of thesemodels can pre-
dict the order of correlation strengths during resting state (as-
suming shorter distances in each of these dimensions would
correspond to higher correlation during rest etc.). As can be
seen, the cross-movie correlationswere significantly higher com-
pared with these model estimates, inferring that the strength
order of correlations during resting state were better explained
by themovie rather than byanyof the topographic distancemod-
els (P < 0.0005, post hoc tests after repeated-measures ANOVA).

After obtaining the correlations between resting state
patterns and the different retinotopic models with the 2 hemi-
spheres combined, we next recalculated the correlations
while considering the left and right hemisphere separately (see
Materials and Methods). This enabled us to also generate a sur-
face distance model of the correlation pattern. Figure 6 shows
the ordinal correlation between resting state and movie pattern,
as well as to the different distance models in each of the regions
within the left and right hemisphere. This separate hemisphere
analysis retained the same effect as the combined hemispheres
analysis, and no difference between hemispheres was found
(F5,65 = 0.6, P = 0.6 for area, repeated-measures ANOVA). In other
words, the resting state correlation pattern was still more similar
to the movie-evoked pattern than to all the other distance

models. Additionally, conducting the analysis separately on the
dorsal and ventral quarter-field representations of each visual
areas, confirmed Arcaro et al. (2015) finding of a higher correl-
ation for eccentricity coordinates compared with polar ones (P =
0.13, P = 0.0003, P = 0.003 for V1, V2, V3, respectively; post hoc tests
after repeated-measures ANOVA).

It could also be argued that the reason that the movie-driven
pattern showed higher similarity to the resting state pattern
compared with the more artificial eccentricity and polar stimuli
was a trivial consequence of reliability. If, for example, the eccen-
tricity stimuli were less engaging, thus producing weaker and
less reliable stimulus-driven signals—the consequent patterns
generated by these stimuli will be noisier and hence show poorer
similarity to the rest pattern. Note that only activity that is driven
by the stimulus would contribute to the stimulus-driven matri-
ces, because thosematrices were based on cross-run correlations
(seeMaterials andMethods). To examine this potential confound
we calculated how reproducible was the pattern of correlation
generated by each stimulus condition. This was obtained by sim-
ply measuring the similarity of the patterns when calculating
them from 2 independent data sets that were obtained for each
condition (see Materials and Methods).

Figure 7 depicts the reliability measures for the different con-
ditions. As expected, all stimulus-driven conditions showed a
significantly reliable pattern (smallest t(13) = 9.7; P > 0.0001; one-
sample t-test, Bonferroni corrected). No significant reliability
was found across resting state repetitions when considering the
inter-run correlation—again, as expected given the spontaneous
nature of these fluctuations. Notably, the auditory control condi-
tion of beep detection with eyes closed did not show significant
reliability between runs, suggesting that the visual cortex was in-
deed fluctuating spontaneously and did not respond in a consist-
ent manner to the auditory stimuli, which occurred at identical
timing in the 2 beep detection tasks.

Importantly, the reliability of the movie-driven correlations
was significantly lower than that of the eccentricity and polar
mapping conditions (F3,39 = 226 for condition; P < 0.0005 for all
conditions and all visual areas; repeated-measures ANOVAwith
Bonferroni corrected post hoc tests), ruling out higher reliability
for the movie condition as an explanation for its higher correl-
ation to the resting state pattern.

Next we set out to examine whether the correlation between
themovie-evoked and the rest patterns was related to the level of
the reliability of the cross-movie pattern, assuming that a more
reliable patternwould yield a less noisy representation of the cor-
relation pattern and hencemore similarity to the rest pattern. In-
deed, when plotting cross-movie reliability versus cross-movie
similarity to the rest pattern for each participant, we found a sig-
nificant linear relationship between the 2measures, that is, high-
er reliability values produced higher similarity to the rest pattern
(Fig. 7B; r = 0.67, 0.7, 0.77 and P = 0.02, 0.02, 0.004 for V1, V2, V3 re-
spectively; Pearson’s correlation Bonferroni corrected). This im-
plies that the measured similarity between the movie-driven
and spontaneous (resting state) connectivity patterns was likely
an underestimation of the true similarity.

