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Abstract
Purpose – The purpose of this study is to investigate numerically the laminar natural convection from
a pair of horizontal heated cylinders, set one above the other, inside a water-filled rectangular enclosure
cooled at sides, with perfectly insulated top and bottom walls, through a control-volume formulation of
the finite-difference method, with the main aim to evaluate the effects of the center-to-center cylinder
spacing, the size of the cavity and the temperature difference imposed between the cylinders and the
cavity sides.

Design/methodology/approach – The system of the conservation equations of the mass,
momentum and energy, expressed in dimensionless form, is solved by a specifically developed
computer code based on the SIMPLE-C algorithm for the pressure-velocity coupling. Numerical
simulations are executed for different values of the Rayleigh number based on the cylinder diameter, as
well as the center-to-center cylinder spacing and the width of the cavity normalized by the cylinder
diameter.

Findings – The main results obtained may be summarized as follows: the existence of an optimum
cylinder spacing for maximum heat transfer rate is found at any investigated Rayleigh number; as a
consequence of the downstream confinement, a periodic flow arises at sufficiently high Rayleigh
numbers; the amplitude of oscillation of the periodic heat transfer performance of the cylinder array
decreases as the cylinder spacing is increased and the cavity width is decreased, whereas the frequency
of oscillations remains almost the same; at very small cavity widths, a transition from the typical two-
cell to a four-cell flow pattern occurs.

Originality/value – The computational code used in the present study incorporates an original composite
polar/Cartesian discretization grid scheme.
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Water-filled enclosure
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Nomenclature
D = cylinder diameter, m;
g = gravity vector, m/s2;
g = gravitational acceleration, m/s2;
H = height of the cavity, m;
L = distance of the axis of the bottom cylinder from the bottom wall of the cavity, m;
N = number of cylinders;
Nu = Nusselt number;
P = dimensionless pressure;
Pr = Prandtl number;
R = cylinder radius, m;
r = radial coordinate;
Ra = Rayleigh number;
S = center-to-center cylinder spacing, m;
T = dimensionless temperature;
t = temperature, K;
V = dimensionless velocity vector;
W = width of the cavity, m.

Greek symbols

a = thermal diffusivity, m2/s;
b = coefficient of volumetric thermal expansion, 1/K;
u = angular coordinate;
� = kinematic viscosity, m2/s;
r = mass density, kg/m3;
t = dimensionless time.

Subscripts

c = cooled sidewalls;
h = heated cylinders.

1. Introduction
Natural convection from vertical arrays of heated horizontal cylinders has been widely
investigated in the past decades, both numerically and, above all, experimentally, because of
its considerable relevance to many thermal engineering applications, such as heat
exchangers and energy storage devices.

Although the main body of the research performed on this topic has been executed using
air as working fluid – for example, Marsters, 1972; Sparrow and Niethammer, 1981; Tokura
et al., 1983; and Sadegh Sadeghipour and Asheghi, 1994 – a number of studies recently
carried out for liquids are also available in the literature. A summary of these publications is
presented in Table I (Reymond et al., 2008; Persoons et al., 2011; Chae and Chung, 2011;
Grafsrønningen and Jensen, 2012; Heo et al., 2013; Grafsrønningen and Jensen, 2013; Shyam
et al., 2013; Heo and Chung, 2014), in which indications on the research approach, the type of
liquid, the examined ranges/values of the number of cylinders, the center-to-center
separation distance between the cylinders and the Rayleigh number based on the cylinder
diameter are enumerated.
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The main common findings of most works indicate that the heat transfer rate at the
bottom cylinder is substantially unaffected by the presence of the top cylinder, whereas
the top cylinder exhibits reduced heat transfer rates at close spacings and enhanced
heat transfer rates at large spacings, as a direct consequence of the two opposite effects
originating from the warm plume spawned by the bottom cylinder. In fact, the hot
buoyant flow induced by the bottom cylinder acts as a forced convection field wherein
the top cylinder is embedded, and causes a decrease in the temperature difference
between the surface of the top cylinder and the adjacent fluid. The first effect, which
tends to increase the heat transfer performance of the top cylinder, prevails at large
spacings, whereas the second effect, which tends to degrade the heat transfer
performance of the top cylinder, is of major importance at close spacings. Actually, this
can be easily explained using the theoretical results obtained by Gebhart et al., 1970,
who demonstrated that for a plume generated by a horizontal line source, the centerline
velocity increases as the fifth power of the distance above the source, whereas the
centerline temperature decreases as the inverse of the three-fifths power of the distance,
which implies that from a given distance onward, the velocity effect has to outweigh the
increased fluid temperature effect. Indeed, the experiments conducted using water
pointed out the existence of an optimum cylinder spacing at which the amount of heat
transferred by the top cylinder has a peak. Additionally, a periodicity in the heat
transfer rate at the top cylinder was also detected because of the plume oscillation
consequent to its downstream confinement, as found experimentally by Incropera and
Yaghoubi, 1980; Atmane et al., 2003; and Kuehner et al., 2012 for a submerged cylinder,
and by Fiscaletti et al., 2013 for a cylinder suspended inside a closed cavity cooled at the
walls.

