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Abstract
A robust fuzzy clustering model for mixed data is proposed. For each variable, or attribute,
a proper dissimilarity measure is computed and the clustering procedure combines the dis-
similarity matrices with weights objectively computed during the optimization process. The
weights reflect the relevance of each attribute type in the clustering results. A simulation
study and an empirical application to football players data are presented that show the effec-
tiveness of the proposed clustering algorithm in finding clusters that would be hidden unless
a multi-attributes approach were used.

Keywords Mixed data · Fuzzy C-medoids clustering · Attribute weighting system · Noise
cluster · Football players · Performance variables · Position variables

1 Introduction and literature review

Data in sports are being collected and analyzed, with the integration of physical and digital
sources, increasing the knowledge of professional sports for all parties involved. Statisti-
cal methodology and data-driven analytics in sports can drive decision-making in different
fields:marketing strategies, performances of players or teams, forecasting of revenues, health.
Depending on the type of sport, on the nature of the data at hand, and on the objectives of the
analysis, a variety of statistical learning and operations research methods has been proposed.
In order to analyse the massive and the different kinds of sport data and their complex struc-
ture and then to capture their extensive informationmany advanced statistical methodologies,
strategies of analyses and data-driven procedures have to be considered in the analysis pro-
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cess. In this way, managing this kind of data with advanced theoretical tools we obtain an
informational gain and then the knowledge that represents the basis of any decision-making
process in sport.

The playing characteristics of football players are important both from a technical and
economic point of view. From the technical point of view they allow to evaluate the playing
characteristics that lead the player and the team to achievewinning results; from the economic
point of view they allow to establish the value of a player in the transfer market. Clustering of
football players on the basis of playing characteristics, position and performance variables is
relevant for clubs, either to drive team formation and selection of players, or for determining
the value of a football player in the transfer window period (Behravan and Razavi 2021;
Shelly et al. 2020; Narizuka and Yamazaki 2019).

In the literature, many empirical studies and methodological proposals based on data
science and data-driven approach have been carried out on many sports disciplines to analyze
the large mass of sport data both in the field of performance and in the medical, social or
economic fields (Table 1). For instance, Palacios-Huerta (2004) analyses the effects of rules
of the game of football using an econometricmethodology for dating structural breaks in tests
with non-standard asymptotic distributions. Dawson et al. (2007) present a statistical analysis
of patterns in the incidence of disciplinary sanction (yellow and black cards) that were taken
against football players in the English Premier League over the period 1996–2003. Goossens
et al. (2012) compare league formats with respect to match importance in Belgian football.
Yang et al. (2014) evaluate the efficiency of National Basketball Association (NBA) teams
under a two-stage DEA (Data Envelopment Analysis) framework. Applying the additive
efficiency approach, they decompose overall team efficiency into first-stage wage efficiency
and second-stage on-court efficiency and find out the individual endogenous weights for each
stage. Koopman and Lit (2015) propose a dynamic bivariate Poisson model for analysing and
forecastingmatch results in the English Premier League.Nikolaidis (2015) builds a basketball
game strategy through statistical analysis of data. In particular, the aim of his paper is on the
one hand to present some indicative, simple ideas for the statistical analysis of basketball
data, and on the other hand to show that any basketball team can improve significantly its
decision-making process if it chooses to be statistically supported. Andrienko et al. (2017)
propose a visual analysis of pressure in football. Carpita et al. (2019) explore and model team
performances of theKaggle European Soccer database. Galariotis et al. (2018) propose a two-
stage method for the concurrent evaluation of the business, financial and sports performance
of football clubs analysing the case of France. Geenens and Cuddihy (2018) review the Wald
confidence interval for a proportion, suggest new non-parametric confidence intervals for
conditional probability functions, revisit the problems of bias and bandwidth selection when
building confidence intervals in non-parametric regression and provide a novel bootstrap-
based solution to them. The new intervals are used when analysing game outcome data for
the UEFA (Union of European Football Associations) Champions and Europa Leagues from
2009–2010 to 2014–2015. McHale and Relton (2018) identify key players in soccer teams
using network analysis and pass difficulty. Metulini et al. (2018) model the dynamic pattern
of surface area in basketball and its effects on team performance. Zuccolotto et al. (2018)
use big data analytics for modeling scoring probability in basketball in order to study the
effect of shooting under high-pressure conditions. Goes et al. (2018) propose a data-driven
model to measure pass effectiveness in professional soccer matches. Van Bulck et al. (2019)
consider a tabu search based approach by scheduling a non-professional indoor football
league. Adhikari et al. (2020) propose a methodology for cricket player selection based on
an efficiency data envelopment analysis, semi-variance approach, and Shannon-entropy. Cea
et al. (2020) analyze the procedure used by FIFA up until 2018 to rank national football teams

123



Annals of Operations Research

Table 1 Some recent statistical papers on data in sport

Sport Authors (year) Method

Football Palacios-Huerta (2004) Econometric methodology

Dawson et al. (2007) Bivariate Poisson regression, bivariate
negative binomial regression

Goossens et al. (2012) Simulation and Optimization (Bivariate
Poisson regression)

Koopman and Lit (2015) Dynamic bivariate Poisson model

Andrienko et al. (2017) Static and dynamic visualizations and
interactive query tools

Carpita et al. (2019) Binomial Logistic Regression

Galariotis et al. (2018) Partial Least Squares, Structural Equation
Modeling

Geenens and Cuddihy (2018) Non-parametric confidence intervals for
conditional probability functions

McHale and Relton (2018) Generalised additive mixed model (GAMM)
and Network Analysis

Goes et al. (2018) Linear Models

Van Bulck et al. (2019) Optimization

Cea et al. (2020) Poisson regression

Gates et al. (2017) Clustering

Behravan and Razavi (2021) Clustering

Fortuna et al. (2018) Clustering

Lu and Tan (2003) Clustering

Narizuka and Yamazaki (2019) Clustering

Shelly et al. (2020) Clustering

Basketball Ulas (2021) K-means and Hierarchical clustering,
Ordinary Linear Regression

