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Abstract— We propose a reference-free learning model pre-
dictive controller for periodic repetitive tasks. We consider a
problem in which dynamics, constraints and stage cost are
periodically time-varying. The controller uses the closed-loop
data to construct a time-varying terminal set and a time-varying
terminal cost. We show that the proposed strategy in closed-
loop with linear and nonlinear systems guarantees recursive
constraints satisfaction, non-increasing open-loop cost, and that
the open-loop and closed-loop cost are the same at convergence.
Simulations are presented for different repetitive tasks, both for
linear and nonlinear systems.

I. INTRODUCTION

Repetitive tasks can be found in virtually every human
activity. Performing the same action several times can be
tiring and alienating. For this reason in several applications,
repetitive tasks are often delegated to automated systems.
This motivated researchers to study how to design control
algorithms tailored to iterative and repetitive tasks [1]–[6].
The key idea is to exploit historical data to improve the
closed-loop performance of autonomous systems. Indeed,
even a small improvement, when applied to a large number
of repetitions, will yield a considerable gain.

At each execution of an iterative task the system starts
from the same initial condition. These control problems
are studied in Iterative Learning Control (ILC), where the
controller learns from previous iterations how to improve
its closed-loop performance. In classical ILC the controller
objective is to track a given reference, rejecting periodic
disturbances [1]–[3]. The main advantage is that information
from previous iterations is incorporated in the problem for-
mulation and it is used to improve the system performance.

A different class of control problems arises when the
controller performs a repetitive task in which the initial
condition of each execution is the final condition of the
previous, which is to say, the system operates continuously.
These problems are studied in Repetitive Control (RC) [4].
The goal of RC is defined as tracking of a periodic trajectory,
or rejection of a periodic disturbance. The idea is to construct
a controller which contains a system whose output is the
reference to be tracked (or the disturbance to be rejected),
which is known as the internal model principle. Since RC
aims at continuous operation, improvement is done by using
previous data within a single execution of the task. Early
RC controllers use frequency-domain design techniques,

1Nicola Scianca is with the Dipartimento di Ingegneria Informatica,
Automatica e Gestionale, Sapienza Università di Roma, via Ariosto 25,
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but there are modern formulations which employ Model
Predictive Control (MPC) to track a given reference, such
as [5]–[7], or [8] which addresses the problem of period
mismatch. Applications can be found for control of a reverse
flow reactor [9] or wind turbines [10].

Classical ILC and RC approaches define performance in
terms of tracking of a given reference, which has to be
provided to the controller. The reference could be com-
puted offline as a solution of a periodic optimal control
problem [11]–[13]. Optimal periodic control is formulated
as an infinite horizon control problem with the objective of
minimizing an average cost.

A reference trajectory may be hard to compute apriori,
for this reasons several recent works proposed reference-
free strategies [14]–[16]. Examples of these are provided by
MPC schemes which minimize a certain economic index,
often referred to as economic MPC [14]. These controllers
compute the control action after forecasting the evolution of
the system over a time horizon. This strategy often works
well in practice but it makes it harder to provide theoretical
guarantees. Among them, some specifically adopt a periodic
formulation. A Lyapunov function for a class of systems is
found for a periodic MPC with economic cost in [15], while
in [16] the authors analyze economic MPC on systems with
dissipativity properties, including a periodic formulation.

In this work we extend the reference-free Learning Model
Predictive Control (LMPC) described in [17], [18] to repet-
itive tasks, where the system operates continuously and the
initial condition is not the same at each execution. We
maintain the core idea which is to use historical data to
compute a terminal constraint and estimate the terminal
cost of the MPC, however, the way these are computed is
substantially different. The original formulation of LMPC
employed the ILC paradigm in which the system is restarted
to the same initial condition and uses only data from previous
iterations. In the proposed work we continuously update the
controller using data from a single execution. We consider
dynamics, constraints and stage cost that are periodically
time-varying and we require that an initial feasible periodic
trajectory is known. For these systems we show recursive
feasibility, non-increasing open-loop cost, and that the open-
loop trajectory equals the closed-loop at convergence.

Several periodic MPC approaches make use of a lifted
reformulation [12] to turn a time-varying periodic system
into a time-invariant system. This simplifies the problem if
the prediction is an integer multiple than the period. We
cannot use this approach in the proposed work since we
assume the prediction horizon to be much smaller than the
period.

ar
X

iv
:1

91
1.