However, despite the main phenomenological aspects of the problem being well
understood, few data are available for top confinements obtained using solid walls rather
than a free surface, and for Rayleigh numbers lower than 106, especially considering that
Shyam et al. (2013) focused their attention principally on the behavior of non-Newtonian
liquids. Moreover, the effects of possible side confinements seem to have never been taken
into full account.

All these considerations motivated us to carry out the present study, in which natural
convection from a pair of heated horizontal cylinders set one above the other in a water-filled
rectangular enclosure, with the sidewalls cooled and the top and bottom walls perfectly
insulated, is investigated numerically through a control-volume formulation of the finite-
difference method. Themain scope of this paper is to evaluate in what measure the center-to-
center cylinder spacing, the size of the cavity and the temperature difference imposed
between the cylinders and the cavity sides affect the overall heat transfer performance, and
to discuss the basic heat and fluid flow features.

Table I.
Summary of the

studies performed on
natural convection

from vertical arrays
of horizontal

cylinders in liquids

Year Author(s) Method Liquid N S/D RaD

2008 Reymond et al. (2008) Exp Water 2 1.5-3 2� 106�6� 106

2011 Persoons et al. (2011) Exp Water 2 2-4 1.8� 106�5.5� 106

2011 Chae and Chung (2011) Exp/num Pr = 2014-8334 2 1.02-9 7.3� 107�4.5� 1010

2012 Grafsrønningen and Jensen (2012) Exp Water 2 1.5-5 1.82� 107�2.55� 108

2013 Heo et al., 2013) Exp/num Pr = 5-2014 2 1.1-5.4 1.5� 108�2.5� 1010

2013 Grafsrønningen and Jensen (2013) Exp Water 3 2-5 1.96� 107�5.35� 107

2013 Shyam et al. (2013) Num Pr = 10-100 2 2-20 7.2-106

2014 Heo and Chung (2014) Num Pr = 5-2014 2 1.1-5.4 1.5� 108
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2. Mathematical formulation
A water-filled rectangular enclosure of width W and height H, containing a vertical array of
two horizontal cylinders of radius R, is considered. The cylinders, set at a center-to-center
spacing S, are suspended in the vertical midplane of the cavity at an elevation identified by
the distance L of the axis of the bottom cylinder from the bottom wall of the enclosure. Both
cylinders are heated at a uniform temperature th, while the sidewalls of the cavity are cooled
at a uniform temperature tc, the remaining top and bottom walls being perfectly insulated,
as sketched in Figure 1. The resulting buoyancy-induced flow is considered to be two-
dimensional, laminar and incompressible, respectively, with constant physical properties.
The buoyancy effects on the momentum transfer are taken into account through the
customary Boussinesq approximation. Viscous dissipation and pressure work, as well as
radiative heat transfer, are neglected.

Upon incorporating these hypotheses into the conservation equations of the mass,
momentum and energy, the following set of governing equations expressed in
dimensionless form are obtained:

r � V ¼ 0 (1)

@V
@t

þ V � rð ÞV ¼ �rPþr2V� Ra
Pr

T
g
g

(2)

@T
@t

þ V � rð ÞT ¼ 1
Pr

r2T (3)

where t is the dimensionless time normalized by D2/�, V is the dimensionless velocity
vector normalized by �/D, T is the dimensionless temperature excess over the uniform
temperature of the cavity sidewalls normalized by the temperature difference (th – tc), P
is the dimensionless sum of the thermodynamic and hydrostatic pressures normalized by
r�2/D2, g is the gravity vector, g is the gravity acceleration, Pr = �/a is the Prandtl number
set to 7 (corresponding to water at a temperature of 293K) and Ra is the Rayleigh number
defined as:

Figure 1.
Sketch of the
geometry and
boundary conditions
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Ra ¼ gb ðth�tcÞD3

a �
(4)

in which D=2R is the cylinder diameter, � is the kinematic viscosity, r is the mass density,
a is the thermal diffusivity and b is the coefficient of volumetric thermal expansion.

The assigned boundary conditions are:
� T=1 and V=0 at the surface of the heated cylinders.
� T=0 and V=0 at both sidewalls.
� @T/@Y=0 and V=0 at the top and bottom walls, where Y is the dimensionless

vertical Cartesian coordinate normalized by D.

The initial conditions assumed throughout the enclosure are fluid at rest, i.e. V=0 and
uniform temperature T= 0.