Yang et al. (2014) Two-Stage Data Envelopment Analysis

Metulini et al. (2018) Markov Switching Model, VAR models

Zuccolotto et al. (2018) Classification And Regression Trees

Rugby Narizuka and Yamazaki (2020) Network bipartite graph and community
detection

Cricket Adhikari et al. (2020) Data Envelopment Analysis

Kayak Dadeliene et al. (2020) Principal Components Analysis,
MannâWhitney Exact Test

All sports Groll et al. (2018) Different statistical methods

and define by random draw the groups for the initial phase of the World Cup finals. They
calibrate a pblackictive model to form a reference ranking to evaluate the performance of a
series of simple changes to that procedure. These proposed modifications are guided by a
qualitative and statistical analysis of the FIFA ranking. Successively they analyze the use of
this ranking to determine the groups for theWorld Cup finals. Dadeliene et al. (2020) analyse
the effects of high intensity training on physical and functional capacities of elite kayakers
by using the principal component analysis.
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Papers specifically on clustering of sports data areGates et al. (2017), Behravan andRazavi
(2021), Fortuna et al. (2018), Lu and Tan (2003), Narizuka and Yamazaki (2019), Narizuka
and Yamazaki (2020), Shelly et al. (2020), Ulas (2021), most of which with applications to
football data. Gates et al. (2017) propose a unsupervised classification method that defines
subgroups of individuals that have similar dynamic models. They apply this method on
functional MRI from a sample of former American football players. In Behravan and Razavi
(2021) a two phase method is proposed. In the first phase, the dataset is clustered using an
automatic clusteringmethod calledAPSO-clustering. In the second phase, a hybrid regression
method which is a combination of particle swarm optimization (PSO) and support vector
regression (SVR), is used to build a predictionmodel for each clustersâ data points. In Fortuna
et al. (2018), focusing on top football players data, a comparison of functional k-means and
functional hierarchical clustering for detecting specific patterns of google queries over time is
presented. InLu andTan (2003) an unsupervised clustering of dominant scenes in sports video
is presented, inwhich data are prepocessed byPrincipal Components andLinearDiscriminant
Analysis. Narizuka and Yamazaki (2019) develop a clustering algorithm to extract transition
patterns of the formation of particular team during the game. Narizuka and Yamazaki (2020)
perform a network bipartite graph and subgroup (cluster) analyses to clarify the injured
player’s experience and the cause of injury on longitudinal rugby data. Shelly et al. (2020) use
K-means Clustering to Create Training Groups for Elite American Football Student-athletes
Based on Game Demands. In Ulas (2021) NBA team’s characteristics and similarities were
assessed firstly with Machine Learning techniques (K-means and Hierarchical clustering)
and secondly with Ordinary Linear Regression (OLS) to investigate the factors that affect
the NBA team values.

Finally, we remark the interesting special issue on ‘Statistical Modelling for Sports Ana-
lytic’s by Groll et al. (2018).

The presented literature has shown the importance of partitioning and clustering of football
players on the basis of performance, position and other variables. The proposed clustering
model aims at targeting some relevant issues: (i) the variables of interest in sport are of
different types (mixed data), e.g, quantitative, nominal, time series; (ii) these variables don’t
play the same role in measuring the within cluster similarity; (iii) robustness is a desirable
property for a clustering method. The proposed model takes into account the three points.
A mixed distance for the different attributes is considered; weights to distances related to
different attribute types giving relevance to the variable types capable to increase the within
cluster similarity among the units are objectively provided by the model; a noise cluster
represented by a noise prototype is introduced to achieve robustness with respect to outliers.

The proposal is novel for the methodology used, a robust PAMFuzzy clustering algorithm
based on a weighted mixed distance, and for its application to positional and performance
football players data.

The paper is structured as follows. In Sect. 2 the Robust Fuzzy C-Medoids Clustering for
Mixed Data model (FCMd-MD-NC) is proposed. In Sect. 3 a simulation study is carried out
to illustrate the performance of the proposed clustering model. Section 4 reports the results of
the application of the model to clustering of football players, to show the substantive features
of FCMd-MD-NC. Section 5 concludes the paper and provides directions for future work.

123



Annals of Operations Research

2 Robust fuzzy C-medoids clustering for mixed datamodel
(FCMd-MD-NCmodel)

Let X = {X1, . . . , XP } be a set of P variables, or attributes, observed on n units, in which
the P variables are of different types (mixed data), e.g, quantitative, nominal, time series,
sequences of qualitative data, imprecisely observed data, textual data.

More precisely, the setX contains S types of variables, with ps variables for each attribute
type, with

s = 1, . . . , S; 1 < S ≤ P; 1 ≤ ps < P;
S∑

s=1

ps = P.

Without loss of generality, assume that variables are arranged so that the first p1 variables
are of the same type (for instance, quantitative), the second p2 variables are also of the same
type, different from that of the first p1 variables (for instance, qualitative), and so on, so that

X ≡ {X1, . . . ,Xs, . . . ,XS}
where Xs ≡ {X p1+...+ps−1+1, ..., X p1+...+ps } is the set of variables of the s-th type. Finally,
Xis is the set of values observed for the i-th unit on the ps variables of the s-th type.

Depending on the nature of the attribute, Xis could be a vector, a matrix, or could have
a more complicated structure. For instance, in the case of quantitative variables, Xis ≡ xis
is the vector of ps values observed on the i-th unit. In the case of time series of length T ,
Xis ≡ Xis is a T × ps matrix whose columns are represented by the ps time series observed
on the i-th unit, and the rows are the values observed at time t (t = 1, . . . , T ). In the case
of ordeblack sequences of qualitative items Xis is a set of ps sequences (see D’Urso and
Massari 2013).

