
Weakly nonlocal Poisson brackets:
tools, examples, computations

M. Casati

School of Mathematics and Statistics

Ningbo University, Ningbo, China

P. Lorenzoni

Dipartimento di Matematica e Applicazioni,
Università di Milano-Bicocca, Milano, Italy

and Sezione INFN, Milano-Bicocca

D. Valeri

Dept. of Mathematics “G. Castelnuovo”

Sapienza Università di Roma, Rome, Italy

R. Vitolo

Dept. of Mathematics and Physics “E. De Giorgi”
Università del Salento, Lecce, Italy

and Sezione INFN, Lecce

Abstract

We implement an algorithm for the computation of Schouten bracket of weakly nonlocal Hamil-
tonian operators in three different computer algebra systems: Maple, Reduce and Mathematica.
This class of Hamiltonian operators encompass almost all the examples coming from the theory
of (1+1)-integrable evolutionary PDEs.

Keywords: Poisson bracket, Hamiltonian operator, Schouten bracket, partial differential
equations, integrable systems.

1. Introduction

Poisson brackets are ubiquitous in Mathematical and Theoretical Physics. Besides their tra-
ditional role in Mechanics, they play an important role in the study of integrable evolutionary
systems of partial differential equations (PDEs) in two independent variables t, x and n depen-
dent variables u = (u1, ..., un)

ui
t = f i(u,ux,uxx,), i = 1, ..., n, (1)

Email addresses: matteo@nbu.edu.cn (M. Casati), paolo.lorenzoni@unimib.it (P. Lorenzoni),
daniele.valeri@glasgow.ac.uk (D. Valeri), raffaele.vitolo@unisalento.it (R. Vitolo)

URL: http://poincare.unisalento.it/vitolo (R. Vitolo)

where f i are differential polynomials. We refer to the books [1, 9, 11, 26, 30] for an ac-
count of this theory. In this context a local Poisson bracket of two local functionals F =∫

f (u,ux,uxx,)dx and G =
∫

g(u,ux,uxx,) dx is a local functional of the form

{F,G}P =

∫
δF
δui Pi j δG

δu j dx. (2)

where
Pi j =

∑
σ

Pi j
σ(u,ux,uxx,)∂σx

is a suitable (matrix) differential operator and δF/δui and δG/δui are the variational derivatives
of the functionals F and G respectively. The differential polynomials f and g are called the
densities (of the functionals F and G).

The operator P cannot be arbitrarily chosen. The fulfillment of skew-symmetry and the
Jacobi identity for the Poisson bracket imposes strict constraints on P: it must be formally skew-
adjoint and the Schouten bracket [P, P] must be identically zero (see e.g. [7]).1

A system of evolutionary PDEs of the form (1) is said to be Hamiltonian w.r.t. the Hamilto-
nian operator P if there exists a local functional H =

∫
h dx, called the Hamiltonian functional

such that
f i(u,ux,uxx,) = Pi j δH

δu j (3)

The integrability of the system (3) is revealed in the existence of infinitely many local func-
tionals (including H) in involution with respect to the Poisson bracket defined by P. A universal
procedure to construct a sequence H0 = H,H1,H2, ... of Hamiltonian functionals in involution is
Magri’s bi-Hamiltonian recursion [21]:

Pi j
1
δHk+1

δu j = Pi j
2
δHk

δu j . (4)

It relies on the existence of a pair of Hamiltonian operators (P1, P2) satisfying the compatibility
condition

[P1, P2] = 0,

where the square bracket denotes (as above) the Schouten bracket.
In general computation of the Schouten bracket is a highly nontrivial computational task and

most of the examples can be handled only with the help of computer algebra systems. Recently in
[5, 28] two computer algebra packages for calculations of Schouten bracket for local differential
operators have been introduced and described. The packages have been developed following
two different mathematical approaches to differential operators: the algebraic approach through
Poisson Vertex Algebras [5] and the supermanifold approach [28]. A fairly complete list of
packages for local operators can be found in [28].

Since the beginning of research on integrable systems, it was clear that Poisson brackets
defined by local differential operators did not cover all interesting examples. Nonlocal differential
operators (i.e. integro-differential operators) are much more common: they can be found for
the KdV equation, the modified KdV equation, the AKNS equation, the Nonlinear Schrödinger
equation, etc. (see [29]).

1Explicit formulas for Schouten bracket will be given later.
2

A systematic research on nonlocal operators was started by Ferapontov and Mokhov [13],
then widely generalized by Ferapontov in subsequent works [12]. A further generalization was
proposed by Maltsev and Novikov that introduced the general class of weakly nonlocal operators
[22]:

Pi j =
∑
σ

Pi j
σ(u,ux,uxx,)∂σx +

N∑
α,β=1

eαβwi
α(u,ux,uxx,)∂−1

x w j
β(u,ux,uxx,), (5)

where the coefficients Pi j
σ, wi

α, w j
β are differential polynomials, eαβ is a symmetric constant matrix

and the operator ∂−1
x is defined to be

∂−1
x =

1
2

∫ x

−∞

dy −
1
2

∫ +∞

x
dy. (6)

All the above mentioned examples of nonlocal operators have this form, thus certifying the im-
portance and generality of that class.

The computation of Schouten bracket for nonlocal operators is a more difficult task with
respect to the local case. Indeed, until recently it was not even clear how to reach a divergence-
free canonical form of the Schouten bracket in the presence of nonlocal terms. Such canonical
(or normal) form is crucial in order to get a set of necessary and sufficient conditions for the
vanishing of the Schouten bracket. It is worth to emphasize that the only publicly available
computer algebra package for nonlocal operators is the Maple package JET [23]. Its strongest
limit is that it is not always able to simplify the nonlocal terms because it lacks for an algorithm
to that purpose.

Recently, a canonical form of the Schouten bracket for weakly nonlocal operators has been
achieved in three different formalisms (distributions, differential operators and Poisson Ver-
tex Algebras) leading to three different (but equivalent) algorithms for the computation of the
Schouten bracket [4] (see [20] for the supermanifold approach).

The aim of this paper is to implement the algorithms of [4] in three different computer algebra
systems, respectively, Maple, Reduce and Mathematica. Let us describe more in detail such
implementations.

• Maple implementation. The package for Maple (called Jacobi) is the straightforward
implementation of the algorithm introduced in [4] for the computation of Schouten bracket
using the language of distributions. The package provides the syntax and the command for
computing the formula for the Schouten bracket given in [10] and reducing it to the normal
form described in [19, 4]. We provide both a classical and a parallel implementation of the
algorithm. We used Maple’s Grid package and we split the computation in few parallel
independent branches when possible. We found that strategy to be optimal as there is
an overhead related with the initialization of the independent processes. While parallel
computing has no effect on relatively simple computations (or makes things even worse),
it reduces the timing to half when the calculation is more complex.

• Reduce implementation. This implementation is within the software package CDE2, an
official Reduce package [16] devoted to calculations in the geometry of differential equa-
tions and integrable systems [18]. Since version 2.0 (2015), CDE can quite easily compute

2This is an acronym standing for Calculus on Differential Equations
3

the conditions for a nonlocal operator to be Hamiltonian for a given partial differential
equation (in the sense of mapping conserved quantities into symmetries), see [18] for ex-
amples. It can also compute the Jacobi property for local operators [28]. The newly
added library cde_weaklynl.red provides the syntax and the command for computing
Schouten brackets of weakly nonlocal operators. Here, the command uses the CDE data
structure for differential operators and CDE treatment of nonlocal variables in order to
introduce the data and carry out the algorithm.

At the moment, Reduce can be installed by means of a binary snapshot of the official
distribution. Such snapshots can be found from the official website. The latest snap-
shot at the time of writing can be found at the following link: https://sourceforge.
net/projects/reduce-algebra/files/snapshot_2021-07-16/ and it contains all
examples that are discussed in our paper. The main reason for using Reduce were the
fact that it is free software, so that we have been able to learn how to code in an efficient
way, and the fact that it has an extremely fast computer algebra engine, which is compet-
itive with commercial software. The real drawbacks of Reduce at the moment are that it
has no satisfactory Graphical User Interface and it has no parallel computing capabilities.
However, a web player is currently being implemented at the official website.

• Mathematica implementation. This implementation extends the package MasterPVA.m3

[5], devoted to the computation of λ-brackets in local PVAs, to the case of weakly non-
local PVAs. The new added package nlPVA.wl (developed for Mathematica 11) provides
the syntax and the command for computing the three terms appearing in the Jacobi identity
(40) for weakly non-local λ-brackets. The computation is done using the Master Formula
for PVAs as in [4], for the local part of the λ-bracket, and the algorithm in [5] for the
non-local part. In particular, the package can be used to compute (40) for the local case as
well. We provide both a classical and a parallel implementation of the algorithm; the latter
is available in the package nlPVA-par.wl

The three implementations are different in that the mathematical formalism on which each of
them is based is different and the computer algebra system on which each of them is based
is different. Despite such differences, the canonical divergence-free form of the results can be
translated from one formalism to another, see [4]. However, the three implementations follow
different paths in order to achieve corresponding results. That is due to the different data structure
that they have to handle (distributions, differential operators, Poisson Vertex Algebras).

