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Abstract
A major limitation of conventional human brain research has been its basis in highly artificial laboratory experiments. Due
to technical constraints, little is known about the nature of cortical activations during ecological real life. We have
previously proposed the “spontaneous trait reactivation (STR)” hypothesis arguing that resting-state patterns, which emerge
spontaneously in the absence of external stimulus, reflect the statistics of habitual cortical activations during real life.
Therefore, these patterns can serve as a window into daily life cortical activity. A straightforward prediction of this
hypothesis is that spontaneous patterns should preferentially correlate to patterns generated by naturalistic stimuli
compared with artificial ones. Here we targeted high-level category-selective visual areas and tested this prediction by
comparing BOLD functional connectivity patterns formed during rest to patterns formed in response to naturalistic stimuli,
as well as to more artificial category-selective, dynamic stimuli. Our results revealed a significant correlation between the
resting-state patterns and functional connectivity patterns generated by naturalistic stimuli. Furthermore, the correlations
to naturalistic stimuli were significantly higher than those found between resting-state patterns and those generated by
artificial control stimuli. These findings provide evidence of a stringent link between spontaneous patterns and the
activation patterns during natural vision.

Key words: free viewing, movie, ventral occipital–temporal cortex, naturalistic scenes, visual cortex

Introduction
The cerebral cortex is characterized by spontaneous ultraslow
fluctuations (~0.01–0.1 Hz) in neuronal activity within widely
distributed cortical regions. These fluctuations, usually studied
during a state of rest, are termed “resting-state fluctuations”
(Fox and Raichle 2007). Regions with highly correlated resting-
state fluctuations are termed “functionally connected” (Biswal

et al., 1995). While resting-state functional connectivity pat-
terns have been found to show significant similarities with
large-scale networks activated during various tasks (Greicius
and Menon 2004; Smith et al., 2009; Cole et al., 2016), the source
of their specific organization has not been fully elucidated. We
and others have recently proposed that in addition to highlight-
ing large-scale anatomical networks, the detailed connectivity
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structure of resting-state patterns may contain meaningful
information about cortical function (Arieli et al., 1996; Tsodyks
et al., 1999; Kenet et al., 2003; Fox et al., 2006; Lewis et al., 2009;
Snyder and Raichle 2012; Harmelech et al., 2013; Sadaghiani
and Kleinschmidt 2013). We have proposed “the spontaneous
trait reactivation” (STR) hypothesis (Harmelech and Malach
2013), arguing that neuronal coactivations, which occur habitu-
ally during the ecological life of the individual, are spontane-
ously revealed during rest. If this hypothesis is true, it raises
the exciting possibility that spontaneous resting-state patterns
offer a unique “window” into the topography of brain coactiva-
tions during everyday life. Such a window is of extreme impor-
tance, since a major limitation of current human brain
research, particularly in the visual domain, is strict dependence
on tightly confined, artificial laboratory conditions. Indeed, a
large body of research has shown that natural stimuli can
reveal neural properties which do not manifest when using
simple, parametric stimuli (cf. Review of Felsen and Dan 2005).
Several studies seem to be compatible with the STR hypothesis,
with findings such as similarities between spontaneous activity
and natural scene-evoked activity during visual cortex develop-
ment (Berkes et al., 2011), evidence of task-activation traces in
resting-state patterns (Tambini et al., 2010; Shibata et al., 2011;
Harmelech et al., 2013), changes in resting-state patterns after
specific training such as perceptual learning (Lewis et al., 2009),
and unique patterns associated with individual brains (Finn
et al., 2015; Wang et al., 2015; Tavor et al., 2016). A straightfor-
ward prediction of the STR hypothesis is that the spontaneous
patterns should bear more resemblance to patterns produced
under naturalistic as compared with artificial conditions.
Recently, we examined the validity of this prediction in retino-
topically defined V1, V2, and V3 areas in the human early visual
cortex (Wilf et al., 2015), revealing significant similarities
between spontaneous and movie-driven patterns. However, a
critical question regarding the source of this correlation
remains open. One could consider two alternative models to
explain spontaneous activity patterns in the early visual cortex:
one model suggests that the spontaneous patterns reflect
merely the low-level optical statistics of the natural world,
while the alternative model proposes that the spontaneous pat-
terns reflect the network coactivation statistics while
experiencing the natural world. As early retinotopic visual
areas are strongly related to the optical statistics of the visual
world, it is difficult to disentangle the two options in these
areas. However, in contrast, higher order visual areas show a
striking shift from low-level optical selectivity to higher level,
gestalt-like properties (although some retinotopic bias remains
(Levy et al., 2001)). Higher order visual areas are dominated by
gestalt properties and categorical preferences that go beyond
the low-level feature sensitivity (Kanwisher et al., 1997; Tong
et al., 1998; Grill-Spector and Malach 2004). Furthermore, a clear
departure from low-level stimulation has been demonstrated
in the insensitivity of higher order visual areas to optical dis-
ruptions due to oculomotor activity (Golan et al., 2016, 2017).
Thus, a large body of research emphasizes the dominance of
categorical information rather than low-order optical stimula-
tion as the central driving force in high-order visual representa-
tions. By examining spontaneous patterns in these areas, we
could directly test the generality of the hypothesis that sponta-
neous patterns reflect habitual neuronal coactivations, even
when the statistics of the optical stimuli are not directly repre-
sented in the network activations.

While boundaries between early visual areas rely on visual
field maps, parcellation of the extrastriate category-selective

cortex has generally been based on activation preference for a
particular visual category (e.g., faces, houses, tools). However,
this mapping approach has some limitations. For instance,
adjacent subareas with different functional preferences might
be bound together in the same area if they show selectivity for
a general category (e.g., they all respond to houses).
Alternatively, it has been proposed that the organization of the
category-selective cortex may be further constrained by the
functional connections among areas with the same activation
preferences (Mahon and Caramazza 2011; Stevens et al., 2015)
and between these areas and the rest of the brain, thus extend-
ing the category-selective networks even beyond the visual cor-
tex (Hutchison et al., 2014). Moreover, recent studies have
shown that visual categories, such as faces and words, are
more closely related to distributed neural networks than to spe-
cific regions (Behrmann and Plaut 2013). Given the complexity
of these representations, we opted not to subdivide the
category-selective cortex. Instead, we examined the possibility
of a unifying principle that might account for the complex con-
nectivity patterns within the higher order visual cortex,
namely, that patterns are driven by the statistics of habitual
coactivations in response to naturalistic stimuli.

Materials and Methods
Participants

The participants were 16 healthy adults (mean age 28, range
24–32, 8 females, all right handed) with normal or corrected-to-
normal visual acuity and no history of psychiatric, neurological,
or attentional disorders. One subject was discarded due to a
considerable artifact in functional MRI signals.

The experimental procedure included multiple fMRI ses-
sions per participant. In aggregate, these sessions included four
visual conditions, four spontaneous resting-state scans (two
resting-state runs with eyes-closed [EC] and two resting-state
runs with eyes-open [EO]), and a set of anatomical scans
(Fig. 1A). Each condition was repeated twice within a session.
The order of conditions was counterbalanced across partici-
pants with the exception that the first session always began
with a resting-state run.

Visual Stimuli and Experimental Paradigms

Resting State
Under the main resting-state condition, 15 participants were
instructed to close their eyes and rest for two runs of 8min
each. In addition, as a control experiment, 12 out of the 15 par-
ticipants were instructed to fixate on a cross presented in the
middle of the screen for two 8-min runs. For both resting-state
conditions, subjects were instructed to rest without thinking
about anything particular

Movie and Scrambled-Movie Viewing
Fifteen participants freely viewed two runs of an 8-min seg-
ment of a naturalistic feature film in Hebrew [Nir Bergman’s
Broken Wings (2002)]. The movie segment contained several
highly emotional scenes, which included people conversing
and using tools, music, and landscape shots. The movie seg-
ment was preceded by 15 s of a blank screen and a 15-s visual
adaptation stimulus (alternating colorful patterns). Only the 8-
min movie segment was used for the analyses.