The distance between units i and i ′ computed according to the nature of the s-th variable
type—on this, see Remark 2 below—can be formalized as:

sdii ′ = d(Xis,Xi ′s). (1)

Then

d2i i ′ =
S∑

s=1

(ws · sdii ′)2 =
S∑

s=1

[ws · d(Xis,Xi ′s)]
2 (2)

is the overall weighted squared distance considering the S attribute types. As observed by
Everitt (1988), the weights of the squared distance are in a quadratic form. The role of the
weights will be discussed at large in Remark 3.

As an example, suppose thatX = {X1,X2}whereX1 is a set of two quantitative variables,
while X2 is a set of two qualitative variables. Then, S = 2, p1 = p2 = 2, P = 4, and X1 =
{X1, X2}, X2 = {X3, X4}. Continuing with our example, Xi1 = xi1 ≡ {(xi1, xi2) : i =
1, . . . , n)}, Xi2 = xi2 ≡ {(xi3, xi4) : i = 1, . . . , n)}, where (xi1, xi2) are numeric values,
(xi3, xi4) are categorical values. In our example, 1dii ′ = d(Xi1,Xi ′1), 2dii ′ = d(Xi2,Xi ′2)
are the matrices of the pairwise distances—say, Euclidean distance for X1 and overlapping
distance for X2, respectively. Then

d2i i ′ = (w1 · 1dii ′)2 + (w2 · 2dii ′)2.
Once the formal notation and the overall distance have been described, in the following the
clustering algorithm can be illustrated. Following the PAM approach in a fuzzy framework,
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let X̃s ≡ {X̃1s, . . . , X̃cs, . . . , X̃(C−1)s} be a subset ofXs with cardinalityC−1, and X̃cs ∈ X̃s

the values observed for the c-th elements of X̃s . Then, X̃s ≡ {X̃1s, . . . , X̃cs, . . . , X̃(C−1)s} is
a subset of X with cardinality C − 1.

This model achieves its robustness with respect to outliers by introducing a noise cluster,
provided there is a way in which all the noise points could be dumped into that single cluster.
By following Davé (1991), “Noise prototype is a universal entity such that it is always at
the same distance from every point in the data-set.” Provided the noise cluster distance is
specified, objects closer to the noise cluster than to other objects would get classified into
the noise cluster. In this proposal the noise cluster is represented by a noise prototype, i.e. a
noise medoid, which is always at the same distance from all units. Let there be C − 1 good
clusters and let the C-th cluster be the noise cluster. Let X̃C be the noise prototype (i.e. noise
medoid). It is assumed that the distance measure of unit i from medoid C is equal to δ2,
i = 1, . . . , n.

Formally, the proposed clustering model, called Fuzzy C-Medoids Clustering of Mixed
Data model with Noise Cluster (FCMd-MD-NC model) is characterized in the following
way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min : ∑n
i=1

∑C−1
c=1 umic

∑S
s=1(ws · sdic)2 + ∑n

i=1 u
m
iCδ2 =

∑n
i=1

∑C−1
c=1 umic

∑S
s=1

[
ws · d(Xis, X̃cs)

]2 + ∑n
i=1 u

m
iCδ2

(s.t.)
∑C

c=1 uic = 1, uic ≥ 0
∑S

s=1 ws = 1, ws ≥ 0

(3)

where:

• uic indicates the membership degree of the i-th objects to the c-th cluster;
• m > 1 is a weighting exponent that controls the fuzziness of the obtained partition;
• X̃cs is the s-th component of th c-th medoid, related to the s-th variable type;
• C is the noise cluster;
• sdic = d(Xis, X̃cs) denotes the distance between the i-th observation and the c-thmedoid,

according to the s-th variable type; for comparison’s sake across attribute types, the S
distances sdic are normalized to vary in the range [0, 1];

• d2ic = ∑S
s=1[ws ·d(Xis, X̃cs)]2 for c = 1, . . . ,C −1 and represents the overall weighted

squared distance between unit i and the medoid c based on all variable types; d2ic = δ2

for c = C and represents the distance of each unit from the noise cluster;
• ws is the weight associated to the s-th attribute type, and, hence, to the s-th distance

(s = 1, . . . , S);
• ui,C = 1 − ∑C−1

c=1 ui,c.

The proposedmodel considers separately the distances for the different attributes and uses
a suitable weighting system computed within the model for each distance component. Then
theweightsws constitute specific parameters to be estimatedwithin the clustering procedure.

Notice that, the model (3) represents an extension of Davé’s model (1991) for fuzzy
data with medoid prototypes and weighted mixed distance matrix. The distance from the
noise cluster depends on the average distance among units and medoids δ2 = ρ(n(C −
1))−1 ∑n

i=1
∑C−1

c=1 umicd
2
ic = ρ(n(C − 1))−1 ∑n

i=1
∑C−1

c=1 umic
∑S

s=1(ws · sdic)2. The value
of ρ may range between 0.05 and 0.5. In any case, the results do not seem very sensitive to
the value of the multiplier ρ (Davé 1991). Due to the presence of δ2, units that are close to
good clusters are correctly classified in a good cluster while the noise units that are away
from good clusters are classified in the noise cluster.
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Proposition 1 The solutions of (3) are:

uic =

[
1∑S

s=1(ws ·sdic)2
] 1

m−1

∑C−1
c′=1

[
1∑S

s=1(ws ·sdic′ )2
] 1

m−1 +
[

1
δ2

] 1
m−1

(4)

ws = 1
∑S

s′=1

[ ∑n
i=1

∑C−1
c=1 umic ·sd2ic∑n

i=1
∑C−1

c=1 umic ·s′d2ic

] . (5)

For c = C (4) becomes:

uiC =
[

1
δ2

] 1
m−1

∑C−1
c′=1

[
1∑S

s=1(ws ·sdic′ )2
] 1

m−1 +
[

1
δ2

] 1
m−1

(6)

The proof is in Appendix.