07
53

5v
4 

 [
ee

ss
.S

Y
] 

 1
7 

A
pr

 2
02

0



II. PROBLEM DEFINITION

Consider the time-varying periodic system

xt+1 = ft(xt, ut) = ft+P (xt, ut),∀t ≥ 0 (1)

where P is the period of the system1, the state xt ∈ Rn
and input ut ∈ Rd. Furthermore, the system is subject to
the following P -periodic state and input convex time-varying
constraints,

xt ∈ Xt = Xt+P and ut ∈ Ut = Ut+P ,∀t ≥ 0. (2)

Finally, we define the jth cycle as the time interval [jP, (j+
1)P ), with j ≥ 0. At any time t, the current cycle is given
by M = floor(t/P ) and the time from the beginning of the
cycle τ = t mod P is the intracycle time.

The goal of the control problem is to find a P -periodic
trajectory which solves the following average cost optimal
control problem (see, e.g., [15])

min
u0,u1...

lim
T→∞

1

T

T−1∑
k=0

hk(xk, uk)

s.t. xt+1 = ft(xt, ut), ∀t ≥ 0

xt ∈ Xt, ut ∈ Ut, ∀t ≥ 0

xt = xt+P , ∀t ≥ 0.

(3)

where ht(·, ·) is a convex function of the state and input, and
it is time-varying with period P .

Assumption 1: The constraints Xt and Ut are convex and
P -periodic, i.e., Xt = Xt+P and Ut = Ut+P , and the stage
cost h(·, ·) is jointly convex in its arguments and also P -
periodic ht(·, ·) = ht+P (·, ·) ∀t ≥ 0.

The control problem (3) aims to find a periodic trajectory
which minimizes an average cost. Note that this is in fact an
infinite horizon control problem, but given the periodicity in
the solution it is equivalent to minimizing the average cost
over a single period [13].

III. CONTROLLER DESIGN

In this section we first show how to construct a terminal
set and terminal cost function exploiting historical data. At
time t, this data consists of the stored closed-loop trajectories
and input sequence,

ut = [u0, . . . , ut−1] and xt = [x0, . . . , xt]. (4)

Afterwards, we use the terminal constraint set and cost
function in the LMPC design.

A. Safe Set

We show that the closed-loop data can be used to construct
a time-varying terminal constraint set that allows us to
guarantee recursive constraint satisfaction for the proposed
strategy. At each time t we define the sampled safe set as

SSt =

{
M⋃
j=1

xt−jP

}
,

1We assume the period P to be an integer multiple of the sampling time.

where P is the period of system (1). The above set contains
all the states of the realized trajectory with the same intracy-
cle time τ (defined in Section II). The rationale behind this
choice is that the optimal problem (3) is invariant for time
shifts of any integer multiple of P .

We can now define the time-varying convex safe set CSt
as the convex hull of SSt, i.e.,

CSt = Conv
(
SSt

)
=

{
x ∈ Rn : ∃λj ≥ 0,

M∑
i=1

λj = 1, x =

M∑
i=1

λixt−jP

}
.

(5)
Figure 1 shows an example trajectory with n = 2 in phase

space. The associated safe sets are highlighted as light grey
polygons. The period is P = 6 which means there are a total
of 6 convex safe sets at any given time, one for every time
within a cycle.

Fig. 1. A visual representation of the convex safe sets for a period P = 6.

The convex safe set will be used as a terminal constraint
for the LMPC scheme. Throughout the paper we make the
following assumption, which guarantees that the safe set is
non-empty.

Assumption 2: We are given a periodic trajectory and
associated input sequence [x0, . . . , xP ] and [u0, . . . , uP−1]
such that state and input constraint are satisfied xt ∈ Xt,
ut ∈ Ut ∀k ∈ {0, . . . , P} and xP = x0.

Remark 1: The above assumption is not restrictive in
most practical applications. Indeed, a periodic suboptimal
trajectory can be computed using any other controller or it
can simply be a known feasible trajectory. For example, any
steady-state solution to the dynamics can be used as long as
it satisfies the constraints.

