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Abstract: Many studies have examined the impact of factors affecting accident severity in rural areas;
however, little attention has been paid to different lighting conditions (LCs), and less to the detailed
categories and precise determining of twilight. In this paper, solar altitude angle (SAA), as a basis for
differentiating and categorizing LCs, is proposed to investigate explanatory variables in much greater
detail. For each LC, namely, dark, twilight, dark lit (dark with street lights) and daylight, separate
random parameter models are developed to investigate the impacts of some factors on crash injury
severity data of 2017 and 2018 in two lane rural roads of Texas. The model estimation results indicated
that different LCs have various contributing factors, indeed, to each injury severity, further stressing
the significance of investigating crashes based on SAA. The key differences include crash location,
marked lane, grade direction, no passing zone, shoulder width, weekday and collision type. The
important findings were that developing artificial lighting at intersections and LED raised pavement
markers on two lane rural roads could lead to enhanced road safety under dark LCs. Furthermore,
increasing shoulder width in straight segments of two lane rural roads is important for decreasing
severe injury in daylight conditions.

Keywords: transport safety; solar altitude angle; mixed logit model; lighting condition; rural roads;
injury severity

1. Introduction

Accidents are one of the main causes of fatality and disability in the world. Based
on statistics, about 1.35 million persons die in road traffic crashes annually [1]. A total
of 37,133 people are killed in motorized crashes in the United States, of which 46 percent
(17,216) occurred in rural areas, while 19 percent of the population lived in rural areas in
2017 [2]. From the vehicle mile traveled (VMT) perspective, rural crashes are 2.5 times
higher than urban crashes per 100 miles traveled [3]. All the above highlights how crucial is
research into road crashes in rural areas. In general, accident analysis can also be conducted
based on frequency or severity. However, the analysis of accident severities has more
priority than accident frequencies regarding the nature of accidents, since it leads to a
decrease in their number and intensity [4]. Hence, determining the most critical factors in
motorized crashes could facilitate decision-making processes and enhance roads′ safety.

Many researchers have studied the critical factors in crash severity [5–8] and some
focused on the effect of lighting conditions on crash severity [9–16]. Table 1 illustrates
a selection of research conducted in this field, making it clear that lighting conditions
influence injury severity. Based on previous studies, roadway lighting condition has been
considered a significant factor in crash severity, and used as either a control variable or
an explanatory variable. Most previous studies have considered the impact of different
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lighting conditions by dummy explanatory variables. For example, Islam, Jones and Dye
used mixed logit models to explore the differential aspects of the crash severities of single
vehicle and multivehicle large trucks in rural and urban roads. They found that dark,
unlit conditions will increase the probability of major injuries in multivehicle crashes in
urban locations [11]. Meanwhile, in studies by Rezapour, Moomen, and Ksaibati and
Xie, Zhao, and Huynh, (2012), contradictory findings have been reported that show a
reduction in injury severity likelihood in dark conditions [17,18]. For instance, Rezapour,
Moomen, and Ksaibati analyzed the injury severity of downgrade crashes in single and
multiple vehicle crashes between 2005 and 2015 in two lane highways of Wyoming. They
found that dark and dark lit conditions decrease the likelihood of severe injury in multiple
vehicle crashes [17]. Song et al. examined the related injury severity in four states, including
California, Minnesota, North Carolina and Ohio, using Highway Safety Information System
(HSIS) data. They used just a dummy variable for lighting. They concluded that the six
most critical variables impacting the severity of hazardous material transportation crashes
are fatigue/asleep, number of lanes, speeding, poor weather, and lighting [14]. In some
other studies, twilight, as a transition zone between darkness and light, was determined to
have a significant effect on the likelihood of crash severity [19–22]. Jalayer et al. employed a
random parameters ordered probit to analyze the impacts of different factors on the injury
severity of wrong way driving crashes. They revealed that dawn conditions lead to more
severe injuries [19]. Another study investigated the crash data (2003–2006) of unsignalized
intersections of Florida using probit models and found that the likelihood of fatal injuries
significantly decreases in dawn conditions [20]. According to the mentioned studies, it
seems that considering lighting conditions as an explanatory variable does not clearly
indicate the effect of significant factors on the injury severity of crashes under different
lighting conditions.

Table 1. Selected injury severity studies related to lighting conditions.
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Ahmad et al. [23] 3 3 3 Ordered probit model

Speeding, drowsiness, head on collision
due to wrong way driving, illegal

motorway crossing by pedestrian, and
aging drivers will increase the

fatality of crashes.

Song et al. [14] 3 3 3 3 3
Random forest and

ordered logistic model

AADT, fatigued/asleep, number of lanes,
speeding, adverse weather, and light are
the six most important factors affecting

crash severity.

Obeidat et al. [24] 3 3 3 3 Generalized linear model

Crash year, road surface, whether the crash
occurred during the day or the night,

number of vehicles involved, and lighting
condition affect crash severities.