2.1 Remarks on themodel

Remark 1 (Algorithm and computational issues)

1. The fuzzy clustering algorithm that minimizes (3) is built by adopting an estimation
strategy based on the Fu and Albus heuristic algorithm (Fu and Albus 1977). Indeed, the
alternating optimization estimation procedure cannot be adopted because the necessary
conditions cannot be derived by differentiating the objective function in (3) with respect
to the medoids. The fuzzy clustering procedure is illustrated in Algorithm 1.

Algorithm 1 Robust Fuzzy C-Medoids Clustering for Mixed Data (FCMd-MD-NC) algo-
rithm
1: Fix C , max .i ter and ρ, and generate randomly the degree matrix U ;
2: Set i ter = 0;
3: Compute δ2;
4: Pick initial medoids: X̃s ≡ {X̃1s , . . . , X̃C−1s }, s = 1, . . . , S;
5: repeat
6: Store the current medoids X̃OLD,s = X̃s , s = 1, . . . , S;
7: Compute ui (i = 1, . . . , n) by using (4);
8: Compute w by using (5);
9: Select the new medoids: X̃cs , c = 1, . . . ,C − 1, s = 1, . . . , S:
10: for c = 1 to C do
11: q = argmin1≤i ′≤n

∑n
i ′′=1 u

m
i ′′c

∑S
s=1(ws · sdi ′,i ′′ )2

12: return ⇒ X̃cs = Xqs
13: end for
14: i ter ← i terOLD + 1;
15: until X̃OLD,s = X̃s , s = 1, . . . , S or i ter = max .i ter

2. The computational complexity of the algorithm is due to three components: (i) the com-
putation of the S dissimilarity matrices for each attribute type; (ii) the exhaustive search
for the medoids; (iii) the computation of the attribute weights. While it is difficult to deal
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with the latter issue, it is possible to cope with the former two. First, the PAM approach
requires that the distance matrix is computed only once at the beginning of the cluster-
ing process, and not at each iteration, thus decreasing dramatically the computing time
required. Secondly, the search for the optimal medoids can be accelerated by “linearising”
the clustering process, as in Krishnapuram et al. (2001), so that the complexity is linear
in the number of units.

3. The degree of fuzziness of the resulting clusters is determined by m. The parameter can
be pre-estimated by considering the usual fuzzy cluster-validity indices (see D’Urso and
Maharaj 2009). However, since the medoid always has a membership of one in the cluster,
raising its membership to the power of m has no effect on the medoid, while all other
memberships decrease to 0. Thus, when m is high, the mobility of the medoids from
iteration to iteration may be lost. For this reason, a value of m between 1 and 1.5 is
recommended (Krishnapuram et al. 2001).

Remark 2 (Distances and dissimilarities)
One crucial decision in the clustering process for mixed data is the choice of suitable

distance, or dissimilarity, measure for each attribute type. The choice is mainly heuristic,
based on the data at hand and on the peculiar properties of each distance measure.

An admittedly non-exhaustive list of possible distance measures for several attribute types
is reported in Table 2 (D’Urso and Massari 2019).

It should be highlighted that any kind of dissimilarity measure can be used in the proposed
method. As in the standard non-hierarchical clustering algorithm e.g., k-means, k- medoids,
the choice of the distance measure adopted in the clustering procedure is exogenous, so in
the proposed method the choice of the distance measures for each attribute types is fixed
beforehand. Any subset of variables can be managed with any of the dissimilarity measures
presented in Table 2, and contribute to the “mixed” distance matrix in (2).

Remark 3 (Weighting system) The weights of the different attribute types in the clustering
process are objectively provided by the model as shown in (5) and in the Appendix. An
attribute type which displays a good separation into different groups should play a more
significant role in clustering of data objects, against all other attribute types (Yeung and
Wang 2002; Ahmad and Dey 2007). Indeed, the weight ws measures the within clusters
similarity for the variables of the s-th type. Thus, the optimization procedure gives more
relevance to the variable types capable to increase the within cluster similarity among the
units.

Remark 4 (Determining the optimal number of clusters) A widely used cluster validity cri-
terion for selecting C is the Xie-Beni criterion (Xie and Beni 1991), which can be suitably
adapted for FCMd-MD-NC as follows:

min
C∈�C

: IX B =
∑n

i=1
∑C

c=1 u
m
icd(Xi , X̃c)

n · minc,c′ d(X̃c, X̃c′)
= J

n · minc,c′ d(X̃c, X̃c′)
, (7)

where�C represents the set of possible values ofC (C < n), and d(.) is the overall weighted
distance (2).

The numerator of IX B represents the total within-cluster distance. The ratio J/n measures
the compactness of the fuzzy partition. The smaller this ratio, the more compact a partition
with a given number of clusters. Theminimumdistance between centroids at the denominator
of IX B is a measure of the separation between clusters. The greater this distance, the more
separate a data partition with a given number of clusters. Therefore, letting the number of
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Table 2 Some distance measures and dissimilarity indices for different attribute types (integration of D’Urso
and Massari (2019))

Attribute type Distance, dissimilarity

Numeric (time-invariant) data Minkowski distance (Everitt et al. 2011)

Canberra distance (Everitt et al. 2011)

Mahalanobis distance (Everitt et al. 2011)

Time series Auto-regressive based distance (Corduas and Piccolo 2008)

Wavelet-based distance (Maharaj et al. 2010)

Dynamic Time Warping (Berndt and Clifford 1994)

Categorical data Jaccard distance (Everitt et al. 2011)

Simple Matching Coefficient (Sokal 1958)

Eskin dissimilarity index (Eskin et al. 2002)

Geographical location data Geodesic distance (Karney 2013)

Categorical-geographical data Geco distance (Hennig and Hausdorf 2006)

Ordered sequences Hamming distance (Hamming 1950)

Sequence Alignment Methods (Levenshtein 1966; Kruskal 1983)

Fuzzy data External weighted distance Yang and Ko (1996)

Internal weighted distance (D’Urso and Giordani 2006)

Interval-valued data Distance for interval-valued data (D’Urso and Giordani 2004)

Symbolic data Dissimilarity measure for symbolic data (Gowda and Diday 1991)

clusters vary over the set �C , the optimal number of clusters is identified in correspondence
with the lower value of IX B .