B. Q-function

In LMPC for iterative tasks for each stored state we com-
pute a cost-to-go, which is defined as the cost to complete the
control task [17]. However, our system operates continuously
and our goal is achieved when the system reaches an optimal



Fig. 2. A visual representation of how a safe set is constructed. In the example the period is P = 6 and the prediction is N = 3. Yellow points show the
historical data. Among them, some are selected (shown in blue) as part of the safe set SS3P+4, which is used to construct the terminal set of the MPC.

periodic trajectory, which means that the cost-to-go is not
well defined. For this reason, in place of the cost-to-go, we
associate to every state a return-cost, which is defined as the
cost to return to the current state xt. This return-cost is then
used to define a Q-function which will be employed in the
controller design.

We start by associating a return-cost to each state in the
safe set xi ∈ SSt, where i denotes the time when this state
was realized in the trajectory. At time t, the return-cost is
defined as the cost to reach the current state xt starting from
xi and following the realized trajectory, i.e.,

Jt(xi) =

t−1∑
k=i

hk(xk, uk). (6)

It is easy to verify that the following property holds

Jt(xi)− hi(xi, ui) + ht(xt, ut) = Jt+1(xi+1), (7)

which gives the return-cost of the states in the safe set
SSt+1.

Remark 2: The return-cost is time-varying and therefore
has to be computed at each time t. However, the property (7)
allows for efficiently computing Jt(·) by updating Jt−1(·).

The Q-function is defined for every state x ∈ CSk as

Qk→t (x) = min
λj≥0

M∑
j=1

λjJt (xk−jP )

s.t.
M∑
j=1

λjxk−jP = x,

M∑
j=1

λj = 1.

(8)

For an intuitive interpretation, consider that by construction
every state x ∈ CSt can be written as a convex combination
of states xj ∈ SSt. We define Qt(x) as the same convex
combination of the return-cost of the states in SSt.

C. LMPC Formulation

In this section we describe the proposed LMPC strategy
for periodic repetitive tasks. The core idea is to use the con-
vex safe set CSt and the Q-function as a terminal constraint
and cost for the MPC scheme. The difference between the
proposed LMPC and the original scheme [17] is that: (i) the
convex safe set is defined based on the periodicity of the
control problem, (ii) the Q-function is defined as the cost

to return to the current state, (iii) dynamics, constraints and
stage cost are allowed to be periodically time-varying.

A step of the LMPC algorithm goes as follows: at a generic
time t we compute the solution to the following finite time
optimal control problem with horizon N ,

JLMPC
t→t+N (xt) =

min
ut|t,...
ut+N−1|t

t+N−1∑
k=t

hk(xk|t, uk|t) +Qt+N→t(xt+N |t)

s.t. x(k + 1|t) = f(xk|t, uk|t) ∀k ∈ [0, N − 1]

xt|t = xt

xt+N |t ∈ CSt+N
xk|t ∈ Xk, uk|t ∈ Uk ∀k ∈ [0, N − 1].

(9)

The solution to the above finite time optimal control prob-
lems steers the system from the current measured state xt to
the convex safe set CSt+N , while satisfying state and input
constraint.

Let

u∗t:t+N = [u∗t|t, . . . , u
∗
t+N−1|t]

x∗t:t+N = [x∗t|t, . . . , x
∗
t+N |t]

be the optimal solution to (9), then we apply to the system (1)
the first element of the optimizer vector

ut = u∗t|t. (10)

The process is repeated at time t + 1 starting from xt+1,
which is the standard MPC procedure.

Figure 2 shows, for a given realized trajectory, how the
safe set is constructed. In the example the state dimension
is n = 1, the period is P = 6 and the prediction horizon
is N = 3. The current time is t = 3P + 1, so the safe set
SS3P+4 = {x1+N , xP+1+N , x2P+1+N}.

Figure 3 gives another visual representation of a generic
step of the algorithm. The parameters are the same except
for the state dimension n = 2, and the trajectory is shown in
phase space. The realized trajectory starts at x0 and roughly
delineates a spiral shape. As in the previous example, the
current time is t = 3P + 1 and we select the same states for
the safe set. Here the convex safe set CS3P+4 is also shown
as a grey polygon with blue vertices.



Fig. 3. A visual representation of a step of the MPC algorithm. The grey
regions show convex safe sets. The safe set currently used to construct the
terminal constraint is marked by blue vertices.