Zhang and
Hassan [25] 3 3 3 3 3 Mixed logit model

Older and male drivers, the number of lane
closures, sidewise crashes, and rainy

weather have opposite effects on injury
severity in night time and daytime crashes.
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Table 1. Cont.
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Rezapour,
Moomen and
Ksaibati [17]

3 3 3 3 3 Ordered logit model
Dark and dark lit conditions decrease the

likelihood of severe injury crashes for
multiple vehicle crashes

Uddin and
Huynh [26] 3 3 3 3 3 Mixed logit model

Age, gender, truck type, AADT, speed and
weather affect crash severities in rural and
urban areas, and also the lighting condition
(daylight, dark, and dark with street lights)

Anarkooli,
Hosseinpour,

and Kardar [9]
3 3 3 3 3 3

Mixed logit and random
effects generalized ordered

probit model

The dark without supplemental lighting
leads to an increase in the probability of
deaths or severe injuries in single vehicle

rollover crashes.

Anarkooli and
Hosseinlou [4] 3 3 3 3

Fixed effects ordered
probit model

The critical differences between proposed
models for different lighting conditions

(daylight, dark, and dark with street lights)
are the crash location, speed limit, shoulder
width, driver performance and crash type.

Naik et al. [10] 3 3 3 3 3 3
Mixed logit and random
parameter ordered logit

The dark without supplemental lighting
and dusk/dawn conditions decrease

visible injury probabilities.

Moreover, several prior studies have investigated the specific effects of different
lighting conditions (daylight, dark, and dark lit) on the injury severity of crashes [4,24,26,27].
For example, Anarkooli and Hosseinlou studied two lane rural road crashes of Washington
between 2009 and 2011 in different lighting conditions. Crash location, speed limit, shoulder
width, driver performance, and crash type were found as the heterogeneous variables in
different lighting condition models (daylight, dark, and dark with street lights) [4]. In
another study, Obeidat et al. evaluated the effectiveness of roadway lighting on night time
crash reduction in Jordan before and after continuous lighting system installation. They
used the crash data from 2009 to 2018 and a generalized linear model to examine the effects
of driver information, road surface, weather condition, lighting condition, and time on
crash injury severities on Jordan roadways [24].

In summary, it could be concluded that, in previous researches, generally, authors
have investigated the influential factors in crash severity levels under different lighting
conditions, such as daylight, dark, and dark lit, but they did not consider the condition
of twilight. The possible reason is that they could not provide a precise definition of the
twilight condition. In addition, as lighting conditions were categorized based on police
reports, the results may not account for the relationship between lighting conditions and
injury severity. Although most of the police reports that include dark and light conditions
are reliable, it is challenging for them to identify the transition zone between darkness and
daylight. In some cases, the twilight data might be attributed to dark or day. In this regard,
this paper aims to propose solar altitude angle (SAA) to determine lighting conditions more
precisely, and according to the necessary information for calculation of the SAA provided
by police and other supplemental sources, lighting conditions would be determined in a
more systematic way.
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The present paper attempts to fill this knowledge gap by the segmentation of lighting
conditions based on SAA as a systematic method for determining twilight as one of the
four predefined lighting conditions. To accomplish this, the SAA at the moment of the
crashes is calculated. Thus, the data are classified into four different lighting conditions
based on SAA, namely, daylight (positive altitude), dark (negative altitude lower than −6),
twilight (negative altitude higher than −6), and dark lit (night time with supplemental
lighting). Finally, using the random parameter (mixed logit) model, factors affecting the
severity of crashes were investigated more accurately in each lighting condition.

The remainder of this paper is structured as follows: Section 2 describes the method-
ology, Section 3 introduces the data, and Sections 4 and 5 present the modeling process
and data analysis, respectively. Finally, Section 6 outlines the crucial conclusions and some
policy implications.

2. Methodology

The methodological approach is described in the following two sections. The former
presents the SAA assessment using the crash position and occurrence time, while the latter
explains the mixed logit modeling.

2.1. Solar Altitude Angle

The position of the sun can be described using SAA (β) and azimuth angle (ϕs)
(Figure 1a). The SAA illustrates the sun′s height at any time. Using the latitude and
longitude of each point on the Earth, the altitudes and azimuth angles could be calculated
at any time of the day. To calculate SAAs, declination angle and hour angle must be
calculated. The declination of the sun (δ) is the angle between the equator (centerline) of
the Earth and the line drawn from the center of the sun to the center of the Earth as shown
in Figure 1b [28]. This angle varies from −23.5◦ to +23.5◦ due to the declination of the polar
axis of the Earth and the Earth′s circulation around the sun.
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Figure 1. (a) The altitude and azimuth angles illustration, (b) illustration of the solar declination
angle δ [28].

The declination angle is calculated using Equation (1). This relationship is a sinusoidal
relationship covering 365 days of a year, with the first day of spring being the 81st day of
the year [28].

δ = 23.45sin
[

360
365

(n− 81)
]

(1)

where δ is the solar declination angle, and n is the number of days since 1st of January.
The hour angle (H) is the number of degrees that the Earth must turn before the sun is
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directly over the local meridian. It is the difference between the sun′s meridian and the
local meridian, calculated using Equation (2) [28].

