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Lonely Planets and Lightweight Asteroids:
A Statistical Mechanics Model for the
Planetary Problem

Gabriella Pinzari, Benedetto Scoppola and Alessio Troiani

Abstract. In this paper we propose a notion of stability, which we call ε−
N -stability, for systems of particles interacting via Newton’s gravitational
potential, and orbiting a much bigger object. For these systems the usual
thermodynamical stability condition, ensuring the possibility to perform
the thermodynamical limit, fails, but one can use as relevant parameter
the maximum number of particles N that guarantees the ε − N -stability.
With some judicious but not particularly optimized estimates, borrowed
from the classical theory of equilibrium statistical mechanics, we show
that our model has a good fit with the data observed in the Solar System,
and it gives a reasonable interpretation of some of its global properties.

1. Introduction

Maybe the secret of the huge success of Kolmogorov–Arnold–Moser (kam)
theory relies in the spectacular application, found out by Vladimir Igore-
vich Arnold, to the planetary problem. Indeed, one decade after Kolmogorov’s
announcement, at the 1954’s International Congress of Mathematician, of the
“theorem of the conservation of the invariant torus” [14], the brilliant stu-
dent of Kolmogorov—aged 27—formulated a version of Kolmogorov’s theorem
(which he called the “Fundamental Theorem”) suited to the planetary prob-
lem [1]. He then used it to prove the “metric stability” of the simplest, albeit
non-trivial, planetary system: two planets and a sun constrained on a plane.
Strong degeneracies prevented a straightforward application of the Fundamen-
tal Theorem to the most general planetary system, which indeed was obtained
in the subsequent 50 years, after those degeneracies were completely under-
stood [4,6,15,23,24]; see [5] for a review. The success of kam theory in classical
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mechanics boosted other investigations, like instability or finite time stability
[2,21].

Despite the quality and the quantity of results of this kind, some intrigu-
ing questions remain open. In this paper we are particularly interested in the
problems that have a kind of “global” structure in planetary systems, like,
e.g., the mass distribution and/or the stability of the belts of many light-
weight objects. In our Solar System this could be relevant to understand the
global features of the various asteroids belts, the rings around the planets, or
the space debris .

From this respect the basic idea of statistical mechanics, that is the possi-
bility to substitute the exact knowledge of the dynamics of an N -particles sys-
tem with a probability distribution on its dynamical status in a fixed instant,
seems to be promising. Losing the detailed knowledge of the trajectory of the
system in the phase space, one gains the possibility to describe global quanti-
ties like, e.g., pressure, temperature or density. With this attitude, the study of
the analyticity of such global functions may give a microscopical justification
of many very interesting phenomena, e.g., the phase transitions.

To fulfill this program, however, one has to assume various technical
conditions, and one of the first constraints, understood from the very beginning
of the discipline, is the so-called stability condition on the interacting potential.
Namely, one has to impose to the potential V (x, y) of the interaction between
particles the following condition: it has to exist a positive constant B such
that

∑

1≤i<j≤N

V (xi, xj) ≥ −BN (1)

for all the possible choices of the positions x1, ..., xN of the N particles (see,
for instance, [29] and [9]). Such stability condition, obviously, does not hold
for the Newtonian potential. In the quantum case it has been possible to show
that a non-stable potential, like the Coulomb one, leads to a stable behavior
of the matter (see [16]). Many other results (see, e.g., [10,17,18]), have been
proved exploiting explicitly the features of the Fermi and Bose statistics. In
the study of classical systems with Newtonian interaction, a possible way to
perform the thermodynamic limit is to define interactions depending on the
number of particles, the so-called mean field systems, or, almost equivalently,
to rescale suitably the energy with the number of particle in a fixed volume,
the so-called Vlasov limit [12,13,19]. This approach proves useful to model,
for instance, plasma physics and astronomical globular systems. In a different
context, namely that of growing planets, some analytical results have been
obtained recently by [30] in the case of the planetary systems in which the
instability is part of the desired result. In [26,27] the statistical mechanics of
dense stellar clusters have been studied, outlining its similarity with liquid crys-
tals. Moreover, numerical simulations of gravitating systems represent a very
active research field. Finally, other recent attempts to perform, numerically, a
statistical analysis of the future planet orbits in the solar system include, e.g.,
[20].
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In this paper we propose a different approach, not yet previously inves-
tigated, at least to our knowledge. We study a model of interacting particles
in a planetary system. Our estimates are mathematically rigorous, although
some of the assumptions underlying the definition of the model are motivated
by heuristic considerations based on the observed features of the solar system.
Some of these features are suitably simplified. The first simplification is the
fact that our planetary system is assumed to be planar, and the central star
is fixed. It will be clear that this assumption simplifies the details but it does
not modify the structure of the bounds we will present. Secondly, we deliber-
ately decide to lose details in the description of the interaction between the
center, called hereafter the star, and each light particle, call hereafter aster-
oid. In particular, we describe each orbit as a probability distribution around
a fixed circular orbit. Such probability distribution does not fix the energy
of each asteroid. In other words, we try a description of the system in terms
close to the familiar idea of canonical distribution. From a physical point of
view, this assumption can be justified thinking, for instance, to the main belt
of asteroids: the 2-body elliptical trajectory is actually an approximation due
to the fact that each asteroid is perturbed by the planets. Hence, the energy
of the single asteroid is not conserved. We substitute the computation of the
actual trajectory, perturbed by the planets, with the probability distribution
mentioned above. The distribution described so far play the role of the ref-
erence, or free, measure, in the sense that each asteroid has its independent
(i.e., factorized) free measure. Then we introduce an interaction in the proba-
bility distribution, adding a gravitational potential among asteroids. As far as
the short distance configurations are concerned, a regularization in terms of
hard core interaction among asteroids is introduced: if xi represent the vector
position of the i-th asteroid and ai is its radius, then |xi − xj | ≥ ai + aj , or,
in other way, the potential Vij is infinite if |xi − xj | ≤ ai + aj . Note that in
this context the planets are much bigger than the interacting asteroids, but
are very far. The interacting asteroids, on the other side, are light but in prin-
ciple they can have very small mutual distances, exactly of the order of the
sum of their radii, and these colliding configurations will give a huge contri-
bution to the interacting probability measure. We are not assuming in this
model neither agglomerations nor disintegrations due to these collisions, we
simply compute their static contributions to the interacting probability mea-
sure. Even with this strong simplifications, however, it is hopeless to perform
the thermodynamical limit. The hard core interaction prevents the possibility
of configurations having an infinite probabilistic weight, but the features of
the Newtonian interaction, and in particular its very slow decay, do not allow
an estimate of the form (1). Nevertheless, assuming that the number of aster-
oids N is a large but finite parameter, and discussing its value in terms of the
masses of the asteroids, we find results that are quite interesting in terms of
the description of the real Solar System.