It is important to underline that only the terminal state is
required to be in the convex safe set, not the entire prediction,
as it can be observed by the fact that the green states are
outside of any of the safe sets. Therefore, the states added
each time to the realized trajectory do not always lie in the
existing safe set, but rather enlarge the safe set at the next
cycle. This is a crucial point because it is what drives the
learning process.

IV. PROPERTIES

In this section, we exploit the properties of the convex
safe set and Q-function from Section III to show that the
proposed control strategy guarantees recursive constraint
satisfaction and non-increasing open-loop cost. For linear
systems, these results are direct consequences of the return-
cost property (7). In order to extend these results to a class
of nonlinear systems, we adopt two additional assumptions:

Assumption 3: Consider a set of state-input pairs (xj , uj)

{(xj , uj) j = 0, . . . , L}
xj ∈ Xt, uj ∈ Ut ∀j = 0, . . . , L

such that ft(xj , uj) ∈ Xt+1 ∀j = 0, . . . , L. We assume that
for any set of multipliers λj ≥ 0 such that

∑
j λj = 1, there

exists a set of multipliers γj > 0 such that
∑
j γj = 1 and

ft

 L∑
j=0

λjxj ,

L∑
j=0

γjuj

 =

L∑
j=0

λjf(xj , uj), ∀t ≥ 0.

Note that this assumption is verified for linear systems using
γj = λj .

Assumption 4: If the system dynamics (1) is nonlinear,
the stage cost does not depend on the input.

A. Recursive feasibility

Theorem 1 (Recursive Feasibility): Consider system (1)
in closed-loop with the LMPC (9) and (10), where the
convex safe set and Q-function are defined in (5) and (8),
respectively. Let Assumptions 1-3 hold. Then at all time t ≥
P , Problem (9) is feasible, i.e., the closed-loop system (1)
and (10) satisfies input and state constraint (2).

Proof: By Assumption 2, a feasible trajectory for t ∈
{0, . . . , P} is given, thus the system is in closed-loop with
LMPC starting from time t = P . First we notice that at time
t = P , the following state and input sequence

[x0, . . . , xP ] and [u0, . . . , uP−1]

from Assumption (2) is feasible for Problem (9), as this
trajectory is periodic. Therefore, at time t = P the LMPC is
feasible.

We will now prove that if LMPC is feasible at time t, it
is also feasible at time t+ 1, for any t. Consider the optimal
predicted trajectory at time t, where the terminal point is in
CSt+N , x∗t|t, . . . , x∗t+N |t =

M∑
j=1

λ∗jxt+N−jP

 .
Assumption 3 guarantees that there exists an input∑M
j=1 γjuj such that

ft

 M∑
j=1

λ∗jxt+N−jP ,

M∑
j=1

γjut+N−jP

 =

M∑
j=1

λ∗jft(xt+N−jP , ut+N−jP ) =

M∑
j=1

λ∗jxt+1+N−jP .

This is a feasible input because
∑M
j=1 γjut+N−jP ∈ Ut+N

and the new state is a feasible terminal state at time t +
1 as

∑M
j=1 λ

∗
jxt+1+N−jP ∈ CSt+1. This implies that the

followingx∗t+1|t, . . . , x
∗
t+N |t,

M∑
j=1

λjxt+1+N−jP

 (11)

is a feasible trajectory for LMPC at time t+ 1.
We have shown the the LMPC is feasible at time t = P .

Furthermore, we have that if the LMPC is feasible at time
t, then the LMPC is feasible at time t + 1. Therefore, we
conclude by induction that the LMPC (9) and (10) is feasible
for all t ≥ P and that the closed-loop system (1) and (10)
satisfies input and state constraint (2).

B. Non-increasing cost

The following theorem proves non-increasing cost of
LMPC for linear system. The extension to the nonlinear case
is given in a subsequent corollary.

Theorem 2 (Non-increasing cost, LTV systems):
Consider system (1) in closed-loop with the LMPC (9)
and (10), where the convex safe set and Q-function are
defined in (5) and (8), respectively. Let system (1) be linear



time-varying and Assumptions 1-3 hold. Then for all time
t ≥ P , we have that

JLMPC
t→t+N (xt) ≥ JLMPC

t+1→t+1+N (xt+1).

