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ABSTRACT
Buoyancy-driven convention from a pair of horizontal heated cylinders, set side by side
inside a square cooled cavity filled with water, is studied numerically. The system of the
conservation equations of mass, momentum and energy expressed in dimensionless form is
solved through a control-volume formulation of the finite-difference method. The pressure-
velocity coupling is handled using the SIMPLE-C algorithm. Numerical simulations are exe-
cuted for different values of the Rayleigh number based on the cylinder diameter, as well as
the width of the cavity, the inter-cylinder spacing and the distance of the cylinders from the
bottom wall of the cavity normalized by the cylinder diameter. Two heat and fluid flow con-
figurations are generally found to establish inside the cavity, according as the cylinders are
located at close distance or at such a distance that the effects of the lateral walls of the cav-
ity become important, each of these configurations being distinguished by the existence of
an optimum inter-cylinder spacing which maximizes the overall heat transfer rate. Moreover,
when the inter-cylinder spacing is such that the cylinders are located sufficiently close to
the cavity sides, a periodic flow arises.

Introduction

Free convection heat transfer from heated horizontal
cylinders set side by side inside enclosures filled with
water has a considerable relevance to several engineer-
ing applications, e.g., heat exchangers, energy storage
devices, and electronic components. The first well-
documented study performed on this topic was exe-
cuted by Incropera and Yaghoubi [1] using water
tanks with the top open to room air, in which a
swaying motion of the thermal plumes rising above
the submerged cylinders was observed. Plume oscilla-
tions were also detected by Kuehner et al. [2] for a
single submerged cylinder, and by Fiscaletti et al. [3]
for a single cylinder suspended inside a closed cavity
cooled at the walls. Besides a number of further stud-
ies dealing with vertically-aligned cylinders [4–9] or
staggered cylinders [10, 11] or side-by-side differen-
tially heated cylinders [12–14], just marginally related
to the present investigation, no other study expressly
dedicated to free convection in liquids from confined
cylinders is readily available in the literature, which

implies a significant shortness of data for this
configuration.

For this reason, a numerical study on natural con-
vection from a pair of heated horizontal cylinders set
side by side in a water-filled square enclosure cooled
at the four boundary walls is performed, with the
main scope to evaluate in what measure the imposed
temperature difference, the cavity size, and the loca-
tion and spacing of the cylinders, affect the overall
heat transfer performance, as well as to discuss the
basic heat and fluid flow features.

Analysis and modeling

Mathematical formulation

A water-filled square enclosure of width W, containing
a pair of horizontal cylinders of radius R, is considered.
The cylinders, set side by side at a center-to-center dis-
tance L, with their axes located at a distance H from
the bottom of the enclosure, are heated at a uniform
temperature th, while the four boundary walls of the
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cavity are cooled at a uniform temperature tc, as
sketched in Figure 1. The resulting buoyancy-induced
flow is considered to be two-dimensional, laminar and
incompressible, with constant physical properties. The
buoyancy effects on the momentum transfer are taken
into account through the customary Boussinesq
approximation. Viscous dissipation and pressure work,
as well as radiative heat transfer, are neglected.

Upon incorporating these hypotheses into the
equations of continuity, momentum and energy, the
following set of governing equations expressed in
dimensionless form is obtained:

r � V ¼ 0 (1)

@V
@s

þ ðV � rÞ V ¼ �rPþr2V� Ra
Pr

T
g
g

(2)

@T
@s

þ ðV � rÞ T ¼ 1
Pr

r2T (3)

where s is the dimensionless time normalized by D2/
�, V is the dimensionless velocity vector normalized
by �/D, T is the dimensionless temperature excess
over the uniform temperature of the cavity walls nor-
malized by the temperature difference (th – tc), P is
the dimensionless sum of the thermodynamic and
hydrostatic pressures normalized by q�2/D2, g is the
gravity vector, g is the gravity acceleration, Pr ¼ �/a
is the Prandtl number set to 7 (corresponding to
water at a temperature of 293K), and Ra is the
Rayleigh number defined as

Ra ¼ gbðth � tcÞD3

a�
(4)

in which D¼ 2 R is the cylinder diameter, � is the
kinematic viscosity, q is the mass density, a is the

thermal diffusivity, and b is the coefficient of volu-
metric thermal expansion.