Furthermore, 14 out of the 15 participants viewed two runs
of the same 8-min segment which was phase-scrambled in the
space domain. This scrambling procedure was meant to
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preserve the first-order statistics of the stimuli while removing
any semantic content—even though we cannot completely
exclude some preservation of low-level correlations. The tem-
poral sequence of the frames was kept the same as in the origi-
nal movie. First, all cinematic cuts were marked. Next, each
shot (i.e., the continuous video sequence between two cuts)
underwent a spatiotemporal Fourier phase scrambling proce-
dure (Froudarakis et al., 2014): The shot video was represented
as a 3D matrix (height × width × time), which was Fourier
transformed, element-wise multiplied with a random phase
matrix, and then transformed back into time domain. For a
given shot, this was repeated for the three color components,
using the same random phase matrix. The usage of the same
random phase matrix ensured that all of the colors found in
the scrambled shots were mixtures of colors that appeared in
the unscrambled shots. The resulting video preserved the spa-
tiotemporal power spectrum of each shot, its color range, and
the flicker induced by cinematic cuts between shots, without
including any discernible visual objects (see video 1). The entire
audio track underwent a time domain multiband audio-
scrambling procedure (adapted from (Ellis 2010; Minagawa-
Kawai et al., 2010)) and slightly modified to fit our particular
audio track characteristics. The audio signal was passed
through a 256 channels’ gamma tone filter bank. Then, it was
divided into 25ms long partially (50%) overlapping Hanning
windows. Within each sub-band independently, the windows
were randomly displaced according to a Gaussian jitter of a
500ms of standard deviation. As in the color components of
the video, both stereo channels were shuffled in a congruent
manner. This procedure resulted in an audio track that fol-
lowed the local spectrum and amplitude envelope of the origi-
nal soundtrack in a scale of a second while rendering speech
indiscernible (video 1).

For both movie and scrambled-movie sessions, participants
were instructed to focus on the movie and avoid mind wandering.

Categories 1-Back Task
All participants took part in the categories 1-back experiment.
Visual stimuli consisted of colored pictures of faces (Minear

and Park 2004), houses, body parts (free-copyrights Google
images), tools (BOSS database (Brodeur et al., 2010)), and tex-
tures, including a fixation point. All pictures (10 × 10 deg) were
presented for 200ms on a gray background. The experiment
comprised two 9-min long scans, in which stimuli were shown
in 10-s blocks and alternated with 6 s of a gray background.
Subjects were instructed to push a button with their right hand
every time two identical items appeared in a row.

Shape Recognition Task
A total of 12 participants out of 15 took part in the shape recog-
nition task. The presently analyzed condition was acquired
during an experiment primarily designed to measure the activ-
ity modulation in object areas and is fully stated by Goldberg
et al. (2016). Stimuli consisted of shapes composed of 10 contig-
uous identical light or dark green squares, created in a shape-
search computer game, by either 101 human players or by a
random walk algorithm (Noy et al. 2012).

The experiment comprised four types of blocks, with each
block composed of nine homogeneous-category shapes (one
second each): light green shapes created by humans, light
green shapes created by the algorithm, dark green shapes cre-
ated by humans, and dark green shapes created by the algo-
rithm. During the fMRI scan, each block was 9 s long, followed
by a 9-s fixation period. 29 blocks were presented in total.
Subjects were instructed to look at a fixation point and perform
a task related to the features of the stimulus (further descrip-
tion of the experiment appears in Goldberg et al., 2016).

Experimental Setup and Imaging Parameters

The fMRI experiments were conducted at the Weizmann
Institute of Science (Rehovot, Israel) using a 3 T Tim Trio scan-
ner (Siemens Medical Systems, Erlangen, Germany). Single-shot
echo-planar imaging (EPI) images were acquired with inter-
leaved slice ordering using a standard receive-only 12-channel
head matrix coil. Each participant underwent 3–4 fMRI scan-
ning sessions in separate days. The order of the scanning

Figure 1. Definition of the region of interest and voxelwise correlation matrices. The figure schematically shows each step of the processing from the voxel selection

to the sorted matrices.
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sessions was counterbalanced across subjects, with an excep-
tion that the sessions always began with one resting-state run.

For the shape recognition and categories 1-back tasks, 46
slices (3mm thick, no gap, interleaved excitation order, in-
plane resolution 3 × 3mm) parallel to the anterior–posterior
commissural plane were collected. Each run included 178 for
the shape recognition task and 240 for the object recognition
task single-shot EPI images per slice (repetition time [TR],
3000ms; echo time [TE] 30ms, flip angle 75°, 80 × 80 matrix for
the shape recognition task and 70 × 70 matrix for the shape rec-
ognition task; bandwidth 2 404Hz/pixel; FOV 240mm).

For the rest, movie, and scrambled-movie conditions, 34
slices (3.3mm thick, no gap, interleaved excitation order, in-
plane resolution 3 × 3mm) parallel to the anterior–posterior
commissural plane were collected. Each run included 240 for
rest, 270 for the movie and scrambled-movie single-shot EPI
images per slice (TR, 2000ms; TE 27ms, flip angle 75°, 70 × 70
matrix; bandwidth 2380Hz/pixel; FOV 240mm).

Overall, 6 fMRI runs were carried out in each of the 15 sub-
jects (2 runs of resting-state EC, 2 runs of movie, and 2 runs of
visual categories 1-back task; see Fig. 1A). Moreover, 4 addi-
tional fMRI scans were carried out in 12 out of 15 subjects
(shape recognition task and rest EO), and 2 fMRI scans were car-
ried out in 14 out of 15 subjects (scramble movie), for a total of
166 fMRI runs.

Two structural scans were carried out in each participant
(T1-weighted sagittal Magnetization Prepared Rapid Gradient
Echo (MPRAGE) sequence, 176 slices, TI = 900ms, TE = 2.98ms,
TR = 2300ms, flip angle = 9°, 256 × 256 × 176 matrix, 1mm3

voxels, bandwidth = 240Hz/pixel).

Data Analysis

fMRI Data Preprocessing
All fMRI data were processed using FSL 5.0.2.1 (www.fmrib.ox.
ac.uk/fsl) and in-house Matlab code (MathWorks). Functional
data were analyzed using FMRIB’s expert analysis tool (FEAT,
version 6). The following prestatistics processing was applied
to the data of each participant: motion correction using
FMRIB’s Linear Image Registration Tool (MCFLIRT) (Jenkinson
et al., 2002); brain extraction using BET (Smith et al., 2009); and
high-pass temporal filtering with a cutoff frequency of 0.01 Hz.
Functional images were aligned with high-resolution anatomi-
cal volumes initially using linear registration (FLIRT), then opti-
mized using boundary-based registration (Greve and Fischl
2009). Structural images were then transformed into standard
MNI space using nonlinear registration tool (FNIRT), and the
resulting warp parameters were applied to the functional
images as well. All the functional images were resampled to 2 ×
2 × 2mm3 standard space. We defined the motion-
contaminated frames using the framewise displacement (FD)
and the DVARS measure (temporal derivative of root-mean-
square blood oxygen level-dependent (BOLD) signal of all
within-brain voxels) (Power et al., 2012, 2014; Siegel et al., 2016;
Ciric et al., 2017). The FD threshold was set to 0.3mm and
DVARS censoring threshold was set at 0.5% root-mean-square
frame-to-frame intensity change. The thresholds were chosen
in order to have a minimum of ~5min of data per run (Power
et al., 2014). For each frame contaminated by motion, we addi-
tionally censored one preceding and one following frame, due
to uncertainty in the precise timing of the movement (Siegel
et al., 2016). The fraction of uncensored frames was as follows:
99% for rest EC, 91% for rest EO; 97% for movie and categories 1-
back, 96% for scrambled, and 90% for shape recognition.

Moreover, for each subject, run, and experimental condition,
we extracted the average motion amplitude (absolute displace-
ment values in mm, MCFLIRT output). The two runs within
each condition were averaged to generate a single mean
motion value per condition. We then ran a one-way mixed
ANOVA to compare the mean motion values between different
conditions.

Tissue-type segmentation was carried out using FAST
(Zhang et al., 2001), and ventricles and white matter masks
were drawn. The non-neuronal contributions to the BOLD sig-
nal were removed by linear regression of motion parameters,
ventricle and white matter timecourses for each participant
(Fox et al., 2009). The white matter and ventricles of each par-
ticipant were automatically defined using FSL’s FAST (Zhang
et al., 2001) and refined to avoid boundaries between tissues
(Hahamy et al., 2015).

An additional nuisance regressor was derived from the
global signal averaged over the brain (Fox et al., 2009; Power
et al., 2014). The correlation analysis was repeated without
regressing out the global signal and yielded similar results (see
Supplementary Figure 2). No spatial smoothing was performed,
to maintain the maximal amount of detailed information in
the data.