2.2 Fuzzy profiling of the clusters

Results of cluster analysis can be summarized in the profiling phase where internal and
external variables—i.e., variables involved and not involved in the cluster algorithm,
respectively—are used to characterise and interpret the clusters (Everitt et al. 2011; Hair
et al. 1998). In the case of fuzzy clustering algorithms, the (n × C) membership degrees
matrix U = {uic : i = 1, . . . , n, c = 1, . . . ,C} can be used to properly weigh the obser-
vations on profiling variables and further describe the final clusters (D’Urso et al. 2013,
2016).

Let X = {x1, . . . , xn} be a quantitative variable observed on the sample. The weighted
average of X in the c-th cluster is:

μXc =
∑n

i=1 uicxi∑n
i=1 uic

. (8)

As it can be seen, the greater is the membership degree of unit i to cluster c, the greater is
the contribution of observation xi to the weighted average.

Similarly, let Y = {y1, . . . , yn} be a categorical variable with L (L ≥ 2) categories. Let
l be the generic category, and yil the observation in the i-th unit, which is equal to 1 if the
category is observed on the i-th unit and 0 otherwise. The weighted proportion of the l-th
category in the c-th cluster is:
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wYlc =
∑n

i=1 yiluic∑n
i=1 uic

. (9)

The concept of weighted averages and weighted proportions can be easily extended to
other attribute types.

3 Simulation study

The aim of this simulation study is to highlight the capability of the FCMd-MD-NC model
of correctly clustering objects in the presence of outliers. To this aim two distance matrices
related to two groups of variables were generated, and outliers were added.

A dataset of n = 90 objects was simulated, with two numeric continuous variables,
X1, X2 and three numeric discrete variables, X3, X4, X5 (S = 2). In particular, X1 and
X2 are both generated from the Uniform distribution. (Different numbers of objects were
considered with similar results). X3, X4 and X5 are discrete variables, with two, three and
four values, respectively. Then, the set of variables is:

X = {X1, X2 X3, X4, X5} = {X1, X2}
where

X1 = {X1, X2}, X2 = {X3, X4, X5}.
Objects are grouped into three well separated and equal sized clusters according to both
continuous and discrete variables.
The three clusters were obtained as follows (Figs. 1, 2):

• cluster 1: X1 and X2 with Uniform density in the intervals [0;1],[2;3]; X3, X4, X5 in
the sets {1,2}, {1,2,3}, {1,2,3,4} with probability distributions {0.96,0.04}; {0.03, 0.94,
0.03}; {0.03, 0.94, 0.03, 0.00};

• cluster 2: X1 and X2 with Uniform density in the intervals [1;2],[0;1]; X3, X4, X5 in
the sets {1,2}, {1,2,3}, {1,2,3,4} with probability distributions {0.04,0.96}; {0.94, 0.03,
0.03}; {0.00, 0.03, 0.94, 0.03};

• cluster 3: X1 and X2 with Uniform density in the intervals [2;3],[1;2]; X3, X4, X5 in
the sets {1,2}, {1,2,3}, {1,2,3,4} with probability distributions {0.04,0.96}; {0.03, 0.03,
0.94}; {0.00, 0.03, 0.03, 0.94}

A number of outliers equal to 6 (6.6̄%) and 12 (13.3̄%) was generated. Different simulation
scenarios have been considered:

1. outliers for the continuous and the discrete variables;
2. outliers for the two continuous variables;
3. outliers for the three discrete variables.

The outliers of the continuous variables were generated according to Normal distributions;
of the discrete variables according to discrete distributions. The euclidean distance was used
to generate the two distance matrices related to the two groups of variables.

We expected that, given the weighting structure, FMDd-MD-NC should be able to cor-
rectly classify the objects, despite the presence of outliers.

The correctness of clustering is evaluated by means of the Fuzzy Rand Index (FRI) to
compare the obtained fuzzy partition with the reference crisp partition (30 objects in each
cluster).
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Fig. 1 Simulated data—numerical variables of the three clusters without (left) and with (right) outliers

The simulation study involved 100 replications (different numbers of replications were
considered with similar results). Two values of the fuzziness parameter m were considered,
1.3 and 1.5. For each replication the weights computed for the two attributes and the FRI
were collected. The results are reported in Table 3.

As for the correctness of the clustering, FCMd-MD-NC shows the expected robustness
to outliers. Values of FRI are well above 0.90 in all scenarios and in all replications, thus
indicating that the obtained fuzzy partitions are very close to the theoretical cluster partition.
As for the attribute type weights, the two attribute types are weighted as expected according
to their clustering structure. In all 100 replications FCMd-MD-NC attributed approximately
equal weights to the two attributes in Scenario 1, greater weight to the continuous variables in
Scenario 2 as the outliers of the numerical variables are assigned to the noise cluster, greater
weight to the discrete variables in Scenario 3, as the outliers of the discrete variables are
assigned to the noise cluster.

For comparative assessment the simulations have been run without the presence of the
noise cluster. As it can be seen from Table 3, the results obtained with the model FCMd-
MD-NC outperform the results obtained with the Fuzzy C-Medoids Clustering for Mixed
Data (FCMd-MD) model. In all 100 replications FCMd-MD attributed approximately equal
weights to the two attributes in Scenario 1, greater weight to the discrete variables in Scenario
2 as the outliers of the continuous variables are not assigned to the noise cluster, greater
weight to the continuous variables in Scenario 3, as the outliers of the discrete variables are
not assigned to the noise cluster.