The assigned boundary conditions are: (a) T¼ 1 and
V¼ 0 at the surface of the heated cylinders; and (b)
T¼ 0 and V¼ 0 at the four cavity walls. The initial
conditions assumed throughout the enclosure are fluid
at rest, i.e., V¼ 0, and uniform temperature T¼ 0.

Computational procedure

The system of the governing equations defined by
Eqs. (1)–(3), in combination with the boundary and

Nomenclature

D cylinder diameter, m
F dimensionless frequency of oscillation
g gravity vector, m/s2

g gravity acceleration, m/s2

H distance of the cylinder axis from the bottom of the
cavity, m

L inter-cylinder spacing, m
Nu Nusselt number
P dimensionless pressure
Pr Prandtl number
R cylinder radius, m
r dimensionless radial coordinate
Ra Rayleigh number
T dimensionless temperature
t temperature, K
V dimensionless velocity vector, m/s
W width of cavity, m

Greek symbols
a thermal diffusivity, m2/s
b coefficient of volumetric thermal expansion, 1/K
h dimensionless polar coordinate
� kinematic viscosity, m2/s
q mass density, kg/m3

s dimensionless time
X dimensionless period of oscillation

Subscripts
c cooled wall, at the temperature of the

cooled walls
h heated cylinder, at the temperature of the

heated cylinders
i i-th heated cylinder (i ¼ 1,2)
max maximum value
min minimum value

Figure 1. Sketch of the geometry and boundary conditions.
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initial conditions stated earlier, is solved through a
control-volume formulation of the finite-difference
method using an in-house developed computer code.
The pressure-velocity coupling is handled using the
SIMPLE-C algorithm introduced by Van Doormaal
and Raithby [15], which is essentially a more implicit
variant of the SIMPLE algorithm developed by
Patankar and Spalding [16]. The convective terms are
approximated through the QUICK discretization
scheme proposed by Leonard [17], whereas a second-
order backward scheme is applied for time integra-
tion. According to the geometry of the system, a
cylindrical polar grid is employed around each cylin-
der, whilst a Cartesian grid is used to fill the

remainder of the integration domain. The polar and
Cartesian grids, which are entirely independent of one
another, overlap with no attempt of node-matching,
their connection being provided by a row of false
nodes, in which the values of the dependent variables
are calculated by a linear interpolation of their values
at the four surrounding real nodes, as depicted in
Figure 2 and thoroughly discussed in [18, 19]. Non-
uniform structured grids are used for the discret-
ization of both the polar and the Cartesian grid
regions, having a higher concentration of grid nodes
near the boundary surfaces, and a relatively lower uni-
form spacing throughout the remainder interior of the
cavity. Conversely, time discretization is
chosen uniform.

Starting from the assigned initial fields of the
dependent variables, at each time-step the system of
the discretized algebraic governing equations is solved
iteratively by the way of a line-by-line application of
the Thomas algorithm. A standard under-relaxation
technique is enforced in all steps of the computational
procedure to ensure an adequate convergence. Within
each time-step, the spatial numerical solution of the
velocity and temperature fields is considered to be
converged when the maximum absolute value of the
mass source, as well as the relative changes of the
dependent variables at any grid-node between two
consecutive iterations, are smaller than the pre-speci-
fied values of 10–6 and 10–7, respectively. As time
passes, the dynamic behavior of the system is fol-
lowed by plotting the phase-space trajectories of the
dependent variables at some assigned grid nodes, i.e.,
by plotting the distributions of the local time-deriva-
tives of the dependent variables versus the variables
themselves with time as a parameter, whose attractor
may be represented by either a fixed point, a limit
cycle, a torus, or a so-called strange attractor, in
order to visualize the tendency of the system to reach
either a steady-state, a periodic, a quasi-periodic, or
a chaotic solution. In addition, the time-distributions
of the incoming and outgoing heat transfer rates, as
well as their relative difference, are continuously
monitored to assess the achievement of an asymp-
totic solution.

Figure 2. Sketch of the discretization grid system.

Table 1. Grid sensitivity analysis for W/D¼ 7.5 and Ds
¼ 1� 10�4.