In order to quantify the effect of the gravitational interaction on the
trajectories of the asteroids, we define a notion of stability in the following
way: each asteroid, with respect to its independent reference measure, has



G. Pinzari et al. Ann. Henri Poincaré

its own variance of the distance from the star. Call σ2
0 such variance. If the

number N of asteroids (and their masses distribution) is appropriately chosen,
it is possible, uniformly in the choice of the asteroid, to give for the interacting
measure an estimate of the variance σ2 of the form:

σ2 = σ2
0(1 + ε) (2)

we then say that the system is ε − N -stable. If ε is sufficiently small, we can
argue that the interaction among asteroids implies small modifications of the
asteroid’s orbit.

To give an initial idea of the smallness required on ε in order to have an
astronomical interpretation of this notion of stability, we are assuming that
the energy of each asteroid confines it in the vicinity of the minimum of its
effective potential. This means that the eccentricity is small, together with
the effect of the interaction with the distant planets, and hence the reference
(free) probability of each asteroid has a standard deviation around its average
radius very small with respect to the radius itself. If the effect of the interaction
among asteroids is such that this standard deviation stays small, i.e., if ε is of
order 1 or less, we can assume that the probability of a large deviation of an
asteroid from its average radius is very small. A quite important point is the
relation between this large deviation probability and the astronomical stability
of the orbit. The inverse of the probability of a large deviation multiplied by
the time scale of the variations of the distance between the asteroid and the
star, that is, at least the period of the orbit of the asteroid itself, gives us an
idea of the time scale in which we have to assume that such large deviation is
not realized, and hence the asteroid will remain close to its present orbit. Such
large deviation probabilities estimates could be done with rough but robust
tools, like Chebyshev inequality, or with more sophisticated techniques. This
delicate point will be discussed in the next section.

We study in detail three different setups:

(1) Similar asteroids
Our first setup is somehow theoretical: the asteroids are very light and

their masses are comparable. The average radius of the orbit is similar for each
asteroid; we will compute the stability of the system in the worst case, i.e.,
for equal average radii. Fixing the radius of the asteroids, we find an estimate,
depending on ε, of the maximum value of the number of asteroids N such
that the system is ε − N -stable. This first computation is important in order
to understand that in this context it is not possible to perform a standard
thermodynamical limit. However, if the total mass of asteroids depends on
their number N , and it goes suitably to zero when N increases, then it is
possible to prove the ε − N -stability of the system. In this context it is easier
to outline the basic problem that one has to face: we want to fix the parameter
of the system in such a way that the contributions of the collisions, in which
the Hamiltonian is negative and has a large absolute value, are not too relevant
for the canonical probability distribution.
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(2) Asteroids with a given mass distribution
In this setup the asteroids have always a similar average distance from

the star, but they have a well-defined distribution of the masses. We show that
a distribution of the form:

N(> r) =
c

rν
(3)

where N(> a) is the number of asteroids with radius greater than a, ν > 1 and
c is a suitable positive constant, guarantees that N can be chosen quite large,
and yet the system remains ε − N -stable. Remarkably, our assumption about
the radii distribution of the asteroids seems to be quite close to the observed
one. In particular, the estimates obtained from observed data give a value of ν
between 1.3 and 3 (see [28] and references therein). Again, the basic problem
is to control the contributions of the collisions.

(3) Planets with well-separated orbits.
In the last part of this paper we try to apply the same techniques devel-

oped for asteroids to a system of planets, i.e., of object small with respect to
the star but larger than asteroids, having orbits with very different average
radii: we show that assuming for the average radius of the orbit of the i-th
planet the following Titius–Bode law:

Ri = b + cai (4)

with Ri the orbit’s average radius of the i-th planet, b and c fixed lengths (0.4
and 0.3 U.A., respectively, for the Solar System) and a > 1 a fixed number (a =
2 for the Solar System), and assuming N small enough, the system is ε − N -
stable. In this context we briefly discuss the 1-stability of the Galilean Jupiter’s
satellites. Also in this case the main problem is to control the contributions
due to the collisions. Here, however, we have to exploit the fact that in order to
have a collision the planets have to deviate substantially from their reference
distribution, see further comments below, in the beginning of Sect. 5.

In order to obtain these results, we have to interpret the classical mean-
ing of the thermodynamic constants in Gibbs distribution in a different way.
The main problem is the interpretation of the temperature in this context. As
it will be clear in the next section, it is physically meaningless to define a com-
mon temperature for objects with different masses. Since the exact Keplerian
orbit and also its correction due to external objects are computed in terms of
gravitational interaction, the shape of the orbit and, consequently, the form
of the probability distribution that we want to define may not depend on the
mass of the orbiting object. On the other side, the contribution to the energy of
such object depends linearly on the mass. Hence the contribution of an object
of mass m to the probability distribution has to be rescaled by a factor 1/m.
This means that each object has its own “temperature”, proportional to 1/m.
After this rescaling, it is natural to assign the role of the temperature to a
number γ that is related to the free measure deviation of the radii of the aster-
oids. Small temperature, corresponding in our model to large γ, means that
the asteroid has a free distribution concentrated in the vicinity of its reference
circular orbit. Hence we are assuming that in the low-temperature regime the
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eccentricity of the orbits and the interactions with the heavy far planets are
small, and the asteroids, as far as their free measure distribution is concerned,
have an average energy very close to the minimum of their effective potential.

Moreover our particles are obviously distinguishable, and hence the com-
binatorial Gibbs factors 1

N ! are absent in our treatment. In order to estimate
the deviations of the radii of the asteroids (and, eventually, planets) in the
presence of the interaction among them, we had to use a procedure quite stan-
dard in statistical mechanics, usually known as Peierls argument, see Sect. 2,
and then judicious combinatorial estimates, similar to the ones introduced in
cluster expansion. Such estimates, due to the absence of the Gibbs factor, have
some non-standard features.

The results we obtain, despite the simplicity of the estimate we present,
may have some interest. From a quantitative point of view, the estimates of the
mass and of the number of the asteroids and of the planets are quite different
from the ones observed in the Solar System, but the orders of magnitude are
not too distant. In the simpler case of Galilean satellites our notion of stability
is guaranteed for masses of the satellites close to the actual ones. Moreover
the model explains why in order to have stability the number of very light
asteroids may be relatively high, while the planets have to be quite far apart
and their number has to be very small, of the order of N ≤ 10.

The model, then, seems to have a reasonable fit with the observed data.
The work is organized as follows: in Sect. 2 we present our model, we

define more precisely the notion of “thermodynamical” stability for planetary
systems and we define the relation among this notion of stability and the
astronomical one; in Sect. 3 we discuss an application of the model to a belt of
asteroids having a very narrow distribution of masses; in Sect. 4 we generalize
the same results to a more realistic asteroid belt; Sect. 5 is devoted to the
application of our model to a planetary system in which the radii of the planets
satisfy a kind of Titius–Bode law. Finally in Sect. 6 we discuss some brief final
remarks.