Proof: We will now prove that the cost of LMPC is non-
increasing at each time instant. To do this we will employ
property (7) of the return-cost. Consider the cost of LMPC
at time t

JLMPC
t→t+N (xt) =

t+N−1∑
k=t

hk(x∗k|t, u
∗
k|t) +Qt+N→t(x

∗
t+N |t)

=

t+N−1∑
k=t

hk(x∗k|t, u
∗
k|t) +

M∑
j=1

λ∗jJt(xt+N−jP )

=

t+N−1∑
k=t

hk(x∗k|t, u
∗
k|t) +

M∑
j=1

λ∗jJt+1(xt+1+N−jP )

+

M∑
j=1

λ∗jht+N−jP (xt+N−jP , ut+N−jP )−
M∑
j=1

λ∗jht(xt, ut)

where we used the property of the return-cost (7). In the
above equation, the stage costs ht+N−jP (·, ·) have the same
intracycle time, thus from Assumption 1 they can be replaced
with ht+N (·, ·). Furthermore, we can isolate the initial term
in the first sum

JLMPC
t→t+N (xt) =

ht(xt, ut) +

t+N−1∑
k=t+1

hk(x∗k|t, u
∗
k|t) +

M∑
j=1

λ∗jJt+1(xt+N−jP+1)

+

M∑
j=1

λ∗jht+N (xt+N−jP , ut+N−jP )−
M∑
j=1

λ∗jht(xt, ut).

Since the multipliers λj add up to 1, the last term in the
above equation is −ht(xt, ut) and cancels the first term

JLMPC
t→t+N (xt) =
t+N−1∑
k=t+1

hk(x∗k|t, u
∗
k|t) +

M∑
j=1

λ∗jht+N (xt+N−jP , ut+N−jP )

+

M∑
j=1

λ∗jJt+1(xt+N−jP+1).

By recalling that the stage cost is convex we have

JLMPC
t→t+N (xt) ≥

t+N−1∑
k=t+1

hk(x∗k|t, u
∗
k|t)

+ ht+N

 M∑
j=1

λ∗jxt+N−jP ,

M∑
j=1

λ∗jut+N−jP


+

M∑
j=1

λ∗jJt+1(xt+N−jP+1).

Notice from (8) that the last sum in the above inequality is
an upper bound of the Q-function at t + 1 for the terminal

point of trajectory (11), therefore

JLMPC
t→t+N (xt) ≥

t+N−1∑
k=t+1

hk(x∗k|t, u
∗
k|t)

+ ht+N

 M∑
j=1

λ∗jxt+N−jP ,

M∑
j=1

λ∗jut+N−jP


+Qt+1→t+1+N

 M∑
j=1

λ∗jxt+N−jP+1

 .

(12)

By assumption the system is linear, thus the right-hand side
of this inequality is the cost of the feasible trajectory (11)
(recall that for a linear system (11) is verified with γj = λj).
This implies

JLMPC
t→t+N (xt) ≥ JLMPC

t+1→t+N+1(xt+1)

which proves that the cost is non-increasing.

Corollary 1 (Non-increasing cost, nonlinear systems):
Consider the nonlinear system (1) in closed-loop with
the LMPC (9) and (10), where the convex safe set and
Q-function are defined in (5) and (8), respectively. Let
Assumptions 1-4 hold. Then for all time t ≥ P , we have
that

JLMPC
t→t+N (xt) ≥ JLMPC

t+1→t+1+N (xt+1).

Proof: All steps in the proof of Theorem 3 are still valid
except for the conclusion that (12) is the cost of a feasible
trajectory (because γj 6= λj in (11)). However recall that by
Assumption 4 we have that the stage cost does not depend
on the input. Thus (12) becomes

JLMPC
t→t+N (xt) ≥

t+N−1∑
k=t+1

hk(x∗k|t, u
∗
k|t)+ht+N

 M∑
j=1

λ∗jxt+N−jP


+Qt+1→t+1+N

 M∑
j=1

λ∗jxt+N−jP+1


(13)

where the right-hand side is the cost of the feasible
trajectory (11). This implies that

JLMPC
t→t+N (xt) ≥ JLMPC

t+1→t+N+1(xt+1)

which proves that the cost is non-increasing.
Theorem 3 (Performance improvement, LTV systems):

Consider system (1) in closed-loop with the LMPC (9) and
(10), where the convex safe set and Q-function are defined
in (5) and (8), respectively. Let system (1) be LTV and
Assumptions 1-3 hold. Furthermore, assume that for t > c
the closed loop system converges to a P -periodic trajectory

x∗c = [x∗c , x
∗
c+1, . . . , x

∗
c+P−1],

and that the stage cost h(·, ·) is strictly convex. Then the
following closed-loop cost over a period Jt→t+P (xt) is equal



to the open-loop LMPC cost, i.e.,

Jt→t+P (xt) =

t+P−1∑
k=t

hk(x∗k, u
∗
k) = JLMPC

t→t+N (xt) ∀t > c.