Voxelwise Functional Connectivity Maps
A single-subject standard functional connectivity analysis was
applied to the resting-state scans for a demonstrative purpose:
Single voxels in the category-selective areas were each taken in
turn as a seed (one-voxel seed), and Pearson’s correlation
between each seed voxel’s timecourse and all other cortical
voxels’ timecourses was calculated in Matlab. A functional con-
nectivity map based on a single voxel as a seed was obtained
for each of the two resting-state runs. The maps of the first and
second resting states were then averaged to reduce noise in the
resting-state correlation pattern estimates. Average MNI maps
were registered to a common FreeSurfer template surface
hemisphere (fsaverage), for display purposes only. For the visu-
ally driven conditions (movie and scrambled-movie viewing,
shape recognition, and categories 1-back task), we replaced the
standard within-run functional connectivity analysis with a
between-run functional connectivity analysis to isolate
stimulus-driven activity, while avoiding intrinsic, nonstimulus-
related effects (Golland et al., 2007; Hasson et al., 2010).
Therefore, functional connectivity was calculated only between
the two runs of each participant in the following manner: Each
seed voxel’s timecourse was taken from the first movie presen-
tation and was correlated with all the voxel timecourses of the
second movie presentation. The same procedure was then
applied to the second versus first movie presentation, that is,
each seed voxel’s timecourse was taken now from the second
movie presentation and was correlated with all the voxel time-
courses of the first movie presentation. Thus for each seed vox-
el, two maps were created, which were then averaged and
projected onto FreeSurfer cortical surface template using the
same procedure described above. This procedure resulted in
multiple maps with an r value for each voxel, from which one
example map with a seed voxel sampled in the extrastriate
body area (EBA) is represented in Figure 2.

To better visualize the connectivity pattern regardless the
overall correlation strength (which may differ between partici-
pants), the correlation values in each matrix were normalized
by removing the mean and by dividing each correlation value
by the 99.5th percentile of the absolute values of each square
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matrix (thus reducing the effect of the extreme 1% outlier val-
ues on the matrix color range).

Selection of Voxels for Pattern Extraction
To identify voxels located in higher order visual areas, we
adopted the following voxel selection process. For each partici-
pant and each voxel, the timecourses of BOLD responses during
all visual conditions (movie, scrambled movie, categories 1-
back, shape recognition) were sequentially concatenated into a
single long timecourse. This was done separately for the first
and second runs, resulting in two long timecourses. Note that
the sequence of stimuli in the two runs were identical. We then
calculated the cross-run correlations between the timecourses
for the first and second runs and identified voxels with correla-
tions above 0.25 between the two runs (Golland et al., 2007;
Hasson et al., 2010) (Fig. 1 gives a visual description of the anal-
ysis). This threshold was chosen since it represents a good
trade-off between the magnitude of the correlation coefficient
and a large enough sample of selected voxels per subject (the
minimum number of selected voxels was 883). The same analy-
sis was then repeated for thresholds of 0.20, 0.30, and 0.4 and
yielded comparable results (see Supplementary Figure 1). From
these sets of voxels, we selected only those located in higher

order visual areas. This procedure was performed for each sub-
ject individually, creating an individual cortical mask based on
the Harvard–Oxford cortical atlas (as implemented in FSL;
Makris et al., 2006). For the main analysis, early visual areas
and nonvisual areas were removed from the selection. The
same analysis was then repeated excluding only the early
visual areas while retaining responsive voxels in nonvisual
areas across the entire cortex.

It should be noted that all visual conditions contributed to
the selection process and all had roughly equal acquisition
duration (see “Contribution of the Visual Conditions to the
Model Selection” for more details). For nine subjects, the loca-
tion of voxels removed according to the atlas was then com-
pared with the location of early visual ROIs defined according
to standard retinotopic mapping (Sereno et al., 1995; Wilf et al.,
2015) and found appropriately located (even though we cannot
exclude that a few voxels belonging to the peripheral portions
of the early visual areas may have been included in the analy-
ses). Figure 1B shows an example of selected voxels defined in
the left hemisphere of a representative subject (note that the
analysis was performed in both hemispheres). Just for compari-
son, we defined in this representative subject category-
selective areas based on standard criteria using an independent
set of scans (two supplemental runs of categories 1-back task).
The first (premagnetization steady state) four volumes were dis-
carded. Motion correction and cross-scan alignment were per-
formed using the Analysis of Functional NeuroImages (AFNI)
3dvolreg. The preprocessed data were averaged and registered to
MNI space. After the composition of transforms, the functional
data were resampled in one step to 3mm isotropic voxels. We
used a general linear model (GLM) with blocks modeled as box-
car functions and convolved with a canonical hemodynamic
response function. For each category, we computed a statistical
parametric map based on a contrast between two conditions. All
maps were thresholded at P < 0.001 (not corrected) and projected
on the participant’s cortical surface with 3mm FWHM (full
width at half maximum) of surface smoothing and cluster cor-
rection for multiple comparisons at 0.01 (Hagler et al., 2006).
Face-selective areas (FFA1, FFA2, and OFA) were defined based
on the contrast faces > scenes (Kanwisher et al., 1997). Scene-
selective areas (PPA, RSC, and TOS) were defined based on the
contrast scenes > faces (Epstein and Kanwisher 1998). Body
parts-selective areas (EBA and FBA) were defined based on the
contrast body parts > objects/tools (Downing et al., 2001). Tools-
selective area (pMTG) was defined based on the contrast objects/
tools > body parts (Lewis 2006). All the analyses were performed
with FreeSurfer (Dale et al., 1999; Fischl et al., 2002). A single-
subject example of such standard division to category-selective
areas is depicted in Figure 2B.

Voxelwise Correlation Matrices
To obtain the full pairwise correlation matrix of all selected
high-order visual voxels (mean ± SD 1686 ± 516 voxels per par-
ticipant), we extracted the timecourses of all selected voxels
under each experimental condition. A pairwise Pearson’s corre-
lation matrix was then calculated for all voxels. For all the
visual conditions, the correlation matrices were calculated
between runs. Briefly, the timecourses of all the voxels in the
first run were correlated with the timecourses of all the voxels
in the second run and vice versa. This procedure formed an
asymmetrical matrix with the diagonal representing the time-
course correlation of the same voxel across the two stimuli pre-
sentations (similar to Golland et al., 2007). Values below the

Figure 2. Experimental conditions and definition of region of interest. (A) The

panel shows sample images of the visual-evoked activity conditions. Top row: a

frame extracted from the movie Broken Wings (courtesy of Nir Bergman), a

frame from the scrambled movie, and some sample images used in the shape

recognition task. Bottom row: some sample images used in the categories

1-back task. Each condition had two runs, and the order of conditions was

counterbalanced across participants with the exception that each session

always began with a resting-state run. (B) The panel shows a flattened repre-

sentation of the left hemisphere for a representative participant. In the right

panel, the hemisphere is overlaid with the region of interest as defined by all of

the visual conditions. Early visual areas were excluded from the analysis (see

Methods). As a comparison, in the left panel, the hemisphere is overlaid with

category-selective areas as defined by the categories 1-back condition using a

standard activation-preference approach. Note that these areas were not used

in the analysis and are shown here only as a reference.
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diagonal represented correlations of each of the seed voxels
taken from the first run with all the voxels taken from the sec-
ond run (and vice versa for values above the diagonal).

For resting-state runs, the correlation matrices were calcu-
lated within each run, and an average of the two within-run
matrices was calculated to emphasize consistent correlation
patterns and to reduce noise. This procedure formed a sym-
metrical matrix.

Volumetric Distance Analysis
The specific pattern of spontaneous correlations could be the
result of their anatomical vicinity (i.e., adjacent voxels would
show high correlations, while distant voxels would be less cor-
related). To check for this possible confound, we calculated a
volume distance model. The volumetric Euclidean distance was
calculated in 3D anatomical space for each pair of voxels, and
all distances were inverted (1/distance) so that closer voxels
had higher values and distant voxels had lower values.

We used Spearman’s coefficient to assess the effect of the
volumetric distance between voxels on the correlation patterns
because this coefficient can be used to compare variables on
different scales that are not necessarily linearly related (a vec-
tor of correlations and a vector of distances).

Sorted Matrices
To better visualize the level of resemblance between the
resting-state and stimulus-driven connectivity patterns, we
rearranged the voxels in all the matrices according to the
resting-state correlation matrix.

First, the selected voxels in the within-run resting-state
matrices were sorted based on the correlation strength accord-
ing to a descending criterion (from the strongest to the weakest
correlation). Since these matrices are symmetrical, only values
below the diagonal were taken. Then, these sorted values were
rearranged within a shape of a square, showing a salient pat-
tern of correlation gradually moving from the strongest to
weakest values along a winding diagonal path (see Fig. 1C in
Wilf et al. (2015) for demonstration). It is important to note that
the location index of each correlation in the original resting-
state matrix was kept so that the same index order could be
applied to the stimulus-induced matrices as well.

Because the original cross-run stimulus-evoked matrices
were not symmetrical, both values below and above the diago-
nal had to be taken into account. This was done by averaging
each value below the diagonal with its homologous value above
the diagonal (i.e., the correlation of voxel i from the first run
with voxel j from the second run was averaged with the corre-
lation of voxel j from the first run with voxel i from the second
run). Then, both the stimulus-evoked and distance matrices of
each participant were rearranged according to the resting-state
matrix correlation strength. This sorting procedure ensured
that if the original correlation pattern of a certain condition
was similar to the resting state, the new sorted square would
present a gradual diagonal pattern similar to that of the corre-
sponding resting-state square.