The software packages and examples are released under the terms of the FreeBSD license.
They can be downloaded at the webpage of this paper in the Geometry of Differential EQuations
website, the URL is in [15].

Structure of the paper. For each implementation we will shortly recall its mathematical proce-
dure. Then, we will discuss the details of the corresponding software package. For each software
package we will present the same three examples of (systems of) partial differential equations
that can be written in Hamiltonian form through a weakly nonlocal operator, and compute the
Schouten bracket of any such operator.

The examples are: the modified KdV equation, the Heisenberg magnet system, for which we
will also compute the compatibility of its weakly nonlocal operator with a second local Hamil-
tonian operator, and one new example of weakly nonlocal operator for a WDVV equation in the

3The acronym is motivated from the fact that the package computes the so-called Master Formula (see [2]) in PVAs
4

https://sourceforge.net/projects/reduce-algebra/files/snapshot_2021-07-16/
https://sourceforge.net/projects/reduce-algebra/files/snapshot_2021-07-16/

form of a quasilinear first-order system of PDEs. Also the examples can be downloaded from the
web page of this paper at [15].

We observe that examples with non-zero output are not available. Indeed, there are no known
examples of an evolutionary PDE in two independent variables which have two Hamiltonian
operators that are not compatible. For some PDEs that depends on the fact that there exists no
non-trivial three-vectors, provided that their linearization fulfills a certain property (see [17]). It
is also easy to check that simple changes in input (e.g. in a sign or in a coefficient) yield non-zero
results, showing the ‘rigidity’ of the results.

2. Maple implementation

In what follows, let us denote the independent variable by x, the dependent variables by (ui),
1 ≤ i ≤ n, and derivatives by ui

σ = ∂σui/∂xσ; note that if σ = 0 then ui
σ = ui. The total derivative

∂x is defined as

∂x =
∂

∂x
+ ui

σ+1
∂

∂ui
σ

, (7)

(the summation convention holds as usual).
The Schouten bracket of weakly nonlocal Poisson bivectors is implemented in the Maple

package Jacobi (filename jacobi.mpl) using the language of distributions (see, e.g. [4, 10]).
Let us briefly describe the mathematical algorithm. We will need three different labels for the
independent variable: x, y, z. The σ-th power of ∂x is denoted by ∂σx , and analogously for other
variables.

A weakly nonlocal Poisson bivector has the form

Pi j
x,y =

∑
k≥0

Bi j
k (uh, uh

σ)δ(k)(x − y) + cαβwi
α(uk, uk

σ)ν(x − y)w j
β(u

k, uk
σ)

where ν(x − y) = 1
2 sgn(x − y). In the above formula it is understood that

Pi j
x,y = −P ji

y,x

This implies cαβ = cβα.
Following [10] the Schouten bracket of two weakly nonlocal Poisson bivectors Pi j

x,y and

Qi j
x,y =

∑
k≥0

Ci j
k (uh, uh

σ)δ(k)(x − y) + dαβzi
α(uk, uk

σ)ν(x − y)z j
β(u

k, uk
σ)

can be defined as

[P,Q]i jk
x,y,z =

∂Pi j
x,y

∂ul
σ(x)

∂σx Qlk
x,z +

∂Pi j
x,y

∂ul
σ(y)

∂σy Qlk
y,z +

∂Pki
z,x

∂ul
σ(z)

∂σz Ql j
z,y+

∂Pki
z,x

∂ul
σ(x)

∂σx Ql j
x,y +

∂P jk
y,z

∂ul
σ(y)

∂σy Qli
y,x +

∂P jk
y,z

∂ul
σ(z)

∂σz Qli
z,x+

∂Qi j
x,y

∂ul
σ(x)

∂σx Plk
x,z +

∂Qi j
x,y

∂ul
σ(y)

∂σy Plk
y,z +

∂Qki
z,x

∂ul
σ(z)

∂σz Pl j
z,y+

∂Qki
z,x

∂ul
σ(x)

∂σx Pl j
x,y +

∂Q jk
y,z

∂ul
σ(y)

∂σy Pli
y,x +

∂Q jk
y,z

∂ul
σ(z)

∂σz Pli
z,x

(8)

5

The vanishing of the Schouten bracket [P,Q]i jk
x,y,z means that for any choice of the test functions

pi(x), q j(y), rk(z) the triple integral∫∫∫
[P,Q]i jk

x,y,z pi(x)q j(y)rk(z) dxdydz (9)

should vanish. Using distributional identities it is possible to reduce the Schouten bracket to a
normal form [4, 19]:

1. Using the identities

ν(z − y)δ(z − x) = ν(x − y)δ(x − z)
ν(y − x)δ(y − z) = ν(z − x)δ(z − y)
ν(x − z)δ(x − y) = ν(y − z)δ(y − x)

(10)

and their differential consequences we can eliminate all terms containing ν(z−y)δ(n)(z− x),
ν(y− x)δ(n)(y− z), ν(x− z)δ(n)(x−y) producing nonlocal terms containing ν(x−y)δ(n)(x− z),
ν(z − x)δ(n)(z − y), ν(y − z)δ(n)(y − x) and additional local terms.

2. Using the identities

f (z)δ(n)(x − z) =

n∑
k=0

(
n
k

)
f (n−k)(x)δ(n−k)(x − z),

f (y)δ(n)(z − y) =

n∑
k=0

(
n
k

)
f (n−k)(z)δ(n−k)(z − y),

f (x)δ(n)(y − x) =

n∑
k=0

(
n
k

)
f (n−k)(y)δ(n−k)(y − x),

(11)

we can eliminate the dependence on z in the coefficients of the terms containing ν(x −
y)δ(n)(x−z), the dependence on y in the coefficients of the terms containing ν(z−x)δ(n)(z−y)
and the dependence on x in the coefficients of the terms containing ν(y− z)δ(n)(y− x). After
the first two steps the Schouten bracket has the form

c1(x, y, z)ν(x − y)ν(x − z) + c2(x, y, z)ν(y − z)ν(y − x)

+ c3(x, y, z)ν(z − x)ν(z − y) +
∑
n≥0

an(x, y)ν(x − y)δ(n)(x − z)

+
∑
n≥0

bn(x, z)ν(z − x)δ(n)(z − y) +
∑
n≥0

cn(y, z)ν(y − z)δ(n)(y − x) + . . . (12)

where . . . are local terms.
3. The remaining local part can be reduced to the form∑

m,n

fmn(x)δ(m)(x − y)δ(n)(x − z) (13)

using the identities (and their differential consequences)

δ(z − x)δ(z − y) = δ(y − x)δ(y − z) = δ(x − y)δ(x − z) (14)

and the identities (11).
6

As proved in [4] no further simplifications are possible and the vanishing of the Schouten bracket
turns out to be equivalent to the vanishing of each coefficient in the reduced form.

We provided two implementations of the above algorithm: a classical, non-parallel imple-
mentation in the library file jacobi.mpl and an implementation that uses Maple parallel pro-
gramming routines in the library file jacobi_p.mpl. The difference in the execution times of
the examples is discussed below, as well as some details of the implementation of the parallel
code. The most important thing to be remembered when using the parallel code is that it requires
4 cores to run correctly. On a modern computer that is not a problem; however, errors could
arise when trying to run the parallel code on an older version of Maple/older computer, or, for
example, when running Maple on a virtual machine.

2.1. The mKdV equation

We consider the mKdV equation ut = u3ux + uxxx and its nonlocal Hamiltonian operator

P = ∂3
x +

2
3

(u2∂x + uux − ux∂
−1
x ux) (15)

(see, e.g., [29]). The Hamiltonian property of P is proved by checking that the Schouten bracket
vanishes, [P, P] = 0.

First of all, we set up the number of components

N:=1:

and the maximal order of derivative coordinate (ux, uxx, . . .) appearing in the coefficients of the
operator P

M1:=1:

and the maximal order of derivative of the δ function appearing in the operator P

D1:=3:

Since the two arguments of the Schouten bracket coincide we define

M2:=M1:D2:=D1:

The field variables ui
σ are introduced as u[i,x,σ] (it is not possible to change the symbols u and

x). We introduce the nonlocal part wi
ju

j
x∂
−1
x wk

huh
x of the operator, wi

j is W[i,j] in the program:

W:=Matrix(N,N):

W[1,1]:=1:

Finally, we input the differential operator as a 3-dimensional array. The last index must be 0 in
input; it will be increased throughout the calculation.