2. The Model

2.1. Planetary System

Consider a system of N bodies with mass mi, constrained on a plane, with
pairwise gravitational interaction and interacting gravitationally with a much
larger body, the star, of mass M centered at the origin of a reference frame in
the plane. The system is described by the Hamiltonian

H(�p, �q) =
N∑

i=1

|pi|2
2mi

−
N∑

i=1

kMmi

|qi| −
∑

1≤i<j≤N

kmimj

|qi − qj | (5)

where qi are two-dimensional Euclidean coordinates, pi the corresponding
moments and k the gravitational constant. We remark that in our model the
mass M does not move. This appears in (5) from having neglected centrifugal
terms coming from taking the reference frame centered at M ; compare, e.g.,
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[6], for the general expression of the N -body Hamiltonian in the star-centered
frame.

Calling

H0(�p, �q) =
N∑

i=1

|pi|2
2mi

−
N∑

i=1

kMmi

|qi| (6)

the Hamiltonian describing N uncoupled central interactions with the star,
the original Hamiltonian can be seen as the sum of H0 and a perturbing term.

Rewriting each term h0 of the sum appearing in H0 using polar coordi-
nates (with ρ the distance from the star and θ the true anomaly) and setting
pθ = J for the conservation of the angular momentum in the central system,
we can write h0 as

h0 =
p2

ρ

2m
+ Veff(ρ) = E (7)

where

Veff(ρ) =
J2

2mρ2
− kMm

ρ
(8)

can be interpreted as an effective potential. If the total energy of the system
is close to the minimum of Veff(ρ), it makes sense to think that a second-order
approximation of this potential (harmonic potential) describes reasonably well
the gravitational interaction with the star.

Denote by R = J2

km2M the value at which the minimum of the potential is
attained. A straightforward computation gives, introducing the dimensionless
coordinate ξ = ρ−R

R , that Veff(ρ) can be rewritten in terms of ξ as

V (ξ) =
1
2

kMm

R

(
−1 +

ξ2

(1 + ξ)2

)
. (9)

We will call the expansion of this potential in which we neglect the unessential
constant − 1

2
kMm

R and we keep only the second-order term:

V2(ξ) =
1
2

kMm

R
ξ2 (10)

the Gaussian approximation of the central interaction.

Remark 2.1. The Gaussian approximation is apparently a strong assumption,
so we need a pair of comments. On one side, neglecting the first term in (9)
reflects the precise choice of regarding the R’s as fixed quantities, rather than
as thermodynamical variables (see also the next section). Secondly, for what
concerns the approximation of V with its quadratic expansion, it will be clear
(see Sect. 5 for a discussion) that in the applications of our model to system of
very small bodies (asteroids) such assumption is reasonable, because we will
show that the interaction between the asteroids keeps the variance of ξ of the
same order of the unperturbed system, and the main terms in the corrections
are related to configurations with small ξ, namely colliding asteroids.
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2.2. Free Probability Measure

Denote by Ri the radius of the i-th circular orbit, and consider the Gaussian
approximation of its central potential.

V2,i(ξi)− =
1
2

kMmi

Ri
ξ2
i (11)

To avoid heavy notations, we will denote such potential with Vi(ξi), dropping
the subscript 2 until further notice. We want to define a reference probability
measure on the position of the body in the plane in the absence of perturba-
tions. Recalling that ξi and θi are, respectively, the dimensionless deviation of
the distance from the mean radius and the true anomaly of the i-th body, we
consider the probability measure

dμ0(ξi, θi) =
eβiVi(ξi) dθi dξi∫ 2π

0
dθi

∫∞
−∞ dξi e−βiVi(ξi)

. (12)

where βi is a positive parameter. Note that the kinetic part in the Hamiltonian
does not play any role in the probability measure since it appears, as a factor,
both at the numerator and at the denominator. A similar fate would hold for
the terms − 1

2
kMmi

Ri
coming from (9).

In statistical mechanics the parameter β plays the role of the inverse tem-
perature. When the inverse temperature is large, the system tends to remain
close to the local minimizers of the Hamiltonian. Here each βi is determined so
to have a probability distribution on the unperturbed system having a stan-
dard deviation of the distance between the asteroid and the star much smaller
than its average value. Since we assume small deviations from the average
radius of the orbit, the harmonic approximation of the effective gravitational
potential is reasonable. The temperature βi has the dimension of the inverse
of an energy. As already remarked, βi has to be rescaled by the inverse of the
mass mi in order to be physically meaningful, see the previous section. More-
over, the fact that our coordinates ξi are dimensionless suggests to rescale the
temperature by a factor Ri. Hence we choose

βi =
Ri

kmiM
γ2

i (13)

where γi is a sufficiently large pure number, in order to have a small variance
σ2(ξi) of the deviation ξi from the average radius. As outlined in the intro-
duction, γi takes into account both the eccentricity and the interaction with
planets.

Introducing (13) in (12) yields:

dμ0(ξi, θi) =
γi

(2π)
3
2
e− 1

2γ2
i ξ2

i dθi dξi (14)

meaning that the measure of ξi (without perturbations) is Gaussian with zero
mean and variance σ2

i = 1
γ2

i
.

Note that as a consequence of the previous considerations, in this model,
each body has its own “temperature” βi that tunes its interaction with the
star.
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2.3. Interacting Probability Measure

When the interaction between the asteroids is taken into account, the prob-
ability distribution of the system is proportional to e−Had

where Had is the
dimensionless Hamiltonian

Had(�ξ, �θ) = −
N∑

i=1

1
2
γ2

i ξ2
i −

∑

1≤i<j≤N

βijVij (15)

with

Vij =
kmimj

|�xi − �xj | ; �xi = (Ri(1 + ξi) cos θi;Ri(1 + ξi) sin θi) (16)

and each βij is a parameter tuning the interaction between the i-th and the
j-th body. Here the rescaling of βij is not obvious, as in the case of the free
measure, because Vij appears in the dynamics of both bodies. In order to
have a measure related to the actual interaction among asteroids, it seems
very reasonable that the dimensionless expression appearing eventually in our
measure should respect the following two conditions

(1) The strength of the interaction has to be of the order of m/M , where
m is some kind of average between the masses of the bodies i and j, as sug-
gested by the gravitational nature of the interactions.

(2) The expression of the potential in terms of dimensionless units ξi and
ξj should be rescaled by a factor proportional to R, where again R is some
kind of average between the radius of the bodies i and j.

To fulfill both request, we argue as follows. Other choices, fulfilling (1)
and (2), would affect only the constants appearing in the subsequent estimates.

First of all, order the indices of the asteroids according to their average
distance from the star, i.e., say that Ri ≤ Rj if i < j. Consider the asteroids
with indices i and j (with i < j) and consider the case where ξi = ξj = 0. In
other words it means that the two planets have both distance from the star
equal to the radii Ri and Rj , respectively. Consider then the scenario where
ξi = 1

γi
, ξj = 1

γj
: each of the two asteroids has been moved away from the

star by an amount equal to a free standard deviation. Call ΔVi and ΔVj the
variation of the gravitational potential describing the interaction of the two
bodies with the star associated with this change of scenario, and let ΔVij the
corresponding change in the potential describing the gravitational interaction
among the two planets.