In order to average the sorted squares across participants, we
matched the square size. Because different participants had dif-
ferent original matrix sizes, the size of the mean square was
determined by the subject with the smallest number of selected
voxels in the square. Therefore, only a subset of the sorted corre-
lation values was taken, to form for each participant a 361 × 361
size square for the region of interest. The values were sampled
in constant intervals across the sorted vector forming the square

so as to cover the whole range of correlation values of each sub-
ject. These values were then averaged across subjects, turned
back into a square matrix, and used for visualization of the com-
parison between different conditions.

Correlations Between Spontaneous and Stimulus-Induced
Connectivity Patterns
For each participant, we examined the similarity between the
resting-state and each of the stimulus-driven connectivity pat-
terns. To that end, each unsorted matrix was transformed into
a vector in the following manner: For the asymmetrical
stimulus-driven matrices, the values below and above the diag-
onal were transformed into vectors and then averaged (such
that values were averaged symmetrically). For the averaged
resting-state matrices, only values below the diagonal were
transformed into a vector, as the matrices were symmetric. The
values along the main diagonal were not taken into account in
the comparison because the resting-state diagonal is uninfor-
mative (by definition all the correlations values in the diagonal
are equal to one). The symmetrical distances matrices were
also turned into a vector like the resting-state matrices. Then
Pearson’s correlation between the resting-state vector and each
of the stimulus-driven vectors was calculated for each partici-
pant. For comparison between resting-state vector and the vol-
umetric distance vector, a nonparametric Spearman correlation
was used (the correlation was done after the distances were
inverted to 1/distance). All statistical tests were performed at
the second level (group) after correlation values underwent
Fisher’s r to z transformation. Hence, we did not rely on the
various auxiliary assumptions involved with testing correlation
coefficients, such as independency and normality. One-sample
t-tests were used to establish whether the correlations between
the matrices of each condition and the resting-state matrices
were significantly greater than zero, and P-values were
Bonferroni corrected (taking into account the number of
conditions).

Then, to assess the similarity between the stimulus-induced
patterns and the resting-state pattern, a mixed-effect one-way
repeated-measures analysis of variance (ANOVA) (Bates et al.,
2014) was performed. The experimental condition served as the
fixed-effects factor and subjects provided random intercept.
Correlation values were Fisher-transformed before the mixed-
effects model was fitted. The main effect of condition was
tested using Kenward–Roger approximation for degrees of free-
dom as implemented by R package “afex” (Singmann et al.,
2015). Least squares means and all pairwise condition simple-
effects were estimated by R’s “lsmeans” command. All post hoc
t-tests were false discovery rate (FDR) corrected.

Reliability Measurement
To assess if the stimulus-driven response elicited by each
visual experiments was consistent across runs, we estimated
the reliability of the correlation patterns. It is important to note
that for each pair of voxels and each visual experiment, we cal-
culated two independent correlation measures: The first mea-
sure was obtained by correlating the first voxel timecourse
during the first stimulus presentation with the second voxel
timecourse during the second stimulus presentation; the sec-
ond measure was obtained by correlating the first voxel time-
course during the second stimulus presentation with the
second voxel timecourse during the first stimulus presentation.
By comparing these two values, we could get a measure of the
reliability of the overall correlation set. Thus, the vector of
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values below the diagonal was correlated with the vector of val-
ues above the diagonal to give the reliability measure for each
matrix. A mixed-effect one-way repeated-measures ANOVA
was then performed on the single-subject correlations taking
the experimental conditions as a factor, followed by FDR-
corrected post hoc t-tests (see Correlations Between Spontaneous
and Stimulus-Induced Connectivity Patterns for details).

Comparison Between Resting State Before and After the Movie
Presentation
In this analysis, resting-state runs were not averaged. After cre-
ating the functional connectivity matrices and turning them
into vectors (as described above), each vector was indepen-
dently correlated with the cross-movie vector.

Comparison Between the First and the Second halves of Each Task
Run
For each subject and experimental condition, we split each run
into two segments of equal length (the first half of the volumes
and the second half of the volumes). We then performed our
main analysis while taking into account once the first half of
each run, and once the second half of each run. In other words,
the first or the second half of the visual conditions was corre-
lated with either the first or the second half of the first resting-
state run (Geerligs et al., 2015; Vanderwal et al., 2017). We then
compared the results of the first half with the results of the sec-
ond half by performing a mixed-effect two-way repeated-
measures ANOVA. The analysis was performed on the within-
subject correlations with the factors visual condition (five
levels: movie, scrambled movie, category 1-back task, shape
recognition task, and rest) and segment (two levels: first half
and second half), followed by FDR-corrected post hoc t-tests.

Comparison Between Rest EC and Rest EO
For this control experiment, we repeated the same analyses
performed for rest with EC (see Fig. 6A,B). In addition, we
directly assessed the difference between rest with EC and EO by
performing paired t-tests across the visual conditions (Fig. 6C).

Contribution of the Visual Conditions to the Model Selection
To assess the contribution of each visual condition to the voxel
selection, and to rule out the possibility that the movie condi-
tion primarily drives the correlations across the concatenated
runs, we compared the cross-run correlation within each visual
condition with the cross-run correlation calculated concatenat-
ing all the visual conditions. In particular, for each subject and
visual condition, we generated a voxel-by-voxel cross-run map
(each voxel was correlated with itself between the two-run
repetitions; Golland et al., 2007). Then, each visual condition
map was correlated to the voxel-by-voxel cross-run map gener-
ated by concatenating all the visual conditions. Finally, we per-
formed a one-way mixed ANOVA to assess the similarity
between the concatenated map and each visual condition map.

Searchlight Task-Rest Correlation Analysis
To inspect the regional variations of the correlated tasks and
rest activation patterns across the entire cortex, we repeated
the analysis described above with a searchlight approach
(Kriegeskorte et al., 2006). For each given task (e.g., natural
movie viewing), a searchlight correlation map was calculated
for each participant. These maps reflect the local correspon-
dence between resting-state functional connectivity, averaged
across the two rest scans, and task-related functional

connectivity, estimated by correlating between a pair of task
scan repetitions.

First, for each individual, a cortical mask was constructed by
intersecting an anatomical gray-matter mask (FSL segmenta-
tion) and a brain mask, which consisted of only voxels showing
above-zero temporal BOLD variation in the two task scans and
the two rest scans. Then, we built a spherical ROI (region of
interest) around each voxel included in the cortical mask, with
a radius of three voxels. Voxels outside the cortical mask were
removed from the spherical ROIs, so effectively their shape was
not necessarily spherical but followed the contours of the indi-
vidual subject’s cortex. To ensure reliable correlation estimates,
spherical ROIs left with <30 voxels were discarded.

Within each spherical ROI, we linearly correlated the time
series of each voxel with the time series of each other voxel. In
the rest scans, this was done within each of the two scans. In the
task scans, the correlation was calculated across the two scans.
The same analysis, as described in the “Correlations Between
Spontaneous and Stimulus-induced Connectivity Patterns,” was
performed for each of these spherical ROIs. Briefly, for a spherical
ROI of 100 voxels, this stage resulted in three 100 × 100 correla-
tion matrices. The two correlation matrices resulting from corre-
lating within the rest scans were averaged together and their
lower (or equivalently, upper) off-diagonal elements were
extracted as a rest-related spatial pattern vector (e.g., for a 100
voxels sphere, the vector was 4950 voxels long). The correlation
matrix resulting from correlating the two task scans was aver-
aged with its transpose and then the lower (or equivalently, the
upper) off-diagonal elements were extracted to form a task-
related spatial pattern vector.

We then conducted a second Pearson correlation between
the rest-related and task-related spatial pattern vectors corre-
sponding to each spherical ROI. This correlation coefficient was
assigned to the central voxel of the ROI. This procedure formed
a full cortical map of local rest task regional BOLD correspon-
dence for each participant and each task. For each task, these
maps were Fisher-transformed and averaged across participants
and then registered to the fsaverage surface with FreeSurfer.

Results
In the current study, we examined the relationship between
spontaneous activity in higher order visual areas and the
response to naturalistic visual stimuli. To that end, we compared
the connectivity patterns emerging spontaneously in higher
order visual areas during rest with those produced during natu-
ralistic movie viewing and in response to more artificial stimuli
that isolated specific aspects of the movie stimulus (motion, nat-
uralistic images, or appearance of objects). Participants under-
went fMRI scans that included six different conditions, each
repeated twice (Methods and Fig. 2A). The experiment consisted
of two 8-min resting-state runs with EC (15 participants), two 8-
min resting-state runs with EO and fixation (9 participants), and
two 8-min runs of each of the following visual conditions: natu-
ralistic movie viewing (engaging movie segment; 15 participants),
scrambled movie viewing (phase-scrambled in the space domain;
14 participants), a categories 1-back task (block-design paradigm
with five different object categories; 15 participants), and a shape
recognition task (block-design paradigm with light and dark
green artificial shapes; 12 participants).