P := Array(1..N,1..N,0..M2);

P[1, 1, 0] := delta[x - y, 3] + 2/3*u[1, x, 0]^2*delta[x - y, 1]

+ 2/3*u[1, x, 0]*u[1, x, 1]*delta[x - y, 0]

- 2/3*W[1, 1]*u[1, x, 1]*delta[x - y, -1]

*subs(x = y, W[1, 1])*u[1, y, 1];

7

Again, the notation delta and the use of the second independent variable y are not modifiable
by the user. Internally, the maximal order of derivative coordinate is set to be equal to

M:=M1+D1+M2+D2;

The main procedure is loaded by

read(`jacobi.mpl`);

where the file jacobi.mpl shall be in the current Maple directory. Alternatively, an implemen-
tation that makes some use of the parallel programming capabilities of Maple can be used by
means of

read(`jacobi_p.mpl`);

The result of the calculation is a 3-vector, and it shall be defined beforehand:

T := Array(1..N,1..N,1..N):

We can now call the main procedure; the output will be stored in T , or T = [P, P]:

Schouten_bracket(P,P,T,N,M1,D1,M2,D2);

The program starts computing, and prints the stages of the procedure as follows. The first mes-
sage

"Step 0: calculating Schouten bracket"

is printed when the program is computing formula (8). The iterated total derivatives of the
components of P are calculated by induction up to the order M−1, then the results are multiplied
by the coefficients of P and summed up and internally stored in a 3-vector T0. In the parallel
version, since the calculation has to be repeated for P and Q (if they are different), two parallel
processes are run through the Grid library. Then

"Step 1 of the algorithm"

is showed when the identities (10) are used in order to reduce the nonlocal part. A short notation
for the product of delta and a step function is used:

delta[z-y,-1,z-x,0]:=delta[x-y,-1]*delta[x-z,0]:

Here the result is stored in the 3-vector T1. The reduction is completed by means of the identities
(11) when the message

"Step 2 of the algorithm"

is issued, defining a new 3-vector T2 and completing the reduction of the nonlocal part to the
canonical form. Since the reduction process can be split into several independent calculations,
Step 2 is also split into 4 parallel calculations in jacobi_p.mpl.

The reduction is completed by means of the identities (14) that act on the local part only,
after the message

"Step 3 of the algorithm"

8

The final result is stored in the 3-vector T3 that is returned to the command line and shown; 0
in this case. The user can show all components of the result one by one, instead of getting them
altogether, by the command

for i to N do

for j to N do

for k to N do

print(SB[i, j, k] = T[i, j, k]);

end do;

end do;

end do;

The execution time is 0.09s for jacobi and 0.31s for the parallel version jacobi_p, showing
that the parallel programming model that we adopted has an overhead that makes its use in sim-
ple computations not so effective. The calculations for all Maple examples have been performed
on a laptop with an Intel i7-8565U processor.

2.2. The Heisenberg magnet equation

The following operator is an example of nonlocal Hamiltonian operator of a class introduced
by Ferapontov (see [12] and references therein):

P = f 2
(
1 0
0 1

)
∂x + f

(
u1u1

x + u2u2
x u1u2

x − u2u1
x

u2u1
x − u1u2

x u1u1
x + u2u2

x

)
+

(
u1

x∂
−1
x u1

x u1
x∂
−1
x u2

x
u2

x∂
−1
x u1

x u2
x∂
−1
x u2

x

)
(16)

where f = (1/2)((u1)2 + (u2)2 + 1). The operator P is a Hamiltonian operator for the Heisenberg
magnet equation [12]:

u1
t = u2

xx +
1
f
(
u2(u1

x)2 − 2u1u1
xu2

x − u2(u2
x)2), (17)

u2
t = −u1

xx −
1
f
(
u1(u2

x)2 − 2u2u1
xu2

x − u1(u1
x)2). (18)

The Schouten bracket [P, P] is computed in Maple as follows. We introduce the number of
components and a maximal order of x-derivatives of the dependent variables ui and of the delta
function

N:=2;

M1:=1;

D1:=1,

M2:=M1;

D2:=D1;

and we define the operator:

f := u[1,x,0]^2/2 + u[2,x,0]^2/2 + 1/2;

P := Array(1..N,1..N,0..M2);

P[1,1,0] := f^2*delta[x-y,1] + f*(u[1,x,0]*u[1,x,1]

+ u[2,x,0]*u[2,x,1])*delta[x-y,0] + u[1,x,1]*delta[x-y,-1]*u[1,y,1];

P[2,2,0] := f^2*delta[x-y,1] + f*(u[1,x,0]*u[1,x,1]

9

+ u[2,x,0]*u[2,x,1])*delta[x-y,0] + u[2,x,1]*delta[x-y,-1]*u[2,y,1];

P[1,2,0] := f*(u[1,x,0]*u[2,x,1]-u[2,x,0]*u[1,x,1])*delta[x-y,0]

+ u[1,x,1]*delta[x-y,-1]*u[2,y,1];

P[2,1,0] := f*(u[2,x,0]*u[1,x,1]-u[1,x,0]*u[2,x,1])*delta[x-y,0]

+ u[2,x,1]*delta[x-y,-1]*u[1,y,1];

after loading the program, the bracket is computed as in the previous example:

read(`jacobi.mpl`);

T := Array(1..N,1..N,1..N);

Schouten_bracket(P,P,T,N,M1,D1,M2,D2);

The components of the output 3-vector can be shown one by one:

for i to N do

for j to N do

for k to N do

print(SB[i,j,k] = T[i,j,k]);

end do;

end do;

end do;

SB[1, 1, 1] = 0

SB[1, 1, 2] = 0

SB[1, 2, 1] = 0

SB[1, 2, 2] = 0

SB[2, 1, 1] = 0

SB[2, 1, 2] = 0

SB[2, 2, 1] = 0

SB[2, 2, 2] = 0

The Heisenberg magnet equation is indeed bi-Hamiltonian. The second Hamiltonian operator
can be written in the above coordinates as the ultra-local operator

Q = f 2
(
0 −1
1 0

)
δ(x − y). (19)

In this case M1 = D1 = M2 = D2 = 0. The Hamiltonian property is easily checked. First of all
we load the operator:

Q := Array(1..N,1..N,0..M):

Q[1,1,0] := 0;

Q[2,2,0] := 0;

Q[1,2,0] := -f^2*delta[x-y,0];

Q[2,1,0] := f^2*delta[x-y,0];

Then we compute the Schouten bracket:

S := Array(1..N,1..N,1..N);

Schouten_bracket(Q,Q,S,N,M1.D1,M2,D2);

10

which yields zero. Finally, we calculate the compatibility condition between the two Poisson
brackets:

U := Array(1..N,1..N,1..N);

Schouten_bracket(P,Q,U,N,M1,D1,M2,D2),

where M1 = 1,D1 = 1,M2 = 0,D2 = 0. The compatibility, in this case, has a nice geometric
interpretation: the Hamiltonian operator Q turns out to be a Killing–Poisson tensor with respect
to the metric (gi j) that forms the leading coefficient of the Hamiltonian operator P (see [24]).

Here, the execution time for the Schouten bracket [P, P] is 0.48s for jacobi and 0.54s for
the parallel version jacobi_p. This is the most complicated between the brackets that we cal-
culate for this example, although still not challenging. For a significant difference between the
non-parallel and the parallel version, see the next example.