Ra H/D L/D
Cartesian
mesh size Polar mesh size Nu %

104 1 1.5 80� 80 30� 80 4.98 –
100� 100 35� 90 4.90 �1.61
120� 120 40� 100 4.85 �1.02
140� 140 45� 110 4.83 �0.41

104 1 3 80� 80 30� 80 5.02 –
100� 100 35� 90 4.96 �1.20
120� 120 40� 100 4.91 �1.01
140� 140 45� 110 4.89 �0.41

104 4 3 60� 60 25� 70 4.14 –
80� 80 30� 80 4.08 �1.45

100� 100 35� 90 4.03 �1.23
120� 120 40� 100 4.01 �0.50

106 4 3 100� 100 35� 90 14.06 –
120� 120 40� 100 13.86 �1.42
140� 140 45� 110 13.72 �1.01
160� 160 50� 120 13.68 �0.29

Table 2. Time-step sensitivity analysis for Ra ¼ 104, W/
D¼ 7.5, H/D¼ 1 and L/D¼ 1.5.
Cartesian
mesh size

Polar
mesh size Ra H/D L/D Ds Nu %

120� 120 40� 100 104 1 1.5 1� 10�3 4.99 –
5� 10�4 4.90 �1.80
1� 10�4 4.85 �1.02
5� 10�5 4.83 �0.41
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At each time-step, after the spatial convergence is
satisfactorily attained, the local Nusselt number of the
i-th cylinder, [Nuh(s)]i, is calculated as

NuhðsÞ½ �i ¼ � @TðsÞ
@r

����
R, h

" #
i

ði ¼ 1, 2Þ (5)

where the r and h coordinates of the polar system are
measured from the center of the cylinder, and anti-
clockwise from downwards, respectively, and the tem-
perature gradient is evaluated by a second-order
temperature profile embracing the wall-node and the
two adjacent fluid-nodes.

Hence, the corresponding average Nusselt number
of the i-th cylinder at time s, [Nu(s)]i, is calculated
with the expression

NuðsÞ½ �i ¼
1
2p

ð2p
0

�@TðsÞ
@r

����
R, h

dh

2
64

3
75
i

ði ¼ 1, 2Þ (6)

in which the integral is computed numerically by
means of the trapezoidal rule.

Time integration is stopped once an asymptotic
solution, either stationary or periodic, is reached.

When a steady-state solution is achieved, the
Nusselt number of the i-th cylinder coincides with the
last value computed for [Nu(s)]i:

Nui ¼ NuðsÞ½ �ijs!1 ði ¼ 1, 2Þ (7)

Conversely, when a periodic solution is attained,
the Nusselt number Nui is evaluated as

Nui ¼ 1
X

ðX
0

NuðsÞ½ �ids ði ¼ 1, 2Þ (8)

where X is the dimensionless period of oscillation
computed by the solution algorithm.

The heat transfer performance of the whole system
is then calculated as the arithmetic mean of the aver-
age Nusselt numbers of both cylinders, that is,

Nu ¼ Nu1 þ Nu2
2

(9)

Numerical tests on the dependence of the obtained
results on the mesh spacing and time stepping have
been methodically performed for several combinations
of the four controlling parameters, namely, Ra, W/D,
L/D, and H/D. Accordingly, the discretization grids
and time-steps used for computations are chosen in
such a way that further refinements do not produce
noticeable modifications either in the heat transfer
rates or in the flow fields, with percentage changes
smaller than the pre-established accuracy of 1%. The
typical number of nodal points of the polar and
Cartesian discretization grids used for simulations lie
in the ranges between 40� 100 and 50� 120, and
between 120� 120 and 140� 140, respectively.
Moreover, typical dimensionless time-steps used for
simulations lie in the range between 10–4 and 10–3.
Selected results of the grid-size and time-stepping sen-
sitivity analysis are presented in Tables 1 and 2.
Finally, with the scope to validate the numerical code
and the composite-grid discretization scheme used in
the present study, a couple of tests have been carried
out. In the first test, the local and average Nusselt
numbers computed at several Rayleigh numbers for a
single cylinder suspended in air have been compared
with the corresponding benchmark numerical results
of Saitoh et al. [20], as shown in Table 3, where the
numerical results of Wang et al. [21], and Kuehn and
Goldstein [22], are also reported for further

Table 3. Comparison between the numerical value obtained for Nu and the corresponding numerical results of Saitoh et al. [20],
Wang et al. [21], and Kuehn and Goldstein [22].