H =

(
15
◦

hour

)
·(h) (2)

where H is the hour angle and h is hours before solar noon. According to Equation (2), the
hour angle has a positive value when the sun is before the local meridian. To calculate
the solar noon, it should be noted that the sun is at the solar noon when it is at the top
of the sky, and this time is not necessarily at 12 P.M. local time. Solar time calculates the
sun′s passage time based on the sun′s position in the sky. Therefore, state times (local
time) should be converted to solar time to calculate the hour angle. Two adjustments are
needed to convert local time to solar time. In the first step, a longitudinal modification
must be made. Longitudinal correction is performed based on the time it takes to move the
sun between the local time meridian and the longitude of the observer′s line [28]. Table 2
presents the local time meridians in the United States. In this research, the case study was
Texas at a longitude of 99.9. The solar noon will occur 9.6 min after the sun passes from the
90◦ local time meridian of the Center Zone [28].

Table 2. Local time meridians of U.S. standard time zones [20].

Time Zone LT Meridian

Eastern 75◦

Central 90◦

Mountain 105◦

Pacific 120◦

Eastern Alaska 135◦

Alaska and Hawaii 150◦

Therefore, a modification should be conducted in solar and state time, due to the
circulation of the Earth around the sun in elliptical orbit. The difference between a 24-h day
and a solar day over a year will be calculated using Equations (3) and (4) [28].

E = 9.87sin2B− 7.53cosB− 1.5sinB (3)

B =
360
364

(n− 81) (4)

where E is the time difference between a solar day and a 24-h day, and n is the number
of days since 1st January. Afterward, the solar time can be calculated at any time using
Equation (5).

solar time (ST) = Clock Time (CT)
+ 4 min

degree (Local Time Meridian− Local longitude)
+E(min)

(5)

After converting the crash time to the solar time and calculating the hourly angles of
the sun, the SAA will be calculated according to Equation (6) [28].

sinβ = cosL cosδ cosH + sinL sinδ (6)

where β is the SAA, L accounts for the latitude, δ is the declination angle and H is the
hour angle.

2.2. Mixed Logit Model (MXL)

Discrete choice models have become more prominent over recent decades. Regarding
the ordinal nature of crash severities, many researchers have used ordered logit/probit
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to investigate the influential factors on crash severities [4,17,29]. A principal limitation
of ordered probit is the parallel slope assumption, which may restrict the associated
coefficients′ effects on severity outcomes [22,30]. It is worth mentioning that the developed
version of the ordered models, such as the generalized ordered logit/probit model, is
an efficient solution to lessen the parallel assumption [26,30], although it still exists [11].
Furthermore, standard logit/probit models are limited to a specific distribution and cannot
find heterogeneity in individuals′ behavior nor even its sources [9,31]. Due to the ordered
probit model′s weaknesses, some researchers have used multinomial logit models (MNL)
to analyze the crash injury severities [19,22]. MNL does not consider the assumption
of independence from irrelevant alternatives (IIA) [26]. In the light of previous studies,
the mixed logit (MXL) model was one of the selected alternatives because of the MNL
weaknesses [32]. This model′s structure is a generalized version of MNL, which can
estimate any model with random utility. It also addresses the three essential deficiencies of
MNL by considering the difference in taste variation, the unlimited substitution pattern,
and the correlation of unobserved factors [33].

In modeling, this paper followed the methodology presented by Washington et al. [34].
Equation (7) shows the relationship between crash severity level and the explanatory variables.

Yni = Vni + eni = β′nXni + eni (7)

where Yni is the function of severity category i in observation n, and Vni and eni are
defined as the deterministic and unobserved term of severity level of crash I for individual
n, respectively. β′n is the vector of the observed attribute parameters for individual n,
representing people′s tastes, and is different for each individual, and Xni is the explanatory
variables. Regarding the lack of closed form in MXL [29,33], random parameter models
are defined as an integration of the logit model over density function of β parameter
(Equation (8)).

Pni =
∫ exp(β′n Xni)

∑i ∈I exp(β′n XnI)
f (β|θ ) dβ (8)

where Pni is the probability of injury severity level i for individual n, f (β|θ) is the density
function of β, and θ relates to the known density function assigned to parameters. Distri-
butions that are most commonly used for the f (β) include normal, lognormal, uniform,
triangular, and Johnson′s SB [10,33–38].

Marginal effects are used to determine the most influential factors in the crash injury
severities by calculating the impacts of one unit change in the explanatory variables on
the dependent variable using Equation (9) [34] and are computed as derivatives of the
probability of injury severity level i with respect to attribute k in alternative m (Equation (9)):

∂Pi
∂Xkm

= [ Q(i = m)− Pm]Pi∂βk, i, mεI (9)

Where i represents the injury severity levels, and k and m account for attributes and
alternatives. According to Equation (9), if i equals m, therefore Q(i = m) takes 1, and
0 otherwise. Pi and Pm are the probability of injury severity level i and m, respectively.

3. Data

Two lane rural roads′ crash records (about 55,700 crash cases) of the state of Texas
collected over a two year period (2017–2018), provided by the Texas Department of Trans-
portation (TxDOT), are used in this paper [39,40]. According to the necessary information
for the calculation of the SAA provided by police and other supplemental sources, the
crash dataset is classified to four lighting conditions, namely, daylight, dark, dark lit and
twilight. The daylight condition refers to the period when the geometric center of the sun is
above the horizon (positive altitude). Furthermore, the dark lit records include crashes that
occurred in locations with supplemental lighting at night time periods. The dark condition
refers to the period when the geometric center of the sun is 6 degrees below the horizon,
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without any supplemental lighting. The transition zone between dark and daylight is
twilight, which is the period between (astronomical) dawn and sunrise, or between sunset
and (astronomical) dusk. The spatial distribution of crashes (Figure 2) based on the lighting
conditions and crash severities shows that the east side of Texas is more dangerous and
most of crashes have occurred in these areas. The fatal, minor and possible/no injury
crashes are shown in red, yellow and green, respectively.
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(a) dark; (b) dark lit; (c) daylight; (d) twilight [39].