2.3. The equations of associativity
In [8] the geometric theory of the equations of associativity, or Witten–Dijkgraaf–Verlinde–

Verlinde equation, is developed in detail. One of the cases of equations of associativity can be
rewritten as a quasilinear system of PDEs of the form ui

t = (V i(u))x (Example 3 in [14]), with

u1
t = (u2 + u3)x, u2

t =

(
u2(u2 + u3) − 1

u1

)
x
, u3

t = u1
x. (20)

It can be proved that the above system admits the following operator of Ferapontov type [27]:

P = gi j∂x + Γ
i j
k uk

x + α1
∂V i

∂uq uq
x∂
−1
x
∂V j

∂up up
x + γ1ui

x∂
−1
x u j

x, (21)

where the metric in upper indices is

gi j =

u2

1 + u2
2 + 2u2u3 + u2

3 + 1
u2

1u2+u3
2+2u2

2u3+u2u2
3−u2−u3

u1
u1(u2 + 2u3)

u2
1u2+u3

2+2u2
2u3+u2u2

3−u2−u3
u1

u2
1u2

2+4u2
1+u4

2+2u3
2u3+u2

2u2
3−2u2

2−2u2u3+1

u2
1

u2
2 + 2u2u3 − 3

u1(u2 + 2u3) u2
2 + 2u2u3 − 3 u2

1 + u2
3 + 4

 (22)

the Christoffel symbols are

Γ
i j
1 =

u1 u2 u3

−(u2
2+u2u3−1)(u2+u3)

u2
1

−(u2
2+u2u3−1)2

u3
1

−(u2
2+u2u3−1)

u1

u2 + u3
u2

2+u2u3−1
u1

u1

 (23)

Γ
i j
2 =

u2 + u3

u2
2+u2u3−1

u1
u1

(2u2+u3)(u2+u3)+u2
1

u1

2u3
2+3u2

2u3−u3+u2
1u2+(u2

3−2)u2

u2
1

2(u2 + u3)
0 0 0

 (24)

Γ
i j
3 =

u2 + u3

u2
2+u2u3−1

u1
u1

(u2+u3)u2
u1

(u2
2+u2u3−1)u2

u2
1

u2

u1 u2 u3

 (25)

and the value of the constants is α1 = −1, γ1 = −1.
In Maple, we need to introduce the coefficients as three arrays

11

g := Matrix(N,N);

g[1,1] := u[1,x,0]^2 + (u[2,x,0] + u[3,x,0])^2 + 1;

and so on, and

Gamma := Array(1..N,1..N,1..N);

Gamma[1,1,1] := u[1,x,0];

and so on, and finally

W := Matrix(N,N);

W[1,1] := 0;

W[1,2] := 1;

W[1,3] := 1;

W[2,1] := -(u[2, x, 0]*(u[2, x, 0] + u[3, x, 0]) - 1)/u[1, x, 0]^2;

W[2,2] := (2*u[2, x, 0] + u[3, x, 0])/u[1, x, 0];

W[2,3] := u[2, x, 0]/u[1, x, 0];

W[3,1] := 1;

W[3,2] := 0;

W[3,3] := 0;

where W[i,j] is equal to ∂V i/∂u j. Indeed, in this example the nonlocal part is made by two
matrices, the other being the identity. Then, we define the operator as

P := Array(1..N,1..N,0..M);

for i to N do

for j to N do

P[i,j,0] := g[i,j]*delta[x - y,1]

+ add(Gamma[i,j,k]*u[k,x,1],k = 1..N)*delta[x - y,0]

- add(add(W[i,s]*u[s,x,1]*delta[x - y,-1]

*subs(x = y,W[j,t])*u[t,y,1],s = 1..N),t = 1..N)

- u[i,x,1]*delta[x - y,-1]*u[j,y,1];

end do;

end do;

The Schouten bracket is computed as usual and the result is 0.
Here, the execution time for the Schouten bracket [P, P] is about 18s for jacobi and about 9s

for the parallel version jacobi_p, showing that the parallel calculations are giving an effective
reduction with respect to the non-parallel implementation.

3. Reduce implementation

Now, we describe the implementation of the Schouten bracket for nonlocal differential oper-
ators in Reduce, as a part of the package CDE. The package CDE has been developed by one of
us (RV) for calculations in the geometric theory of PDEs and integrability [18].

Consider two weakly nonlocal skew-adjoint operators P, Q:

P(ψ)i = Pi jψ j = Bi jσ∂σψ j + cαβwi
α∂
−1
x (w j

βψ j), (26)

Q(ψ)i = Qi jψ j = Ci jσ∂σψ j + dαβzi
α∂
−1
x (z j

βψ j), (27)
12

For the nonlocal summands, the skew-adjointness is fulfilled if cαβ and dαβ are symmetric matri-
ces.

Let us introduce the nonlocal variables

ψ̃a
α = ∂−1

x (wi
αψ

a
i), χ̃a

β = ∂−1
x (zi

βψ
a
i), (28)

where a = 1, 2, 3 and α and β run in the same finite set of indices (see [3, 18] for a geometric
theory of nonlocal variables).

We have the formula:

`P,ψ(ϕ)i =
∂Bi jσ

∂uk
τ

∂σψ
1
j∂τϕ

k + cαβ
∂wi

α

∂uk
τ

∂τϕ
k∂−1

x (w j
βψ j)

+ cαβwi
α∂
−1
x

∂w j
β

∂uk
τ

∂τϕ
kψ j

 , (29)

where we used the fact that ∂−1
x commutes with linearization. Then, we have the following

expression for the Schouten bracket [7]:

[P,Q](ψ1, ψ2, ψ3) =[`P,ψ1 (Q(ψ2))(ψ3) + cyclic(ψ1, ψ2, ψ3)

+ `Q,ψ1 (P(ψ2))(ψ3) + cyclic(ψ1, ψ2, ψ3)]
(30)

where square brackets stand for horizontal cohomology [3], i.e. the expression should be consid-
ered up to total x-derivatives.

A single summand of the above formula has the expression

`P,ψ1 (Q(ψ2))(ψ3) =
∂Bi jσ

∂uk
τ

∂σψ
1
j∂τ

(
Ckpσ∂σψ

2
p + dαβzk

αχ̃
2
β

)
ψ3

i

+ cαβ
∂wi

α

∂uk
τ

∂τ
(
Ckpσ∂σψ

2
p + dγδzk

γχ̃
2
δ

)
ψ̃1
βψ

3
i

− cαβψ̃3
α

(∂w j
β

∂uk
τ

∂τ(Ckpσ∂σψ
2
p + dγδzk

γχ̃
2
δ)ψ

1
j

)
(31)

Here, the last summand has been obtained by integration by parts:

cαβwi
α∂
−1
x

∂w j
β

∂uk
τ

∂τ(Ckpσ∂σψ
2
p + dγδzk

γχ̃
2
δ)

kψ1
j

ψ3
i =

− cαβψ̃3
α

(∂w j
β

∂uk
τ

∂τ(Ckpσ∂σψ
b
p + dγδzk

γχ̃
2
δ)ψ

1
j

)
+ ∂x(T), (32)

where the term ∂x(T) is ignored in the bracket formula.
In Reduce, the above formulae (30) and (32) and the subsequent algorithm is implemented

through CDE in the library file cde_weaklynl.red. We illustrate the implementation and the
usage by means of the following program files, which provide the same computations as in the
previous Section. The examples accompany the paper as Reduce program files. They can be run
by the command

in "filename.red";

issued as the first command in a Reduce window.
13

3.1. The mKdV equation

The calculation is carried out with the operator P in (15). First of all, we load the package
CDE:

load_package cde;

then we define the list of variables:

indep_var:={x};

dep_var_equ:={u};

loc_arg:={psi};

total_order:=10;

Here indep_var is the name of the independent variable, dep_var_equ is the list of dependent
variables that are involved in the equation and loc_arg is a list of symbols that will be used for
the local arguments of the three-vector (one symbol for each dependent variable in the equation).
Finally, total_order is the maximal order of derivative that can appear in all expressions that
will be input in and/or calculated by the program. The order can be computed more sharply with
the formula that has been given in the Maple package: M:=M1+D1+M2+D2, but in any case CDE
will issue an error and quit if the order turns out to be too low.

We load the operator P as follows. First of all, we define the local part of P using the CDE
syntax [18]:

mk_cdiffop(ham_l,1,{1},1);

for all psi let ham_l(1,1,psi)=

td(psi,x,3) + (2/3)*(u**2*td(psi,x) + u*u_x*psi);

Then we enter the nonlocal part by the commands

mk_wnlop(c,w,1);

c(1,1):= - 2/3;

w(1,1):=u_x;

The command mk_wnlop defines the coefficient matrix of the nonlocal summand cαβ as a Reduce
operator c, where the value at the indices alpha, beta is c(alpha,beta). It also defines the
vectors wi

α (for every index α) as the reduce operator w, where the value at the indices i, alpha
is w(i,alpha). The third entry of the command mk_wnlop is the number of summands wi

α (for
every index i), or the range of the index α.

The first weakly nonlocal operator is arranged in a list as follows:

ham1:={ham_l,c,w};

Since we are computing [P, P], the second operator is equal to the first one:

ham2:=ham1;

The Reduce implementation makes use of nonlocal variables in order to calculate the Schouten
bracket. For this reason, we need to form a list of all distinct non-local variables. There is one
nonlocal variable for any value of α; in the mKdV case, the list has the format

nloc_var:={{tpsi,w,1}};

14

The jet space (i.e. all variables and their x-derivatives) is prepared by the command

dep_var_tot:=cde_weaklynl(indep_var,dep_var_equ,loc_arg,nloc_var,

total_order);

creates the jet space with:

1. derivative symbols like u_x, u_2x, . . . ;
2. three times the symbols in the list loc_arg, by appending 1, 2, 3 to the names of the

arguments. In our case: psi1, psi2, psi3 and their derivatives psi1_x, psi2_x,

...