Ra
Nu (h)

h ¼ 0� 30� 60� 90� 120� 150� 180� Nu

103 Present 3.789 3.755 3.640 3.376 2.841 1.958 1.210 3.013
Saitoh et al. [20] 3.813 3.772 3.640 3.374 2.866 1.975 1.218 3.024
Wang et al. [21] 3.860 3.820 3.700 3.450 2.930 1.980 1.200 3.060
Kuehn and Goldstein [22] 3.890 3.850 3.720 3.450 2.930 2.010 1.220 3.030

104 Present 5.986 5.931 5.756 5.406 4.716 3.293 1.532 4.819
Saitoh et al. [20] 5.995 5.935 5.750 5.410 4.764 3.308 1.534 4.826
Wang et al. [21] 6.030 5.980 5.800 5.560 4.870 3.320 1.500 4.860
Kuehn and Goldstein [22] 6.240 6.190 6.010 5.640 4.820 3.140 1.460 4.940

105 Present 9.694 9.595 9.297 8.749 7.871 5.848 1.989 7.886
Saitoh et al. [20] 9.675 9.577 9.278 8.765 7.946 5.891 1.987 7.898
Wang et al. [21] 9.800 9.690 9.480 8.900 8.000 5.800 1.940 7.970
Kuehn and Goldstein [22] 10.150 10.030 9.650 9.020 7.910 5.290 1.720 8.000

Table 4. Comparison between the numerical value obtained
for Nu and the correlations of Raithby and Hollands [23], and
Kuehn and Goldstein [24].

Ra

102 103 104 105 106 2� 106

Present 2.340 3.450 5.700 9.240 15.889 18.713
Raithby and Hollands [23] 2.347 3.552 5.645 9.330 15.856 18.674
Kuehn and Goldstein [24] 2.369 3.589 5.711 9.445 16.062 18.923
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Figure 3. Steady-state streamline contours for Ra ¼ 104, W/D¼ 7.5, H/D¼ 1and L/D¼ 1.25, 1.55, 1.75, 1.85, 2.25 and 3.35.

Figure 4. Steady-state isotherm contours for Ra ¼ 104, W/D¼ 7.5, H/D¼ 1and L/D¼ 1.25, 1.55, 1.75, 1.85, 2.25 and 3.35.
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comparison. In the second test, the average Nusselt
numbers computed at several Rayleigh numbers for a
single cylinder suspended in water have been com-
pared with the data obtained using some of the most
prominent correlations for free convection heat trans-
fer from a single cylinder available in the literature,
i.e., those by Raithby and Hollands [23], and Kuehn
and Goldstein [24], as shown in Table 4. Further
details are discussed at length in [18, 19].

Results and discussion

Numerical simulations are performed for Pr ¼ 7,
which corresponds to water, and different values of (a)
the Rayleigh number Ra in the range between 103 and
106, (b) the dimensionless cavity width W/D in the
range between 4 and 10, (c) the dimensionless center-
to-center cylinder spacing L/D in the range between
1.25 and (W/D– 1.25), and (d) the dimensionless dis-
tance of the cylinder axis from the bottom of the
enclosure H/D in the range between 1 and (W/D– 1).

Typical local results are reported in Figures 3 and
4, in which steady-state streamline and isotherm con-
tours, relative to six different cylinder spacings, are
plotted for Ra ¼ 104 and H/D¼ 1. It is apparent that
at the lower investigated values of the cylinder spacing
the flow structure consists of two counter-rotating,
kidney-shaped cells originating from the rise of the
hot fluid above the pair of heated cylinders and the
fall of two streams of cold fluid along the cooled side-
walls. The related temperature distribution is featured
by a thermal plume emerging from the top of the pair
of cylinders, as it were generated by a single source,
and three boundary layers adjacent to the sides and
the top wall of the cavity. At larger cylinder spacings
the flow field consists of a primary circulation

occurring between each cylinder and the adjacent
sidewall, due to the rise of the hot fluid above the
heated cylinder and its fall along the cooled sidewall,
and a secondary circulation in the middle portion of
the cavity, driven by the plumes arising from any cylin-
der and the column of cold fluid descending from the
top wall. According to this description, two different
regimes can be distinguished, depending on the fact
that the heat and fluid flow inside the cavity takes ori-
gin either from the rise of a single plume or from the
rise of two separate plumes, as clearly reflected by the
distribution of the average Nusselt number plotted in
Figure 5.

