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Abstract

In this paper, we focus on the linear functionals defining an approximate version
of the gradient of a function. These functionals are often used when dealing with
optimization problems where the computation of the gradient of the objective function
is costly or the objective function values are affected by some noise. These functionals
have been recently considered to estimate the gradient of the objective function by
the expected value of the function variations in the space of directions. The expected
value is then approximated by a sample average over a proper (random) choice of
sample directions in the domain of integration. In this way, the approximation error
is characterized by statistical properties of the sample average estimate, typically its
variance. Therefore, while useful and attractive bounds for the error variance can be
expressed in terms of the number of function evaluations, nothing can be said on the
error of a single experiment that could be quite large. This work instead is aimed at
deriving an approximation scheme for linear functionals approximating the gradient,
whose error of approximation can be characterized by a deterministic point of view
in the case of noise-free data. The previously mentioned linear functionals are no
longer considered as expected values over the space of directions, but rather as the
filtered derivative of the objective function by a Gaussian kernel. By using this new
approach, a gradient estimation based on a suitable linear combination of central
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finite differences at different step sizes is proposed and deterministic bounds that do
not depend on the particular sample of points considered are computed. In the noisy
setting, on the other end, the variance of the estimation error of the proposed method
is showed to be strictly lower than the one of the estimation error of the Central Finite
Difference scheme. Numerical experiments on a set of test functions are encouraging,
showing good performances compared to those of some methods commonly used in
the literature, also in the noisy setting.

Keywords Gradient approximation - Filtered derivative - Derivative free optimization

1 Introduction

DFO algorithms have become increasingly important since they provide a proper
methodology to tackle most of the optimization problems considered in various fields
of application. As reported in [4,8,16], typical applications fall within the simulation-
based optimization problems such as policy optimization in reinforcement learning.
DFO methods arise when derivative information is either unavailable, or quite costly to
obtain, not to mention when only noisy sample of the objective function are available.
In the latter case, it is known that most methods based on finite difference are of little
use [11,19].

One of the approaches in DFO algorithms is that of computing a proper estimate of
the gradient of the objective function. Finite difference approximation schemes were
already present in early times [15] and have recently been reconsidered as sample
average approximations of functionals defining a "filtered version" of the objective
function [2,3,9,13]. These functionals arise when defining a gradient approximation
as the average of the function variation along all the directions in the whole space. In
the most popular methods, the average is performed by weighting the function vari-
ations along directions generated either with a uniform kernel on the unit ball [9], or
with a Gaussian kernel [2]. These integrals are considered as ensemble averages over
the space of the directions of differentiation, and then are approximated by sample
averages over a random sample of directions, with various methods. As a general
policy, the approximation error is then characterized by its statistical properties (even
in the noise-free setting), the variance is expressed in terms of the number of func-
tion calculations, and nice bounds are provided to trade-off precision of the gradient
estimation and computational costs. Nevertheless it is plain that the error on a single
sample may be quite large, even though its variance is bounded.

In this paper, we focus on a different point of view. The functional defining a filtered
version of the objective function is considered as weak derivative of the objective
function rather than expected values over the space of the directions [20]. The gradient
estimation is therefore obtained by considering a numerical approximation of the
functional integral, and the estimation error is evaluated in a deterministic fashion.
The estimate is obtained by a suitable linear combination of central finite differences
at steps with increasing size. Bounds on the approximation error with the proposed
method are derived, and the variance of the error in the case of noisy data is also
presented.
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The goodness of the approximation is experimentally evaluated by comparing
the proposed method with those considered benchmarks by the literature—namely:
Forward Finite Differences (FFD), Central Finite Differences (CFD) [15], Gaussian
Smoothed Gradient (GSG), Central Gaussian Smoothed Gradient (cGSG) [9,13]—
over the benchmark of the Schittkowski functions [17]. Encouraging results are
obtained, both in the noise-free and in the noisy setting.

The paper is organized as follows: Sect. 2 formally introduces the gradient esti-
mation problem, highlighting the difference between the approach proposed in this
article and the one of several estimates proposed in the literature. In Sect. 3, we present
the proposed approximation scheme—NMXFD, with an emphasis on its link with the
Finite Difference Method. A theoretical comparison between the variance of the esti-
mation errors of the proposed method and of the CFD scheme is proposed in Sect. 4.
Section 5 presents numerical results and conclusions are drawn in Sect. 6.

2 The Gradient Estimate

In this paper, we consider the following unconstrained optimization problem in the
derivative free optimization (DFO) setting [6,12]:

;Iel}er}l f(x), (1

where f : R" — R is a function with continuous derivative, i.e., f € C L(R™), and
we denote the gradient V f : R" + R such that for any x € R"
af
Ty )
Vi =| :
e

Xy

In this section, the problem of a numerical approximation of the gradient V f(x) is
considered. The most popular approximation scheme is the standard finite difference
method [15], butinteresting alternative schemes are proposed in papers [2,9]. A general
estimate is obtained according to the following formula:

Gs(x) = é/l;n f(x+os)se(s)ds, 2)

where ¢(s) : R" — R denotes either a standard Gaussian Kernel A/(0, I,,) or a
uniform kernel on the unit ball B(0, 1), ds = ds; - dsy - --- - ds,, is the volume
element in R", and o > 0 is a scale parameter. The approximation error has different
bounds depending on the assumptions on f (see [4]). If the function f is continuously
differentiable, and its gradient is L-Lipschitz continuous for all x € R", then

[1Go(x) = V)|l = CyLo, 3)
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where C,, is a positive constant whose value depends on the kernel. If the function f
is twice continuously differentiable, and its Hessian is H-Lipschitz continuous for all
x € R", then

1Go(x) = Vf ()| < CoHo™. 4)
Both bounds (3) and (4) show that

lim G (x) = V. (x).