3. Computational procedure
The system of the governing equations defined from equations (1) to (3), in combination with
the boundary and initial conditions stated earlier, is solved through a control-volume
formulation of the finite-difference method. The pressure-–velocity coupling is handled
using the SIMPLE-C algorithm introduced by Van Doormaal and Raithby, 1984, which is
essentially a more implicit variant of the SIMPLE algorithm developed by Patankar and
Spalding, 1972. The convective terms are approximated through the QUICK discretization
scheme proposed by Leonard, 1979, whereas, a second-order backward scheme is applied for
time integration. According to the geometry of the system, a cylindrical polar grid is fixed
around each cylinder, while a Cartesian grid is used to fill the remainder of the integration
domain. The polar and Cartesian grids, which are entirely independent of one another,
overlap with no attempt of node-matching, their connection being provided by a row of false
nodes, in which the values of the dependent variables are calculated by a linear interpolation
of their values at the four surrounding real nodes, as discussed in (Corcione, 2005). Non-
uniform structured grids are used for the discretization of both the polar and the Cartesian
grid regions, having a higher concentration of grid nodes near the boundary surfaces and a
relatively lower uniform spacing throughout the remainder interior of the cavity.
Conversely, time discretization is chosen uniformly.

Starting from the assigned initial fields of the dependent variables, at each time-step, the
system of the discretized algebraic governing equations is solved iteratively by the way of a
line-by-line application of the Thomas algorithm. A standard under-relaxation technique is
enforced in all the steps of the computational procedure to ensure an adequate convergence.
Within each time-step, the spatial numerical solution of the velocity and temperature fields
is considered to be converged when the maximum absolute value of the mass source, as well
as the relative changes of the dependent variables at any grid-node between two consecutive
iterations, is smaller than the pre-specified values of 10�6 and 10�7, respectively. As
time passes, the dynamic behavior of the system is followed by plotting the phase-space
trajectories of the dependent variables at some assigned grid nodes, i.e. by plotting the
distributions of the local time-derivatives of the dependent variables vs the variables
themselves with time as a parameter, whose attractor may be represented by either a fixed
point, a limit cycle, a torus or a so-called strange attractor, to visualize the tendency of the
system to reach either a steady-state, a periodic, a quasi-periodic or a chaotic solution. In
addition, the time-distributions of the incoming and outgoing heat transfer rates, as well as
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their relative difference, are continuously monitored to assess the achievement of an
asymptotic solution.

At each time-step, after the spatial convergence is adequately attained, the local Nusselt
number of the i-th cylinder, [Nuu (t )]i, where subscripts 1 and 2 denote the bottom and the
top cylinders, respectively, is calculated as:

Nuu tð Þ� �
i ¼ � @T tð Þ

@r

����
R;u

" #
i

; i ¼ 1; 2ð Þ (5)

in which, the r and u coordinates of the polar reference system are measured from the center
of the cylinder, and anticlockwise from downwards, respectively, and the temperature
gradient is evaluated by a second-order temperature profile embracing the wall-node and the
two adjacent fluid-nodes.

Hence, the corresponding average Nusselt number of the i-th cylinder at time t , [Nu(t )]i,
is calculated with the expression:

Nu tð Þ� �
i ¼

1
2p

ð2p
0

�@T tð Þ
@r

����
R;u

du

2
64

3
75
i

; i ¼ 1; 2ð Þ (6)

the integral being computed numerically by means of the trapezoidal rule.
Time integration is stopped once an asymptotic solution, either stationary or periodic, is

reached. When a steady-state solution is achieved, the Nusselt number of the i-th cylinder
coincides with the last value computed for [Nu(t )]i:

Nui ¼ Nu tð Þ� �
i

����
t!1

: i ¼ 1; 2ð Þ (7)

Conversely, when a periodic solution is attained, the Nusselt number Nui is evaluated as:

Nui ¼ 1
X

ðX
0

Nu tð Þ� �
idt : i ¼ 1; 2ð Þ (8)

whereX is the dimensionless period of oscillation computed by the solution algorithm.
The heat transfer performance of the whole array is then calculated as the arithmetic

mean of the average Nusselt numbers of both cylinders, i.e.:

Nu ¼ Nu1 þ Nu2
2

(9)

Numerical tests on the dependence of the results on the mesh spacing and time stepping
have been methodically performed for several combinations of the three controlling
parameters, namely, Ra, S/D and W/D, imposing L/D= 1.5 and H/D= 10. Accordingly, the
discretization grids and time-steps used for computations are chosen in such a way that
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further refinements do not produce noticeable modifications either in the heat transfer rates
or in the flow fields, with percentage changes smaller than the pre-established accuracy of 1
per cent. The typical number of nodal points of the polar and Cartesian discretization grids
used for simulations lie in the ranges between 80� 80 and 100� 100 and between 100� 100
and 140� 140, respectively. Moreover, typical dimensionless time-steps used for
simulations lie in the range between 10�4 and 10�3. Selected results of the grid-size and
time-stepping sensitivity analysis are presented in Tables II and III.