The TxDOT database includes information on driver and occupation, lighting condi-
tion, collision, environmental features, land use, and roadway typology/condition. The
database also reports five levels of injuries including (1) fatal injury, (2) incapacitating
injury, (3) nonincapacitating injury, (4) possible injury, and (5) no injury. For research
purposes, fatal injuries and incapacitating injuries are combined to increase the number
of observations and placed in a new category called severe injury. The nonincapacitating
injury data is placed in the minor injury category. In addition, possible and no injury
data are combined and placed in a further category called possible/no injury. In previous
studies, this categorization was used to ensure sufficient sample size at different injury
levels [11,19,26]. Table 3 provides the statistical analysis of the explanatory and dependent
variables of proposed models. It shows that approximately 24 percent of accidents occurred
in daylight conditions at intersections. In addition, a large number of accidents in dark
lighting conditions occurred at curve segments of roads. In terms of crash information,
most accidents in dark lighting conditions were related to fixed object and animal crashes.
Most of the angular crashes belong to the twilight lighting condition. Regarding the tem-
poral and environmental information, most of the accidents on weekdays and dry road
surfaces occurred under twilight lighting conditions.
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Table 3. Frequency analysis (percent) of research data by lighting conditions.

Variables
Dark Light Dark Twilight Day Light

Mean S.D Mean S.D Mean S.D Mean S.D

Crash Severity

Severe 0.07 0.09 0.08 0.1
Minor 0.3 0.25 0.24 0.31

Possible/no 0.63 0.66 0.68 0.59

Roadway info

Crash location (1 if at an intersection, 0 otherwise) 0.18 0.53 0.09 0.29 0.22 0.59 0.24 0.2
Curve (1 if at a curve, 0 otherwise) 0.24 0.52 0.32 0.42 0.28 0.56 0.19 0.39

Road alignment (1 if level and straight, 0 otherwise) 0.43 0.61 0.38 0.52 0.51 0.48 0.58 0.63
Center stripe/divider (1 if center stripe/divider exist, 0 otherwise) 0.19 0.24 0.47 0.61 41.5 0.74 0.33 0.65

Marked lane (1 if marked lane exists, 0 otherwise) 0.15 0.34 0.21 0.36 0.18 0.58 0.39 0.49
No passing zone (1 if crashes occur in no passing zone, 0 otherwise) 18.3 40.6 20.7 45.2 5.9 36.3 20.11 55.2

Shoulder type (1 if is the same as road surface, 0 otherwise) 0.75 0.48 0.68 0.44 0.7 0.66 0.69 0.36
Shoulder width (shoulder width varied between 11 and 66 ft.) 23.5 2.71 24.3 3.66 24.23 2.95 23.81 3.16

LogAADT (AADT varied between 101 and 55106 veh/day) 7.61 1.1 6.41 1.16 8.81 1.21 8.03 1.22
Grade direction (1 if uphill; 0 downhill) 0.67 0.48 0.48 0.43 0.52 0.47 0.58 0.44

Crash info

Fixed object (1 if a collision with roadside objects; 0 otherwise) 0.11 0.32 0.16 0.36 0.13 0.41 0.09 0.18
Angle (1 if angular collision; 0 otherwise) 0.16 0.33 0.17 0.35 0.17 0.39 0.26 0.3

Animal (1 if a collision with an animal; 0 otherwise) 0.11 0.48 0.27 0.43 0.14 0.61 0.07 0.36
Head on (1 if head on collision; 0 otherwise) 0.03 0.2 0.04 0.24 0.01 0.18 0.05 0.29

Temporal and Environmental info

Dry road surface (1 if dry surface; otherwise 0) 0.87 0.38 0.81 0.39 0.9 0.45 0.75 0.29
Weekday (1 if a crash occurred on a weekday; 0 weekends) 0.65 0.48 0.71 0.33 0.76 0.56 0.62 0.39

For modeling analysis, the final dataset consists of 55,627 crash records, of which
32,285 (58%) were at possible/no injury level, 16,159 (29%) were at minor injury level, and
7183 (13%) were at the severe injury level.

4. Model Specification Tests

Likelihood ratio tests have been frequently used to examine the suitability of disag-
gregate models against an aggregate model [4,26,36,41]. Therefore, in this paper, once four
models were developed for different light conditions, likelihood ratio tests were applied to
compare the aggregate model to each model made for different light conditions [34].