We will now work out formula (2) considering the (standard) Gaussian kernel

1 1I‘l n
~NO ) = ———exp{—> > 57t =[] oG 5
¢(s) ~ N0, I) (m)n"xp: Z;js } Ew(s) )

but the considerations that follow hold also if a uniform kernel over the unit ball is
considered.

Let us consider this further notation: for any x € R" denote by &; € R"~! the
following vector [xl, XD e g X Ty Xig ]y v s xn]T. With some abuse of notation, but
for sake of simplicity in the use of formulas, when addressing a given coordinate x; in a
vector x let us write x as [x; ¥;]T and denote fx)as f(xi, x;)and @(s) = (si)e(s;),
with ¢(5;) = ]_[?#i @(s;); consistently, the volume element becomes ds = ds; - ds;.
In case of a vector function f(z), to address explicitly its i — th entry we write it as
[(f(2)i (f(z))i]T. Then, estimate (2) is rewritten as follows

S1 n
1
Gox) == | fi+osi....xp+os) | [[[e6)ds (6)
o JRr s ) i=1
n
L [on Fx1 4 051, %1+ 051) 51 0(5D)@(51) dsy d5y

=| 1w fi+osi, i +05)sigl)eG)dsids | ©)

é fRn S (xn 4 0sp, Xn + 0Sn) Sp @(50)@(Sn) dsn dSy

Let us consider the generic entry of vector (7)
1 _ _ _ _
(Go(x))i = p fxi +osi, Xi +05)sip(si)e(si)ds; ds;. (®)
Rn
By the Fubini theorem, we can compute it as follows
_ (1 [T - _ _
(Go(x))i = / <P(Si)<— fxi +osi,xi + OSi)Sifp(Si)dSi>dSi~ )
Rn—1 O J_x
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The expression in parentheses is the estimate of the directional derivative of f(x)
along the i-th coordinate x; and computed at the point (x;, X; + 05;), i.e.,

_ _ 1 [tee _ _
8o (Xi, X; +05;) = p fxi +osi, X +05;)si@(s;)ds;. (10)
—00
Hence, expression (8) becomes
1 _ _ o
(Go(x))i = p 1 8o (xi, Xi +05;) (s;)ds;. (11)
R)l*

Therefore, the generic entry of the gradient estimate G, (x) in formula (7) is the
average of function (10) weighted by a (n — 1)-dimensional Gaussian kernel ¢(s;) =
N(0, I,_1) over the subspace R"~! of R". As a consequence, the computation of any
entry of vector G, (x) implies an integration over R". In papers [2,3], this problem is
overcome by considering that (2) is indeed an ensemble average of function f (x+os)s
over all the directions s € R" weighted by the Gaussian distribution ¢ (s) ~ A (0, I,,).
Therefore, we can write

1
Go(x) = ;E(p[f(x +os)s]. 12)

Now the ensemble average can be well approximated by sampling a set of M indepen-
dent directions {s;} in R" according to A/(0, I,,), and considering the sample average
approximation of Ey[ f(x + 05)s]

1 % (f(x +os;) — f(x))si

Go(x) > — 2 . , (13)
or its simmetric version
L& (fx+os) = f(x —as)s;
Go () =~ > = . (14)

i=1

The same argument holds if a uniform distribution over the unit ball is considered for
the ensemble average [9]. Now, only M +1 function computations in case of (13) or 2M
in case of (14) are needed and the convergence properties of the sample estimate to the
ensemble average are well established: the sample average is an unbiased estimate and
its accuracy increases with increasing M. In [3], suitable expressions of the estimation
error variance are found in terms of the number of samples M and the values of some
smoothness parameters of function f. Therefore, very useful formulas are given that
define the required sample size to obtain a chosen accuracy, with a fixed level of
confidence 1 —«. This is a typical statistical characterization of the error, that is robust
over the whole ensemble of possible trials, but of course leaves a risk « to have a large
error on a single experiment.
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In this paper, by exploiting formula (10), the following gradient estimate is proposed

_ _ _ _ 1T
G(T('x) = [go'(-xlvxl)ﬂ"'v gU(xl'axl')V"' sgd(-xnvxn)] k] (15)
where
_ 1 [T _
8o (Xi, Xij) = — f i +osi, X)) si o(s;) ds; (16)
0 J-00
is obtained from (10) with 5;, = 0, i = 1,...,n. This is a different result from

estimate (7) and appears to be more practical since only line integrals are involved in
the formula.

The following theorem shows that estimate G, (x) is close to G, (x) and converges
to it as o tends to zero.