To address the concern that during rest participants may have
systematicallyengaged in visual imagery,we compared connectiv-
ity patterns in all the conditions to thewithin-run pattern of corre-
lations that emerged when participants were asked to perform a
nonvisual task (beep detection), performed with eyes closed (hit
rate of 98.9%). The results of this analysis are depicted in Figure 8.
When comparing the pairwisewithin-run correlationmatrix of the
beep detection task to the cross-run matrices of the stimulus-
driven conditions, the correlations were essentially identical

Figure 4. Naturalistic movie pattern shows significantly higher correlation to

resting state pattern than other visual conditions. All visual conditions showed

significant correlation to resting state, but the movie produced significantly

higher correlations than all other visual conditions. Cross-resting state matrix

failed to show a significant correlation to the within-run resting state patterns.

Error bars denote standard error of the mean (±SEM); *P < 0.05 **P < 0.000005.

Figure 5. Movie pattern shows higher nonparametric correlation to resting state

pattern than topographic distance models. Different models considering

distances between vertex pairs in different retinotopic dimensions or distance

in their location on the cortex were nonparametrically compared with the

resting state pattern. Though all of the topographic principles contribute

significantly to the resting state correlation, the movie still produces higher

correlations to resting state. *P < 0.0005 **P < 0.000005.
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to those achieved with resting state (N = 8 for beep detection, and
N = 14 for resting state; see Fig. 8). In fact, none of the correlations
we tested showed any significant difference between resting
state and beep detection (lowest P value was P = 0.2 for V1 cross-
rest versus cross-beep, 2-sample t-test, Bonferroni corrected).

A direct comparison between within-run resting state and
within-run beep detection patterns revealed a high similarity be-
tween these 2nonvisual conditions (Fig. 8 leftmost bar). This high

similarity can be appreciated also by noting the within-run beep
matrices which were sorted according to resting state correla-
tions (similar to Fig. 3; Supplementary Fig. 4).

In contrast, cross-run beep detection matrices showed close
to zero correlations (average pairwise correlation, r = 0.01, 0.004,
0.0007 in V1, V2, V3, respectively), in accordance with the spon-
taneous nature of fluctuations in visual cortex during this condi-
tion resulting in a very noisy pattern (see Supplementary Fig. 4C).

Figure 6.Comparing resting state patternwith topographic distancemodels while considering right and left hemispheres separately. All bars are significantly higher than

zero, but movie is more similar to resting state than the other conditions. Volume distancemodel has higher correlations to resting state than the other distancemodels.

RH, right hemisphere; LH, left hemisphere; *P < 0.005 **P < 0.0005.

Figure 7. Eccentricity and polar angle conditions showhigher reliability between runs than naturalisticmovie. (A) The symmetry of the inter-runmatrix in each condition

wasmeasured to assess reliability between runs (seeMaterials andMethods). Note that themovie patterns showed significant reliability between runs, albeit significantly

lower than that of the better controlled eccentricity and polar angle stimuli. The nonvisual conditions (resting state and beep detection) showedno significant reliability in

these primary visual areas. Error bars denote standard error of the mean (±SEM). (B) A scatter plot of reliability between movie runs versus the correlation of the cross-

moviematrix to the resting statematrix in each individual participant (eachdot denotes a participant). A linear relationshipwas found between these 2measures. *P < 0.05

**P < 0.00005.
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Furthermore, the similarity of this cross-beep matrix and
the resting state matrix was not significant (W = 33, 26, 24 and
P = 0.12, 0.93, 1.2 for V1, V2, V3, respectively; N = 8; One-sampled
Wilcoxon singed-rank test, Bonferroni corrected).

Finally, we examined any possible short term changes in rest-
ing state patterns that may have occurred between the first and
second resting runs. To examine this, we compared the connect-
ivity patterns of the resting state run acquired before participants
watched the movie (the first rest), and those of the resting state
run following themovie presentation (the second rest). This com-
parison revealed a small effect of higher similarity to the cross-
movie pattern in the resting period following the movie (F1,13 =
9.72, P = 0.008; repeated-measures ANOVA). Importantly, even
when considering only the pattern of the first resting state period
(instead of the mean pattern of both the first and the second rest
periods), it showed a significantly higher correlation to the cross-
movie pattern than to the other visual conditions (P < 0.0005 in
post hoc tests after repeated-measures ANOVA), ruling out a
post-movie trace effect as the sole explanation for our results.