3. three times the nonlocal variables in nloc_arg, i.e. tpsi_11,tpsi_12,tpsi_13, which
correspond to the nonlocal variables ψ̃1

1, ψ̃2
1, ψ̃3

1.
tpsi1_x = w(1,1)*psi1;

tpsi2_x = w(1,1)*psi2;

tpsi3_x = w(1,1)*psi3;

The above jet space is defined using well-tested CDE routines, after an initial consistency check
on the input data (for example, the number of elements of dep_var_equ should be the same as
loc_arg); the constraints are CDE differential equations and allow an immediate and automatic
replacement with the right-hand side during the calculations.

The return argument is a list of all dependent variables, like u, psi1, ..., introduced by
the command cde_weaklynl, in this case:

dep_var_tot := {{u},{psi1,psi2,psi3},{tpsi_11,tpsi_12,tpsi_13}};

Finally, we need a list of the two names that are used for nonlocal variables for the two
operators; in this case, since we have only one operator, we will repeat the nonlocal variable two
times:

nloc_arg:={{tpsi,w},{tpsi,w}};

The Schouten bracket is readily computed:

sb_res:=schouten_bracket_wnl(ham1,ham2,dep_var_equ,loc_arg,nloc_arg);

The return variable sb_res contains the expression of the three-vector [P, P] after the reduction
to the divergence-free normal form. The list of variables dep_var_tot might be used to extract
coefficients of the three-vector sb_res and set them to zero if needed by the problem that is
under consideration. In the mKdV case it is obviously zero.

Let us briefly explain how CDE calculates the divergence-free normal form.
The expression (30) is a three-vector which is defined up to total x-derivatives. It is processed

by the software following the algorithm developed in [4] in the following steps.

1. The command schouten_bracket_wnl makes several consistency checks on the input,
which should be declared as above.

2. Then, the control is taken by the symbolic procedure4 sb_wnl_algorithmwhich, as a first
step, generates from nloc_arg nonlocal variables which are functions of the arguments
psi1, psi2, psi3. It is of utmost importance that nloc_arg contains all non-identical
nonlocal variables; using two different names for the same nonlocal variable would result
in no simplification and wrong results.

4This is a Reduce concept meaning that the procedure operates on raw Rlisp data rather than algebraic data, see [25]
15

3. The control is taken now by the symbolic procedure dubrovin_zhang_expr, which com-
putes the formula (30). The formula is built by blocks, one for each of the summands
of (29) plus one for the argument Q(ψ2), with four distinct symbolic procedures used to
that purpose, and the result is recomputed with cyclically permuted arguments ψ1, ψ2, ψ3

two times, with the roles of P and Q exchanged.
4. The result is fed into a symbolic procedure, nonlocal_reduction, that collects all terms

that consist of a coefficient Cpi (which can be an arbitrary function of ui and its derivatives)
that multiplies one of the terms

ψ̃1
αψ

2
p∂

k
xψ

3
i , ψ̃2

αψ
3
p∂

k
xψ

1
i , ψ̃3

αψ
1
p∂

k
xψ

2
i , (33)

with k > 0, or similar terms with χ̃a
β, and replace them by

(−1)k∂k
x(Cpiψ̃1

αψ
2
p)ψ3

i (34)

and similar terms. In the end, the nonlocal part of the three-vector will be generated by

ψ̃1
α∂

h
xψ

2
pψ

3
i , ψ̃2

α∂
h
xψ

3
pψ

1
i , ψ̃3

α∂
h
xψ

1
pψ

2
i , (35)

with h ≥ 0, or similar terms with χ̃a
β.

5. Another symbolic procedure, local_reduction, does a similar job on terms of the form

∂k
xψ

1
j∂

h
xψ

2
p∂

l
xψ

3
i (36)

with respect to ψ3 when l > 0, so to obtain a local part which is of order 0 with respect to
ψ3.

The output of the command schouten_bracket_wnl is the three-vector [P,Q] in the normal,
divergence-free form. In this example, the output is zero. The elapsed time (measured by acti-
vating the Reduce switch on time;) is 30ms. We stress that here and for the following examples
we used CSL as the underlying Lisp system for Reduce (the other possibility being the PSL Lisp
system, see [16]) on a laptop with an Intel i7-8565U processor.

3.2. The Heisenberg magnet equation

We describe a program file to calculate the Schouten bracket of P as in (16). We will only
mention the differences between the program for the mKdV and this one. We introduce the
dependent variables and the arguments of the operator:

dep_var_equ:={u1,u2};

loc_arg:={psi1,psi2};

Then we define the local part of the operator:

p:=(1/2)*(u1**2 + u2**2 + 1)$

mk_cdiffop(ham_l,1,{2},2);

for all psi11 let ham_l(1,1,psi11)=

p**2*td(psi11,x) + p*(u1*u1_x + u2*u2_x)*psi11;

16

for all psi12 let ham_l(1,2,psi12)=

p*(u1*u2_x - u2*u1_x)*psi12;

for all psi21 let ham_l(2,1,psi21)=

p*(u2*u1_x - u1*u2_x)*psi21;

for all psi22 let ham_l(2,2,psi22)=

p**2*td(psi22,x) + p*(u1*u1_x + u2*u2_x)*psi22;

The nonlocal part contains only one ‘tail’ vector:

mk_wnlop(c,w,1);

c(1,1):=1;

w(1,1):=u1_x;

w(2,1):=u2_x;

The first and second operators in the bracket are loaded as

ham1:={ham_l,c,w};

ham2:=ham1;

There is only one nonlocal variable:

nloc_var:={{tpsi,w,1}};

The space of all variables and derivatives is generated by

dep_var_tot:=cde_weaklynl(indep_var,dep_var_equ,

loc_arg,nloc_var,total_order);

The list of the two names of the nonlocal variables is

nloc_arg:={{tpsi,w},{tpsi,w}};

and the Schouten bracket [P, P] = 0 is calculated by:

sb_res:=schouten_bracket_wnl(ham1,ham2,dep_var_equ,

loc_arg,nloc_arg);

The last command returns 0; the elapsed time is 810ms, plus 40ms of garbage collection.
The Schouten bracket for the second operator Q (19) of the Heisenberg magnet equation (17)

is calculated as follows. The operator is input as

p:=(1/2)*(u1**2 + u2**2 + 1);

mk_cdiffop(ham_2,1,{2},2);

for all psi11 let ham_2(1,1,psi11) = 0;

for all psi12 let ham_2(1,2,psi12) = - p**2*psi12;

for all psi21 let ham_2(2,1,psi21) = p**2*psi21;

for all psi22 let ham_2(2,2,psi22) = 0;

The operator is local, hence we need to set its nonlocal data to 0:
17

mk_wnlop(d,z,1);

d(1,1):=1;

z(1,1):=0;

z(2,1):=0;

The input for the two arguments of the Schouten bracket is formed as

ham1:={ham_2,d,z};

ham2:=ham1;

The jet space is generated by

nloc_var:={{tpsi,z,1}};

dep_var_tot:=cde_weaklynl(indep_var,dep_var_equ,

loc_arg,nloc_var,total_order);

and the Schouten bracket is calculated by

nloc_arg:={{tpsi,z},{tpsi,z}};

sb_res:=schouten_bracket_wnl(ham1,ham2,dep_var_equ,

loc_arg,nloc_arg);

with result 0 in just 30ms.
The above Hamiltonian operators for the Heisenberg magnet equation are compatible: [P,Q] =

0. The operators are loaded as above in a single program file, with

ham1:={ham_l,c,w};

ham2:={ham_2,d,z};

there are two nonlocal variables (even if one is trivial, it must be fed into the program):

nloc_var:={{tpsi,w,1},{tchi,z,1}};

dep_var_tot:=cde_weaklynl(indep_var,dep_var_equ,

loc_arg,nloc_var,total_order);

The Schouten bracket [P,Q] is calculated by

nloc_arg:={{tpsi,w},{tchi,z}};

sb_res:=schouten_bracket_wnl(ham1,ham2,dep_var_equ,

loc_arg,nloc_arg);

with 0 as a result in 300ms.

3.3. The equations of associativity
Here we will compute the Schouten bracket [P, P] for P as in (21). This provides an example

of computation where the nonlocal part of the operator has two distinct nonlocal summands.
After loading the variables and the arguments

dep_var_equ:={u1,u2,u3};

loc_arg:={psi1,psi2,psi3};

we define the velocity matrix of the system of PDEs; in particular, the Reduce matrix element
av(i,j) corresponds to ∂V i/∂u j

x in the system of PDEs ui
t = (V i)x (20).