Theorem 2.1 Let V f(x) be Lipschitz continuous with constant L for all x € R". Then
we have that

1Go(x) = Go ()|l < Lo n(15+7(n —1)). a7

Proof See Appendix for the > proof.
Next theorem shows that G4 (x) is indeed a good approximation of the true gradient
V f(x) and converges to it as o tends to zero. O

Theorem 2.2 Let f(x) be continuously differentiable for all x € R". The following
holds:

1imOEU(x) =Vf(x). (18)

Proof We prove (18) component-wise. By integration by parts, we have

1 +o00

8o (X, X;i) =—/ fxi +osi, X)) s o(s;)ds;

0 J—0o
1 +o0 9 i X .

_/ [l ) 2o @(si) ds;

0 J_x 811’ dsi

:/+°° 3 f(zi, i)

PSS 0z;

@(s;) ds;, (19)

where z; = x; + os;. By changing of variable, s; = Z‘J;x’ we obtain that

+00 8 i Y. 1 P .
g0 (xi. Xi) = f CEACILI <u) dz; (20)
o0 d9z; o o
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and therefore, taking into account that a series of Gaussians (}(p(%) with o, — 0
defines a §-dirac distribution centered in x; [10], we have that

9f(x)

ax,-

2L

lim g, (x;, X;) =
o—0

m}

Any entry of (15) is a weak definition of the derivative of f(x) along x; [10]. Note
that (19) is well defined even though f(x) is not differentiable at (x;, i)t

3 A New Estimate of the Gradient

We consider the functional g, (x;, X;) which is the i;; component of the gradient
estimate (15) and, for the sake of simplicity, we write in a single formula the result of
(19) and (20).

_ 1 [T _
8o (Xi, X;) =—/ i +osi, Xi) s o(si)ds;
o 00

400 = R
:/ 9 f(zi, Xi) l(p (Z, x,> az. 22)

00 0z o o

Note that é(p(%) is N'(x;, o). Our goal consists in finding a numerical approxi-
mation of the first integral in (22). To do that, we compute the integral in a finite range,
namely between -S and S

_ 1 +S
8o (X, X;j) := = [ +osi, X)) s o(si) ds;

1 +S _ ,
=—— Sfxi +osi, Xi) @' (si) ds;. (23)
S

o J_

For § sufficiently big the error between (22) and (23) is negligible due to the fast
decreasing of the Gaussian to infinity. The definite integral in (23) can be approximated
by a quadrature formula, e.g., Trapezoidal Rule [1]. Dividing the interval [—S§, S] in

2m sub-intervals, each of size h = % we obtain:

h
8o (xi, Xj) = _Z[(f(xi — 08, %) ¢ (=) + f(xi +0S,%) ¢'(S)

2m—1
+2 ) fx +a<—s+jh>,x,~>go/<—S+jh))}
j=1
nrs d

+6_0Pf(xi +or.x)¢(r) e[S S] (24)

1 Any L function satisfying (19), in place of

W, is a weak derivative of f(x) along x;.
1
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It is well known that, under very general conditions, the trapezoidal quadrature
formula (24) has an error that is O(1/m?) [5]. Indeed, once o and S are chosen, we
can easily check this property in our case. Let

n*s d .,
€o(tm) = S fi+or.5)¢'(t) Tel=S.5]. (25)
S3

~ 6om? Ff(xi +ot,%)¢'(r) T e[-S,S].

Note that the derivatives of a guassian kernel |¢® (t)[, up to the third order, are all
less than 1 in absolute value for any 7, and decrease rapidly as 7 increases. Therefore,
for f sufficiently smooth in (x; £ o §), let

d2
,‘@f(xi +0o7,X)

K (x;) = max <|f(xi +ot, %), ’%f(xi +o7,X)

We can write:

ZS S3

les (r,m)| < 6_UK(xi) = 60 m2

K(x;), tvel[-S, +S]
Let us rewrite (24) as follows

8o (Xi, Xi) = 8o (X, X;) + €5 (T, m).

The larger the number of function evaluation m, the smaller the error term €, (T, m).
On the other hand, g, (x;) can be interpreted as a combination of finite differences
with some coefficients. Keeping in mind that ¢’(t) = —¢'(—r) and that ¢’(0) = 0,
after some simple algebra we can write:

h
8o (xi, Xj) = _Z[W(m h)|<f(xi —omh,Xx;) — f(x; +0mh,fi)>
m—1
+2 3 16/ (f(xi — o jh &) — f(xi +0 jh, a@-))]
j=1
from which

fxi+omh,x;)) — f(xi —omh, x;)

_ _ h
8o (xi, Xi) = Z—[W(m h)|20 mh
o

20mh
m—1 . _ . _
.+ h’ ) . h’ .
+2Z|w’(jh>|2ojhf(x’ 7/ x’; .’;(x’ 7/ x‘)}. (26)
j=1 77

It is clear that g, (x;, X;) is a linear combination of finite difference approximations,
with different step sizes; for ch — 0, each one converges to the true value of the
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partial derivative 0 f (x;, X;)/0x;. Therefore, the estimate g, (x;, X;) converges to the
true value only if the sum of its coefficients equals one. For this reason, it is advisable
to normalize the coefficients of the linear combination in (26) to eliminate the estimate
bias for o finite. To this aim, let C be the sum of all the coefficients:

C=Z;’1=]a}’
a; =2 1g'GMI. j=1.....om—1 ¢, 27
a), =mh? ¢ (mh)),

We can then write the normalized version of (26) as:

m . - . -
. - S&i+ojh,xi)— flxi—o jh,X)
8o (xi %) =) _aj . (28)
o 20 jh
where
a/‘ m
J
aj; = —, aj=1. (29)
c

For o small enough the normalization of the coefficients may not be necessary, the
distorsion of the estimate being negligible. Let us now evaluate the error bound cor-
responding to estimate (28), from here on referred to as NMXFD (Normalized Mixed
Finite Difference).