In order to have a probabilistic weight due to the interaction among
asteroids that is comparable with the one due to interaction with the star, we
want that, when considering this change of scenario, the ratio ΔVij

ΔVi+ΔVj
is the

same as the ratio of the corresponding variation in the exponent of e−Had
, that

is we want that

ΔVij

ΔVi + ΔVj
=

βijΔVij
1
2γ2

i ( 1
γi

)2 + 1
2γ2

j ( 1
γj

)2
= βijΔVij . (17)
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Hence

βij =
1

ΔVi + ΔVj
=

1
kM

Ri(1 + γi)Rj(1 + γj)
miRj(1 + γj) + mjRi(1 + γi)

(18)

This means that

βijVij = γij

√
RiRj

|�xi − �xj | := γij
rij

|�xi − �xj | (19)

with

γij =
mimj

M

√
RiRj(1 + γi)(1 + γj)

miRj(1 + γj) + mjRi(1 + γi)
(20)

The statistical mechanics model that we investigate is, therefore, defined
through the following (dimensionless) Hamiltonian (calling again the dimen-
sionless Hamiltonian and the dimensionless potential H and V , respectively,
with an abuse of notation):

H(�ξ, �θ) =
N∑

i=1

1
2
γ2

i ξ2
i −

∑

1≤i<j≤N

γij
rij

|�xi − �xj | =
N∑

i=1

1
2
γ2

i ξ2
i −

∑

1≤i<j≤N

Vij (21)

Recall that the �xi are constrained by the hard core compatibility condi-
tion |�xi − �xj | ≥ ai + aj where ai is the radius of the i-th body. Further note
that assuming the asteroids to have constant density δ, we have mi = 4

3πδa3
i .

The probability measure induced by the Hamiltonian (21) that we want
to take into account to describe the planetary system is, therefore,

μ(·) =
∫

d�ξ ∫ d�θ (·) e−H( �ξ, �θ)

∫
d�ξ ∫ d�θ e−H( �ξ, �θ)

. (22)

Interpreting the variance of each ξi as a quantity linked to the eccentricity
of the i-th orbit, assessing the stability of the system amounts to control the
variance of the ξi’s.

In particular we want to determine the conditions on N and on the phys-
ical parameters (mass, radius of the orbits) for which the system is stable in
the sense of the following:

Definition 2.2. The system (5) is called ε − N -stable if, for a fixed ε and for
all i = 1, . . . , N

〈ξ2
i 〉 ≤ (1 + ε)〈ξ2

i 〉0 (23)

where 〈ξ2
i 〉0 is the variance of ξi with respect to dμ0.

Indeed, if the previous condition is satisfied for an ε small enough, the
deviations of the radii of the orbits of the asteroids, with respect to the orbits
they would have if the other asteroids were not there, stay small.

As outlined in the introduction, here there are a couple of delicate points
deserving a discussion. First, what is the relation among this definition of sta-
bility and the evaluation of the stability of the orbit in an astronomical sense?
Assume that an asteroid has a stable orbit for a time T if its deviation from
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its average radius Ri stays smaller than ARi for all t < T , with A a suitable
constant. Then we can deduce T by the inverse of the probability P (ξi > A)
times the period of revolution τ of the asteroid around the star. In probabil-
ity theory there are many ways to estimate P (ξi > A). One of the rougher,
needing just the control of the variance of ξ, is the Chebyshev inequality. A
direct application of such inequality gives, for A = 1, T ≈ γ2

i τ . This kind of
estimates would hold for objects with masses comparable with the real masses
of the asteroids in the main belt. However, this time (order of ten thousand
years) is quite short in an astronomical sense. Our control of the variance, as
it will turn out in the following sections, allows in principle to use different
estimates for P (ξi > A): for instance using the fact that the reference measure
is Gaussian, one could use Chernoff inequality, or other methods involving the
detailed control of higher order moments of the distribution. This could be
easily done in principle, but it would strictly rely on the details of the refer-
ence measure. Recall that the standard statistical mechanics is based much
more on the geometrical properties of the N -dimensional space, with N of the
order of the Avogadro’s number, that on the details of the Gibbs probabil-
ity measure. While the Chebyshev estimate mentioned above is quite robust,
depending only on the fact that a reasonable reference probability should be
strongly concentrated around its circular orbit, a more refined estimate will
require some additional arguments regarding the faithfulness of the free refer-
ence measure. This will be the subject of further investigations.

The second point deserving a discussion is the role of the collisions in
the evaluation of the canonical measure defined in (22). As it will be clear
by the computations of the following subsection, the main problem of this
approach is the control of the probability of the configuration in which n
asteroids are very close one with the other (n body collisions), because the
corresponding energy turns out to be negative and proportional to n2. This
gives rise to a probabilistic weight proportional to Cn2

, with C > 1, and it
is not clear how to control it from a combinatorial point of view. This seems
to suggest that the collision terms are the leading one, and then only a very
small amount of asteroids may be considered in order to have ε − N -stability
with ε reasonably small. A relatively standard but judicious control of the
structure of the measure (22), however, seems to indicate that the number of
asteroids that can be taken into account in this model is not too different from
the actual one (see Sect. 4 below), and that this interpretation may suggest
the fact that the number of asteroids that we see today is the relic of a much
bigger initial set, in which a large part of asteroids has been lost due to the
intrinsic instability of the system.

2.4. Estimation of 〈ξ2
m 〉

The value of 〈ξ2
m〉 is given by

〈ξ2
m〉 =

∫
d�ξ d�θ ξ2

me−H( �ξ, �θ)

∫
d�ξ d�θe−H( �ξ, �θ)

=
∫

dμ0(�ξ, �θ) ξ2
me−V ( �ξ, �θ)

∫
dμ0(�ξ, �θ)e−V ( �ξ, �θ)

(24)
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where H is defined in (21), dμ0(�ξ, �θ) is the product of the measures dμ0(ξi, θi)
defined in (14) and

e−V ( �ξ, �θ) = e
−∑

i<j

Vij

=
∏

1≤i<j≤N

e−Vij =
∏

1≤i<j≤N

e
γij

rij

| �xi− �xj | . (25)

Note that the integral with respect to dμ0(�ξ, �θ) must be restricted to “com-
patible configurations”, that is, those configuration satisfying the hard core
compatibility condition.