Finally, with the aim to validate the numerical code and the composite-grid discretization
scheme used in the present study, four tests have been carried out. In the first test, the local
and average Nusselt numbers computed at several Rayleigh numbers for a single cylinder
suspended in air have been compared with the corresponding benchmark numerical data of
Saitoh et al., 1993, as shown in Table IV, where the numerical results of Wang et al., 1990,
and Kuehn and Goldstein, 1980, are also reported for further comparison. In the second test,
the average Nusselt numbers computed at several Rayleigh numbers for a single cylinder
suspended in water have been compared with the data obtained using two of the most
prominent correlations for free convection heat transfer from a single cylinder available in
the literature, i.e. those by Raithby and Hollands, 1976, and Kuehn and Goldstein, 1976, as
shown in Table V. In the third test, a comparison is carried out with the experimental data
published by Sparrow and Niethammer, 1981; Tokura et al., 1983; and Sparrow and
Boessneck, 1983, for a two-cylinder vertical array suspended in air, as displayed in
Tables VI, VII and VIII, respectively, in which the average Nusselt number of any individual
cylinder or the whole array is normalized by the average Nusselt number Nu0 of the single

Table II.
Grid sensitivity

analysis for Dt =
10�4

Ra W/D S/D Cartesian mesh size Polar mesh size Nu (%)

104 5 3 60� 60 35� 70 4.305 �
80� 80 40� 80 4.236 –1.61

100� 100 45� 90 4.181 –1.30
120� 120 50� 100 4.173 –0.18

104 5 5 60� 60 35� 70 4.256 �
80� 80 40� 80 4.178 –1.83

100� 100 45� 90 4.132 –1.10
120� 120 50� 100 4.112 –0.48

104 10 5 60� 60 35� 70 4.214 �
80� 80 40� 80 4.148 –1.57

100� 100 45� 90 4.093 –1.33
120� 120 50� 100 4.086 –0.17

106 10 5 80� 80 35� 70 14.910 �
100� 100 40� 80 14.586 –2.17
120� 120 45� 90 14.315 –1.86
140� 140 50� 100 14.250 –0.45

Table III.
Time-step sensitivity
analysis for Ra = 104,

S/D= 5 and W/
D= 10

Cartesian mesh size Polar mesh size Ra W/D S/D Dt Nu (%)

120� 120 50� 100 104 10 5 1� 10–3 4.231 �
5� 10–4 4.143 –2.08
1� 10–4 4.086 –1.38
5� 10–5 4.081 –0.12
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Table IV.
Comparison of the
present solutions for
the local and average
Nusselt numbers of a
single cylinder
suspended in air and
the corresponding
data of Saitoh et al.,
(1993); Wang et al.,
(1990) and Kuehn
and Goldstein, (1980)

Nu (u )
Ra u = 0o 30o 60o 90o 120o 150o 180o Nu

103

Present 3.789 3.755 3.640 3.376 2.841 1.958 1.210 3.013
Saitoh et al. (1993) 3.813 3.772 3.640 3.374 2.866 1.975 1.218 3.024
Wang et al. (1990) 3.860 3.820 3.700 3.450 2.930 1.980 1.200 3.060
Kuehn and Goldstein (1980) 3.890 3.850 3.720 3.450 2.930 2.010 1.220 3.030

104

Present 5.986 5.931 5.756 5.406 4.716 3.293 1.532 4.819
Saitoh et al. (1993) 5.995 5.935 5.750 5.410 4.764 3.308 1.534 4.826
Wang et al. (1990) 6.030 5.980 5.800 5.560 4.870 3.320 1.500 4.860
Kuehn and Goldstein (1980) 6.240 6.190 6.010 5.640 4.820 3.140 1.460 4.940

105

Present 9.694 9.595 9.297 8.749 7.871 5.848 1.989 7.886
Saitoh et al. (1993) 9.675 9.577 9.278 8.765 7.946 5.891 1.987 7.898
Wang et al. (1990) 9.800 9.690 9.480 8.900 8.000 5.800 1.940 7.970
Kuehn and Goldstein (1980) 10.15 10.03 9.650 9.020 7.910 5.290 1.720 8.000

Table V.
Comparison of the
present solutions for
the average Nusselt
number and the
corresponding data
derived from the
correlations of
Raithby and
Hollands (1976) and
Kuehn and Goldstein
(1980)

Nu
Ra = 102 103 104 105 106 107

Present 2.340 3.450 5.700 9.240 15.889 18.713
Raithby and Hollands (1976) 2.347 3.552 5.645 9.330 15.856 18.674
Kuehn and Goldstein (1976) 2.369 3.589 5.711 9.445 16.062 18.923