Proof: The proof will consist of two parts. The first will
prove that, if the trajectory is periodic, the LMPC terminal
point is on the closed-loop trajectory. The second part will
show that, assuming strictly convex stage cost, the open-loop
and closed-loop trajectories are identical.

Assume in the following t ≥ c. Since the trajectory is
P -periodic we have that the closed-loop cost over a period
is constant, i.e.,

J∗c =

t+P−1∑
k=t

hk(x∗k, u
∗
k).

From the definition of the return-cost (6) we have

Jt+P (xc) = Jt(xc) + J∗c . (14)

It is easy to see from (6) that the return-cost of every state in
the safe set increases by J∗c after one period. Furthermore,
the state xc+N is re-added to the safe set at each cycle, so its
cost stays constant. Thus we can characterize the variation
of the Q-function between two consecutive cycles as

Qk+P→t(x) = Qk→t(x) + Λ(x) ∀k, t ≥ c

with 0 ≥ Λ(x) ≥ J∗c . Also note that Λ(x) = 0 if and only
if x = x∗c , i.e., the terminal state is on the trajectory x∗c .
Consider the cost of LMPC at time t+ P

JLMPC
t+P→t+P+N (xc) =
t+P+N−1∑
k=t+P

hk(x∗k|t+P , u
∗
k|t+P ) +Qt+P+N→t(x

∗
t+P+N |t)

=

t+P+N−1∑
k=t+P

hk(x∗k|t+P , u
∗
k|t+P ) +Qt+N→t(x

∗
t+P+N |t)

+ Λ(x∗t+N |t)

x∗t+P+N |t is not necessarily the optimal terminal state for
LMPC at time t, but it is feasible because the convex safe
set does not change after convergence. Thus we can lower
bound the above expression with JLMPC

t→t+P (xc) + Λ(x) and
upper bound it using Theorem 3

JLMPC
t→t+N (x∗t+N |t) ≥ J

LMPC
t+P→t+P+N (x∗t+P+N |t) ≥

JLMPC
t→t+N (x∗t+N |t) + Λ(x∗t+N |t)

which implies Λ(x∗t+N |t) = 0 and thus x∗t+N |t = xc+N . This
completes the first part of the proof.

In the second part we will prove that the open-loop
trajectory is the same as the closed loop trajectory ∀t ≥ c.
We proceed by contradiction by assuming that the open-loop
trajectory is not the same as the closed-loop. Therefore, for
some t, the predicted trajectory does not overlap with the
predicted trajectory at time t+ 1. With no loss of generality
we will assume this happens at time c.

From convergence it follows that the first two elements
in the open-loop trajectory are on the closed-loop trajectory

(one is the current state, the other is the realized state).
We also proved that the terminal state is on the closed-loop
trajectory

x∗c|c = [x∗c|c, x
∗
c+1|c, . . . , x

∗
c+N |c],

in which x∗c|c = xc, x∗c+1|c = xc+1 and x∗c+N |t = xc+N , and
the predicted trajectory at time c+ 1

x∗c+1|c+1 = [x∗c+1|c+1, x
∗
c+2|c+1, . . . , x

∗
c+N+1|c+1], (15)

in which x∗c+1|c+1 = xc+1, x∗c+2|c+1 = xc+2, and
x∗c+N+1|c+1 = xc+N+1.