By writing
∏

1≤i<j≤N

e−Vij =
∏

1≤i<j≤N

[
(e−Vij − 1) + 1

]
, (26)

it is possible to rewrite (24) exploiting the following combinatorial identity:
∏

1≤i<j≤N

(bij + 1) =
∑

g∈GN

∏

{ij}∈E(g)

bij , (27)

where with GN we denote the set of all graphs with N vertices and with E(g)
the set of all edges of the graph g. Thus we can write

〈ξ2
m〉 =

∫
dμ0(�ξ, �θ) ξ2

m

∏
i<j e−Vij

∫
dμ0(�ξ, �θ) ∏

i<j

e−Vij

=

∑
g∈GN

∫
dμ0(�ξ, �θ) ξ2

m

∏
{ij}∈E(g)(e

−Vij − 1)
∑

g∈GN

∫
dμ0(�ξ, �θ)

∏
{ij}∈E(g)(e−Vij − 1)

(28)

Note that

∑

g∈GN

∏

{ij}∈E(g)

bij =
N∑

k=1

∑

X1,...,Xk

k∏

l=1

∑

g∈GXl

∏

{ij}∈E(g)

bij (29)

where X1, . . . , Xk is a partition of the set {1, . . . , N} and GXl
is the set of all

connected graphs with vertices in the set Xl.
Using this approach, and denoting by X0 the component of the graph

containing the vertex associated to the m-th body, (28) can be rewritten in
terms of connected components in the following way:

〈ξ
2
m〉 =

∑

k≥0

∑
X0,X1,...,Xk|Xl|≥2

|X0|≥1

k∏
l=1

( ∑
g∈GXl

∫
dμ0(Xl)

∏

{ij}∈E(g)
(e

−Vij −1)

) ∑
g∈GX0

∫
dμ0(X0) ξ2m

∏

{ij}∈E(g)
(e

−Vij −1)

∑

k≥1

∑
X1,...,Xk

k∏
l=1

(
∑

g∈GXl

∫
dμ0(Xl)

∏

{ij}∈E(g)
(e

−Vij −1))

(30)
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that allows to bound 〈ξ2
m〉 as follows (this is what is commonly known as

Peierls argument, see for instance [8,22] for its definition in the case of low-
temperature spin systems)

〈ξ2
m〉 ≤

∑

X�m

∑

g∈GX

∫
dμ0(X) ξ2

m

∏

{ij}∈E(g)

(e−Vij − 1) (31)

since
∑

k≥0

∑
X0,X1,...,Xk

|Xl|≥2
|X0|≥1

∏k
l=1 (

∑
g∈GXl

∫
dμ0(Xl)

∏
{ij}∈E(g)(e

−Vij − 1))

∑
k≥1

∑
X1,...,Xk

∏k
l=1(

∑
g∈GXl

∫
dμ0(Xl)

∏
{ij}∈E(g)(e−Vij − 1))

≤ 1

(32)

Indeed, in the previous expression, since the pair potential Vij are negative in
the integration region, the sums are over positive terms, both numerator and
denominator are of the same type, but the denominator contains more terms.

We want to rewrite (31) in terms of a sum over trees instead of sum over
connected graphs using the so-called Penrose Tree Graph identity introduced
by Penrose in [25], see also [7]. To this purpose, denoting Gn the set of con-
nected graphs on n vertices and Tn the set of trees, we first give the following:

Definition 2.3. A map M : Tn → Gn is called a partition scheme in Gn if, for
all τ ∈ Tn, τ ∈ M(τ) and Gn =

⊎
τ∈Tn

[τ,M(τ)]

where
⊎

denotes a disjoint union and [τ,M(τ)] = {g ∈ Gn : τ ⊂ g ⊂ M(τ)} is
a Boolean interval with respect to the set-inclusion. Further, given a partition
scheme M and a tree τ ∈ Gn write m(τ) = E(M(τ)) \ E(τ) so that, in
words, m(τ) represents the set of all edges that can be added to τ to obtain a
connected graph in the Boolean interval [τ,M(τ)].

With this notation, we have the following:

Lemma 2.4 (General Penrose identity). Let n > 2 and let M : Tn → Gn be a
partition scheme in Gn. Then

∑

g∈Gn

∏

{ij}∈E(g)

(e−Vij − 1) =
∑

τ∈Tn

∏

{ij}∈E(τ)

(e−Vij − 1)
∏

{uv}∈m(τ)

(e−Vuv ) (33)

whose proof is straightforward. Indeed:

Proof. Arguing as in (27), we have
∑

g∈Gn

∏

{ij}∈E(g)

(e−Vij − 1) =
∑

τ∈Tn

∏

{ij}∈E(τ)

(e−Vij − 1)
∑

S⊂m(τ)

∏

{uv}∈S

(e−Vuv − 1)

(34)

=
∑

τ∈Tn

∏

{ij}∈E(τ)

(e−Vij − 1)
∏

{uv}∈m(τ)

(e−Vuv − 1) + 1

(35)
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=
∑

τ∈Tn

∏

{ij}∈E(τ)

(e−Vij − 1)
∏

{uv}∈m(τ)

(e−Vuv ) (36)

�

Using again that Vij < 0 in the integration region, we want to bound
suitably the terms of the form e−Vij − 1. To do this we assume a priori that
|Vij | ≤ 1

2 , we use the fact that ex − 1 ≤ 5
4x for 0 ≤ x ≤ 1

2 , and then we
verify a posteriori that the values of |Vij | that guarantee the control of the
ε − N -stability are smaller than 1

2 . We have

〈ξ2
m〉 ≤

∑

n≥1

∑

|X|=nX�m

∫
dμ0(X)ξ2

m

∑

g∈Gn

∏

{ij}∈E(g)

(e−Vij − 1) (37)

=
∑

n≥1

∑

|X|=n
X�m

∫
dμ0(X)ξ2

m

∑

τ∈Tn

∏

{ij}∈E(τ)

(e−Vij − 1)
∏

{uv}∈m(τ)

e−Vuv (38)

≤
∑

n≥1

∑

|X|=n
X�m

∫
dμ0(X)ξ2

m

∑

τ∈Tn

∏

{ij}∈E(τ)

5
4

|Vij |
∏

{uv}∈m(τ)

e−Vuv (39)

3. Similar Asteroids

Here we consider the case of “asteroids” orbiting with similar radii and similar
eccentricities around the star (the asteroids are in the same “belt”). Let N be
the total number of asteroids and let Ri = R, γi = γ for all i ∈ {1, . . . , N}.
Further let ai be the diameter of the i-th asteroid and let a ≤ ai ≤ 2a.

We want to determine conditions ensuring the ε − N -stability of the
system. Assume Vij ≤ 1

2 . It follows from (39)

〈ξ2
m〉 ≤ 〈ξ2

m〉0

⎛

⎜⎜⎝1 +
∣∣∣∣

∣∣∣∣
∑

n≥2

∑

|X|=n
X�m

∑

τ∈Tn

∏

{ij}∈τ

5
4
Vij

∏

{ij}∈m(τ)

e−Vij

∣∣∣∣

∣∣∣∣
∞

⎞

⎟⎟⎠ (40)

where ||·||∞ is the supremum with respect to feasible configurations and the
addend 1 represents the case X0 = {m}. Denote by δ be the (common) density
of the asteroids and by δs the density of the star. The dimensionless potential
can be written in this case in the form:

Vij = −(γ + 1)
mimj

M(mi + mj)
R

|�xi − �xj | (41)

and it is straightforward to verify that

|Vij | ≤ (γ + 1)
δ

δs

a3
<

a>

R

R3
s

(42)

with a< = min{ai, aj} and a> = max{ai, aj}.
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By (40), (42) and the previous observations, we have

ε ≤
∑

n≥2

∑

|X|=n
X�m

∑

τ∈Tn

(
(γ + 1)

δ

δs
5a2 R

R3
s

)n−1

e
n2(γ+1) δ

δs
4a2 R

R3
s . (43)

Note that the fact that in this bound we have used (42) means that
we are considering the worst case scenario, i.e., an n-body collision, in order
to evaluate the correction to the free measure due to the interaction among
asteroids.