Discussion
Our study shows that the correlation patterns that emerge spon-
taneously in retinotopic visual cortex during resting state resem-
ble those that are generated by naturalistic visual stimuli. The
movie-driven patterns exhibited a significantly higher similarity
to the spontaneous connectivity patterns comparedwith the pat-
terns evoked by more conventional retinotopic mapping stimuli.
Our study confirms and extends previous findings that support
the notion that the resting state correlation patterns are not
merely a reflection of large-scale anatomical networks, but
showadditional intricate patterning at finer detail, that is, within
sensory systems and within individual visual areas as well. Spe-
cifically for the visual system, our study confirms the original
findings of Nir et al. (2006) in showing wide spread correlation
patterns, and further confirms previous studies showing long
distance correlations within individual visual areas (Raemaekers
et al. 2014; Arcaro et al. 2015).

Our results are also in-linewithprevious studieswhich convin-
cingly demonstrated that the spontaneous connectivity patterns
correlate with the center–periphery eccentricity organization
across retinotopic visual areas (Yeo et al. 2011; Raemaekers et al.
2014; Arcaro et al. 2015). However, our results extend these previ-
ous results by demonstrating that free viewing of naturalistic sen-
sory stimulation (a movie segment) produced patterns of
correlations that were significantly closer to the resting state pat-
terns comparedwith the patterns generated byeithereccentricity-
selective stimuli, polar-mapping stimuli, or merely anatomical
distance (see Figs 4 and 5).

It is important to emphasize that the main focus of the pre-
sent study was on the type of visual stimuli that may induce ac-
tivations that best mimic the spontaneously emerging patterns.
The space of such possible stimuli is obviously enormous and im-
possible to exhaust. We therefore opted to compare specifically 3
types of stimuli—2 types that are commonly used in retinotopic
mapping experiments (eccentricity rings and polar wedges) and
one that was aimed to simulate naturalistic vision. We also com-
pared the movie-driven patterns to 5 putative organizational
principles, in which the patterns followed eccentricity, polar, ret-
inotopic location, surface distance, and volume distance. In all
these comparisons, the cross-movie correlations proved to be
significantly more correlated to the resting state patterns.

However, we acknowledge that we cannot rule out the possi-
bility that additional stimuli of different kinds may produce pat-
terns of activations that will show yet higher similarity to the
spontaneous connectivity patterns. Nevertheless, even within
this rather limited range of principles, our results are robust
and informative as we discuss below.

Before discussing the implicationof ourfindings, it is important
to examine the potential confounds that could have contributed to
the results. First, it could be argued that during the presumable
“rest” participants were engaged in some kind of vivid visual im-
agery. Indeed, a major and general drawback of the resting state
paradigm is that no control is exercised over the cognitive state
of the participants when they are at rest. Here we controlled for
this confound by asking the participants to engage in a nonvisual
task (beep detection). The aim of the task was to prevent partici-
pants from intentionally choosing a strategy of engagement in vis-
ual imagerywhile they rested. However, it should be noted that the
beep detection task was easy, sowe cannot rule out the possibility
that some visual imagery may have occurred during the beep de-
tection performance. It could also be argued that even if the beep
detection task was nonvisual, it may have significantly distorted
the spontaneous functional connectivity patterns in the visual

Figure 8.Within-run beep detection correlation pattern shows results very similar

to resting state. (A–C) Direct comparison betweenwithin-run beep andwithin-run

resting state correlations (leftmost bars) reveal a very high similarity.