The flipped behaviour of the two models in weighting the two distance matrices - of
the continuos variables and of the discrete variables - deserves a comment. In the model
FMDd-MD without noise cluster the outliers are assigned to the three clusters with great
membership, and according to (20) they contribute to a great distance of the objects from
the medoids; in the model FCMd-MD-NC with noise cluster the outliers are assigned to the
three clusters with small membership being assigned to the noise cluster, and according to
(20) they contribute to a small distance of the objects from the medoids, resulting in a greater
weight.
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Fig. 2 Simulated data—numerical discrete variables of the three clusters without (top) and with (bottom)
outliers

4 Application: clustering of football players

The aim of this application is the clustering of football players based on attributes of different
types. Professional football clubs invest a lot of resources in the recruitment of players. The
clustering of football players based on performance data may be useful for prototyping
successful players and for providing insights to football managers when assessing players.
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Data for this application are drawn from whoscored.1 The units are the players that have
played in the “Serie A” tournement at least 200 min in the season 2018/19. The choice of
200 min follows from the choice of evaluating performances (goal, shots) per game (90
min). Less than 200 min would have led to re-proportioning the number of goals of a player,
who scored a goal having played only 10 min, at 9 per game. The considered players were
397 from the initial number of 544. The teams of the season were: AC Milan, Atalanta,
Bologna, Cagliari, Chievo, Empoli, Fiorentina, Frosinone, Genoa, Inter, Juventus, Lazio,
Napoli, Parma Calcio 1913, Roma, Sampdoria, Sassuolo, SPAL 2013, Torino, Udinese. The
most represented (greater than 3.0%) nationalities were Italy (39.3%), Argentina (6.3%),
Brazil (5.8%), France (3.5%), Spain and Croatia (3.0%).

The considered variables are “Performance variables”, “Success Variables” and “Position
variables”. The variables are grouped into four groups (S = 4) as described in Table 4
according to their type andmeaning (Akhanli andHennig 2017), in order to use an appropriate
distance for each type and to obtain endogeneously the weight of each group in the definition
of the clusters.

Performance (Upper level) variables are all count variables and can be grouped into three
categories in terms of their meaning: Defensive (Tackles, Blocks); Offensive (Shots, Goals,
Aerials, Dribbles); Pass (Passes, Keypasses). Some performance variables are partitioned
into different sub-parts (Lower level variables). The sub-parts of Shots are body parts (four
categories head, left foot, right foot, other), situations (four categories counter, open play,
penalty taken, setpiece), zones (three categories out of box, penalty area, six yard box),
accuracy; the sub-parts of Goals are body parts, situations, zones. The Success variables
evaluate the success rates of shot and goal upper level count variables. The position variables
are eleven: Attack, Defensive andMilfielder each of which either in the Centre, Left or Right
side; Forward and Defensive Milfielder. They are binary variables. Since a player can play
in several positions, multiple binary variables are considered. The position variables are
represented in Fig. 3. The variables, available in the database whoscored, have been used in
previous studies (Akhanli and Hennig 2017) The variables and their summary statistics are
reported in Table 4; alongside with the weights computed in the clustering process for the
different attributes types as in (5).

4.1 Data preprocessing

The Performance Upper level variables are represented per 90 min. The histograms of the
performance variables are presented in Fig. 4.

The Success variables are represented as percentages. The Success Upper level variables
Assists, Passes Aerials and Dribbles are percentages of accurate/successful actions over the
total number of actions.

The Success Lower level compositions of Goals by body parts, situations and zones are
percentages of success over the number of shots in the related sub-part (goal body part head
over shots body part head).

The sub-parts of the Performance Upper level variable are transformed into percentages.
If a player has scored 10 Goals per 90 min, of which 3 in situation out of box, 5 penalty area
and 2 six yard box, the compound variables offensive Goals zones shows the values (30%,
50%, 20%) in the categories out of box, penalty area, six yard box.

The eleven position variables are binary variables.

1 www.whoscored.com.
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Table 4 Variables

Attribute type Variables Mean [min; max] Weight (5)

Numeric Performance upper level (per 90 min.) 0.65

Assists 0.09 [0; 0.5]

Shots 1.00 [0; 5.7]

Goals 0.13 [0; 1.0]

Dribbles 1.44 [0; 7.7]

Aerials 3.31 [0; 13.5]

Passes 3.55 [0; 18.0]

Keypasses 1.14 [0; 4.8]

Blocks 1.31 [0; 3.3]

Tackles 1.64 [0; 4.8]

Numeric Success upper/lower level 0.15

Goals/Shots 11.30% [0; 100]

Assists accuracy 7.51% [0; 100]

Passes accuracy 78.19% [0; 93.3]

Aerials won 46.54% [0; 78.6]

Dribbles successful 56.19% [0; 100]

Goals body parts head 4.80% [0; 100]

Goals body parts left foot 6.28% [0; 100]

Goals body parts right foot 6.65% [0; 100]

Goals situations counter 3.46% [0; 100]

Goals situations open play 6.90% [0; 100]

Goals situations penalty taken 6.68% [0; 100]

Goals situations setpiece 6.08% [0; 100]

Goals zones out of box 1.92% [0; 100]

Goals zones penalty area 8.47% [0; 100]

Goals zones six yard box 12.64% [0; 100]

Numeric Performance Lower level compositional 0.08

Goals body parts head 9.90% [0; 100]

Goals body parts left foot 16.80% [0; 100]

Goals body parts other 0.26% [0; 100]

Goals body parts right foot 27.50% [0; 100]

Goals situations counter 2.27% [0; 100]

Goals situations open play 36.65% [0; 100]

Goals situations penalty scored 3.26% [0; 100]

Goals situations setpiece 12.28% [0; 100]

Goals zones out of box 7.81% [0; 100]

Goals zones penalty area 35.26% [0; 100]
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Table 4 continued

Attribute type Variables Mean [min; max] Weight (5)

Goals zones six yard box 11.39% [0; 100]

Shots body parts head 21.54% [0; 100]

Shots body parts left foot 29.08% [0; 100]

Shots body parts other 0.80% [0; 100]

Shots body parts right foot 46.32% [0; 100]

Shots situations counter 1.79% [0; 27.3]]

Shots situations open play 61.40% [0; 100]