Introducing a dependence on N and calling A = N((γ + 1) δ
δs

5a2 R
R3

s
),

Ā = 4
5A, (3) can be rewritten as

ε ≤
∑

n≥2

(
N − 1
n − 1

)
nn−2(

A

N
)n−1eĀn (44)

=
∑

n≥2

(N − 1)(N − 2) · · · (N − n)
(n − 1)!

nn−2 An−1

Nn−1
eĀn (45)

≤
∑

n≥2

An−1eĀn (46)

≤
∑

n≥2

(AeĀ)n−1eĀ (47)

≤ eĀ AeĀ

1 − AeĀ
(48)

since, for n ≥ 2

nn−2

(n − 1)n−1
≤ 1, (49)

k! ≥
(

k

e

)k

(50)

and
(N − 1)(N − 2) · · · (N − n)

Nn−1
< 1. (51)

Therefore, ε − N -stability of the system is guaranteed if Ae2Ā

1−AeĀ ≤ ε.
Rough numerical estimates show that if A < 1/5, then ε ≤ 2A.

Note that in order to have A = 1/5, Na2 has to be bounded by a suitable
constant. This means that as outlined in the introduction, if N increases the
total mass of the asteroids, obviously proportional to Na3, goes to zero.

4. Asteroids with Power-Law Mass Distribution

Now we consider a more realistic case (see, for instance, [3,11,28]): the N
asteroids have different masses/diameters (still under the assumption that they
have common densities δ) and may have different eccentricity. We will keep the
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assumption Ri = R ∀i because the final estimate on ε will represent an upper
bound also for a different average radius Ri. Indeed, we are assuming that
the deviations around the average radius have always a probabilistic weight of
order 1, while a collision among asteroids, that gives the leading contribution
in Vij , has a free probability much smaller than 1 if the two average radii Ri

and Rj are very different.
The distribution of the parameters γi appearing in the free measure is

also supposed to be not too spread: the eccentricity of the orbits may vary,
but the perturbations due to the planets are similar for all the asteroids.

As far as the masses are concerned, we let the diameters of the asteroids
satisfy amin ≤ ai ≤ amax and we assume the following power-law distribution
for their diameters:

N(> a) =
c

aν
(52)

where N(> a) is the number of asteroids with diameter larger than a and c is
a suitable constant. This law is assumed for the known asteroids belts in the
solar system. To simplify our discussion, in the remainder we will set ν = 2. It
will be clear that a different value of ν will affect only the constants, provided
ν > 1.

We will define the unit of length in order to take amin = 1 and amax = 2L

(for some natural number L). Note that amin = 1 implies c = N . In the
applications describing the main asteroid belt in the Solar System the unit
will be 1Km (see below).

We partition the asteroids into L classes A1, . . . , AL. The i-th asteroid
belongs to the l-th class if 2l−1 ≤ ai < 2l. In this case we write i ∈ Al.
Denoting by Nl the number of asteroids in the l-th class we have Nl = N(>
2l−1) − N(> 2l) = 3

4l N .
Let i ∈ Al and j ∈ Am with l > m. From (19), setting γ = max1≤i≤N γi,

it follows

|Vij | ≤ wlm := (γ + 1)
δ

δs

a3
m

al

R

R3
s

= (γ + 1)
δ

δs
4m2−(l−m−1) R

R3
s

(53)

For l = m we have

wll = (γ + 1)
δ

δs
4l R

R3
s

(54)

Hence

ε ≤
∑

n≥2

∑

n1,...nl∑
i ni=n

L∏

l=1

(
Nl

nl

)
nn−2 max

τ

∏

{ij}∈τ

(ewlm − 1)
∏

{ij}∈m(τ)

ewlm . (55)

Since the estimates of the interactions wlm decay exponentially in |l−m|,
the worst case is the tree τ having nL −1 connections among asteroids in class
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L and nl connections among asteroids of class l. Then

max
τ

∏

{ij}∈τ

(ewlm − 1) ≤
(

(γ + 1)
δ

δs

R

R3
s

4L

)nL−1 L−1∏

l=1

(
(γ + 1)

δ

δs

R

R3
s

4l

)nl

(56)

≤ An−1

(
L−1∏

l=1

(
1
Nl

)nl
)(

1
NL

)nL−1

(57)

where in the last step we have set A = γ δ
δs

3R
R3

s
N .

In addition, we have

exp

⎧
⎨

⎩
∑

{ij}∈m(τ)

wlm

⎫
⎬

⎭ ≤ exp

{
∑

l>m

nlnmwlm

}
≤ exp

{
∑

l>m

A

Nm
2−(l−m)

}
. (58)

Finally we obtain (assuming the asteroid m is in class 1):

ε ≤
∑

n≥2

∑

n1...nl∑
i ni=n
ni≥1

L∏

l=2

(
Nl

nl

)(
N1 − 1
n1 − 1

)
nn−2An−1

L−1∏

l=1

(
1
Nl

)nl
(

1
NL

)nL−1

enA

(59)

≤ eA+1
∑

(ALeA)
n

= eA+1 ALeA

1 − ALeA
(60)

Remark 4.1. It is interesting, in this slightly more realistic framework, to com-
pare this result with the actual main belt of asteroids of Solar System. The
parameter A, setting γ = 50, δ

δs
= 2 and the real values for R, Rs, has a value

A ≈ N
5×105 . Setting L = 10, and considering only the asteroids with a diameter

a ≥ 1Km, one finds that to obtain ε ≤ 1 the condition on A is A ≤ 1/4. This
means that with our (rough) approximations N ≈ 105. The actual number of
asteroids in the main belt having diameter larger that 1Km is N = 106

Remark 4.2. The computation above assumes a minimal size of the asteroids.
Here we present an indication of the fact that the power law mass distribution
for the very light asteroids has to have an exponent ν < 1. Calling dN(a) the
number of asteroids having the diameter between a and a+da, we clearly have
that if N(> a) = N1

aν , then

dN(a) = N1ν
da

aν+1
(61)

Considering that in the estimate of ε we have to give a bound of the quantity∑
ij |Vij | and using (42) and (61) we get