Theorem 3.1 Let f(x) be twice continuously differentiable and its Hessian be H-
Lipschitz for all x € R". Consider the gradient approximation obtained by (28)

Go0) = [20(x1)s - 80 i) |- (30)
We have that

Ho? §2
5

1Go () = VIl < v/ (31)
Proof Any single finite difference term in (28) has an error with respect to the true
value 0 f (x;, X;)/0x; whose bound depends on the step size and on the regularity
properties of function f. From [4], we have that

fOidojh %)= fi—ojh %) 9f(x.%)| _ Ho?(jh)?
- - < (32)
20 jh 0x; 6
for j =1, ..., m. Therefore, since 23'7:1 aj=1,anda; >0, j=1,...,m, wecan
write
. f (i %) | S (i, X)
8o (xi) — # = |85 (xi) — Zaj #

J=1
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f&ito jhXi)—fi—o jh X)) 9f(xi, %)
20 jh aX;

IA

m
>4
j=1

Ho?h? [ & 2 Ho?h*m? _ Ho? §?

. < =
6 j_lafj =76 6

which applied to all entries of @g (x) — V f(x), proves the theorem. O

Here we used the equality mh = S that implies that the error bound does not
depend on the number of function evaluations.

4 Estimation Error with Noisy Data

Let us now evaluate how the performance of the gradient estimate N M X F D (30) here
referred to as GMXF (x) compares with that of the Central Finite Differences (C F D),
taking also into account the presence of an additive noise affecting the sampled function
values f(x). Let {e;} be the canonical base of R", then we can write:

GYXF(x) =g (xi)e (33)
i=1

with the same notation we can easily write the gradient estimate according to the CFD
scheme here denoted as GSFP (x):

S-St h,fi;;hf@f —OME) Y S (4

i=1 i=1

GEPP(x) =

Let {¢;} denote a discrete random field modeling the additive noise on the sampled
function values with the following properties: €; ~ N (0, A2) and E[e; € j] = 0 for
i # j. We now compute the estimation errors for the two schemes and compare them
in terms of accuracy (mean value) and precision (variance). The accuracy evaluates
the estimate bias, i.e., the systematic source of the error, like the limited the number N
of function evaluations used to build the estimate. The precision is the dispersion of
the estimation error around its mean value and evaluates the variability of the statistic
source of the error.

The CFD scheme
According to (34), anumber N = 2n of function evaluations is considered to obtain

i n + -
A R
GEPW =Y 8ot + Y T T,
= i=1
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with eii denoting the noise on the function values f; (x; = o &, X;). Let

ecep(x) = GSP(x) — V £ (x)
be the estimation error. We can see that
n
Elecn(x)] =Y 8 fo (xi) i — V f(x)
i=1
and

222 n)?
462h2  202hK2

varlecep(x)] =n (35)

where var(z], z € R" with E[z] = 0, indicates the trace of the covariance matrix
E[zz"]. Now, for functions f as in theorem (3.1), let us consider the property (32),
with j = 1, for all the components of E[ecrp(x)]. We obtain that

Ho?h?
e

| Elecrp ()]l < v/n

Therefore, as the increment ok — 0, the error goes to zero as well on average, but its
variance increases without bound as O (1 / (oh)z).

The NMXFD scheme
In this case, according to (33), a number N = 2m n of function evaluations is consid-
ered to obtain

GYXF(x) = Zga(Xz)€z+Z Z‘” Zth :
i=l =

WlthG i denotlng the error terms on the function values f (x; o jh, x;),i = 1,...,n,
j =1,..., m.For the estimation error

emxr(x) = GMXF(x) — V £ (x),

we readily obtain that

Elemxe(0)] =Y &0 (xi) ei — V£ (x)

i=1

A L
var lemxe ()] = 55 Z—é : (36)
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Under the assumptions of theorem (3.1), and taking into account (31), we obtain

H 2 2h2
IE lemxe)] || < v/ % (37)

As for the error variance, two interesting results can be proved.

Proposition 4.1 For any m > 1, the variance of the estimation error of the NM X F D
scheme is strictly lower than the variance of the estimation error of the C F D scheme,
ie.,

var [eyxr(x)] < var [ecrp(x)] (38)

in any x € R" and for any o, h.

Proof The sum of squares » 7, ajz. is strictly less then 1 since the coefficients a;,

j =1,...,m,are all positive and their sum is 1. Therefore, from (36) we obtain that
? & ‘1]2- na2

var [ewixr ()] = > ; 7 < ggrpn = varleem()]. (39)

O

Now we further show that var [emxr(x)] goes to zero as N increases.