Shots situations penalty taken 0.62% [0; 20.0]

Shots situations setpiece 33.93% [0; 100]

Shots zones out of box 39.52% [0; 100]

Shots zones penalty area 50.57% [0; 100]

Shots zones six yard box 7.65% [0; 100]

Shots accuracy blocked 23.19% [0; 100]

Shots accuracy offensive target 45.38% [0; 100]

Shots accuracy on target 29.16% [0; 100]

Categorical Position (binary)

AMC 0.14 [0;1] 0.12

AML 0.11 [0;1]

AMR 0.10 [0;1]

DC 0.26 [0;1]

DL 0.15 [0;1]

DR 0.15 [0;1]

DMC 0.10 [0;1]

FW (Forward) 0.25 [0;1]

MC 0.22 [0;1]

ML 0.18 [0;1]

MR 0.17 [0;1]

A Attack, D Defensive, C Centre, L Left, R Right, M Midfielder
The sum of the percentages of the categories in the three sub-parts of Shots - body parts, situations, zones - is
97.74%
The sum of the percentages of the categories in the three sub-parts of Goals is not 100% (54.46%) as the
number of Goals may be zero

The Performance Upper level count variables are standardised by average absolute devi-
ation, whereas lower level compositions are standardised by the pooled average absolute
deviation from all categories belonging to the same composition of lower level variables.

The Manhattan distance has been used for the Performance Upper level variables and for
the Success Upper/Lower level variables.

The Performance Lower level variables are compositional data in the sense of Aitchison
(Aitchison 1986), who set up an axiomatic theory for the analysis of compositional data.
According to Akhanli and Hennig (2017), for the compositional percentage data the simple
Manhattan distance is used as more appropriate.
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Fig. 3 Position variables

The distance measure used for the Position variables has been proposed in Hennig and
Hausdorf (2006) and incorporates geographic distances. The proposed “geco” (“geographic
distance and congruence”) coefficient considers both the number of positions (geographic
locations) shared by two players and the geographic relations of the occupied positions. Let
A1, A2 ⊆ R be the vectors of positions (presence-absence) of players a and b in the eleven
positions of the football field (Fig. 3). Assume that there is a distance dR defined on R; dR
is the geographic distance between positions (geographic locations) (euclidean distance in
Table 5). For example, assuming segments of length 1 between adjacent positions on the
same line, the geographic distance between positions DMC and MR is

√
(12 + 12) = √

2;
between positions DMC and AMR

√
(22 + 12) = √

5 . The “geco” distance between players
a in region A1 and player b in region A2 is defined as :

dG(A1, A2) = 1

2

⎛

⎝

∑
a∈A1

min
b∈A2

dR(a, b)

|A1| +
∑

b∈A2
min
a∈A1

dR(a, b)

|A2|

⎞

⎠ (10)

where and Ai denotes the number of elements in the geographical region of the i − th
object. Then, dG is the mean of the average geographic distance of all units of A1 to the
respective closest unit in A2 and the average geographic distance of all units of A2 to the
respective closest unit in A1. From the definitions it follows dG(A, A) = 0, dG(A, B) > 0,
dG(A, B) = dG(B, A).
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Table 5 Distances between position variables

DC DL DR DMC MC ML MR AMC AML AMR FW

DC 0 1 1 1 2
√
5

√
5 3

√
10

√
10 4.0

DL 1 0 1
√
2

√
5 2

√
5

√
10 3

√
10

√
17

DR 1 1 0
√
2

√
5

√
5 2

√
10

√
10 3

√
17

DMC 1
√
2

√
2 0 1

√
2

√
2 2

√
5

√
5 3

MC 2
√
5

√
5 1 0 1 1 1

√
2

√
2 2

ML
√
5 2

√
5

√
2 1 0 1

√
2 1

√
2

√
5

MR
√
5

√
5 2

√
2 1 1 0

√
2

√
2 1

√
5

AMC 3
√
10

√
10 2 1

√
2

√
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AML
√
10 3

√
10
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2 1

√
2 1 0 1

√
2

AMR
√
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√
5

√
2

√
2 1 1 1 0

√
2

FW 4.0
√
17

√
17 3 2

√
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√
5 1

√
2

√
2 0

The values are obtained by using Euclidean geometry based on Fig. 3
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Fig. 4 Histograms of the performance variables
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4.2 Results

Different values of the fuzziness parameter m (m = 1.3, 1.5, 2.0) and of the number of
clusters C (C = 3, 4, 5, 6) have been considered. According to the Xie-Beni criterion, the
optimal number of clusters is three, with a value of m = 1.3. The numerosity of the clusters
is 109, 127, 112, 49 (noise cluster). The medoids of the three clusters are players 278, 288
and 91. The attributes’ weights obtained during the optimization process are reported in the
last column of Table 4. The Performance variables and the Success variables provide the
greatest contribution to the clustering process.

Reported in Table 6 are the three medoids’ characteristics, separately for each attribute
type (a subset for the Success Upper level variables). The numeric Lower level compositional
variables are not presented due to the small weight assigned in the clustering procedure.

The first cluster is represented by a player showing a discrete number of actions (Per-
formance Upper level), successful (Goal/Shots, Assists accuracy, Aerials won and Dribbles
successful) (Success Upper/Lower level).

The second cluster is represented by a player showing a limited number of actions (Per-
formance Upper level), unsuccessful (Goal/Shots=0.0) (Success Upper/Lower level).

The third cluster is represented by a player showing a high number of actions per 90
min (Performance Upper level), very successful (Goal/Shots, Passes accuracy, and Dribbles
successful) (Success Upper/Lower level).

The three clusters are similar with respect to the positions of the players. It is worth noting
that the medoid players in cluster 1 and 3 have played in the Forward position. We observe
that the player Ronaldo, who shows one of the highest values of Goal/Shots, is assigned to
the third cluster.

As expected, the noise cluster shows heterogeneity of players with respect to the variables,
as expected (otherwise there would be one more cluster).