Construct a new candidate trajectory by appending
xc+N+1 at the end of x∗c|c and removing its first term,

x̄c+1 = [x∗c+1|c, . . . , x
∗
c+N |c, x

∗
c+N+1]. (16)

By the same argument used in the proof for Theorem 3,
the cost of trajectory (15) is greater or equal of the cost
of trajectory (16), but since we have reached convergence
the cost is in fact equal. Furthermore, these two trajectory
also have the same initial and terminal states. Problem (9)
is strictly convex because, by assumption, h(·, ·) is strictly
convex, the dynamics is LTV and the constraint set is
convex. It follows then that the trajectory (16) equals the
trajectory (15). Therefore we have that

xc+2 = x∗c+2|c+1 = x∗c+2|c.

By iterating the above procedure we have that

xc′+k = x∗c′+k|c′+1 = x∗c′+k|c′ ,∀k ∈ {0, . . . , N},∀c
′ ≥ c.

Thus the closed-loop trajectory and the open-loop trajectory
are the same.

V. SIMULATIONS

We test the proposed LMPC on 4 systems. In each simula-
tion the period is P = 100. The first three are performed on
linear systems and each one focuses on a different element of
the control problem enforcing the periodic behavior. In par-
ticular, we test the controller on examples with time-varying
dynamics, time-varying constraints and time-varying stage
cost. We consider them separately for illustrative purposes,
but this is not required. Finally, we test the proposed strategy
on a time-varying nonlinear system.

For each simulation, we show the state and input time evo-
lution for ten periods. Furthermore, we report the LMPC cost
which is decreasing until the closed-loop system converges
to a periodic trajectory. Note that the first cycle shown in
each figure is the initial known trajectory.

A. Linear system with time-varying dynamics

The first simulation is performed on the following linear
time-varying system xt+1 = Atxt + But where state x =
(p, q)T ,

At =

(
1 0.1

0.1(1− sin(2πt/P )) 1

)
and B =

(
0

0.1

)
.



The control objective is to reach a set-point on the first
component of the state −0.2, while minimizing the input,
i.e. h(xt, ut) = (pt − 0.2)2 + u2t ∀t ≥ 0. Furthermore, the
state constraint is |pt| ≤ 0.3 ∀t ≥ 0. The initial feasible
trajectory is a zero input steady-state at the origin and the
prediction horizon is N = 25.
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Fig. 4. Linear time-varying system controlled with LMPC.

The dynamics can be interpreted as a spring-mass system,
where the spring stiffness is varying periodically. As such, we
expect the first component of the state to settle somewhere
in between the origin and the set-point, with the exact
position depending on the value of the variable stiffness at
that particular time. Figure 4 shows the trajectory over a
time frame of ten cycles, and we confirm that the controller
recursively satisfies the state constraints. Furthermore, we
notice that the cost of LMPC is decreasing and after 3-4
cycles the system reaches a periodic trajectory which behaves
as expected.

B. Linear system with time-varying constraints

The second simulation is performed on a double integrator
subject to time-varying constraints. The state is x = (p, q)T

and the dynamics are xt+1 = Axt +But with

A =

(
1 0.1
0 1

)
B =

(
0

0.1

)
. (17)

The prediction horizon is N = 30 and the and the objective
is the minimization of the input, i.e. ht(xt, ut) = u2t ∀t.
The time-varying constraints follow a cyclical a pattern that
repeats every P .

−0.4 ≤ p ≤ 0.1 if t mod P < P/6

−0.4 ≤ p ≤ −0.2 if P/6 ≥ t mod P < 2P/6

−0.4 ≤ p ≤ 0.1 if 2P/6 ≥ t mod P < 3P/6

−0.1 ≤ p ≤ 0.4 if 3P/6 ≥ t mod P < 4P/6

0.2 ≤ p ≤ 0.4 if 4P/6 ≥ t mod P < 5P/6

−0.1 ≤ p ≤ 0.4 if t mod P ≥ 5P/6

There is no steady-state solution which satisfies the con-
straints in this example. The initial trajectory was computed
using an MPC which minimizes the input over the prediction
horizon but has no terminal constraint or terminal cost.
After a few iteration it converges to a periodic suboptimal
trajectory which is then used to initialize LMPC.
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Fig. 5. Double integrator with time-varying constraints controlled with
LMPC.

The closed-loop trajectory is shown in Figure 5, where
we reported also the time-varying state constraints. Also in
this example the state constraint are recursively satisfied. We
notice that the controller is initially following the provided
trajectory, and over time attempts to restrict the amplitude
of the oscillation. If allowed by the constraints it would
regulate the state to the origin, but since this is not possible,
it settles on a smooth periodic trajectory touching the inner
constraints.