Proposition 4.2 Forany x € R", the variance of the estimation error of the NM X F D
scheme has the following asymptotic behavior

1

var [epxp(x)] ~ O (N) . (40)

Proof By taking into account relations (27), we have that

m—1 .
C=mh?(1¢'mm) +23" Lig'(jm)
" m
Jj=1
h m—1
! /.
<omh o | le'ni)l+2) 16/l ) - (41)

j=1
Let us denote with I;,l) (m) the following quantity
h m—1
Iy m) =2 | 1¢/ ()| +2 3 7 1¢/(h)|

Jj=1
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that is the trapezoidal quadrature formula for the integral

Y\ d 1 1 -5
= — — 2 .
/0 lo" (1) dt ’_27r< e )

Due to the O(1/N?) property of the error of the trapezoidal rule, we have that

Jf) ‘ = O(/N?).

(H
I(p, (m) —

1
— (1 —e
V21 (
Therefore, from (41), we easily obtain that

‘c 2m h (1 Szz) <2mh
——|1-e m
27 -

1D om) — L (1 - eszz> ‘
¢ 2
= O1/N?) (42)

so that C is a bounded quantity as N = 2m n increases (by increasing m), taking into
account that mh = S. Now, according to the relations (29) we can write

2 —1 . .
SR LA TN STl
i2 T 2 2 )
i C m o J
h4 m—1
= oz | le' PP +2 3 21/
Jj=1
213 h nl ,
< ory |2 el +23 20 Gl
j=1
Define now I(;%) (m) as follows
—1
1(2)( . h 2 / h 2 2m 2 / h 2
g ) =5 (2 )P +23 20 ()]
j=1

It is the trapezoidal quadrature rule for the integral

S
2/ 10/ (O dt = /7 erf(S) — Se=S" = &(S),
0
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2 . .
whereerf(z) = % foz e~'" dr is the Gauss error function. Hence, for the usual property
of the error, we can write

‘1;,2>(m) - @(S)’ = O(1/N?).

Therefore, we obtain that

I’l)\z " 3 I/l)\.2 2]’13 (2)
var [eMXF(x)] 2% 2h2 Z _2 20_2 h2 C2 W ( )
I (12m) — o) + [0(9)|
=6z c2 ly " '
Now recalling that m h = S, and that N = 2m n, we can write
var [emxr(x)] ks (|I(2)(m) — (9| + |q>(S)|)
MXF =57 mez Uy
2 n2 )\2 S ?2)
=% e (17 m - 2|+ |o)).
which along with (42), proves the proposition. O

5 Numerical Experiments

We tested our method for estimating the gradient by comparing its performance with
those of other methods on 69 functions from the Schittkowski test set [17].

For each function, we did the following: we generated a random starting point x
and minimized the function using the quasi-Newton method of Broyden, Fletcher,
Goldfarb and Shanno (BFGS) [14], finding the optimal point x* with V f(x*) = 0.
We then identified the first instance of a point x* where

0

IVFCOI _
IV O~

for each of the following values of : 10°, 1071, 1072, 1073, 107, 1073, 107, In
this way, we generated seven different buckets, one for each «, of 69 different points,
one for each function. Bucket i indicates the one associated to @ = 10~". Bucket 0 is
therefore the one with the points that are farther from the optimal solution and bucket
6 is the one with points closer to the optimal solution.

Then, for each point we computed the gradient approximations obtained with the
Normalized MiXed Finite Differences scheme (NMXFD) and with those considered

@ Springer



Journal of Optimization Theory and Applications

Table 1 Median log of relative error with o = 1072

Scheme N BO Bl B2 B3 B4 B5 B6
FFD n+1 0.08 1.22 2.20 343 443 5.47 6.52
CFD 2n —2.26 —-1.13 —-0.32 0.69 1.60 241 3.58
2n+1 1.84 1.92 2.52 3.57 4.69 5.63 6.92
GSG 4n +1 1.70 1.78 2.34 341 4.50 5.46 6.82
8n+1 1.54 1.66 2.10 3.31 4.49 5.38 6.67
2n 1.97 1.96 1.96 1.99 2.08 2.44 3.46
c¢GSG 4n 1.86 1.82 1.86 1.90 2.06 2.95 4.01
8n 1.71 1.69 1.74 1.81 2.13 3.14 4.28
2n —1.66 —-0.53 0.28 1.29 2.26 3.06 4.18
NMXFD 4n -1.98 —0.84 —0.03 0.97 1.92 2.71 3.87
8n -1.99 -0.86 -0.05 0.96 1.90 2.68 3.85

benchmarks by the literature, namely: Forward Finite Differences (FFD), Central
Finite Differences (CFD), Gaussian Smoothed Gradient (GSG), Central Gaussian
Gmoothed Gradient (cGSG) as defined in [4]. Different tables will summarize the
results of this comparison.

The tables show, for different values of the number of function evaluations (N) and
different buckets (B), the median value of the log of the relative approximation error
over all the 69 points in each bucket.

We define relative approximation error as

_ g = V@I
NI

where g(x) is the generic gradient estimate. The number of function evaluations N is
expressed in the following tables as a function of the number of dimensions n. FFD
and CFD schemes only allow for a specific value of N (n + 1 and 2n, respectively).
In GSG and in cGSG, N is linked to the number of direction sampled to build the
gradient approximation (N = (M + 1) in (13) and N = 2 M in (14)). In the NMFXD
scheme, the value of N is linked to the value of m in formula (28). In particular, we
have that N = 2 mn. In each table, the lowest entry for every bucket is highlighted in
bold, and the second lowest is italic.