As a preliminary analysis, we calculated for each condition
the average motion amplitude (Mean ± SD: rest 0.22 ± 0.09;
movie 0.27 ± 0.21; categories 1-back task 0.22 ± 0.10; scrambled
movie 0.26 ± 0.015; shape recognition task 0.14 ± 0.05; rest EO
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0.28 ± 0.17). The one-way mixed ANOVA yielded a significant dif-
ference in the average motion amplitudes across conditions
(F5,62.76 = 3.53, P = 0.007). In particular, we found a significantly
lower average motion amplitude in the shape recognition task
compared with movie (t63 = 3.39, P = 0.009), scrambled movie (t64
= 3.23, P = 0.009), and rest (t64 = 3.68, P = 0.007). There was no
statistically significant difference between the other conditions.

In our main analysis, we focused on higher order visual
areas, identified as voxels responding to all visual conditions
(Methods, “Selection of voxels for pattern extraction”). We
aimed to include the full set of category-selective higher order
visual voxels activated during the tasks rather than limiting the
analysis to specific categorical preferences.

Figure 2B illustrates the layout of these areas in a represen-
tative participant: The right panel shows an example of the
voxels selected for further analysis, while the left panel shows
category-selective areas defined using standard criteria, as a
comparison. Note that all voxels sampled were located in the
visual cortex.

Resting-State Patterns Most Strongly Resemble
Naturalistic Stimulus-Induced Patterns

Examining seed-based connectivity patterns emerging sponta-
neously during the resting state and patterns evoked by natu-
ralistic and artificial visual stimuli revealed a widely distributed
pattern. Figure 3 depicts an example of one such pattern. The
maps show the correlation values for the timecourse of each
cortical voxel with the timecourse of a seed voxel (black dot)
located in the EBA of a representative participant. Importantly,
while resting-state correlations were calculated using time-
courses extracted from the same run (within-run correlations)
and then averaged across the two resting-state conditions, cor-
relations for the visual conditions were calculated across two
runs (cross-run correlations).

In agreement with previous reports (Hutchison et al., 2014),
the correlation patterns that emerged during rest with EC
(Fig. 3A) showed a bilateral, symmetrical, widespread pattern in
the superior temporal gyrus, middle temporal gyrus, insula,

and early visual cortex. We compared the resting-state pattern
with the patterns induced by the same seed voxel across the
two repetitions of each visual condition (Fig. 3B–E). The maps
show that free movie viewing produced the functional connectiv-
ity pattern that most strongly resembled the widely distributed
resting-state pattern. In contrast, both the categories 1-back and
the shape recognition task produced a more localized pattern,
mainly around EBA, with some negative correlations in the
peripheral ventral areas of the striate cortex. Finally, the scram-
bled movie seemed to produce a distributed, although less-
organized, correlation pattern, likely due to a noisier response to
this type of stimulus.

To allow for visual inspection of the entire set of voxelwise
connectivity patterns across the various experimental condi-
tions, we adopted the same method that we used previously
for representing the connectivity structure in early visual
areas (Wilf et al., 2015). Briefly, for each condition, we calcu-
lated a matrix of all pairwise correlations of higher order
visual voxels in both hemispheres (Methods, “Voxelwise
Correlation Matrices”). To better visualize potential similari-
ties between patterns across conditions, cells were rearranged
to match the resting-state matrix (Methods, “Sorted
Matrices”). Note that this artificial rearrangement of the matri-
ces was for visualization purposes only and did not affect the
subsequent statistical analyses.

As a comparison, Figure 4A shows the unsorted correlation
matrices in a representative subject during rest, cross-movie,
categories cross-1-back, cross-scrambled movie, cross-shape
recognition task, cross-rest, and Euclidean distance.

Figure 4B shows the results of this sorting procedure.
Similarities between the resting state and other conditions are
reflected as comparable color gradients, allowing for a visual
comparison between the cross-run correlation patterns for
each visual condition and the within-run correlation pattern
for the resting state (each pattern represented by an individual
square). Figure 4B-2 shows the rearranged mean matrix of pair-
wise cross-run correlations driven by naturalistic movie view-
ing. Although some degradation in the similarity to the resting-
state pattern can be discerned, the re-emergence of the

Figure 3. Similarity between resting-state and movie voxelwise functional connectivity maps in a representative participant. (A) The left and right hemispheres of a

representative participant are overlaid with a within-resting-state functional connectivity map with a seed voxel in the left EBA, marked with a black dot. (B)

Connectivity map across movie presentations using the same seed voxel. Note that the same general pattern arising spontaneously in the resting-state map is also

present in this movie-driven map. (C) Connectivity between categories 1-back scans (cross-run) using the same seed voxel. Note some similarity between the positive

correlations in this map and the resting-state correlations and anti-correlations (in blue) in the early visual areas. (D) Cross-run connectivity map for the shape recog-

nition task and (E) scrambled movie. Maps were overlaid on the Freesurfer fsaverage flat cortical surface (see Methods). Correlation values r were normalized (for dis-

play purposes only).
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underlying structure is evident. The other panels show the rear-
ranged matrices of pairwise cross-run correlations for the cate-
gories 1-back task, the shape recognition task, scrambled-movie
viewing, and the cross-resting-state runs. All visual conditions
showed some trace of the resting-state pattern; however, the
resting-state pattern most closely resembled the movie-driven
correlation matrix. The cross-resting-state matrix showed a
noisy pattern with correlations near zero, as expected given the
inherent inconsistency between rest runs.

We subsequently quantified the similarity between resting-
state and stimulus-driven patterns (Methods, “Correlation
Between Spontaneous Connectivity and Stimulus-Driven
Patterns”), shown in Figure 4C. The y-axis represents the corre-
lation between the cross-run correlations for each visual condi-
tion and the within-run correlations during rest. In other
words, the bars represent the similarity between the pairwise
correlation pattern for each visual condition and the pairwise
correlation pattern during rest. All visual conditions showed a

significant correlation with the resting-state pattern (smallest
t11 = 3.09, P = 0.010). However, correlations between the resting
and movie-viewing conditions were significantly higher than
between the resting and artificial visual stimulus conditions
(movie vs. categories 1-back, t52 = 2.83, P = 0.008; movie vs.
scrambled movie, t52 = 3.33, P = 0.002; movie vs. shape recogni-
tion, t53 = 6.19, P < 0.0001; post hoc t-test, FDR corrected). As a
control, we computed a between resting-state scan correlation
matrix, assuming no consistent pattern should emerge (Panel B-
6). Indeed, this cross-rest condition showed no significant simi-
larity to the within-resting-state pattern, as expected given the
spontaneous nature of fluctuations during resting-state runs.

We next repeated the same analysis excluding only the early
visual areas while retaining the nonvisual responsive voxels
across the entire cortex. Overall, the pattern of results was simi-
lar to the one obtained in the higher order visual areas
(Supplementary Fig. 3). All visual conditions showed a significant
correlation with the resting-state pattern (smallest t12 = 35.72,

Figure 4. The resting-state pattern is more strongly correlated with naturalistic movie-induced patterns than with patterns evoked by more artificial visual condi-

tions. Panels A and B show the unsorted and sorted matrices of all pairwise correlations of higher order visual voxels (corresponding to the region of interest) in both

hemispheres, for the resting state, each of the visual conditions, and volumetric distance. (A) Unsorted mean correlation matrices in a representative subject during

rest, movie, categories 1-back, scrambled movie, shape recognition task, cross-rest, and Euclidean distance. (B) 1. The resting-state pairwise correlation matrix of all

voxels in the region of interest was sorted according to correlation strength to form a diagonal pattern from highest to lowest correlation (see Methods). The mean

matrix across all participants is presented (n = 15). 2. The voxel order from the resting-state matrix was applied to the cross-movie matrix and averaged across partici-

pants. Note that the diagonal pattern reemerges in the naturalistic movie condition (n = 15). 3–5 Same as 2, 3. but for categories 1-back (n = 15), 4. shape recognition (n

= 12), and 5. scrambled-movie (n = 14) conditions. Note that some similarity to the resting-state pattern remains, but the similarities are much less salient than for

the naturalistic movie. 6. Cross-resting-state pattern; 7. Euclidean distance. (C) The bars show the mean correlation between the within-run resting-state pattern and

the cross-run visual patterns. All visual conditions showed a significant correlation with the resting state, but the movie showed a significantly higher correlation as

compared to the other visual conditions. The cross-resting-state matrix did not show a significant correlation with the within-run resting-state matrix (rightmost

bar). Error bars denote the standard error of the mean ( ± SEM) *pFDR < 0.05).
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P = 0.0001). However, correlations between the resting and
movie-viewing conditions were significantly higher than
between the resting and shape recognition task and scrambled
movie (movie vs. categories 1-back, t52 = 2, P = 0.05; movie vs.
scrambled movie, t52 = 2.67, P = 0.01; movie vs. shape recogni-
tion, t53 = 4.62, P < 0.0001; post hoc t-test, FDR corrected).