As expected, the average Nusselt number increases
with increasing the cylinder spacing L/D up to a
point, which is due to the increased flow rate drawn
between the cylinders by the “chimney effect”. As L/D
is further increased, Nu decreases due to the velocity
decrease of the liquid rising between the cylinders, yet
such a diminution ends when the transition from the

Figure 5. Distribution of Nu vs. L/D for Ra ¼ 104, W/D¼ 7.5
and H/D¼ 1.

Figure 6. Distributions of Nu vs. Ra ¼ 104, for W/D¼ 7.5 and
L/D¼ 1.5, using H/D as a parameter.

Figure 7. Distributions of Nu vs. Ra ¼ 104, for L/D¼ 1.5 and
H/D¼ 1, using W/D as a parameter.
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single-plume regime to the double-plume regime
occurs, which is due to the role played by the cold
sides in determining a change in the flow pattern.
From this point on, any increase of L/D implies an
increase of Nu, due to the more and more marked
interaction occurring between the plumes and the
sides of the cavity, up to a point, over which the
vicinity of the cylinders to the cooled walls has a dir-
ect effect on the motion intensity of the fluid flowing
between any cylinder and the adjacent sidewall.
Similar distributions of Nu vs. L/D are found for
most of the investigated configurations.

As regards the dimensionless cylinder elevation H/
D, the dimensionless cavity size W/D and the
Rayleigh number Ra, their effects on the heat transfer
performance of the system are pointed out in Figures
6 and 7, showing that Nu, besides increasing with Ra
due to the higher buoyancy, decreases as H/D is
increased and W/D is decreased as a consequence of
the decrease of the fluid motion strength.

Finally, it seems worth noticing that when the cyl-
inders are located in the close vicinity of the cavity
sides, the interactions occurring between the thermal
plume generated by any cylinder and the adjacent

Figure 8. Distributions of Nu vs. s and related asymptotic Fourier frequency spectrum of (Numax–Numin) for Ra ¼ 105, W/D¼ 7.5,
H/D¼ 1 and L/D¼ 5.35.

Figure 9. Asymptotic time evolution of the streamline contours during one period of oscillation for Ra ¼ 105, W/D¼ 7.5, H/D¼ 1
and L/D¼ 5.35.
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cooled sidewall give rise to periodic oscillations, as
e.g. displayed in Figure 8, in which the asymptotic
time-distribution of the average Nusselt number Nu
along one period of oscillation and the related Fourier
frequency spectrum of the heat transfer performance,
displayed in terms of (Numax–Numin) vs. F, where F is
the dimensionless frequency of oscillation given by
the reciprocal of the dimensionless period of oscilla-
tion X, are reported for Ra ¼ 105, W/D¼ 7.5,
H/D¼ 1 and L/D¼ 5.25. The corresponding asymp-
totic time-evolutions of the streamline and isotherm
contour plots are documented in Figures 9 and 10,
respectively, by the way of five snapshots covering the
full period of oscillation.

Conclusions

Laminar natural convection from a pair of heated
horizontal cylinders set side by side in a water-filled
cooled square cavity has been studied numerically by
means of a control-volume formulation of the finite-
difference method based on the SIMPLE-C algorithm.

The main results obtained may be summarized
as follows:

a. two heat and fluid flow regimes, conventionally
named single-plume regime and double-plume

regime, can be distinguished, according as the cyl-
inders are located close to each other or at some
distance between them such that the sidewall
effect becomes meaningful;

b. in line of principle, each of these regimes is charac-
terized by the existence of an optimum cylinder
spacing for maximum heat transfer performance;

c. the average Nusselt number is found to increase
when the Rayleigh number is increased, as well as
the distance of the cylinders from the bottom of the
cavity is decreased and the cavity size is increased;

d. as a consequence of the interactions occurring
between the thermal plume generated by any
cylinder and the adjacent cooled sidewall, a peri-
odic flow arises when the cylinders are located in
the close vicinity of the sides of the enclosure.
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