The coefficients of the aggregate model were tested for transferability against all of the
independent, disaggregate lighting condition models using the first log-likelihood ratio
test, calculated as Equation (10):

χ2 = −2[LLFull

(
βFull

)
−∑i LLiβ

i] (10)

where LLFull

(
βFull

)
is the log-likelihood at convergence for the aggregate model (−51023);

LLiβ
i is the log-likelihood at convergence for the different lighting condition models using

the same variables contained in the full model (∑i LLiβ
i = −50685), and degrees of freedom

(df ) the difference in the sum of the number of coefficients in all separate models and the
number of coefficients in the aggregate model. Results rejected the null hypothesis (no
significant difference between the parameters of the aggregate model and four separate
models) at the 99 percent confidence level.
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The transferability of coefficients to each corresponding lighting condition model is
calculated as Equation (11), which indicates the second log-likelihood ratio.

χ2 = −2
[

LLi1i2

(
βi1i2

)
− LLi1

(
βi1
)]

(11)

where LLi1i2
(

βi1i2
)

is the log-likelihood at the convergence of a model using the parameters
of i2′s model for lighting condition i1′s data and LLi1

(
βi1
)

is the log-likelihood at the
convergence of the model using lighting condition i1′s data [4]. Table 4 shows the results
with df equals to the number of estimated parameters in βi1i2 . In such a case, two of all tests
reject the null hypotheses at a 99 percent confidence level. Based on these two tests, it can
be concluded that the data disaggregate approach seems to be logical, since four separate
models have been statistically justified.

Table 4. Transferability test for comparing the models.

df 12 14 12 18

i1

i2 Dark Lit Twilight Dark Day

Dark Lit 0.00 115.09 250.20 66.74
Twilight 1142.40 0.00 3360.82 109.23

Dark 6186.03 6257.64 0.00 6438.52
Day 218.79 1131.81 2896.73 0.00

5. Estimation Results and Discussion

Four separate MXLs, namely, daylight, dark lit, dark, and twilight, were developed for
crashes involving cars at three levels of severity, including severe injury, minor injury, and
possible/no injury. Regarding the lack of closed form in the MXL model, the simulation
based maximum likelihood method used to estimate parameter vector and 500 Halton
draws were utilized. Some related distributions were considered to identify the proper dis-
tribution of the random parameters. Finally, normal distribution was statistically significant
with coefficients at 90% or higher confidence level.

Table 5 summarizes and compares the models, indicating the value and sign of sig-
nificant variables in each crash severity level. The main difference among the variables,
their combination, sign, and value can be observed for the different models, justifying
their separation, i.e., the different lighting conditions do have various contributing factors
to each injury severity, further stressing the significance of investigating crashes based
on SAA.

Among all explanatory variables reported in Table 5, only weekday was significant
in all the models, although with different effects. For instance, weekday was positively
associated with a minor injury in the dark conditions model. However, it was found to
be a random parameter and normally distributed with the mean −0.97 and the standard
deviation of 2.20 in the possible/no injury. This indicates that 33% of crashes at weekdays
had a higher probability of possible/no injury, while 67% of crashes occurring on weekdays
had decreased likelihood of being involved in a possible/no injury. This shows that
most crashes had a lower likelihood of being involved in a possible/no injury. This may
be because of traffic volume during weekdays and drivers being more careful. Among
all of the significant explanatory variables, a total of nine variables were found to be
statistically significant as random parameters with a normal distribution, which accounts
for unobserved heterogeneity. These random variables illustrate that the effects of a
particular variable differ across the observations. For example, level and straight roads
were a random parameter and normally distributed with the mean −1.38 and standard
deviation of 1.75 in the possible/no injury function under daylight conditions. The above
indicates that 78% of crashes occurring on level and straight segments of roads decreased
the probability of being involved in a possible/no injury. In comparison, 22% of the
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observations increased the likelihood of possible/no injury. All the findings are described
and critically discussed in the following subsections.

Table 5. An overview of the variables affecting injury severity among the four lighting conditions.

Variables Dark-Lighted Dark Twilight Day Light

Roadway Info

Crash location—intersection N(±) F(±)
Road alignment M(±), N(±) M(−) M(−), N(±)

Center stripe/divider F(−) N(+)
Shoulder type M(−), N(±) F(−)

No passing zone F(−)
LogAADT M(+) M(±) F(+), N(−)

Curve F(+) F(+)
Shoulder width F(−), N(+)

Marked lane F(−), M(−) M(+), N(±)
Grade direction M(−) N(−) F(−), N(+)

Crash info
Fixed object F(+), M(+)

Angle F(−), M(−) F(−),N(+) M(+),
Animal M(−), N(+) F(−), M(+)
Head on F(+) F(+), M(+)

Temporal and Environmental info
Dry road surface F(−) N(+) N(+)

Weekday M(+) M(+),N(±) M(−), N(+) M(+),N(±)

F—fatal, M—minor, N—possible/no injury. (+) means increasing the likelihood of a specific severity level,
(−) means decreasing likelihood of a specific severity level, (±) as an indicator of random parameters.