C. Linear system with time-varying stage cost

In this simulation we use the same double integrator (17),
with a velocity constraint |q| ≤ 0.1, and prediction horizon
N = 15. This time we have a time-varying stage cost, which
consists of a set-point on the first component of the state and
input minimization. The set-point is switching between ±0.2
every half period.

ht(xt, ut) =

{
(pt + 0.2)2 + u2t if t mod P < P/2

(pt − 0.2)2 + u2t if t mod P ≥ P/2
.

(18)
The initial trajectory is a zero input steady-state at the origin.
Figure 6 shows the resulting behavior. The initial cycles
attempt to get closer to the set-point but the oscillation is
limited by the necessity to satisfy the terminal constraint. As
more points are added to the safe set, the system is able to
oscillate until reaching the set point. The velocity constraints
limit how fast the set point can be reached and the system
settles on a periodic trajectory within 4-5 cycles.
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Fig. 6. Double integrator with time-varying stage cost controlled with
LMPC.

D. Non-linear time-varying system

The last simulation is performed on a non-linear system
with a time-varying component. The state is x = (p, q)T and
the dynamics are(

pt+1

qt+1

)
=

(
pt
qt

)
+ 0.1

(
qt

pt(5 sin(2πt/P ) + ut)

)
,

(19)

with P = 100, and the control objective is to minimize the
following cost ht(xt, ut) = (pt − 2)2 ∀t ≥ 0 subject to
constraints pt ≥ 0.5 |ut| ≤ 5 ∀t ≥ 0.

This system satisfies Assumption 3. To verify this consider
a collection of states {xj = (pj , qj)

T } for j = 0, . . . , L. The
set of multipliers {γj} that verifies the assumption is

γj =
λjpj∑L
i=0 λipi

,

which if pj > 0 gives 0 ≥ γj ≥ 1 and
∑
j γj = 1. Also

notice that since the stage cost is not a function of the input,
this satisfies Assumption 4.

The initial trajectory is simply computed by setting xt =
xt+1 in (19), which gives ut = −5 sin(2πt/P ). It is easy
to verify that by picking x0 = (1, 0)T and iterating the
dynamics for 0 ≤ t ≤ P −1, the constraints remain verified,
so the trajectory is feasible.

Figure 7 shows a simulation with N = 8, performed in
MATLAB using IPOPT. As for the other simulations, the
first 100 samples show the initial feasible trajectory, which
is why they have no associated LMPC cost. From t = P on,
the cost is always decreasing, and the system converges to
an optimal trajectory. The trajectory actually reaches the set-
point p = 2 because this is the only control objective, but it
is unable to stay there when the time-varying term becomes
predominant, and thus settles on a periodic trajectory.

VI. CONCLUSIONS

We presented an LMPC for periodic repetitive tasks,
considering a wide range of systems defined by dynam-
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Fig. 7. Nonlinear time-varying system controlled with LMPC.

ics, constraints and stage cost which are periodically time-
varying. The controller is aimed at continuous operation and
uses historical data to construct a time-varying terminal set
and associate to each state a terminal cost. We proved the
proposed strategy guarantee recursive constraint satisfaction,
and non-increasing MPC cost. Simulations on linear and
nonlinear systems prove the effectiveness of the technique.
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[16] M. Zanon, L. Grüne, and M. Diehl, “Periodic optimal control, dissi-
pativity and mpc,” IEEE Transactions on Automatic Control, vol. 62,
no. 6, pp. 2943–2949, 2016.

[17] U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks. a data-driven control framework,” IEEE Transactions
on Automatic Control, vol. 63, no. 7, pp. 1883–1896, 2017.

[18] ——, “Learning model predictive control for iterative tasks: A compu-
tationally efficient approach for linear system,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3142–3147, 2017.


	I Introduction
	II Problem definition
	III Controller Design
	III-A Safe Set
	III-B Q-function
	III-C LMPC Formulation

	IV Properties
	IV-A Recursive feasibility
	IV-B Non-increasing cost

	V Simulations
	V-A Linear system with time-varying dynamics
	V-B Linear system with time-varying constraints
	V-C Linear system with time-varying stage cost
	V-D Non-linear time-varying system

	VI Conclusions
	References