∑

ij

|Vij | ≤ (γ + 1)
δ

δs

R

R3
s

∫ amax

amin

da

∫ amax

a

dbN2
1 ν2 1

aν+1

1
bν+1

a3

b
(62)
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It is now clear that amax has to be such that N(> amax) = 1, and hence

amax = N
1
ν
1 . Performing the elementary integrals in (62), we get

∑

ij

|Vij | ≤ (γ + 1)
δ

δs

R

R3
s

ν2N2
1

ν + 1

[
N

2−2ν
ν

1 − a2−2ν
min

2 − 2ν
− N

2−2ν
ν

1 − a3−ν
min N

− ν+1
ν

1

3 − ν

]

(63)

This expression shows that if amin is a finite value, say amin = 1, then the
conditions ensuring the control of ε are ν > 1 and

(γ + 1)
δ

δs

R

R3
s

ν2N2
1

ν + 1
< K (64)

with K suitably chosen. If we want to consider small amin, we have to assume
that the distribution N(> a) = N1

aν , with ν > 1, is valid for a > 1, while
defining N<(> a) as the number of asteroids having a diameter between a and
1, it has to be of the form N<(> a) = N1

aν′ with ν′ < 1. To our knowledge
we do not have many observations on the mass distribution of the very small
asteroids. However experimental data seem to show (see, for instance, [28])
that the exponent in the distribution tends to decrease for smaller asteroids.

5. Planets

The basic idea developed in the previous sections is to describe the effect of
the perturbation given by other distant objects, say planets, to the orbits of
a large number of asteroids living in a single belt, i.e., with similar radii, by a
probability distribution centered around a circular orbit. In this section we try
to apply the same idea to a system of relatively few planets having well sepa-
rated orbits. In this case the free measure, i.e., the system obtained neglecting
the interactions with the other planets, can be completely determined in terms
of an elementary two-body problem. However we shall see that a toy model
in which N , the number of planets, is small (∼ 10), the masses of the planets
may be quite different and the eccentricity of the orbits is very small (large
γi) for all planets, keeps some interesting forecast performance, even when we
substitute the well-known Keplerian orbit with a probability distribution.

The computations involved in this case, however, are quite different.
Indeed, in the asteroids case the quantity to be controlled is the probabil-
ity of collisions, and such collisions do not imply large deviations, in terms
of the free measure, from the average value R of the distance from the star,
that is the same for all asteroids. In other words, the detailed structure of the
free measure does not play any role, and the Gaussian approximation of the
free measure is simply a way to compute very easily the free variance of the
distribution of the distance from the star. The estimates, therefore, can be
done always in the sense of an L∞ norm, and the fact that with a reasonable
choice of the parameters we can keep ε small means that the collisions give a
negligible contribution to the interacting probability.
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In the case of planets we will show that the system is ε − N -stable if the
radii Ri of the planets are very different, namely if the condition Ri − Rj =
c(ai−aj) holds. This assumption amounts to saying that the radii of the orbits
satisfy the Titius–Bode law, that is, Ri = b + cai. Note that the Titius–Bode
law is fulfilled quite accurately in the Solar System.

Since our main task is to verify that even in this case, with larger masses,
the collisions give a negligible contribution to the interacting measure, we
have to modify the previous computations: collisions are events with a very
small probability with respect to the free measure, and hence we cannot use
L∞ estimates in order to evaluate the collisions. On the other side, since a
collision is possible only when at least one planet has a very large fluctuation
around his free orbit, the Gaussian approximation loses its meaning, and we
need some initial estimates about the free complete measures.

The first important observation is that the probability density

dw0(ξ, θ) = exp
(

−γ2

2
ξ2

(1 + ξ)2

)
dθdξ (65)

cannot be normalized on the whole space. Indeed
∫ 2π

0

dθ

∫ ∞

−1

dξ exp
(

−γ2

2
ξ2

(1 + ξ)2

)
= ∞ (66)

The simplest way out is to define the free measure on a finite space,
say on a sphere of radius 2RN . This means that for the i-th planet −1 <
ξi ≤ Ai = 2RN

Ri
. Since our task is to show that the collisions among planets

have a negligible probability in the interacting measure, we will show that for
large γ the main contribution to the interacting measure will be given by the
configurations in which each planet i will have a distance from the star quite
close to Ri, i.e., a ξi of the order of 1/γ. In other words, we are saying that
a planet is inside the planetary system if it is not too far from the star. Note
that in the Solar System AMercury = 200. Hence we will call

Zi =
∫ 2π

0

dθi

∫ Ai

−1

dξi exp
(

−γ2
i

2
ξ2
i

(1 + ξi)2

)
(67)

Note that the main contribution in the integral comes from the interval −1/2 ≤
ξi ≤ 1/2 since the obvious L∞ estimate

∫

|ξ|>1/2

dξi exp
(

−γ2
i

2
ξ2
i

(1 + ξi)2

)
≤ Ae− γ2

i
18 (68)

holds. It is a standard algebraic task, then, to show that for large values of
γ the variance of ξi of the free measure for all planets i is proportional to
σ2

− = 1
4γi

, as in the Gaussian approximation. Note that

〈ξ2
i 〉0 :=

∫
dμ0(ξi)ξ2 :=

1
Zi

∫ 2π

0

dθi

∫ Ai

−1

dξi ξ2
i exp

(
−γ2

i

2
ξ2
i

(1 + ξi)2

)
(69)
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and hence

〈ξ2
i 〉0 =

1
Zi

∫ 2π

0

dθi

∫

|ξi|≤1/2

dξi ξ2
i exp

(
−γ2

i

2
ξ2
i

(1 + ξi)2

)
+ O

(
A3

i e
− γ2

i
18

)

(70)

The interesting values for application to the Solar system are Ai ≤ 200 and

γi ≥ 50, and therefore the correction of order A3e− γ2
i

18 is completely negligible.
Hence the leading part of the integral is dominated from above and from below
by two Gaussian measures with variance σ2

− = 1
4γi

and σ2
+ = 9

4γi
, respectively,

and these are two bounds, both proportional to γ−1
i , for the variance.

In what follows we will assume for simplicity that γi = γ for all planets.
For all m = 1, ..., N we want to give an estimate of the quantity

ε〈ξ2
m〉0 =

N∑

n=2

∑

|X|=n
X�xm

∫
dμ0(X)ξ2

∑

τ∈Tn

∏

{ij}∈τ

(e−Vij − 1)
∏

{ij}∈m(τ)

e−Vij (71)

where Vij = −2γ
mimj

M
RiRj

Rimj+Rjmi

1
| �xi− �xj |

We call ξ typical when |ξi| < k 1
γ . For a fixed X, we write X = T

⋃
T c

with T = {i ∈ X|ξi is typical}.
Let us consider first the case in which i and j are both typical. Standard

algebra shows that for j > i

| �xi − �xj | ≥ Rj

(
1 − k

γ

)
− Ri

(
1 +

k

γ

)
(72)

≥ c1(aj − ai) (73)

with c1 = c − 2k
γ (c + b)