Similarities Between Resting-State and Naturalistic
Stimulus-Induced Patterns are not Driven by Cross-Run
Reliability

An important factor that could explain the preferential correla-
tions between resting-state and movie-driven patterns is the
reliability of responses (Golland et al., 2007). In other words, the
movie could be more engaging, thus producing a stronger and
more reliable BOLD response than the more artificial condi-
tions. It is important to emphasize that the stimulus-evoked
patterns were all based on cross-run correlations. Therefore, a
stimulation condition leading to unreliable responses would
inevitably result in a noisier correlation pattern that would not
be expected to resemble the resting-state pattern. To address
this issue, we measured response reliability by calculating the
reproducibility of the connectivity patterns. A simple measure
of this reproducibility is provided by the mirror symmetry
across the diagonal of each unsorted cross-run correlation
matrix (Methods, “Reliability Measurement”).

In Figure 5, the y-axis represents the reliability measures for
the different visual conditions. As expected, all stimulus-driven
tasks showed a significantly reliable pattern (smallest t14 = 5.12,
P < 0.0001). No significant reliability was found across resting-
state runs when the cross-run correlations were assessed,
which is again consistent with the spontaneous nature of these
fluctuations. Importantly, despite its stronger similarity to
resting-state patterns, the reliability of the movie-driven pat-
tern was significantly lower than that of the categories 1-back-
driven pattern (t52 = 6.45; PFDR < 0.0001; post hoc t-test movie
vs. categories 1-back, FDR corrected).

Similarity Between Resting-State and Naturalistic
Stimulus-Induced Patterns cannot be Explained by
Volumetric Distance

The specific pattern of spontaneous correlations could be the
result of the volumetric distance between voxels (i.e.,
anatomically-adjacent voxels would show higher correlations,
while far-away voxels would be less correlated). To assess the
effect of the anatomical distance between voxels on the correla-
tion patterns, we measured the inverted Euclidean distance
between each pair of voxels and assigned it to the sorted resting-
state matrix (Methods, “Volumetric Distance Analysis”). As
expected, there was some contribution of anatomical distance to
the resting-state correlation pattern, but this effect alone could
not account for the spontaneously emerging patterns. Thus, the
correlations between the resting state and movie-viewing task
were higher than between the resting state and the anatomical
distance between voxels (movie vs. volumetric distance, t66 =
3.69; P = 0.001; post hoc t-test, FDR corrected).

Similarities and Differences Between Correlation
Patterns are not Driven by Short-Term Changes in
Resting-State Activations

It is also important to consider the effects of systematic
changes in resting-state patterns due to the visual stimuli or

fatigue. To evaluate this issue, we analyzed the connectivity
patterns for the first resting-state run (before watching the
movie) and the second resting-state run (after watching
the movie) separately. There was greater similarity between the
postmovie resting state and the movie than between the premo-
vie resting state and the movie (paired-sample t-test, t14 = 2.58, P =
0.02). Nevertheless, when we considered only the first resting-
state run, which was performed before any other experimental
condition, the movie-generated pattern still showed greater
similarity to this first resting-state scan than to any of the other
visual conditions (F4,39 = 31.7, P = 0.0001; movie vs. categories
1-back, t52 = 2.366, P = 0.03; movie vs. shape recognition task,
t54 = 4.909, P < 0.0001; movie vs. scrambled movie, t52 = 2.973,
P = 0.0089, FDR corrected). Since the order of the other condi-
tions was counterbalanced across participants, this result rules
out stimulus-driven changes in resting-state patterns as the
main explanation of our results.

In order to probe for the effect of fatigue as an explanation
for the increase in correlations in the postmovie resting-state
run, we performed our main analysis again while taking only
the first half of each task run or the second half. We hypothe-
sized that if fatigue affected the results, we would find higher
correlations between rest and the other conditions when tak-
ing into account the second half of the task runs (similarly to
the effect we found when comparing the first rest and the
second rest). Repeated-measures two-way mixed ANOVA on
the correlations with the first resting-state run, with the fac-
tors visual condition (five levels: movie, categories 1-back,
scrambled movie, shape recognition task, and rest) and run
segment (two levels: first half and second half), confirmed a
main effect of condition (F4118 = 17.45, P = 0.001), but no inter-
action between condition and run segment (F4118 = 1.64, P =
0.17). Importantly, there was no significant main effect of the
run segment (F1118 = 3.12, P = 0.08). This result argues against
the confounding effect of drowsiness as the main explanation
for the difference between the first and second rest runs,
because fatigue would presumably increase during the latter
phase of each run (i.e., the second segment).

Figure 5. Response reliability. The bars show the mean response reliability

between runs in the visual conditions (movie, categories 1-back, scrambled

movie, and shape recognition) and during rest with EC. The reliability measure

was calculated for each condition according to the symmetry of the cross-run

matrices. Free viewing of a naturalistic movie showed significant reliability

between runs; however, reliability was significantly lower than for the catego-

ries 1-back or shape recognition tasks. This result rules out the possibility that

response reliability underlies the stronger similarity between the resting-state

and movie-driven patterns. Error bars denote the standard error of the mean

(±SEM) *PFDR < 0.05.
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Pattern Similarity does not Depend on the Specific
Resting-State Condition

In this study, we compared EC resting-state patterns with various
visually evoked patterns. However, several studies have shown
that ongoing spontaneous activity is modulated by the status of
the participant, e.g., EC vs. EO, and, more specifically, that the EC
condition increases the variability of the oxygen extraction frac-
tion (cf. review of Gusnard and Raichle 2001). Thus, our results
might be specific to the EC condition. To examine this possibility,
12 participants underwent two resting-state runs with EO and fix-
ation, and we compared the EO resting-state and visually evoked
patterns. All visual conditions correlated significantly with the
resting condition. However, the resting condition was signifi-
cantly more correlated with the naturalistic movie condition
than the scrambled-movie condition or the shape recognition
task (Fig. 6A). There were no significant differences in correlation
strength between the resting and the movie conditions versus
the resting condition and the categories 1-back task. This effect
might be due to the small sample size or to the presence of a fix-
ation point both in the EO resting condition and in the categories
1-back task, which might have increased their similarity due to
a purely common visual stimulus (movie vs. scrambled movie,
t39 = 4.2, P = 0.0002; movie vs. shape recognition task, t40 = 4.6, P
= 0.0001; post hoc t-test, FDR corrected).

Response reliability across visual conditions in this sub-
group of participants is shown in Figure 6B.

In addition, we directly tested the difference between rest-
ing with EO and resting with EC in the correlation patterns
across all visual conditions. Figure 6C shows the mean correla-
tion between the within-run resting-state pattern with EC and
EO and the cross-run visual patterns. Paired t-tests for each
condition showed no significant difference between rest with
EC and rest with EO.

Visual Conditions Contribution to the Model Selection
To identify voxels located in higher order visual areas and
avoid a potential bias toward one condition over the others, we
selected the voxels based on the cross-run correlation of all
visual conditions rather than just one condition. However, it is
possible that the movie stimulus, with its rich and multidimen-
sional content, might have driven activity and correlations
across cortical regions more than the other, more artificial, sti-
muli. To assess the contribution of each visual condition to the
voxel selection, we compared the voxel-by-voxel cross-run cor-
relation map within each visual condition with the voxel-by-
voxel cross-run correlation map calculated concatenating all
the visual conditions (see Fig. 7). We found a significant differ-
ence between the visual conditions (one-way mixed ANOVA,

Figure 6. Correlation between EO resting-state pattern and visual conditions patterns. (A) The graph bars show the mean correlation between the within-run resting-

state pattern with EO and the cross-run visual patterns (movie, N = 12; categories 1-back, N = 12; scrambled movie, N = 10; shape recognition, N = 9). All visual conditions

showed a significant correlation to resting state, but the movie showed significantly higher correlation compared with the scrambled movie and shape recognition task.