5.1 Noise-Free Setting

For the noise-free setting, we report three different tables obtained using a different
value of o (shared by all the schemes) to compute the gradient approximation (Tables 1,
2,3).

It is possible to notice that in a noise-free setting, lower values of ¢ tend to yield
to better results, as one would expect from the theory. The closer the point is to the
minimum value of a function, the harder it is to obtain an accurate estimate of its
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Table 2 Median log of relative error with o = 107

Scheme N B0 B1 B2 B3 B4 B5 B6
FFD n+1 —2.92 —1.78 —0.80 0.43 1.43 2.47 3.51
CFD 2n -8.17 —6.99 —6.14 —4.87 -3.75 -3.07 -1.73
2n+1 1.84 1.84 1.85 1.84 2.00 2.64 3.92
GSG 4n +1 1.69 1.71 1.71 1.74 1.90 248 3.80
8n+1 1.53 1.57 1.56 1.57 1.77 2.41 3.67
2n 1.96 1.96 1.96 1.96 1.96 1.97 1.93
c¢GSG 4n 1.86 1.82 1.85 1.85 1.85 1.85 1.83
8n 1.71 1.68 1.70 1.68 1.71 1.71 1.71
2n —17.66 —6.47 —5.58 —4.43 —3.24 —2.75 —1.21
NMXFD 4n —17.90 —6.74 —5.85 —4.67 —3.55 —-2.79 —1.45
8n —7.95 —06.76 —587 —4.73 —3.57 —2.84 —1.54

Table 3 Median log of relative error with o = 10-8

Scheme N BO Bl B2 B3 B4 B5 B6
FFD n+1 —5.56 —4.73 —3.74 1.43 —1.50 —0.44 0.67
CFD 2n —6.00 —6.20 —6.23 -3.75 —6.20 —6.25 —6.23
2n +1 1.84 1.84 1.84 2.00 1.82 1.83 1.91
GSG 4n +1 1.69 1.71 1.72 1.90 1.70 1.69 1.79
8n+1 1.53 1.57 1.56 1.77 1.55 1.55 1.66
2n 1.96 1.96 1.96 1.96 1.96 1.96 1.93
c¢GSG 4n 1.86 1.82 1.85 1.85 1.84 1.85 1.82
8n 1.71 1.68 1.70 1.71 1.71 1.71 1.71
2n —6.48 —6.36 —6.52 —3.24 —6.41 —6.42 —6.09
NMXFD 4n —6.17 —06.29 —06.41 —3.55 —6.43 —06.48 6.20
8n —6.42 —6.44 —6.44 —-3.57 —6.50 —6.51 —6.15

gradient, unless o is very small. As a matter of fact, for points belonging to lower
index buckets—thus far from the minimum of the function, the value o = 107> yields
the better performances, while accurate estimates of the gradient of points closer to
the minimum value of a function require using of a lower value of o. We can also see
that the error of the proposed method, NMXFD, is of the same order of magnitude of
that of CFD, and almost always better than that of the other methods.

In our experiments, we have also produced gradient estimates using two more
methods:

e by removing the normalization of the coefficients in the computation of NMXFD,
i.e., implementing the gradient approximation as in (26).

e by computing the estimate as the raw average of central finite differences at dif-

1

ferent stepsizes, that is (28) witha; = ..
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Table4 Median log of relative error with o = 1072, noisy setting

Scheme N BO B1 B2 B3 B4 B5 B6
FFD n+1 0.22 1.45 2.46 3.57 4.86 5.74 6.86
CFD 2n —1.06 0.10 1.34 2.23 3.50 4.32 5.49
4n +1 1.72 1.79 2.56 3.66 4.82 5.69 6.84
GSG 8n+1 1.56 1.66 243 3.51 4.67 5.56 6.70
12n +1 1.47 1.56 2.35 343 4.59 5.48 6.61
4n 1.85 1.85 1.86 2.39 3.61 4.33 5.65
c¢GSG 8n 1.71 1.71 1.73 2.29 3.55 4.28 5.61
12n 1.62 1.63 1.65 2.24 3.52 4.25 5.58
4n —1.22 0.00 1.17 2.23 343 4.24 5.52
NMXFD 8n —1.31 —0.09 1.08 2.15 3.40 4.19 5.42
12n —1.36 —0.15 1.05 2.11 339 415 5.38

Both of these methods performed consistently worse than NMXFD, and they have
not been reported in the tables for brevity. Still, the better performances of NMXFD
over the raw average of central finite differences seem to confirm that the rationale
behind the choice of coefficients used to weight the CFDs in the proposed approach
is promising from a computational point of view.

5.2 Noisy Setting

We also show results of the noisy scenario, where the noise term is described in Sect.
4 and has A = 0.001. The estimation procedure is slightly different from the one of
the noise-free setting. In Table 4, the median log of the relative errors n; of the 69
different Schittkowski function is reported. Each n; is computed as the average of 100
relative approximation errors, resulting from 100 independent noise realizations. The
rationale behind this choice was to mitigate the dependence of the results from one
particular noise realization. Results are shown in Table 4, where the gradient estimates
are obtained with o = 0.01.