Recalculating pattern similarity to the different visual conditions using within-

run beep detection instead of resting state show that none of the average

correlations to beep detection were significantly different from correlations to

resting state. Beep detection showed larger error bars, possibly due to smaller

number of participants (N = 8).
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cortex. However, several points argue against this possibility. First,
previous research suggests that spontaneous activations may ap-
pear in nonactivated networks even when participants are en-
gaged in a specific task (e.g., Golland et al. 2007). Second, the
fluctuations in the visual system during the beep detection experi-
ment exhibited low pattern reproducibility between the 2 beep de-
tection periods (Fig. 7A), indicating that the visual cortex was not
systematically driven by the beep stimuli or task but rather fluctu-
ated spontaneously. This findingmight be surprising in light of re-
cent results reporting cross-modal audio-visual inhibition (Iurilli
et al. 2012).However, the lackof task-related inhibitioncouldderive
from the fact that our task was not attentively demanding, and in-
cluded sporadic stimuli. Therefore, at least in terms of the func-
tional connectivity patterns, the fact that participants were
engaged in an auditory beep detection task (with eyes closed),
did not substantially disrupt the spontaneously emerging patterns
in their visual cortex.

This result is significant in offering a potential solution to the
more general problem of using the uncontrolled resting state
paradigm. Thus, our results demonstrate that it is possible to em-
ploy controlled tasks even when examining spontaneous “rest-
ing state” connectivity patterns, as long as the networks under
study are not driven by the task (see also Salomon et al. 2011).

A second confound that could produce higher similarities of
the movie-driven patterns compared with the more artificial vis-
ual tasks patterns could be attentional and arousal effects. It
could be argued that the artificial (wedges and rings) stimuli failed
to engage the participants’ attention, and consequently produced
weaker and less reliable activations of the visual areas, leading to
noisier cross-run correlation patterns. However, our reliability
measures reveal that the contrary was true (Fig. 7A), that is, the
artificial stimuli, probably due to the stricter control over stimuli
and oculomotor behavior (imposed by fixation), produced more
reliable activation patterns compared with the movie stimuli.

Finally, it could be argued that the similarity of the rest pat-
terns to the movie-driven patterns reflected a direct trace of the
specific movie shown to participants that is “replayed” in the
spontaneous connectivity patterns, since half of the rest sessions
were acquired after themoviewas shown. Such immediate direct
shaping of the spontaneous connectivity patterns by intense task
activations has been reported previously (Hasson et al. 2009; Ste-
vens et al. 2009; Tailby et al. 2015), and also at longer time scales
(Harmelech et al. 2013). Indeed,when comparing the resting state
patterns before and after participants watched the movie, we
found a small but significant post-movie effect. However, at
this stage we cannot determine whether this effect may have
been due to training of the neuronal networks by themovie stim-
uli or was related tomore general changes in arousal or attention
associated with the second rest period. For example, correlation
strength has been reported to increase during sleep (e.g., Nir et al.
2008). It may be that increased drowsiness has led to a similar in-
crease in correlation strength which, due to a higher signal-to-
noise ratio, could increase the correlation level during the second
rest period. Importantly, the same effects found for the average of
the 2 rest periodswere fully replicatedwhen only the first rest (re-
corded prior to any movie presentation) was used for the ana-
lysis. Thus, the data appear compatible with the notion that the
high correlation found between movie-driven and resting state
patterns was more related to some naturalistic parameters of
the movie, rather than to a trace of the specific movie presented
to the participants.

Thus, our results show that the naturalistic, free viewing con-
ditions indeed induced visual activation patterns thatwere close-
ly reflected in the patterns that emerged spontaneously in

retinotopic visual areas, both during rest and during the auditory
task. This is particularly remarkable because, as Figure 7 demon-
strates, the naturalistic paradigm, lacking eye movement con-
trols and specific tasks, substantially degraded the reliability of
themovie-induced patterns. It is likely that under more reprodu-
cible conditions, such as repeating the movie several times (at
long intervals), the correlations between the spontaneous and
movie-driven patterns could become even higher. Thus, our re-
sults clearly demonstrate that the spontaneous, stimulus free
patterns, while showing significant similarity to coactivations
driven by conventional visual stimuli such as eccentricity and
polar mapping, nevertheless contained additional details that
were captured better by the naturalistic movie stimulus.