5.1. Roadway Characteristics

Concerning the significant roadway characteristics in injury severity under dark
lighting conditions (Table 6), the indicator variable representing crash location (occurring
at intersection) is positively associated with severe injury. A possible reason for this is due
to the careless behavior of drivers as well as the poor sight distance at night. This finding is
in accordance with previous studies [4]. While at intersections with street lights (Table 7),
there is a sufficient sight distance which increases the probability of possible/no injury
crashes. This finding is consistent with prior research findings [10,12]. Considering this
variable has been normally distributed, with a mean of 0.09 and a standard deviation of
2.89 under dark conditions, 49% of crashes at intersections increased the likelihood of fatal
injury while the remaining (51%) decreased the probability of being involved in severe
crashes. In addition, when a crash occurs in a curved road section, the likelihood of severe
injury will be increased at dark (Table 6) and daylight (Table 8) conditions, respectively.
One possible reason for this on two-lane rural roads is the limited sight distance at curves
and the slow reaction of drivers.

Straight and level roads were found to decrease the probability of minor or possible/no
injury in all lighting conditions (except the dark lit). Moreover, this variable has been
normally distributed under dark lit and daylight conditions and a possible reason for this
positive relationship in fatal injury is the increased sight distance and higher speeds, which
decrease the likelihood of minor and possible/no injury crashes. This finding is in line with
previous studies [4,26].

The divider/center stripe was associated with lower fatal injuries under dark lighting
conditions and increased the likelihood of possible/no injury under twilight (Table 9)
conditions. A possible reason for this matter is the separation of opposing traffic flow. This
result is in line with previous studies [42,43].
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Table 6. Estimated parameters of crash injury severity under dark conditions.

Meaning of Variables Coefficient t-Statistic

Marginal Effects

Severe
Injury

Minor
Injury

Possible/No
Injury

Defined for severe injury
Constant 1.90 *** 26.39

Crash location (standard deviation of parameter distribution) 0.09 (2.89 *) 0.28 (1.8) −0.0059 0.0047 0.0012
Curve 0.22 *** 5.08 0.0287 −0.0216 −0.0071

Dry road surface −0.12 ** −2.2 −0.0207 0.0154 0.0053
Fixed object 0.56 *** 10.45 0.0187 −0.0135 −0.0052

Center stripe/divider −0.37 *** −4.05 −0.0312 0.0291 0.0021
Defined for minor injury

Fixed Object 0.49 *** 9.17 −0.1184 0.1411 −0.0227
Shoulder type −0.09 ** −2.05 0.0101 −0.0117 0.0016

LogAADT 0.11 *** 12.52 −0.1321 0.1525 −0.0204
Weekday 0.29 *** 6.3 −0.0122 0.0141 −0.0018

Defined for Possible/no injury
Grade direction −0.15 ** −2.17 0.0049 0.0021 −0.007

Shoulder type (standard deviation of parameter distribution) −0.37 (1.41 *) −0.62 (1.84) −0.0076 −0.003 0.0106
Weekday (standard deviation of parameter distribution) −0.97 (2.20 **) −0.97 (2.07) −0.0068 −0.0026 0.0094

Model statistics
Number of observations 14125

Restricted Log-likelihood (constant only) −15380.6
Log-likelihood at convergence −11405.8

McFadden Pseudo R-squared
(
ρ2) 0.258

Note: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

Table 7. Estimated parameters of crash injury severity under dark lit conditions.

Meaning of Variables Coefficient t-Statistic

Marginal Effects

Severe
Injury

Minor
Injury

Possible/No
Injury

Defined for severe injury
Marked lane −2.04 *** −4.07 −0.0184 0.0122 0.0062

Angle −0.54 ** −2.35 −0.0156 0.0118 0.0038
Defined for minor injury

Marked lane −0.07 *** −2.85 0.0426 −0.0476 0.005
Road alignment (1 if level and straight, 0 otherwise)

(standard deviation of parameter distribution)
−1.29

**(2.96 **) −2.36 (2.42) −0.0019 0.0043 −0.0024

Angle −1.10 ** −2.24 0.0066 −0.0095 0.003
Animal −1.58 *** −2.87 0.0061 −0.0065 0.0003

Weekday 0.38 * 1.86 −0.0125 0.0138 −0.0013
Grade direction −0.58 *** −3.04 0.0242 −0.027 0.0028

Defined for Possible/no injury
Constant −2.61 *** −7.37

Crash location 0.62 ** 2.05 −0.0091 −0.0033 0.0124
Road alignment (1 if level and straight, 0 otherwise)

(standard deviation of parameter distribution)
−2.29 ***
(2.53 *) −1.28 (1.68) −0.0163 −0.0068 0.0231

Animal 0.62 * 1.84 −0.0058 −0.0021 0.0079
Model statistics

Number of observations 1853
Restricted Log-likelihood (constant only) −2035.73

Log-likelihood at convergence −1521.06
McFadden Pseudo R-squared

(
ρ2) 0.252

Note: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

The impacts of using marked lanes on crash severities vary in different lighting
conditions. For example, the likelihood of fatal injury has been decreased in the roads with
marked lane under dark lit lighting conditions. One possible reason for this is informing
the drivers to determine the boundaries of the road and lanes more accurately. Moreover, it
has been normally distributed in possible/no injury function with a mean of −0.82 and a
standard deviation of 1.56 at daylight conditions. This indicates that 70% of the observations
decreased the likelihood of being involved in a possible/no injury. In comparison, 30% of
the observations increased the likelihood of possible/no injury.
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Table 8. Estimated parameters of crash injury severity under daylight conditions.