(B) Response reliability. The graph bars show the mean response reliability between runs in the visual conditions and during rest EO. The reliability measure was calcu-

lated for each condition using the symmetry of the cross-run matrices. Free-viewing movie showed a significant reliability between runs, however, it was significantly

lower than the reliability in categories 1-back and shape recognition task. This result rules out the possibility that response reliability underlays the higher similarity

between the resting-state and movie-driven patterns. (C) The graph bars show the mean correlation between the within-run resting-state pattern with EC and EO and

the cross-run visual patterns. Error bars denote standard error of the mean (±SEM) *P < 0.05.

3628 Cerebral Cortex, 2019, Vol. 29, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/29/9/3618/5158238 by guest on 27 January 2022



F3,39 = 69.01, P < 0.0001). In particular, we found that categories
1-back task was more strongly correlated to the concatenated
map than the other conditions including the movie condition
(categories 1-back task vs. movie, t38 = −2.842, P = 0.0086; cate-
gories 1-back task vs. shape recognition task, t40 = −10.561, P <
0.001; categories 1-back task vs. scrambled movie, t39 = −11.989,
P < 0.001), and that the movie condition was more correlated
than shape recognition task (t40 = 7.897, P < 0.0001) and scram-
bled movie (t39 = 9.201, P < 0.0001).

Additionally, the cross-run correlation maps showed that
the activated voxels for each visual condition were mostly con-
fined to the visual cortex.

Pattern Similarity Across the Whole Cortex
To investigate if resting-state patterns most strongly resem-
bled naturalistic movie-induced patterns across the entire cor-
tex (not restricted to visual areas), we explored the similarity
between the resting and visual conditions with a searchlight
approach (Kriegeskorte et al., 2006) across the whole cortex
(see Methods). Figure 8 shows the average correlation between
rest with EC and each of the visual conditions, constructed by
averaging all the individual maps. Each map shows the simi-
larity between the cross-run pattern and the rest pattern
around each vertex. Highly correlated vertexes denote high
similarity between the resting and the visual conditions in the

area around the vertex. For all the visual conditions, the corre-
lation patterns were extensive bilaterally in the visual cortex;
however, movie and categories 1-back task showed a more
widely distributed correlation pattern also spanning some
regions outside of the visual cortex. In particular, in the movie
condition, high correlations extended bilaterally in the super-
ior temporal sulcus (STS), lateral sulcus (LS), precuneus
(Precun), and intraparietal sulcus (IPS) (mostly in the right
hemisphere). In contrast, both the scrambled movie and the
shape recognition task produced a more localized pattern,
restricted to the visual cortex.

We next calculated the correlation between the cross-run
correlations for each visual condition and the within-run corre-
lations during rest for all the activated voxels during the visual
conditions (i.e., voxels with a minimum self-correlation of 0.25,
see Methods “Selection of Voxels for Pattern Extraction”).
Overall, the pattern of results was similar to the one obtained
in the higher order visual areas (Supplementary Fig. 3). We
assessed the similarity between the visual condition and the
rest, by performing a repeated-measures one-way mixed
ANOVA. All visual conditions showed a significant correlation
with the resting-state pattern (smallest t12 = 35.72, P = 0.0001).
However, correlations between the resting and movie-viewing
conditions were significantly higher than between the resting
and shape recognition task and scrambled movie (movie vs.
categories 1-back, t52 = 2, P = 0.05; movie vs. scrambled movie,

Figure 7. Voxel-by-voxel cross-run maps for each visual condition and for the concatenated conditions. The left and right hemispheres of an average surface are over-

laid with voxel-by-voxel cross-run maps for the visual conditions: movie, categories 1-back task, scrambled movie, shape recognition task, and the concatenation of

all the visual condition (central panel). Maps were averaged across subjects and projected onto the FreeSurfer fsaverage flat cortical surface (see Methods).

Thresholds were chosen in order to equalize the number of voxels, thus to emphasize the similarity of correlation patterns across the maps rather than the differ-

ences in their strength (for display purposes only).
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t52 = 2.67, P = 0.01; movie vs. shape recognition, t53 = 4.62, P <
0.0001; post hoc t-test, FDR corrected).

Discussion
A substantial gap in our understanding of the neuronal mecha-
nisms underlying human visual cortex function stems from the
fact that most neurocognitive studies use highly artificial sti-
muli that are far removed from true ecological vision. Thus, a
major concern in interpreting the vast set of findings derived
from human visual cortex research is that they may be specific
to artificial laboratory conditions and will fail to generalize to
real-world conditions (Felsen and Dan 2005). It has been shown
that naturalistic stimuli, with their rich spatiotemporal con-
tent, are more effective in driving neuronal activity (Touryan
et al., 2005) and can elicit a unique neural response compared
to synthetic stimuli (Felsen and Dan 2005). In addition, natural-
istic stimuli can better reveal the neural response diversity and
thus are more suitable for studying high-level sensory areas
(Park et al., 2017).

Here, combining naturalistic stimuli and functional con-
nectivity methods, we examined the hypothesis that resting-
state fluctuations may provide information to bridge this
gap. Specifically, we considered the prediction that cortical
coactivations under conditions that more closely simulate
real-life situations will be more similar to resting-state pat-
terns than equally effective cortical activations driven by
artificial stimuli rarely experienced in daily life. While
movies are of course an imperfect equivalent for true ecologi-
cal sensory stimulation, this condition allows participants to
engage in free viewing of rich, naturalistic, multimodal and
multidimensional dynamic stimuli (Hasson et al., 2004;
Vanderwal et al., 2015). This cognitive engagement increases
the reliability compared with resting-state measures and
overcomes the potential negative effect of repeated viewings
(Wang et al., 2017). Moreover, it has been shown that naturalistic

movies allow to detect idiosyncratic functional connectivity pat-
terns (Vanderwal et al., 2017).

Regarding the source of the similarity, in the introduction
we proposed two models. According to one model, spontane-
ous patterns may reflect primarily the optical statistics of the
natural world (Fiser et al., 2010); according to the second
model, spontaneous patterns may reflect network coactiva-
tion statistics (Harmelech and Malach 2013). In particular, in
the framework of the Bayesian probability theory, the two
models differ in the content of the prior distribution. While
the first model concerns the predictive statistics of the exter-
nal environment (with a possible link to expectations, atten-
tion, etc.), the second model highlights the predictive
statistics of the proper networks coactivations. It is a well-
established phenomenon that in early visual cortex the net-
work activations are retinotopically related to the low-level
features of the optical stimuli. However, this retinotopic link
makes it difficult to separate the role of optical from nonopti-
cal factors in explaining the relation between spontaneous
and evoked patterns. Importantly, this relation is significantly
diminished in the higher order visual cortex. Although recent
studies have shown that higher order visual areas are driven
by the optical statistics of the world to some degree (Larsson
and Heeger 2006; Kay et al., 2015; Uyar et al., 2016; Arcaro and
Livingstone 2017; Kay and Yeatman 2017), these retinotopic
inputs are minor and higher order visual areas are mainly
driven by categorical and perceptual high-order gestalt (Grill-
Spector and Malach 2004; Fisch et al., 2009; Golan et al., 2016,
2017). A large body of research on neuropsychological
patients has further supported this distinction in demonstrat-
ing that lesions in the higher order visual cortex may be asso-
ciated with recognition and visuospatial deficits that involve
all the visual field such as visual agnosia, body form agnosia,
prosopagnosia, akinetopsia, and achromatopsia. Conversely,
a lesion in the early visual areas is mainly associated with a
retinotopic cortical representation deficit, a result further

Figure 8. Group searchlight task-rest correlation maps. The left and right hemispheres are overlaid with a searchlight task-rest correlation group map (see Methods).

The correlation coefficients were thresholded by a group-level one-sample t-test against zero (a Fisher transform of the coefficients ensured normality). Only vertices

with P < 0.05 are shown. Maps were overlaid on the Freesurfer fsaverage flat cortical surface with 3mm FWHM of surface smoothing and cluster correction for multi-

ple comparisons at 0.01 (Hagler et al., 2006).

3630 Cerebral Cortex, 2019, Vol. 29, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/29/9/3618/5158238 by guest on 27 January 2022



supported more recently by intracranial recordings (Winawer
and Parvizi 2016). Thus, given this weakened relation between
low-level optical statistics and functional specialization,
higher order visual areas represent a good testing ground for
the two models.

To test our prediction, we devised control stimuli that were
effective in activating the tested brain regions, while creating a
unique correlation pattern that was comparable between con-
ditions. Moreover, intrasubject and inter-subject correlations in
cortical activity during free movie and scrambled-movie view-
ing showed that whole-brain activations are mostly related to
the visual cortex (Lu et al., 2016); thus suggesting that confining
the analysis to the visual cortex can avoid the increase of possi-
ble sources of noise. The high-order visual cortex provided a
good test for our hypotheses, while enabling the use of a set of
control stimuli that prove the advantage of movie over other,
more artificial, stimuli.