Table VI.
Comparison of the
present solutions for
the average Nusselt
number of the top
cylinder in a
2-cylinder vertical
array suspended in
air with the
experimental results
of Sparrow and
Niethammer (1981)

Nu2/Nu0
S/D= 2 Ra = 2� 104 6� 104 105

Present 0.810 0.844 0.856
Sparrow and Niethammer (1981) 0.820 0.850 0.860

HFF
30,5

2614



cylinder. In the fourth test, the results obtained for the top cylinder of a two-cylinder vertical
array, suspended in water are compared with the experimental data reported by Reymond
et al., 2008, for Ra = 2� 106 and S/D=3, as depicted in Figure 2. It is apparent that in any
validation test carried out, a satisfactorily good degree of agreement between our numerical
results and the literature data has been achieved.

4. Results and discussion
Numerical simulations are performed for Pr = 7, which corresponds to water, and for
different values of (a) the Rayleigh number Ra in the range between 103 and 107, (b) the
dimensionless center-to-center cylinder spacing S/D in the range between 1.25 and 7 and (c)
the dimensionless cavity width W/D in the range between 1.05 and 15. As regards the
dimensionless distance of the axis of the bottom cylinder from the bottom wall, L/D, and the
dimensionless cavity height, H/D, all the simulations have been executed assuming L/
D= 1.5 and H/D=10.

Typical local results are reported in Figures 3 and 4, in which steady-state streamline and
isotherm contours, relative to three different cylinder spacings, are plotted for Ra = 105 and
W/D=10. It is apparent that the flow structure consists of two counter-rotating, kidney-
shaped cells originating from the rise of the hot fluid above both heated cylinders and
the fall of two streams of cold fluid along the cooled sidewalls. Correspondingly, the
temperature distribution is featured by a thermal plume emerging from the top of the
cylinders, two boundary layers adjacent to the sidewalls and a pair of stratified regions
located between the cylinders and the sidewalls. The related distribution of the average
Nusselt number of the cylinder array, Nu, is depicted in Figure 5.

As expected, the inter-cylinder spacing has been found to have a negligible effect on the
heat transfer rate at the bottom cylinder, which tends to behave as a single cylinder, Table VII.

Comparison of the
present solutions for
the average Nusselt

number of any
individual cylinder in
a 2-cylinder vertical
array suspended in

air with the
experimental results
of Tokura et al. [3]

Nu/Nu0
Ra = 8.5� 104 L/D= 1.1 1.3 1.5 2

Bottom cylinder Present 0.908 0.965 0.996 1.008
Tokura et al. (1983) 0.890 0.940 1.000 1.010

Top cylinder Present 0.614 0.661 0.726 0.853
Tokura et al. (1983) 0.610 0.680 0.740 0.870

Whole array Present 0.761 0.813 0.861 0.930
Tokura et al. (1983) 0.750 0.810 0.870 0.940

Table VIII.
Comparison of the

present solutions for
the average Nusselt
number of the top

cylinder in a 2-
cylinder vertical

array suspended in
air with the

experimental results
of Sparrow and

Boessneck (1983)

Nu/Nu0
Ra S/D Sparrow and Boessneck (1983) Present

6� 104 2.0 3.755 3.640
5.0 3.850 3.720

1� 105 2.0 5.931 5.756
5.0 6.190 6.010

2� 105 2.0 9.595 9.297
5.0 10.03 9.650
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provided that S/D is not so small to give rise to a widening of the rear stagnation region with
a consequent degradation of the heat transfer performance. Conversely, the inter-cylinder
spacing has more significant effects on the heat transfer rate at the top cylinder, thus
affecting the heat transfer performance of the whole array. As a matter of fact, the increase
of the inter-cylinder spacing tends to enhance the heat transfer rate at the top cylinder
surface because of the larger beneficial velocity effect being compared with the unfavorable
increased temperature effect, but, at the same time, the corresponding decrease of the
distance of the top cylinder from the top wall of the cavity results in a decrease of the motion
intensity, which tends to reduce the heat transfer rate, thus explaining the existence of an
optimum cylinder spacing for maximum heat transfer.

Different heat and fluid flow configurations are found at higher Rayleigh numbers, at
which the asymptotic solution may become periodic, as shown in Figure 6, where the
asymptotic time-distributions of Nu1, Nu2 and Nu are reported for Ra = 2� 106, S/D= 4 and

Figure 2.
Comparison of the
present solutions for
the average Nusselt
number of the top
cylinder of a
2-cylinder vertical
array suspended in
water and the
experimental results
of Reymond et al.,
2008
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Figure 3.
Steady-state
streamline contours
for Ra5 105,
W/D=10 and
S/D=2.5, 4 and 7