18

% right-hand side of the system of PDEs

de:={

u2_x + u3_x,

- (- 2*u1*u2*u2_x - u1*u2*u3_x - u1*u2_x*u3

+ u1_x*u2**2 + u1_x*u2*u3 - u1_x)/u1**2,

u1_x

}$

nc:=length(dep_var_equ)$

dv1:={u1_x,u2_x,u3_x}$

matrix av(nc,nc);

for i:=1:nc do

for j:=1:nc do

av(i,j):=df(part(de,i),part(dv1,j));

Then, we define the local part of the operator by

mk_cdiffop(ham_l,1,{3},3);

for all i,j,psi let ham_l(i,j,psi)=

gu1(i,j)*td(psi,x) + b(i,j)*psi;

Here, gu1 is a Reduce operator containing the metric of the operator P in upper indices, and
b is a Reduce operator containing the value of Γ

i j
k uk

x that has been separately computed (see
Subsection 2.3). The nonlocal part of the operator is loaded by

mk_wnlop(c,w,2);

c(1,1):= - 1;

c(2,2):= - 1;

c(1,2):=0;

c(2,1):=0;

for i:=1:nc do w(i,1):=(for j:=1:nc sum av(i,j)*part(dv1,j));

w(1,2):=u1_x;

w(2,2):=u2_x;

w(3,2):=u3_x;

The Reduce operator c contains the coefficients of the nonlocal summands. The second index of
the Reduce operator w labels the ‘tail’ vector, and it corresponds to α in wi

α. In this case we have
just one operator in the bracket with three distinct nonlocal variables:

nloc_var:={{tpsi,w,1},{tpsi,w,2}};

The Schouten bracket is computed by

nloc_arg:={{tpsi,w},{tpsi,w}};

sb_res:=schouten_bracket_wnl(ham1,ham2,dep_var_equ,

loc_arg,nloc_arg);

The result is 0. Here the execution time is much higher, due to the algebraic complexity of the
example: 21330ms, with 1020ms of garbage collection.

19

4. Mathematica implementation

We describe the implementation of the computation of the Jacobi identity for nonlocal Pois-
son vertex algebras in Mathematica. To this aim, let us start by reviewing some basic facts from
[6] (see also [4]).

LetV be an algebra of differential functions in the variables {ui}i∈I (cf. [2]). Recall from [6]
that to a matrix pseudodifferential operator P =

(
Pi j(∂)

)
i, j∈I ∈ Mat`×`V((∂−1)) we associate a

map, called (nonlocal) λ-bracket, {· λ ·}P : V × V → V((λ−1)), given by the following Master
Formula:

{ fλg}P =
∑
i, j∈I

m,n∈Z+

∂g

∂u(n)
j

(λ + ∂)nP ji(λ + ∂)(−λ − ∂)m ∂ f

∂u(m)
i

∈ V((λ−1)) . (37)

In particular, {uiλu j}P = P ji(λ), the symbol of the (j, i)-entry of the matrix pseudodifferential
operator P. For arbitrary P, the λ-bracket (37) satisfies the following sesquilinearity conditions
(f , g ∈ V):

{∂ fλg}P = −λ{ fλg}P , { fλ∂g}P = (λ + ∂){ fλg}P ,

and left and right Leibniz rules (f , g, h ∈ V):

{ fλgh}P = { fλg}Ph + { fλh}Pg , { f gλh}P = { fλ+∂h}P→g + {gλ+∂h}P→ f .

An expression of the form { fλ+∂h}P→g is interpreted as follows: if { fλh}P =
∑N

n=−∞ cnλ
n, then

{ fλ+∂h}P→g =
∑N

n=−∞ cn(λ + ∂)ng, where we expand (λ + ∂)n in non-negative powers of ∂.
The matrix pseudodifferential operator P is skew adjoint if and only if (f , g ∈ V)

{ fλg}P = −{g−λ−∂ f }P . (38)

The RHS of the skewsymmetry condition should be interpreted as follows: we move −λ − ∂ to
the left and we expand its powers in non-negative powers of ∂, acting on the coefficients on the
λ-bracket.

In general, for all f , g, h ∈ V we have that { fλ{gµh}}P ∈ V((λ−1))((µ−1)). Let Vλ,µ :=
V[[λ−1, µ−1, (λ+µ)−1]][λ, µ], namely the quotient of the C[λ, µ, ν]-moduleV[[λ−1, µ−1, ν−1]][λ, µ, ν]
by the submodule (ν − λ − µ)V[[λ−1, µ−1, ν−1]] [λ, µ, ν]. We have the natural embedding ιµ,λ :
Vλ,µ ↪→ V((λ−1))((µ−1)) defined by expanding the negative powers of ν = λ + µ by geometric
series in the domain |µ| > |λ|.

The λ-bracket {· λ ·}P defined by (37) is called admissible if (f , g, h ∈ V):

{ fλ{gµh}P}P ∈ Vλ,µ , (39)

where we identify the space Vλ,µ with its image in V((λ−1))((µ−1)) via the embedding ιµ,λ. It
is proved in [6] that, if skewsymmetry (38) and admissibility (39) conditions hold, then we also
have {gµ{ fλh}P}P ∈ Vλ,µ and {{ fλg}Pλ+µh}P ∈ Vλ,µ, for every f , g, h ∈ V.

A skewsymmetric and admissible λ-bracket (37) defines a (nonlocal) Poisson vertex algebra
structure onV if the following Jacobi identity is satisfied (f , g, h ∈ V):

{ fλ{gµh}P}P − {gµ{ fλh}P}P − {{ fλg}Pλ+µh}P = 0 , (40)

where the equality is understood in the spaceVλ,µ. In this case P is called a nonlocal Hamiltonian
operator.

20

Note that Jacobi identity (40) holds for all f , g, h ∈ V if and only if it holds for any triple of
generators ui, u j, uk, i, j, k ∈ I:

{ui
λ{u j

µuk}P}P − {u j
µ{ui

λuk}P}P − {{ui
λu j}Pλ+µuk}P = 0 . (41)

Equation (41) is equivalent to the equation [P, P] = 0, where [· , ·] denotes the Schouten bracket
of matrix pseudodifferential operators defined in (30).

Two nonlocal Hamiltonian operators P and Q are called compatible if their linear combina-
tion (or, equivalently, their sum) is a non-local Hamiltonian operator. According to the above
discussion, this is equivalent to check that the λ-bracket {· λ ·}P+Q = {· λ ·}P + {· λ ·}Q defined by
equation (37) satisfies Jacobi identity (41) on generators. This condition reads (i, j, k ∈ I):

{ui
λ{u j

µuk}P}Q + {ui
λ{u j

µuk}Q}P − {u j
µ{ui

λuk}P}Q − {u j
µ{ui

λuk}Q}P

− {{ui
λu j}Pλ+µuk}Q − {{ui

λu j}Qλ+µuk}P = 0 .
(42)

Equation (42) is equivalent to the equation [P,Q] = 0.
Consider the weakly nonlocal skew-adjoint matrix pseudodifferential operators P and Q de-

fined in equations (26) and (27). The corresponding λ-brackets onV, defined by equation (37),
on a pair of generators ui, u j, i, j ∈ I, are

{u j
λui}P = Pi j(λ) = Bi jσλσ + cαβwi

α(λ + ∂)−1w j
β , (43)

{u j
λui}Q = Qi j(λ) = Ci jσλσ + dαβzi

α(λ + ∂)−1z j
β . (44)

In both equations (43) and (44) we should use the expansion

(λ + ∂)−1 =
∑
n∈Z+

λ−n−1(−∂)n ,

where ∂ acts on coefficients on the right, to get elements inV((λ−1)).
Since the nonlocal matrix pseudodifferential operators P and Q, defined by equations (26) and

(27) respectively, are rational, it follows from [6] that the λ-brackets (43) and (44) are admissible.
In order to check that P (or Q) is a Hamiltonian operator we need to verify that equation (41)
holds. To check that [P,Q] = 0, we need to verify that equation (42) holds.

In Mathematica the Master Formula (37) is implemented to compute each summand in the
LHS of equations (41) and (42). Then the algorithm described in [4] to write these summands
in a convenient basis of Vλ,µ is implemented in order to check whether equations (41) and (42)
hold. We illustrate the implementation and the usage in the three examples considered in Section
3.

4.1. The mKdV equation
Consider the mKdV equation ut = u3ux + uxxx and its nonlocal λ-bracket (cf. equation (15))

{uλu}P = λ3 +
1
3

(2λ + ∂) u2 −
2
3

ux(λ + ∂)−1ux. (45)

The Hamiltonian property of P is proved by checking that the Jacobi identity (41) vanishes for
the triple u, u, u.