It could be argued that the higher correlation between cate-
gories 1-back task and the concatenation of all visual condi-
tions might have biased the voxels selection and, therefore, the
connectivity patterns. Consequently, one would expect an
enhancement in the similarity between the categories 1-back
condition and the resting-state patterns. However, our results
on the concatenated visual conditions showed that despite
such potential enhancement, the movie-induced patterns still
showed significantly higher similarity to the resting-state pat-
terns compared to the categories 1-back task.

Our results, showing a higher similarity between spontane-
ous and naturalistic evoked patterns, provide support to the
hypothesis of a general principle of link between resting-state
and habitual naturalistic neuronal coactivations. While previ-
ous research has revealed a robust and specific set of resting-
state functional connections in various category-selective areas
(Stevens et al., 2009, 2015; Hutchison et al., 2014; O’Neil et al.,
2014; Chen et al. 2017), our study extends this research by
showing that a significant component of this resting-state con-
nectivity can be explained by the nature of cortical coactiva-
tions during movie viewing. Most importantly, our analysis
focused specifically on the sensory-driven component of the
responses, isolated from intrinsic resting-state activity by map-
ping correlations across repeated presentations of visual condi-
tions. Previous studies, which either combined (Betti et al., 2013;
Marussich et al., 2017) or separated (Kim et al., 2017) the effect of
the sensory-driven and the intrinsic components, have addressed
the complementary question about differences between func-
tional connectivity patterns during movie viewing and rest.

Our approach, which relies on cross-run correlations to iso-
late sensory-driven patterns, is likely to provide only the lower
bound of the true strength of activation patterns due to adapta-
tion effects, attentional shifts, and eye movement variability
across repeated runs. These effects may decrease the reproduc-
ibility of activations across movies, adding noise to the correla-
tion patterns. The movie reliability index reflected this issue,
which was lower than reliability indices for the more artificial
but better-controlled categories 1-back and shape recognition
tasks, although with a comparable or higher number of sub-
jects. Remarkably, despite this lower reliability, the sensory-
driven pattern emerging from the movie condition more
strongly resembled the resting-state pattern than any other
condition. The scrambled-movie condition presumably acti-
vated the category-selective cortex only weakly and hence
showed a lower reliability index (Fig. 5). Similarly, previous
results have reported that computer-generated animations
comprised of abstract shapes with a slow and continuous

motion (inscapes) showed a lower reliability index compared to
movies (O’Connor et al., 2017).

It could be argued that our results were specific to the type
of rest condition used for comparison with the visual condi-
tions. It has been shown that different rest conditions are
associated with different brain patterns (Marx et al., 2003,
2004; Hüfner et al., 2009; Jao et al., 2013; Xu et al., 2014; Zhang
et al., 2015) and that the choice of rest condition is fundamen-
tal for estimating the change from baseline and to task-
induced BOLD activity (Gusnard and Raichle 2001). However,
we found greater similarity between movie-induced patterns
(compared with the other visual conditions) and rest with
both EC and EO. These results indicate that the type of rest
condition was not a critical factor in explaining the similarity
of the patterns. However, although we did not find a signifi-
cant difference between the conditions rest EO and rest EC, it
is possible that because of the limited sample size we failed
to detect a significant effect. In this regard, a potential limita-
tion of this study is the small sample size. While some stud-
ies have pointed out that statistically significant results with
small sample sizes indicate a stronger effect than the equiva-
lent studies with a larger sample (Friston 2012), some others
have shown the potential limitations of using small samples
(Lindquist et al., 2013).

Another possible confound involves changes in resting-state
connectivity induced by the tasks or movie viewing. These
effects may have biased our results since half of the resting-
state data were collected after movie viewing and the other
half before. In fact, several studies have shown task-induced
changes in resting-state functional connectivity lasting for
hours or even days after the activation (Albert et al., 2009;
Lewis et al., 2009; Stevens et al., 2009; Tambini et al., 2010;
Tailby et al., 2015). Consistent with these previous findings, we
found that the resting-state patterns generated by the second
resting-state run (after movie viewing) were more similar to
the movie than the first resting-state run (before movie view-
ing). However, even when only the first resting-state run was
included in the analysis, (before movie viewing), the resting-
state patterns remained more similar to the patterns associated
with movie viewing than to any other visual stimulation condi-
tion. Thus, we can rule out the possibility that the similarities
between the resting-state and movie conditions were somehow
driven by a trace following the movie activation. The preferential
correlation of the resting-state pattern with the movie-driven
pattern, found even before the movie was shown, supports the
conclusion that the similarity was driven by the typical statistics
of natural, real-life sensory stimulation, rather than by the
unique set of stimuli presented in the specific movie used in our
experiment.

Finally, we explored the effect of general fatigue caused by
the repeated fMRI scanning by running a split-half within-run
analysis on the correlation matrices. However, we found no dif-
ference between the first and second half of each condition run
when correlated to rest.

An important question concerns the mechanism that may
embed the statistics of network activation in the spontaneous
patterns. As we have proposed previously (Harmelech and
Malach 2013), Hebbian learning offers a plausible and attrac-
tively simple mechanism. Thus, if we take higher order visual
representations as an example, the model proposes that during
daily life, networks that habitually coactivate will strengthen
their functional connections due to a Hebbian learning process.
When visual input is blocked during the resting mode, it is
assumed that these networks are driven by inherent stochastic
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neuronal noise. In the absence of functional connectivity, this
noise will be reflected in random, unstructured activation pat-
terns (similar to “snow” on a television screen). However, the
presence of synaptic connectivity among neurons imposes
structure on this random pattern because the interneuronal
connections tend to support spontaneously emerging neuronal
coactivations. A physical metaphor for this phenomenon is the
tendency of randomly oscillating pendula to gradually enter
into sync due to subtle interactions. Furthermore, the more
often a pair of cortical sites is coactivated, the stronger the
resultant functional connectivity between them, leading to
more highly correlated activation patterns that emerge during
rest. Therefore, the spontaneous pattern revealed during rest
can be envisioned as a sort of “archive” of the prior, habitual
coactivation patterns that occur in the cortex over the course of
an individual’s ecological life.

Generating correlation patterns across all activated voxels
in the cortex, we explored the similarity between rest and the
visual conditions across the entire cortex (outside early retino-
topic areas). We found that the similarity between movie and
rest was higher than the similarity between rest and the other
control visual conditions except for categories 1-back task
(Supplementary Fig. 3). The lack of a significant difference
between movie and categories 1-back task might be due to the
limited sample size.

Mapping the relationship between rest and the visual condi-
tions using the searchlight approach revealed that the similar-
ity pattern between movie and rest extended beyond the visual
cortex (Fig. 8). In particular, the extensive bilateral pattern in
the movie condition that we found in the STS was presumably
correlated to biological motion, which represents one of the
strongest visual features during movie viewing (Russ and
Leopold 2015; Goldberg et al., 2016), and to the processing of
audiovisual social features during naturalistic stimulation
(Lahnakoski et al., 2012). Moreover, in contrast with the other
visual conditions, in the movie condition, the correlation pat-
terns extended bilaterally in the precuneus. Interestingly, this
multi-functional region has been associated with watching
social interaction during realistic movie clips viewing (Iacoboni
et al., 2004). The searchlight analysis also highlighted an impor-
tant feature of our analysis approach: because the analysis was
based on cross-run functional connectivity, only areas that
were activated by the task showed an informative connectivity
pattern. Therefore, our choice of the artificial stimulus condi-
tions was targeted at activating specific networks of interest (in
our case, the visual system). Future research using control sti-
muli activating, for example, the auditory cortex could be per-
formed to test the generalization of our findings to other
modalities.

The specific elements of the movie driving the similarity
between resting-state and movie-induced patterns are difficult
to assess. Indeed, we have found that neither the motion com-
ponent of the movie (scrambled movie) nor the static naturalis-
tic images (categories 1-back task) accounted for the full
richness of spontaneous patterns as captured in the naturalis-
tic movie. Features absent from the artificial stimuli but present
in the movie (and in real life) may underlie the effect, such as a
semantic narrative (Zacks et al., 2011), the events structure
(Baldassano et al., 2017), the complexity of the scene (in partic-
ular the simultaneous presence of several object categories,
compared with the more isolated object presentation in the
control conditions), fine-grained temporal resolution (Spiers
and Maguire 2007), simultaneous audiovisual stimulation, and
biological motion (Russ and Leopold 2015). More extensive

studies isolating these dimensions (and others) are needed to
precisely identify the sources of the similarity between patterns
associated with naturalistic stimuli and the resting state and to
assess how this similarity changes across the development of
each individual (Berkes et al., 2011) as a result of reshaping
driven by coupling with the dynamic regularities of the
environment.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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