Table 4 shows that NMXFD performs better than the other schemes in presence of
noise, although reasonably low relative approximation errors are obtained only for the
first three buckets. For the other ones, the error 1 increases significantly. This is due
to the fact that the denominator of 1 gets smaller as we move to points close to the
minimum value of the function, while the variance of the approximation error does
not change across different buckets. Just like in the noise-free setting, increasing the
number of function evaluations allows to increase the precision of all the schemes, as
expected from the theory.

Different values of o for estimating the gradient (10_1 L1073, 10_4) have also been
used. The associated tables have not been reported for brevity, since they yielded to
the same conclusions and since the performances for almost every method and every
bucket with those values of o are significantly worse. This can be inferred from the
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Table 5 Variance reduction

coefficient on increasing m for m ’J" | iz %
NMXFD (1st column) and
mCFD (2nd column) 1 1 1
2 0.877023 0.5
3 0.307637 0.333333
4 0.128374 0.25
5 0.065331 0.2
6 0.037682 0.166667
7 0.023683 0.142857
8 0.015845 0.125
9 0.011119 0.111111
10 0.008101 0.1

theory, since the value of o influences the bias and the variance of the estimate error
in opposite directions, as we can see from (36) and (37) in Sect. 4.

The numerical experiments show the good performances of the proposed method
when compared with those of the standard methods commonly used in the literature. In
particular, the performances of NMXFD are comparable with those of CFD in absence
of noise and better with noisy data and are better than those of other schemes in both
scenarios.

The results seem to confirm the idea that performing a combination of finite dif-
ferences in the noisy setting increases the quality of the gradient estimation. In this
line, the simplest combination possible is the average of a number m of multiple CFDs
(mC F D) computed over repeated measures

m

AmCFD , \ _ i CFD
GrP ) = — 3 6ol ) (43)

k=1

where GCFD (x) is the CFD in (34) computed at the same points, but with a different
independent realization k of the noise. This formula, obviously, reduces the error
variance of CFD by 1/m, therefore it becomes interesting to see if

m
20 2h2z

/=1

1 nA?

< o = varlemcrp ()] (44)

var [emxr(x)] =

MI& 8

Because of the complicated structure of the coefficients a; a formal proof of (44)
can be involved. In Table 5, we report a numerical verification of (44) for increasing
values of m, with a uniform sampling within the range [-S, S] with § = mh = 3 to
compute coefficients a;.

For m = 1, the reduction of the variance of the two methods is the same. For all
m > 2, we can see that the reduction of the error variance of NMXFD is greater than
that of mCFD.
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Table 6 Median log of relative error with o = 10*2, different values of A

Scheme N BO Bl B2 B3 B4 B5 B6
A =0.001 mCFD 4n —1.22 —0.05 1.17 2.13 3.35 4.18 5.39
8n —1.36 —-0.19 1.02 2.05 32 4.07 5.32
12n —1.43 —-0.23 0.94 1.99 3.16 4.01 5.28
NMXFD 4n —1.22 0 1.17 223 3.43 4.24 5.52
8n —1.31 —0.09 1.08 2.15 3.4 4.19 5.42
12n —1.36 —0.15 1.05 2.11 3.39 4.15 5.38
A =0.01 mCFD 4n —0.24 0.93 2.1 3.04 4.33 5.14 6.31
&n -0.37 0.78 2.02 2.92 4.17 4.99 6.16
12n —0.47 0.71 1.93 2.82 4.09 491 6.08
NMXFD 4n -0.3 0.89 2.09 3 4.27 5.09 6.25
8n —0.39 0.78 2.01 2.92 4.16 4.97 6.16
12n —0.48 0.67 191 2.82 4.07 4.88 6.06
A =0.1 mCFD 4n 0.76 1.93 3.05 4.03 5.32 6.03 7.29
8n 0.6 1.78 29 3.89 5.16 5.87 7.15
12n 0.52 1.7 2.8 3.8 5.08 5.79 7.06
NMXFD 4n 0.69 1.88 2.97 3.98 5.26 5.97 7.23
8n 0.58 1.77 2.89 3.88 5.15 5.86 7.12
12n 0.49 1.66 2.77 3.79 5.05 5.77 7.03

In Table 6, we finally report the comparison of the median log of relative error
between GI(\,/[XF and GglCFD on increasing noise levels A, all computed with a value o
of 0.01 and always using the same function evaluation budget. We do not report the
performances of other methods for brevity, since they confirm the same conclusions
provided by Table 4.

Table 6 shows that the basic combination G(TCFD is indeed a good gradient approx-
imation due to the effect of the average that reduces the error variance. As the noise
level increases, GI(\,/IXF tends to be better than ég‘CFD. This supports the idea that a
good gradient approximation depends on both the coefficients of the linear combina-
tion and the sampling points where the differences are computed. In this respect, the
analysis developed in Sect. 3 to define the new gradient estimate, provides a guide to
design a more efficient estimate, depending on the following points:

— the parameter S that determines the range of integration in integral (23);
the integration formula used to approximate integral (23);

the filter parameter o;

— the sampling strategy of the function within the integration range (—S, ).

In this early investigation, we heuristically tried several values for the parameters S
and o, without trying different integration formulas or sampling criteria. The choice
of o may be difficult and affects the quality of the approximation. When the noise
level is known, there are some strategies to make a proper choice of ¢ as in [18].
When the noise level is not known, the choice of this parameter becomes harder and
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represents an open question to be further investigated, along with the other points in
the list above, to improve the performances of NMXFD.