Meaning of Variables Coefficient t-Statistic

Marginal Effects

Severe
Injury

Minor
Injury

Possible/No
Injury

Defined for severe injury
No passing zone −0.09 *** −3.38 −0.0045 0.0035 0.001

Head on 0.86 *** 8.19 0.0211 −0.0187 −0.0024
Shoulder width −0.01 *** −3.85 −0.0171 0.0139 0.0032

LogAADT 0.11 *** 27.25 0.2005 −0.1632 −0.0373
Shoulder type −0.20 *** −8.83 −0.0229 0.0187 0.0042

Curve 0.22 *** 2.82 0.0165 −0.0151 −0.0014
Defined for minor injury

Road alignment (1 if level and straight, 0 otherwise) −0.13 *** −4.96 0.0271 −0.0362 0.0091
Marked lane 0.58 *** 15.87 −0.0121 0.0144 −0.0023

Head on 0.91 *** 8.38 −0.0196 0.0208 −0.0012
Angle 0.28 *** 7.69 −0.007 0.0077 −0.0007

Weekday 0.21 ** 2.52 −0.0048 0.0052 −0.0004
Defined for Possible/no injury

Road alignment (1 if level and straight,
0 otherwise)(standard deviation of parameter distribution)

−1.38 ***
(1.75 ***)

−4.34
(5.41) −0.0073 −0.0033 0.0106

Dry road surface 0.51 *** 8.32 −0.0195 −0.0106 0.0301
Angle −0.23 *** −4.57 0.0027 0.0014 −0.0041

Marked lane (standard deviation of parameter distribution) −0.82
(1.56 **) −1.49 (2.24) −0.0015 −0.0009 0.0024

Shoulder width 0.02 *** 3.2 −0.0053 −0.0028 0.0081
LogAADT −0.19 *** −18.86 0.0643 0.034 −0.0983

Weekday (standard deviation of parameter distribution) −0.03
(1.26 **) −0.08 (2.33) −0.0055 −0.0029 0.0084

Model statistics
Number of observations 36517

Restricted log-likelihood (constant only) −40118
Log-likelihood at convergence −31784.9

McFadden Pseudo R-squared
(
ρ2) 0.208

Note: **: p < 0.01; ***: p < 0.001.

Table 9. Estimated parameters of crash injury severity under twilight conditions.

Meaning of Variables Coefficient t-Statistic

Marginal Effects

Severe
Injury

Minor
Injury

Possible/No
Injury

Defined for severe injury
Head on 0.29 ** 2.07 0.013 −0.0087 −0.0043

Angle −1.26 *** −6.37 −0.0269 0.0171 0.0098
Grade direction −0.22 * −1.93 −0.0081 0.0051 0.003

Animal −0.23 ** −2.05 −0.0101 0.0086 0.0015
Defined for minor injury

Road alignment (1 if level and straight, 0 otherwise) −0.22 * −1.68 0.0163 −0.0183 0.002
Weekday −0.66 ** −2.4 0.009 −0.0119 0.0029
Animal −2.14 *** −5.06 0.0312 −0.0339 0.0027

LogAADT (standard deviation of parameter distribution) −0.12 ***
(0.18 *) −2.87 (1.69) 0.0407 −0.0474 0.0067

Defined for Possible/no injury
Constant −3.16 *** −14.47

Dry road surface 0.37 * 1.94 −0.0187 −0.0049 0.0236
Center stripe/divider 0.61 *** 3.94 −0.0089 −0.0026 0.0115

Grade direction 0.74 *** 3.56 −0.0105 −0.0031 0.0136
Angle 0.59 *** 2.6 −0.0035 −0.0011 0.0046

Weekday 0.41 *** 2.98 −0.011 −0.0032 0.0142
Model statistics

Number of observations 3132
Restricted log-likelihood (constant only) −3440.85

Log-likelihood at convergence −2390.07
McFadden Pseudo R-squared

(
ρ2) 0.305

Note: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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During daylight, no passing zones were found to decrease the probability of being
involved in a fatal injury because of the more careful behavior of drivers in these zones.

Concerning the shoulder characteristics, when the shoulder type is the same as the
road surface, the probability of minor and possible/no injury decreases under the dark
condition. In addition, the likelihood of fatal injury decreased in daylight condition. In
addition, partially consistent results can be found in past studies [27,44]. As the shoulder
width increased, the probability of fatal injury decreased under the daylight condition.
At the same time, this parameter was found to increase the likelihood of possible/no
injury. One possible explanation for this finding could be that wide shoulders may provide
additional space for the driver, decreasing the probability of severe crashes. In addition,
several studies have found partially similar results, that shoulder width is negatively
associated with injury severity [20,42,45]. In dark conditions, the probability of major
injury crashes decreases on dry surfaces. Similarly, this parameter in twilight and daylight
increased the probability of possible/no injury severity.

Under both dark and daylight conditions, LogAADT was positively associated with
minor and fatal injury, respectively. Additionally, it was found to decrease the likelihood of
possible/no injury under daylight conditions. However, during twilight, it was normally
distributed with a mean of -0.12 and standard deviation of 0.18, indicating that 25% of
crashes increased the likelihood of being involved in a minor injury, while the remaining
(75%) increased the probability of minor injury. This finding makes sense, and also accords
with studies conducted by Uddin and Huynh [26].