We program the above calculation as follows. The package nlPVA.wl (with the classical
implementation of the algorithm) or nlPVA-par.wl (with the parallel implementation) can be

21

either stored locally, in a path where Mathematica is able to find them, or accessed remotely
from the repository https://github.com/mcasati/nlPVA. This makes it possible using the
packages on the web-based Wolfram Cloud and Mathematica online, as well as in any desktop
version of the software (from 11.0) without installation. We import the package

Import["https://raw.githubusercontent.com/mcasati/nlPVA/main/nlPVA.wl"]

(or the parallel implementation nlPVA-par.wl). The classical and parallel implementation have
the same input and the same final output. The parallelization of the code is performed automat-
ically by Mathematica using the command Parallelize[]. We initialize the package settings
by introducing the name ui for the dependent variables and x for the independent variable using
the commands SetGenName and SetVarName, and introducing a formal parameter β (shadowing
the formal variable λ of the λ-bracket) using the command SetFormalParameter as follows:

SetGenName[u];

SetVarName[x];

SetFormalParameter[β];

The formal parameter introduced will be used throughout the algorithm for internal computations
and should be different from the variable λ that will be used for outputs.

In the case of the mKdV equation we have only one dependent variable u := u1 and the
corresponding λ-bracket (45) has a tail of order 1 (using the terminology in [12]). Moreover, we
need to specify the highest derivative of the generators which will appear in the input with the
command SetMaxO (its value is 5 by default, but in many examples this is unnecessarily high).
We pass this information to the program as follows:

SetN[1];

SetTail[1];

SetMaxO[1];

Then we can load the λ-bracket (45). This is done in two steps. We start by defining its local part
(the polynomial part in the variable λ):

PLoc = {{β^3 + 2/3 gen[[1]] TD[gen[[1]]] + 2/3 gen[[1]]^2 β}};

Note that it is important to define PLoc as a (in this case 1 × 1) matrix for the program to
work. In the above definition, the variable β is used as the auxiliary variable to λ, gen is the
vector containing the dependent variables, and the command TD is built-in in the program and
it corresponds to the operator of total derivative (in this case, is the total derivative with respect
to x). Then we enter the components of the nonlocal part of (45) (the term containing negative
powers of λ) by the commands

c = {{-2/3}};

w = {{D[gen[[1]], x]}};

This is done by defining the coefficient matrix of the tail summand cαβ as a matrix c and of wi
α

as a matrix w, cf. (43). We combine the local and nonlocal part of the λ-bracket (45) using the
command BuildBracket:

P = BuildBracket[PLoc, c, w, Nw];

22

The nonlocal part of (45) is understood by the program as a vector containing the matrices c

and w, and a symbol Nw corresponding to the term (λ + ∂)−1w j
β. Note that, in the case of a

purely local (respectively, purely nonlocal) λ-bracket, its nonlocal (respectively, local) part has
to be initialized to 0. It is possible to visualize a matrix containing the full expression of the
λ-brackets among generators in an explicit form as follows:

GetBracket[P,λ];

The LHS of equation (41) can be computed in this case as follows:

CompatCheck[P, P, {λ,μ,ν}];

The variables λ and µ appearing as input correspond to the variables appearing in the Jacobi
identity (41). The variable ν is hidden from that identity since in the definition ofVλ,µ in Section
4 we set ν = λ + µ.

The command CompatCheck implements the computation of the LHS of Jacobi identity (41)
as follows. First, it computes all the three terms of that identity by using the Master Formula
(37). This implementation is the same used in the Mathematica package MasterPVA, see [5].
Then, it applies a normalization procedure consisting in writing each summand in a convenient
basis of Vλ,µ implementing the algorithm described in [4]. After expressing each summand in
the same basis, the program carries an easy computation of the LHS of equations (41). The
running time of the procedure is, in general, heavily dependant on the maximal order of the
generators’ derivatives. It is worthy noticing, moreover, that the first time the command Com-

patCheck is used in the parallel implementation of the algorithm it takes significantly longer
because Mathematica needs to initialize the additional kernels. It is possible to avoid this using
the function LaunchKernels[] beforehand. The time required is computed by the Mathematica
function RepeatedTiming[]. In a Mathematica 11.3 worksheet running on a laptop with an
Intel i7-6500U processor and two available Mathematica kernels, the classical implementation
takes 0.020s, while the parallel one 0.028s

4.2. The Heisenberg magnet equation
Let P(∂) be the matrix pseudodifferential operator defined in (16). The corresponding λ-

brackets among generators are given by the following matrix equation(
{u1

λu1}P {u2
λu1}P

{u1
λu2}P {u2

λu2}P

)
= P(λ)

=

(
f (λ + ∂) f + u1

x(λ + ∂)−1u1
x f (u1u2

x − u2u1
x) + u1

x(λ + ∂)−1u2
x

f (u2u1
x − u1u2

x) + u2
x(λ + ∂)−1u1

x f (λ + ∂) f + u2
x(λ + ∂)−1u2

x

)
,

(46)

where f = (1/2)((u1)2 + (u2)2 + 1).
Let us explain how to check that P is a nonlocal Hamiltonian operator. After loading the

package and initializing the package settings as in Section 4.1 we introduce the number of de-
pendent variables

SetN[2];

This command builds up a vector gen with two components corresponding to the dependent
variables u1 and u2. The maximal order of derivatives of the generators in the two operators is 1
as in the previous example, so we do not need to reassign the value of MaxO (we can check that
GetMaxO[] outputs 1). Then we define the local part of the operator:

23

f = 1/2(gen[[1]]^2+gen[[2]]^2+1);

PLoc = {{f^2 β+f TD[P],

f (gen[[1]] TD[gen[[2]]] - gen[[2]] TD[gen[[1]]])},

{f (gen[[2]] TD[gen[[1]]] - gen[[1]] TD[gen[[2]]]),

f^2 β+f TD[f]}} ;

The components of the nonlocal part are defined as follows:

c = {{1}};

w = {{TD[gen[[1]]], TD[gen[[2]]]}};

Then we combine the local and nonlocal parts of the λ-brackets (46):

P = BuildBracket[PLoc, c, w, Nw];

To check that P satisfies Jacobi identity we use

CompatCheck[P, P, {λ, μ, ν}];

to compute the LHS of equation (41). Note that, by default, this commands prints as output the
results of the partial steps of this computation corresponding to the different choices of the indices
i, j, k ∈ I. This computation returns a set of four zeroes, corresponding to the four sets of indices
(1,1,1), (1,1,2), (1,2,2), (2,2,2) and it is performed in 0.23s using the classical implementation
and 0.15s using the parallel implementation.

Let Q() denote the second Hamiltonian operator of the Heisenberg magnet equation defined
in equation (19). The corresponding λ-brackets among generators are(

{u1
λu1}Q {u2

λu1}Q
{u1

λu2}Q {u2
λu2}Q

)
= Q(λ) =

(
0 − f 2

f 2 0

)
. (47)

The compatibility condition between the non-local λ-bracket (46) and the local λ-bracket (47) is
checked as follows. First, we define the λ-brackets (47) by

d = {{0, 0}, {0, 0}};

y = {{0, 0, 0}, {0, 0, 0}};

Q = BuildBracket[Qloc, d, y, Nz];

where Qloc is the matrix (47) separately introduced in Mathematica. As previously mentioned,
in the case that the λ-brackets are local we still need to define their nonlocal tail to be zero for
the program to work. Then, using the command

CompatCheck[P, Q, {λ, μ, ν}];

one can check that the compatibility condition (42) is satisfied. The running time of this function
is 0.11s with the classical implementation and 0.081s with the parallel one.

4.3. The equations of associativity
Consider the λ-brackets on generators associated to the weakly nonlocal matrix pseudodif-

ferential operator P(∂) defined in (21) (i, j = 1, 2, 3)

{u j
λui}P = gi jλ + Γ

i j
k uk

x + α1
∂V i

∂uq uq
x(λ + ∂)−1 ∂V j

∂up up
x + γ1ui

x(λ + ∂)−1u j
x, (48)

24

where the metric gi j is defined in (22), the Christoffel symbols Γ
i j
k are defined in (23), (24) and

(25), and the value of the constants is α1 = −1, γ1 = −1.
Let us show the required steps to check that P is a Hamiltonian operator. After loading the

package and initializing its settings as in Section 4.1 we introduce the number of dependent
variables and the length of the tail (which in this case is 2)

SetN[3];

SetTail[2];

We define the local part of the λ-brackets (48) by

PLoc = g β + Γ1 TD[gen[[1]]] + Γ2 TD[gen[[2]]]

+ Γ3 TD[gen[[3]]];

Here, g is the matrix in (22), Γ1 the matrix in (23), Γ2 the matrix in (24) and Γ3 the matrix in (25),
which were previously separately introduced in Mathematica. The nonlocal part of the operator
is loaded by

c = {{-1, 0}, {0, -1}};

w = {Table[Sum[D[V[[i]], gen[[s]]] TD[gen[[s]]],

{s, $d}], {i, $d}],

Table[TD[gen[[i]]], {i, $d}]};

The matrix c contains the coefficients of the nonlocal summands. The second index of matrix w

labels the tail vector. The vector V contains the components V i, needed to compute the velocity
matrix ∂V i/∂u j of the system of PDEs (20). We combine the local and nonlocal part of the
λ-brackets (48) as follows

P = BuildBracket[PLoc, c, w, Nw];

We check that Jacobi identity (41) holds using the command

CompatCheck[P, P, {ρ, σ, τ}];

(the choice of the output formal variables ρ, σ and τ does not affect the results provided that they
are all distinct). The function outputs the expected list of ten zeroes (corresponding to indepen-
dent entries of the Jacobi identity for a 3-components system) in 2.8s when using the classical
implementation and 1.8s with the parallel one.