Figure 4.
Steady-state isotherm
contours for Ra5
105, W/D=10 and
S/D=2.5, 4 and 7
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W/D=10. The corresponding asymptotic time-evolution of the isotherm contour plots is
documented in Figure 7 by the way of six snapshots covering one full period of oscillation,
showing that the plumes generated by both cylinders sway back and forth periodically,
which is the reason of the oscillatory patterns detected for Nu1 and Nu2 and then Nu. The
effect of the inter-cylinder spacing on the periodicity of the asymptotic solution is
illustrated in Figure 8, in which the time-distribution of the average Nusselt number of
the whole array and the related phase-space trajectory displayed in terms of dNu(t )/dt vs
Nu(t ), as well as the Fourier frequency spectrum of the heat transfer performance of each
cylinder, displayed in terms of (Numax – Numin) vs F, where F is the dimensionless
frequency of oscillation equal to the inverse of the dimensionless period of oscillation X,
are reported for four different values of S/D. It can be seen that the amplitude of
oscillation of the heat transfer performance of the top cylinder decreases as the top
cylinder approaches the top wall of the cavity, which increasingly limits the swaying of
the plume generated by the cylinder. In contrast, provided that the inter-cylinder spacing
is not too small, the plume spawned by the bottom cylinder is barely affected by the
distance of the downstream cylinder, as reflected by the constant amplitude of oscillation
of its average Nusselt number. Moreover, it is apparent that the average Nusselt number
of the whole array has a peak at an intermediate inter-cylinder spacing, for the same
reasons discussed earlier for Ra = 105.

Figure 6.
Asymptotic time-
distributions of

Nu1(t ), Nu2(t ) and Nu
(t ) for Ra = 2� 106,

S/D= 4 andW/D=10
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As far as the role played by the cavity width is concerned, a selection of local results
are displayed in Figures 9 and 10, in which steady-state streamline and isotherm
contours, relative to five different cavity widths, are plotted for Ra = 105 and S/D = 3.
The related distribution of the average Nusselt number of the cylinder array, Nu, is
depicted in Figure 11. It can be noticed that the thermal performance remains
substantially the same as the cavity width is decreased, unless the gap between the
cylinders and the sidewalls becomes small enough not to allow the development of
two distinguished uprising and descending boundary layers. In such a case, two
counter-rotating cells develop above each cylinder, with a consequent reduction in
the amount of heat transferred from the cylinders. However, further decrease of the
cavity width gives rise to a significant compression of the isotherms between the
cylinders and the sidewalls, thus implying a notable enhancement of the local, and
then the overall, heat transfer rate. Obviously, as the boundary layer thickness
decreases with an increase in the Rayleigh number, the cavity width corresponding
to the minimum heat transfer performance decreases as the Rayleigh number is
increased, as shown in Figure 12, where the distribution of the average Nusselt
number of the whole array normalized using the average Nusselt number computed
for W/D = 15, denoted as Nu/Nu15, are plotted vs W/D for S/D = 3 using Ra as a
parameter.

Finally, the effect of the cavity width on the periodicity of the asymptotic
solutions found at high Rayleigh numbers is displayed in Figure 13, in which the
time-distribution of the average Nusselt number of the whole array and the related
phase-space trajectory, as well as the Fourier frequency spectrum of the heat
transfer performance of each cylinder, are reported for four different values of W/D,
showing that, owing to the confinement role played by the sidewalls, the amplitude
of oscillation of the heat transfer performance of the top cylinder decreases up to
vanishing as the cavity width is reduced. Conversely, the heat transfer rate at the

Figure 7.
Asymptotic time-
evolution of the
isotherm contours
during one period of
oscillation for Ra =
2� 106, S/D= 4 and
W/D=10
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bottom cylinder tends to remain somehow periodic, with very small amplitudes of
oscillation, which can tentatively be ascribed to the destabilization effect suffered
by the plume at its impingement upon the heated surface of the downstream
cylinder.

Figure 8.
Asymptotic time-
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5. Conclusions
Laminar natural convection from a pair of heated horizontal cylinders set one above the
other inside a water-filled rectangular enclosure has been studied numerically using a
control-volume formulation of the finite-difference method based on the SIMPLE-C
algorithm and a composite polar/Cartesian discretization grid scheme.

Figure 12.
Distributions of
Nu/Nu15 vsW/D for
S/D= 3 and Ra = 104,
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Themain results obtained in the present studymay be summarized as follows:
� The existence of an optimum cylinder spacing for maximum heat transfer rate has

been found at any investigated Rayleigh number.
� As a consequence of the downstream confinement, a periodic flow arises at

sufficiently high Rayleigh numbers.
� The amplitude of oscillation of the periodic heat transfer performance of the

cylinder array decreases as the cylinder spacing is increased and the cavity width is
decreased, whereas the frequency of oscillations remains almost the same.

� At very small cavity widths, a transition from the typical two-cell flow pattern to a
four-cell flow pattern occurs.