On the other side, if i and/or j are not typical

| �xi − �xj | ≥ rj + ri (74)

where ri is the radius of planet i. To obtain an upper bound of Vij we observe
that, recalling j > i

RiRj

Rimj + Rjmi
≤ b + cai

mmin
ij

(75)

where obviously mmin
ij is the smallest mass between the planet i and j. If imin

is the smallest i in the planetary system (recall for instance that in the Solar
System Mercury corresponds to i = −1), calling c2 = c + b

aimin
we obtain

RiRj

Rimj + Rjmi
≤ c2a

i

mmin
ij

(76)

Then if i and j are both typical, j > i, we get

|Vij | ≤ 2γ
mmax

ij

M

c2

c1

1
aj−i − 1

≤ 2aγ

a − 1
mmax

ij

M

c2

c1
a−(j−i) := V̄ij (77)
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Otherwise

|Vij | ≤ V̄ij
c1(aj − ai)

rj + ri
= Ṽij (78)

The strategy will be the following: first we evaluate in (71) the case
X = T , using for Vij the estimate V̄ij . We will call ε̄ the estimate obtained
in this way. In this case we will proceed as in the previous cases, with an L∞
estimate.

ε̄ ≤
N∑

n=2

∑

|X|=n
X�xm

∑

τ∈Tn

∏

{ij}∈τ

(eV̄ij − 1)
∏

i<j

eV̄ij (79)

≤
⎡

⎣
∏

i	=m

⎛

⎝1 +
∑

j 	=i

(
eV̄ij − 1

)
⎞

⎠− 1

⎤

⎦
∏

i<j

eV̄ij (80)

Remark 5.1. Note that in (79) we gave a quite rough estimate of the combi-
natorics on trees. In particular we used that for trees rooted in m, since every
vertex but m has a unique “predecessor”,

∑
τX

∏
ij∈τ eij ≤ ∏

i	=m

∑
j 	=i eij .

The addend 1 takes into account the sum on X. The last addend −1 takes
into account the fact that the sum in n starts from 2. Since N is small and
the orbits are well separated, this estimate is reasonable.

Calling now c3 = 2aγ
a−1

mmax
ij

M
c2
c1

we have V̄ij ≤ c3a
−(j−i). Assume c3 < 1/2.

Since
√

e < 5/3 we have that eV̄ij − 1 < 5
3 V̄ij and hence

ε̄ ≤
⎡

⎣
∏

i	=m

⎛

⎝1 +
5
3
c3

∑

j 	=i

a−|j−i|

⎞

⎠− 1

⎤

⎦ ec3
∑

i<j a−(j−i)
(81)

Using now the elementary inequalities
∑

i<j a−(j−i) ≤ 1
a−1 and 1+x ≤ ex

we finally get

ε̄ ≤
(
e

5
3 c3N 2

a−1 − 1
)

eN
c3

a−1 (82)

This concludes the estimate for T = X. The crucial relation to control the
general case is the following. Call Ẽ the set of pairs i, j of planets such that for
their estimate we cannot use (77) (collisions). For a fixed T c the contribution
to ε, that we will denote ε(T c) can be bounded by

ε(Tc) ≤
∫

dμ0(T c)
∏

ij∈Ẽ

eṼij (eV̄ij − 1)−1 (83)

To prove (83) it is enough to observe that for all τ

∏

{ij}∈E(τ)

(e−Vij − 1)
∏

{ij}∈m(τ)

e−Vij ≤
∏

{ij}∈E(τ)

(eV̄ij − 1)
∏

{ij}∈m(τ)

eV̄ij
∏

ij∈Ẽ

eṼij

(eV̄ij − 1)

(84)

and then bound with 1 the contribution of the integral
∫

dμ0(T )
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The idea is then to bound the very large contribution due to∏
ij∈Ẽ eṼij (eV̄ij − 1)−1 with the smallness of

∫
dμ0(T c).

Let us start with the simplest case in which T c = {i} and the collision
is with planet i + 1. In this case the only estimate we can do for the proba-
bility of collision with respect to the free measure is the probability of i to be
non-typical, μ0(T c) ≤ e− 2k2

9 . On the other side the weight in the interacting

measure of the collision is proportional to e
V̄i,i+1

c1ai(a−1)
ri+ri+1 ≈ e

c3
c1ai(a−1)

a(ri+ri+1) . Hence
our condition in order to control the single collisions will be

2k2

9
> c3

c1a
i(a − 1)

a(ri + ri+1)
>

2aγ

a − 1
mmax

ij

M
c2

ai

ri + ri+1
(85)

We outline that for N not too large, say N ≥ 10, the case T c = {i} is the lead-
ing one: in order to evaluate the l-body collisions the contribution c3

c1ai(a−1)
a(ri+ri+1)

has to be multiplied by
(

l
2

)
, while the contribution 2k2

9 becomes much larger,
because at least l − 2 planets have to undergo a deviation in ξ of order 1, and
hence the factor becomes of the order of γ2 instead of k2.

We end this section outlining that (85) and (83) can be specified in the
case of the planets of the Solar System and in the case of the Galilean satellites.
Note, however, that the numerical estimates we stated in the generic case may
be specified better once we know the actual value of the parameter. In the case
of the planets we solve simply both conditions, in the sense of the 1-stability,
using as free parameter mmax. k can be chosen in order to have the largest
possible value of mmax. Reasonable values for the parameters are:

• γ = 150, since the eccentricity of the orbits are very small.
• k = 30,
• c2 = 1UA
• a = 2
• aimax

= 128
Then it is possible to satisfy (85) and (83) in order to have ε < 1 with a

value of mmax similar to the Earth’s one. In the case of Galilean satellites, in
which N = 4 and, most of all, b = 0, we can control the various steps of the
estimates much better. The combinatorics on trees and the sums on Vij can be
written more explicitly, obtaining eventually that a ratio mmax/mJ ≈ 10−4,
which is the actual value, ensures 1-stability.

6. Conclusions and Open Problems

The aim of this work is to outline the fact that with a judicious but quite
standard use of results typical of equilibrium statistical mechanics one can
evaluate some global features of the systems of particles rotating around a
much bigger body. The estimates presented here are quite rough, and they
can be surely improved by a careful numerical evaluation of the constants
appearing in the theory. Nevertheless, the results we got, namely an evaluation
of the “thermodynamical” stability of the main asteroid belt, of the planets
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in the solar system and of the Galilean satellites, give quantitative estimates
not too distant from the real data, and seem therefore to indicate that this
approach to the planetary system gives a reasonable possibility to understand
the global structure of the Solar System. More precisely, our model seems to
indicate that in order to have a thermodynamically stable system the masses
of the particles orbiting around the fixed large body have to be very small if
the orbit’s parameters of the particle are similar, but they can increase if the
objects are far apart. It would be nice to have some data about the very small
objects in the belts of the Solar system (main belt of asteroids, trans-Neptunian
belts, rings around the planets) because our model seems to indicate that the
distribution of the very light objects in a belt has to have a different scaling
law with respect to the one of the heavier ones.
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