Crashes that occurred at uphill (grade direction) have different impacts on crash sever-
ities according to lighting conditions. For example, this variable is negatively associated
with the fatal and possible/no injury under twilight and dark conditions, respectively. A
possible explanation for this is the more cautious driving uphill due to the lower sight
distance of drivers. These findings are partially in line with the results of Anarkooli and
Hosseinlou [4].

5.2. Temporal and Environmental Characteristics

Under dark lit conditions, weekday was positively associated with minor injuries com-
pared to weekend trips. In addition, it was normally distributed under daylight and dark
conditions, which decrease the likelihood of possible/no injury, respectively. COnsidering
higher mandatory trips on weekdays than weekends and subsequently busier roads, these
findings are rational. These findings align with studies conducted by Anarkooli et al. [9]
and Islam and Burton [27].

In dark conditions, the probability of major injury crashes decreases on dry surfaces.
Similarly, this parameter in twilight and daylight increased the probability of possible/no
injury severity. Regarding the safer conditions of the dry surface of roads due to the better
operation of braking, the probability of severe crashes decrease. In addition, partially
consistent results can be found in past studies [46,47].

5.3. Collision Characteristics

Hitting fixed objects was significant under dark lighting conditiona, which increases
the probability of fatal and minor injuries. A possible explanation for this may be the
poor visibility of roadside objects under dark conditions, which delay drivers’ reactions.
This finding was in line with studies conducted by Anarkooli and Hosseinlou [4] and
Islam et al. [11].

The severity of angular crashes varies under different lighting conditions. Under the
daylight, it was positively associated with minor injury, while under dark lit conditions,
the probability of fatal and minor injuries decreased, respectively. Animal involved crashes
were found to be significant only under dark lit and twilight conditions. Under both
lighting conditions, when a vehicle hits an animal, the probability of minor injury decreases.
This finding is rational and consistent with those reported in previous studies [10,12,48,49].
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Head on collisions were found to increase the probability of minor and major injuries
under daylight conditions. In addition, this collision was found to increase the likelihood
of major injury under twilight condition. This is most likely due to drivers having lower
response times and perceptual abilities during head on crashes on two lane rural roads in
twilight situations. This finding is in line with studies by Jalayer et al. [19] and Anarkooli
and Hosseinlou [4].

6. Conclusions

In this paper, solar altitude angle (SAA) as an essential factor in identifying lighting
conditions (LCs) has been proposed to precise differentiation between daylight, dark, dark
lit, and twilight LCs.

In this research, after calculating SAA at the time of each crash, a random parameter
(mixed logit) model was used to study the severity of crashes under different LCs based on
the periods of the SAA in two lane rural roadways in Texas. Based on different SAAs, four
separate models were proposed for different LCs using crash records. The model estimation
results and likelihood ratio tests indicated that different LCs have various contributing
factors to each injury severity, further stressing the significance of investigating crashes
based on SAA.

There were significant differences between the models developed for different LCs
and justified the disaggregate approach of developed models. The principal difference
among the variables, their combination, sign, value, and significance of the explanatory
variables can be observed for different models, confirming their individuality. The key
differences include crash location, marked lane, grade direction, no passing zone, shoulder
width, weekday, and collision type. For example, it was found that increasing shoulder
width causes a decrease in the probability of fatal injuries occurring in daylight condition,
but it does not have a significant effect on crash severity under the dark lighting condition.

6.1. Implications for Policy and Practice

By comparing the models and the significance of different variables, it can be con-
cluded that several implications affect road safety. First, according to the models for the
night time, crashes at intersections were found to increase the probability of severe injury
under dark LCs, while increasing the likelihood of possible/no injury crashes. This out-
come suggests the importance of developing street lights at intersections during night-time
periods. Second, the shoulder width is negatively associated with severe injury under day-
light conditions. Based on the marginal effects of the variable for the dark LC, the models
indicate that crashes are less likely to be severe in spots with broad shoulders. Therefore,
this finding implies that increasing the shoulder width can be effective in reducing crash
injury severity. Third, the presence of the center strip/divider is negatively associated with
fatal injuries under dark LC. This indicates that crashes are less likely to be severe on roads
with a center stripe. Hence, this finding suggests the importance of implementing LED
raised pavement markers in two lane rural roads to avoid fatal crashes at night. Fourth, the
no passing zone variable was significant with a negative sign in possible/no injury severity
under daylight conditions. Therefore, the likelihood of severe injuries in these areas would
be decreased. Hence, this finding implies that implementing no passing zone signs on two
lane rural roads might reduce the severity of crashes. Finally, crashes at the curve segment
of the two lane rural roads are more likely to be fatal under dark and daylight conditions.
Therefore, this finding implies that implementing warning signs before the curve might
decrease severity and increase drivers′ awareness.

6.2. Limitations and Recommendations for Further Studies

Proposing four separate injury models for crashes on two lane rural roads based on
different lighting conditions using SAA provided some new contributions not previously
presented in the literature. Nevertheless, like most previous studies, this paper has some
limitations, such as only focusing on a single state to derive definitive estimates for variables.
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In this regard, it is recommended to conduct a multistate study and compare the significant
variables and their impacts for further studies. Besides, it is recommended that a shorter
interval of altitudes be considered according to the crash types.
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