Figure 13.
Asymptotic time-
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space trajectories and

Fourier frequency
spectra of Nu(t ) for

Ra = 2� 106, S/D= 4
andW/D= 10, 7.5, 6

and 5

12

13

14

15

17.0 17.2 17.4 17.6

N
u(

τ)

τ 

10D = W/, 4D = S/, 610×2 Ra = 

-30

-20

-10

0

10

20

30

13.0 13.5 14.0

dN
u(

τ)
/d

τ

Nu(τ)  

Ra = 2 × 106, S/D = 4, W/D = 10

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50

(N
u m

ax
-N

u m
in

)

F

bottom
cylinder

top cylinder

Ra = 2 × 106

S/D = 4
W/D = 10

12

13

14

15

17.0 17.2 17.4 17.6

N
u(

τ)

τ 

7.5D = W/, 4D = S/, 610×2 Ra = 

-30

-20

-10

0

10

20

30

13.0 13.5 14.0

dN
u(

τ)
/d

τ

Nu(τ)  

Ra = 2 × 106, S/D = 4, W/D = 7.5

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50

(N
u m

ax
-N

u m
in

)

F

Ra = 2 × 106

S/D = 4
W/D = 7.5

top cylinder

bottom
cylinder

12

13

14

15

17.0 17.2 17.4 17.6

N
u(

τ)

τ 

6D = W/, 4D = S/, 610×2 Ra = 

-30

-20

-10

0

10

20

30

13.0 13.5 14.0

dN
u(

τ)
/d

τ

Nu(τ)  

Ra = 2 × 106, S/D = 4, W/D = 6

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50

(N
u m

ax
-N

u m
in

)

F

top cylinder

bottom
cylinder

Ra = 2 × 106

S/D = 4
W/D = 6

12

13

14

15

17.0 17.2 17.4 17.6

N
u(

τ)

τ 

5D = W/, 4D = S/, 610×2 Ra = 

-30

-20

-10

0

10

20

30

13.0 13.5 14.0

dN
u(

τ )
/d

τ

Nu(τ)  

Ra = 2 × 106, S/D = 4, W/D = 5

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50

(N
u m

ax
-N

u m
in

)

F

top cylinder
bottom
cylinder

Ra = 2 × 106

S/D = 4
W/D = 5

A water-filled
rectangular
enclosure

2621



References
Atmane, M.A., Chan, V.S.S. and Murray, D.B. (2003), “Natural convection around a horizontal heated

cylinder: the effect of vertical confinement”, International Journal of Heat and Mass Transfer,
Vol. 46 No. 19, pp. 3661-3672.

Chae, M. and Chung, B. (2011), “Effect of pitch-to-diameter ratio on the natural convection heat transfer
of two vertically aligned horizontal cylinders”, Chemical Engineering Science, Vol. 66 No. 21,
pp. 5321-5329.

Corcione, M. (2005), “Correlating equations for free convection heat transfer from horizontal isothermal
cylinders set in a vertical array”, International Journal of Heat and Mass Transfer, Vol. 48
No. 17, pp. 3660-3673.

Fiscaletti, D., Angeli, D., Tarozzi, L. and Barozzi, G.S. (2013), “Buoyancy-induced transitional flows
around an enclosed horizontal cylinder: an experiment”, International Journal of Heat and Mass
Transfer, Vol. 58 Nos 1/2, pp. 619-631.

Gebhart, B., Pera, L. and Schorr, A.W. (1970), “Steady laminar natural convection plumes above a
horizontal line heat source”, Interntional Journal of Heat and Mass Transfer, Vol. 13 No. 1,
pp. 161-171.

Grafsrønningen, S. and Jensen, A. (2012), “Natural convection heat transfer from two horizontal
cylinders at high Rayleigh numbers”, International Journal of Heat and Mass Transfer, Vol. 55,
pp. 552-5564.

Grafsrønningen, S. and Jensen, A. (2013), “Natural convection heat transfer from three vertically
arranged horizontal cylinders with dissimilar separation distance at moderately high
Rayleigh numbers”, International Journal of Heat and Mass Transfer, Vol. 57 No. 2,
pp. 519-527.

Heo, J. and Chung, B. (2014), “Natural convection of two staggered cylinders for various prandtl
numbers and vertical and horizontal pitches”, Heat and Mass Transfer, Vol. 50 No. 6,
pp. 769-777.

Heo, J., Chae, M. and Chung, B. (2013), “Influences of vertical and horizontal pitches on the natural
convection of two staggered cylinders”, International Journal of Heat andMass Transfer, Vol. 57
No. 1, pp. 1-8.

Incropera, F.P. and Yaghoubi, M.A. (1980), “Buoyancy driven flows originating from heated cylinders
submerged in a finite water layer”, International Journal of Heat and Mass Transfer, Vol. 23
No. 3, pp. 269-278.