In Figs. 5, 6, 7, and 8 the composition of the clusters with respect to some of the segmen-
tation variables is reported. Percentages are calculated taking into account the membership
degrees to each cluster, as explained in Sect. 2.2. The composition of the clusters is consistent
with the three medoids.

We observe in Fig. 5 the prevalence of Goals in cluster 3.
We observe in Fig. 6 that in the first cluster the successful percentage of shots that gives

rise to a goal is played with body part left foot, situation setpiece and zone six yard box; in
the second cluster with body part right foot, situation setpiece and zone six yard box; in the
third cluster with body part right foot, situation open play and zone six yard box.

We observe in Fig. 7 that in the three clusters the greater percentage of Goals is played in
the category of body part right foot, in situation open play and in zone penalty area; similarly
for the Shots.

We observe in Fig. 8 the prevalent positions played in the three clusters.
Figure 9 report a ternary plot with the membership degrees obtained with FCMd-MD-NC,

for the three clusters. While there are several players that are fuzzy assigned, in particular to
the first and the third cluster, over 50% of the units are allocated to a single cluster with a
membership degree above 0.70.
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Fig. 5 Performance variables weighted with memberships within clusters. Cluster 1, 2, 3 top to bottom

5 Discussion and final remarks

In this paper, following the Partitioning Around Medoids (PAM) approach, we propose a
robust fuzzy clustering with noise cluster and weighting system for mixed attributes. A
simulation study is proposed. The model is used for analysing massive dataset in sport, i.e.
for clustering football players based on their performance and positional attributes.

The clustering model allows different types of variables, or attributes, to be taken into
account. A weight is objectively assigned to the distance matrix associated to each set of
attributes during the optimization process. The weights reflect the the relevance of each
attribute type in the clustering results. A noise cluster neutralizes the effect of outliers. The
simulation study has shown the ability of the model to weight properly the distance matrices
of the attributes in the presence of outliers. The application to the clustering of football
players on the basis of distance matrices of different attributes has shown the need to manage
separately mixed type data. The obtained weights allow to understand which is the most
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Fig. 6 Success variables weighted with memberships within clusters. Cluster 1, 2, 3 top to bottom

relevant set of attributes in partitiong the players. The model applied to the profiling of
players provides insights on the characteristics of successful players.

The proposed clustering model has targeted some relevant issues in the research field.
A mixed distance for the different attributes is considered; weights to distances related to
different attribute types giving relevance to the variable types capable to increase the within
cluster similarity are objectively provided by themodel; a noise cluster represented by a noise
prototype is introduced to achieve robustness with respect to outliers. For the practictioners,
clustering of football players on the basis of playing characteristics, position, performance
and success variables is relevant for clubs, either to drive team formation and selection of
players, or for determining the value of a football player in the transfer window period
(Behravan and Razavi 2021; Shelly et al. 2020; Narizuka and Yamazaki 2019). In football,
performance assessment has typically been conducted to predict player’s abilities, to rate
player’s performances, to drive their physical training or to explain a team’s success (Mohr
et al. 2003; Di Salvo et al. 2007; McHale et al. 2012).
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Fig. 7 Compositional variables weighted with memberships within clusters. Cluster 1, 2, 3 top to bottom

Future work will deal with other robust clustering solutions, the inclusion of financial
variables of the player and of the team, the temporal aspect of the playing variables, if
available, the interactions among team members and with the opposing players in the course
of a game.
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Fig. 8 Position variables weighted with memberships within clusters. Cluster 1, 2, 3 top to bottom
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Fig. 9 Ternary plot for the membership degrees obtained with FCMd-MD-NC applied to football data
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Appendix

In the following, we prove the iterative solutions (4)–(5).

Proof First, fixedws , we determine themembership degrees uic.We consider the Lagrangian
function analyzing the objective function not splitted intoC−1 clusters and the noise cluster:

Lm(ui , λ) =
n∑

i=1

C∑

c=1

umicd
2
ic − λ

(
C∑

c=1

uic − 1

)
(11)

where ui = (ui1, . . . , uic, . . . , uiC )′ and λ is the Lagrange multiplier. Therefore, we set the
first derivatives of (11) with respect to uic and λ equal to zero, yielding:

∂Lm(ui , λ)

∂uic
= 0 ⇔ mum−1

ic d2ic − λ = 0 (12)

∂Lm(ui , λ)

∂λ
= 0 ⇔

C∑

c=1

uic − 1 = 0 (13)

From (12) we obtain:

uic =
(

λ

m

1

d2ic

) 1
m−1

(14)

and, by considering (13):

λ

m

1
m−1 = 1

(
1∑C

c=1 d
2
ic

) 1
m−1

. (15)

Finally, substituting (15) in (14) and taking into account the decomposition into the C − 1
clusters and the noise cluster we obtain uic as in (4).

Then, fixed uic we derive ws . The Lagrangian function is:

Lm(w, ξ) =
n∑

i=1

C−1∑

c=1

umic

S∑

s=1

(ws · sdic)2 +
n∑

i=1

umiCδ2 − ξ

(
S∑

s=1

(ws − 1)

)
(16)
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where w = (w1, . . . , ws, . . . , wS)
′ and ξ is the Lagrange multiplier. By setting the first

derivatives of (16) with respect to ws and ξ equal to zero, we obtain respectively:

∂Lm(w, ξ)

∂ws
= 0 ⇔ 2ws

n∑

i=1

C−1∑

c=1

umic · sd2ic − ξ = 0 (17)

∂Lm(w, ξ)

∂ξ
= 0 ⇔

S∑

s=1

ws − 1 = 0. (18)

From (17) we have:

ws = ξ

2
∑n

i=1
∑C−1

c=1 umic · sd2ic
(19)

and using (18):

ξ

2
= 1

∑S
s=1

(
1∑n

i=1
∑C−1

c=1 umic ·sd2ic

) . (20)

Then, replacing (20) in (19), we obtain ws , as in (5). �
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