Acknowledgments

We would like to thank A. Carbotti, E.V. Ferapontov, S. Perletti for scientific discussions.
This research has been funded by the Dept. of Mathematics and Physics “E. De Giorgi”

of the Università del Salento, Istituto Naz. di Fisica Nucleare IS-CSN4 Mathematical Methods
of Nonlinear Physics, GNFM of Istituto Nazionale di Alta Matematica. P. L. is supported by
MIUR - FFABR funds 2017 and by funds of H2020-MSCA-RISE-2017 Project No. 778010
IPaDEGAN.

[1] M.J. Ablowitz and P.A. Clarkson. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Number 149 in
London Mathematical Society lecture note series. Cambridge University Press, 1991.

[2] A. Barakat, A. De Sole, and V. G. Kac. Poisson vertex algebras in the theory of Hamiltonian equations. Japan. J.
Math. 4:141–252, 2009.

25

[3] A.V. Bocharov, V.N. Chetverikov, S.V. Duzhin, N.G. Khor’kova, I.S. Krasil’shchik, A.V. Samokhin, Yu. N.
Torkhov, A.M. Verbovetsky and A.M. Vinogradov: Symmetries and Conservation Laws for Differential Equa-
tions of Mathematical Physics, I. S. Krasil’shchik and A. M. Vinogradov eds., Translations of Math. Monographs
182, Amer. Math. Soc. (1999).

[4] M. Casati, P. Lorenzoni, and R. Vitolo. Three computational approaches to weakly nonlocal poisson brackets.
Studies in Applied Mathematics 144 no. 4 (2020) 412–448, DOI: 10.1111/sapm.12302, https://arxiv.org/
abs/1903.08204.

[5] M. Casati and D. Valeri. MasterPVA and WAlg: Mathematica packages for Poisson vertex algebras and classical
affineW-algebras. Boll. Un. Mat. Ital., 11(4):503–531, 2018. https://arxiv.org/abs/1603.05028.

[6] A. De Sole and V.G. Kac. Non-local Poisson structures and applications to the theory of integrable systems, Jpn.
J. Math. 8 (2013), no. 2, 233-347.

[7] I. Ya. Dorfman. Dirac Structures and Integrability of Nonlinear Evolution Equations. John Wiley & Sons, 1993.
[8] B. Dubrovin. Geometry of 2d topological field theories, in Integrable Systems and Quantum Groups, Lecture Notes

in Math. 1620, Springer, Berlin, 1996, 120–348. ArXiv: https://arxiv.org/abs/hep-th/9407018.
[9] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov. Integrable systems. I In Dynamical Systems IV, volume 4 of

Encyclopaedia of Mathematical Sciences, pages 173–280. Springer-Verlag, Berlin, 2 edition, 2001.
[10] B.A. Dubrovin and Y. Zhang. Normal forms of integrable PDEs, Frobenius manifolds and Gromov-Witten invari-

ants, math.DG/0108160.
[11] L. Faddeev and L. Takhtajan Hamiltonian methods in the theory of solitons, Springer Verlag.
[12] E.V. Ferapontov. Nonlocal Hamiltonian Operators of Hydrodynamic Type: Differential Geometry and Applications.

Amer. Math. Soc. Transl. (2) Vol. 170 (1995), 33–58.
[13] E.V. Ferapontov and O.I. Mokhov. Non-local Hamiltonian operators of hydrodynamic type related to metrics of

constant curvature, Uspekhi Math. Nauk 45 no. 3 (1990), 191–192, English translation in Russ. Math. Surv. 45
(1990), 281–219.

[14] E.V. Ferapontov, M.V. Pavlov, and R.F. Vitolo. Towards the classification of homogeneous third-order Hamiltonian
operators. Int. Math. Res. Not., 22:6829–6855, 2016.

[15] The Geometry of Differential EQuations website, webpage of the software packages and examples discussed in
this paper: https://gdeq.org/Weakly_nonlocal_Poisson_brackets (2021).

[16] A.C. Hearn. Reduce. http://reduce-algebra.sourceforge.net/, version 3.8 edition, 2004. Computer al-
gebra system, currently in development after that it has been released in 2008 as free software at Sourceforge. The
manual is available at the website.

[17] P. Kersten, J. Krasil′shchik and A. Verbovetsky. On the integrability conditions for some structures related to
evolution differential equations, Acta Appl. Math. 83 (2004), 167-173.

[18] J. Krasil′shchik, A. Verbovetsky, and R. Vitolo. The symbolic computation of integrability structures for partial
differential equations. Texts and Monographs in Symbolic Computation. Springer, 2018. ISBN 978-3-319-71654-
1; see http://gdeq.org/Symbolic_Book for downloading program files that are discussed in the book.

[19] P. Lorenzoni. A bi-Hamiltonian approach to the sine-Gordon and Liouville hierarchies, Lett. Math. Phys. 67 (2004),
pp 83-94.

[20] P. Lorenzoni and R. Vitolo. Weakly nonlocal Poisson brackets, Schouten brackets and supermanifolds. J. Geom.
Phys. 149 (2020) 103573, ArXiv: https://arxiv.org/abs/1909.07695.

[21] F. Magri. A simple model of the integrable Hamiltonian equation. J. Math. Phys., 19:1156–1162, 1978.
[22] A.Ya. Maltsev and S.P. Novikov. On the local systems Hamiltonian in the weakly non-local Poisson brackets,

Physica D 156 (2001), 53–80.
[23] A.G. Meshkov. Tools for symmetry analysis of PDEs. Differential Equations and Control Processes, 1, 2002. http:

//www.math.spbu.ru/diffjournal/.
[24] O.I. Mokhov. Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations. In

S.P. Novikov and I.M. Krichever, editors, Reviews in mathematics and mathematical physics, volume 11, pages
1–128. Harwood academic publishers, 1998.

[25] A.C. Norman and R. Vitolo. Inside Reduce, 2014. part of the official Reduce documentation, included in the source
code of Reduce. See also http://reduce-algebra.sourceforge.net/lisp-docs/insidereduce.pdf.

[26] S. Novikov, S:V. Manakov, L.P. Pitaevskii, and V.E Zakharov. Theory of solitons. The Inverse Scattering Method,
Springer, 1984.

[27] J. Vašíček and R. Vitolo. WDVV equations and invariant bi-Hamiltonian formalism, Journal of High Energy
Physics volume 2021, Article number: 129 (2021), arXiv: https://arxiv.org/abs/2104.13206.

[28] R. Vitolo. Computing with Hamiltonian operators, Computer Physics Communications Volume 244 (2019), 228-
245, ArXiv: https://arxiv.org/abs/1808.03902

[29] J.P. Wang. A List of 1+1 Dimensional Integrable Equations and Their Properties, Journal of Nonlinear Mathemat-
ical Physics 9 (2002), 213–233.

[30] V. E. Zakharov, editor. What is integrability? Springer-Verlag, Berlin, 1991.

26

https://arxiv.org/abs/1903.08204
https://arxiv.org/abs/1903.08204
https://arxiv.org/abs/1603.05028
https://arxiv.org/abs/hep-th/9407018
math.DG/0108160
https://gdeq.org/Weakly_nonlocal_Poisson_brackets
http://reduce-algebra.sourceforge.net/
http://gdeq.org/Symbolic_Book
https://arxiv.org/abs/1909.07695
http://www.math.spbu.ru/diffjournal/
http://www.math.spbu.ru/diffjournal/
http://reduce-algebra.sourceforge.net/lisp-docs/insidereduce.pdf

	Introduction
	Maple implementation
	The mKdV equation
	The Heisenberg magnet equation
	The equations of associativity

	Reduce implementation
	The mKdV equation
	The Heisenberg magnet equation
	The equations of associativity

	Mathematica implementation
	The mKdV equation
	The Heisenberg magnet equation
	The equations of associativity