Kuehn, T.H. and Goldstein, R.J. (1976), “Correlating equations for natural convection heat transfer
between horizontal circular cylinders”, International Journal of Heat and Mass Transfer, Vol. 19
No. 10, pp. 1127-1134.

Kuehn, T.H. and Goldstein, R.J. (1980), “Numerical solution to the Navier-Stokes equations for laminar
natural convection about a horizontal isothermal circular cylinder”, International Journal of Heat
andMass Transfer, Vol. 23 No. 7, pp. 971-979.

Kuehner, J.P., Pflug, J.R., Tessier, F.A., Jr, Hamed, A.M. and Moiso Marin, F.J. (2012), “Velocity
measurements in the free convection flow above a heated horizontal cylinder”, Int. J. of Heat and
Mass Transfer, Vol. 55 Nos 17/18, pp. 4711-4723.

Leonard, B.P. (1979), “A stable and accurate convective modelling procedure based on quadratic
upstream interpolation”, Computer Methods in Applied Mechanics and Engineering, Vol. 19
No. 1, pp. 59-78.

Marsters, G.F. (1972), “Arrays of heated horizontal cylinders in natural convection”, International
Journal of Heat andMass Transfer, Vol. 15 No. 5, pp. 921-933.

Patankar, S.V. and Spalding, D.B. (1972), “A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows”, International Journal of Heat and Mass Transfer,
Vol. 15 No. 10, pp. 1787-1797.

HFF
30,5

2622



Persoons, T., O’Gorman, I.M., Donoghue, D.B., Byrne, G. and Murray, D.B. (2011), “Natural convection
heat transfer and fluid dynamics for a pair of vertically aligned isothermal horizontal cylinders”,
International Journal of Heat andMass Transfer, Vol. 54, pp. 5163-5172.

Raithby, G.D and Hollands, K.G.T. (1976), “Laminar and turbulent free convection from elliptic
cylinders with a vertical plate and horizontal circular cylinder as special cases”, Journal of Heat
Transfer, Vol. 98 No. 1, pp. 72-80.

Reymond, O., Murray, D.B. and O’Donovan, T.S. (2008), “Natural convection heat transfer from two
horizontal cylinders”, Experimental Thermal and Fluid Science, Vol. 32 No. 8, pp. 1702-1709.

Sadegh Sadeghipour, M. and Asheghi, M. (1994), “Free convection heat transfer from arrays of
vertically separated horizontal cylinders at low Rayleigh numbers”, International Journal of
Heat andMass Transfer, Vol. 37 No. 1, pp. 103-109.

Saitoh, T., Sajiki, T. and Maruhara, K. (1993), “Benchmark solutions to natural convection heat transfer
problem around a horizontal circular cylinder”, International Journal of Heat and Mass
Transfer, Vol. 36 No. 5, pp. 1251-1259.

Shyam, R., Sasmal, C. and Chhabra, R.P. (2013), “Natural convection heat transfer from two vertically
aligned circular cylinders in power-law fluids”, International Journal of Heat andMass Transfer,
Vol. 64, pp. 1127-1152.

Sparrow, E.M. and Boessneck, D.S. (1983), “Effect of traverse misalignment on natural convection from
a pair of parallel, vertically stacked, horizontal cylinders”, Journal of Heat Transfer, Vol. 105
No. 2, pp. 241-247.

Sparrow, E.M. and Niethammer, J.E. (1981), “Effect of vertical separation distance and cylinder-to-
cylinder temperature imbalance on natural convection from a pair of vertical cylinders”, Journal
of Heat Transfer, Vol. 103 No. 4, pp. 638-644.

Tokura, I., Saito H., Kishinami, K. and Muramoto, K. (1983) “An experimental study of free convection
heat transfer from a horizontal cylinder in a vertical array set in free space between parallel
walls”, Journal of Heat Transfer, Vol. 105 No. 1, pp. 102-107.

Van Doormaal, J.P. and Raithby, G.D. (1984), “Enhancements of the simple method for predicting
incompressible fluid flows”,Numerical Heat Transfer, Vol. 11, pp. 147-163.

Wang, P., Kahawita, R. and Nguyen, T.H. (1990), “Numerical computation of the natural convection
flow about a horizontal cylinder using splines”, Numerical Heat Transfer, Vol. 17 No. 2,
pp. 191-215.

Corresponding author
Massimo Corcione can be contacted at: massimo.corcione@uniroma1.it

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

A water-filled
rectangular
enclosure

2623

mailto:massimo.corcione@uniroma1.it


Reproduced with permission of copyright owner. Further
reproduction prohibited without permission.


	Laminar natural convection from a vertical array of horizontal heated cylinders inside a water-filled rectangular enclosure cooled at sides
	Nomenclature
	1. Introduction
	2. Mathematical formulation
	3. Computational procedure
	4. Results and discussion
	5. Conclusions
	References