When comparing the connectivity patterns across the eccen-
tricity and polar dimensions, it is important to note that within
hemisphere, near neighbor interactions could be differentially
pronounced in the polar than the eccentricity dimensions due
to the interdigitated nature of vertical and horizontal meridian
representations across visual areas. Thus, targeted analyses
that focus on subdivisions within areasmay emphasize different
biases compared with the more global analysis approaches ap-
plied in the present study. Indeed analyzing separately the dorsal
and ventral quarter-field representations confirmedArcaro et al’s
(2015) finding of a preferential correlation to eccentricity com-
pared with polar coordinates.

In the present study, we chose not to require participants to
fixatewhile watching themovie, while resting, or while perform-
ing the nonvisual task. Thismight have reduced the reproducibil-
ity of cross-movie patterns, because the stimuli appearing on the
retina were not necessarily similar between viewing periods.
However, as we wished our experimental conditions to mimic
natural vision as best as possible, we opted for themore ecologic-
al free viewing conditions. Additionally, resting state patterns
with and without fixation have been shown to produce highly
similar patterns (Fox et al. 2005; Fransson 2005; Arcaro et al. 2015).

The observed reflection of naturalistic movie patterns in the
spontaneous connectivity patterns is nicely compatible with
our proposed hypothesis (Harmelech and Malach 2013), that an
important factor that shapes the resting state patterns is a Heb-
bian-like strengthening of functional connectivity, induced by
habitual coactivations of cortical networks during daily life.
Such coactivations presumably lead to synaptic changes that
latermodulate the correlation patterns appearing spontaneously
during rest. Compatiblewith this suggestion, animal studies have
shown that the similarity between naturalistic stimulation and
spontaneous activity increases with development, while the
similarity between nonnaturalistic (moving grating) visual stim-
uli and spontaneous activity does not (Berkes et al. 2011). Herewe
propose that habitual visual experience plays a role in shaping
cortical connectivity during adult life as well.

While our results are compatible with the notion that the
spontaneous connectivity patterns capture aspects of naturalis-
tic vision, this does not rule out the possibility that important as-
pects of the spontaneous connectivity patterns are guided by
intrinsic factors that are not necessarily experience-dependent.
One such factor is, of course, anatomical distance, as previous re-
search in primate visual cortex has emphasized the importance
of short range anatomical connectivity in visual cortex (e.g., Amir
et al. 1993). Indeed, in our analysis the spontaneous connectivity
patterns were significantly contributed by neighboring interac-
tions (see Fig. 5). Interestingly, recent studies have shown that
the eccentricity and polar organization of the resting state pat-
terns is not dependent on visual stimulation, by demonstrating
its presence even in blind individuals (Bock et al. 2015; Striem-
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Amit et al. 2015). Thus, a full account of the formation of spontan-
eous patterns should include intrinsic factors (thatmay be genet-
ic or congenital) in combination with experience-dependent
factors (that may be shaped by habitual network coactivations).
Future researchwill be needed to parcel out the various contribu-
tions to these intriguing spontaneous connectivity patterns.

Because of the rich, multiscale, and diverse nature of natural-
istic stimuli, it is extremely difficult to uncover the full set of or-
ganization principles and statistical tendencies that characterize
them. Hence it is difficult to point out what aspect of the activa-
tions endowed themovie-driven patterns with their higher simi-
larity to the spontaneous connectivity patterns compared, to, for
example, the eccentricity-driven correlations. Future studies,
moving gradually from highly controlled, schematic stimuli
such as the eccentricity rings to more naturalistic stimuli could
help in answering this question.

Finally, it is important to caution, that although our study
shows a highly significant correlation between movie-driven pat-
terns and the spontaneously emerging ones, this correlation does
not prove causation. At this point, we cannot rule out the possibil-
ity that the movie stimuli simply activated a complex of intrinsic-
ally connected structures that also appear in the spontaneous
fluctuations. Examining individuals that engage in drastically dif-
ferent visual environments in their daily life may provide import-
ant clues to this question. Thus, studying individuals with retinal
abnormalities, those that work in artificial lighting conditions or
are exposed to long periods of outdoor, peripheral visual stimuli,
could further test the notion that the environment shapes the pat-
terns of correlations that emerge spontaneously in the absence of
visual stimulation.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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