Data availability statement: Data sharing is not applicable to this article as no
datasets were generated or analyzed during the current study.

6 Conclusions

In this paper, a novel scheme to estimate the gradient of a function is proposed. It is
based on linear functionals defining a filtered version of the objective function. Unlike
standard methods where the approximation error is characterized from a statistical
point of view and therefore may be quite large on a given experiment, one advantage
of the proposed scheme relies on a deterministic characterization of the approximation
error in the noise-free setting.

The other advantage lies in its behavior when function evaluations are affected by
noise. In fact, the variance of the estimation error of the proposed method is showed to
be strictly lower than that of the Central Finite Difference scheme and diminishes as
the number of function evaluations increases. The suitable linear combination of finite
differences seems to have a filtering role in the case of noisy functions, thus resulting
in a more robust estimator.

Numerical experiments on a significant benchmark given by the 69 Schittkowski
functions show the good performances of the proposed method when compared with
those of the standard methods commonly used in the literature. In particular, the
performances of NMXFD are comparable with those of CFD in absence of noise
and better with noisy data and seem to be better than those of other schemes in both
scenarios. Moreover, we also show the comparison with NMXFD and the average of
repeated CFD, thus using the same budget of function evaluations. As the noise level
increases, NMXFD tends to perform better than all the other schemes.

This supports the idea that the theory developed to propose this new scheme can
be a suitable framework to design gradient estimates with noisy data. The gradient
estimate proposed in this paper can be seen as a first design attempt. A future study
could be dedicated to the investigation of the best gradient estimates in this framework,
along with the analysis of the impact of the obtained gradient approximation when
used in optimization algorithms.
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Appendix

Proof of Theorem (2.1) we have that

1Go () = G @I = Y ((Go@))i — (Go));)?

i=1

where (G4 (x)); is given by (11)
(G (X)) = /RH 8o (xi, Xi +05;) @(5;) ds;

and (G, (x)); = 8o (xi, X;i), by (16). We can write

2
((Go(x))i — (Ea(x))i)2 = (/Rn_l 8o (Xis Xi +05) ¢(si)ds; — go(xi, fi))

2

= (/ (8o (xis T +05) — go (xi, xn)go(s,-)d@-)
Rll—

(45)
where the last equality holds since f gn—1 ¢(8i) ds; = 1. Now, the integrand in (45) has
the following expression

8o (Xi, Xi +05;) — go (xi, Xi)

- %/ (fxi +o0si, Xi +051) — f(xi +0si, X)) si o(si)dsi, (46)

and for the argument of the integral we can write
fxi+osi, Xi +o5i) — f(xi +o0si, Xi)

=(fxi+osi, xi +08;)— fxi, X)) — (f(xi +osi, X)) — f(xi, X))
= Vi) T os — (VI 5))iosi

= (V& )iosi + (Vf(X’)),-TG 5 — (Vf(x], %i)iosi 47
with x" € (x,x + os) and x!" € (x;, x; + 05;).
We further have that
(V) = (VD)) = (Vi) + (VX)) (48)

Now substituting (47) and (48) into (46), we obtain that
8o (Xi, Xi +05;) — g5 (Xi, X;)
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=/ [(V i = (V& 5] s7 esi)dsi

o0 T
+ / ((VFCN; = (V) + (VTG ) i i i) s

—00

By the Lipschitz property of the gradient, and recalling that

f T T s oG dsi =0

we have:
(80 (xi, %i +05;) — go (xi, X1))*

o0
< [t etods
—0Q
* 2 2 2 2.2
+/ Loo” [Is[I” lsi I s7 @(si) dsi
—0o0
We can finally substitute (50) into (45) obtaining:

((Go (x))i — (Go(x));)’

o0
stazf / 2+ 1517 s o(s) dsi (57) dii+
=1 J—o00

oo
+Lzazf f 57+ 15 1%) 5% g (si) dsi p(s7) .
R=1J—00

For the first term in (51), we obtain that
* 2 2\ 4
/ 1/ (s + 15ill7) s @(si) dsi @(si) ds;
R J—o0

o0
zf / sCp(s) ds; 9() ds,
R*— —00

o8]
+/ / 5117 5i" @ (s1) dsi p(S7) d
R"1 J—o00
=154+3(n —1).

By similar computations, the second term in (51) becomes
> 2 2 2
/ 1/ (s + 15 1) 15 117 @ (si) dsi @(si) ds;
n=1J—o00
* 2 2
=/ f si lIsill” @(si) dsi @(si) ds;
R=1 J—o0
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e ds e as
— (=143 —1) =40 —1). (53)

In (52) and (53), we used the property (p. 208 in [7]) that for a zero mean Gaussian z
with variance o2

(d — DNa?, ford even,

E[z9] =
=10, for d odd,

where (d — 1)!!' = (d — 1)(d —3)---3-1 and that for any z ~ N (0, I,_1)

n—1
2 - 2 N
/Rn_l Izl"p(z) dz = /Rn_. Y Ge@dz=n—1.

i=1

By substituting (52) and (53) in (51), we finally obtain that

((Go(x))i — (50(16))1')2 <LPo’(15+43(n—1) +4(n — 1)),

which, applied to all the entries, proves the theorem.
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