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Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous
system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly
inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th
cells produce several inflammatory cytokines and chemokines that activate resident glial
cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and
axonal loss. Astrocytes are recognized as key players of MS immunopathology, which
respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify
neuroinflammation into the CNS and contribute to MS progression. In this review, we
summarize current knowledge of the astrocytic changes and behaviour in both MS and
experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic
Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and
functional modifications occurring in astrocytes and their pathological outcomes.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous
system (CNS) affecting more than 2.5 million people worldwide, with a 2020 global prevalence of
35.9 per 100000 people (1). In the majority of patients, MS begins with a single clinically isolated
syndrome (CIS) of neurological dysfunction that resolves over time. After the initial CIS, most
patients have a second relapse and develop the relapsing-remitting MS (RRMS) form (2). Relapses
are characterized by CNS inflammation and confluent area of demyelination in the white and grey
matter of the brain and spinal cord caused by the loss of oligodendrocytes and myelin sheaths (3).
One to two decades post-diagnosis, 15-30% of RRMS patients develop secondary progressive MS
(SPMS) that is characterised by gradual neuroaxonal loss and brain atrophy, thus leading to patient
disability and neurodegeneration (4). About 15% of patients develop an irreversible primary
progressive form (PPMS) from the onset characterized by chronic demyelinated lesions in the white
matter, axonal loss, diffuse and focal demyelination of the grey matter and neurodegeneration (5).

Despite the exact causes of MS remain still unknown, the disease is known to arise in genetically
susceptible individuals (6, 7) by a complex interplay between environmental factors (8) and
dysregulated immune responses (9). Several studies performed in murine models of experimental
autoimmune encephalomyelitis (EAE) to explain MS pathophysiology, validated the hypothesis that
org February 2022 | Volume 13 | Article 8244111
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MS is an autoimmune disorder characterized by the infiltration
within the CNS of adaptive self-reactive immune cells, which
cause demyelination and remyelination events, thus leading to
the loss of sensory and motor functions (10). It is still an open
question whether the initial MS triggering insult occurs within
the CNS (intrinsic model), presumably affecting the
oligodendrocytes and favouring the release of CNS antigens to
the periphery, or whether it takes place outside the CNS
(extrinsic model) leading to the activation of aberrant adaptive
immune responses targeting CNS antigens (9). Independently of
the place where the triggering events occur, peripheral innate and
adaptive immune cells, especially autoreactive inflammatory T
helper (Th) cells, cross the blood-brain barrier (BBB) and release
inflammatory mediators in the brain that affect the function of
resident glial cells, leading to astrogliosis, oligodendrocyte loss
and axonal degeneration (11, 12).

Astrocytes are star-shaped glial cells that play a pivotal role in
maintaining CNS homeostasis (13). Through highly ramified
processes, astrocytes contact several cells within the CNS
contributing to the formation, activity and plasticity of
neuronal synapses (14), providing neurotrophic factors and
metabolic support to neurons and oligodendrocytes (15–18)
and ensuring the formation and maintenance of BBB integrity
(19). At a resting state and in different brain regions, astrocytes
are highly heterogeneous in their morphology and functional
properties (20). Protoplasmic astrocytes, mainly located in the
grey matter, at the hippocampus and cerebral cortex, are
characterised by extremely ramified cell bodies, thus allowing
them to contact synapses and perform neuromodulation. Fibrous
astrocytes, mainly located in the white matter, are smaller with
longer and narrower protrusions, which interact with axons at
the level of the nodes of Ranvier (21). Besides these two main
astrocyte subpopulations, nine more distinct astrocyte-like
subtypes have been described on the basis of their
morphological features including radial, marginal and
perivascular glia located in the cortex of human brain (20).
Moreover, the advent of single-cell RNA sequencing (scRNA-
seq) and single-cell spatial transcriptomics evidenced further
diversity and specialization of astrocytes depending on their
differential brain localization (22–24).

In pathological conditions, such as MS, astrocytes undergo
profound morphological and functional modifications (25, 26),
which lead to a strong reduction of their metabolic and
homeostatic functions (13, 27, 28). Moreover, astrocytes acquire
a reactive phenotype characterized by the up-regulation of specific
molecular markers such as glial fibrillary acidic protein (GFAP),
vimentin, S100B, superoxide dismutase 1 (SOD1), complement
component C3, tropomyosin receptor kinase B (TrkB) and IL-17R
(29). In both MS and EAE animal models, inflammatory Th cells,
once recruited to the CNS, produce cytokines such as TNF-a,
IL-17, GM-CSF and IFN-g (11) that activate astrocytes, which in
turn acquire a reactive phenotype, proliferate, form glia scar (29,
30) and produce several cytokines and chemokines favouring the
recruitment of leucocytes and inflammatory Th cells into the CNS
parenchyma (25, 26, 31–34).

In this review, we describe the main astrocytic changes
occurring in MS and the role of the crosstalk between
Frontiers in Immunology | www.frontiersin.org 2
inflammatory T cells and astrocytes in amplifying CNS
inflammation and MS progression (Figure 1).
ASTROCYTE DYSREGULATION IN MS

In both MS and EAE, the activation of astrocytes occurs at an
early stage and persists into the acute and chronic stages of the
disease. Several changes in both morphology and spatial
localization of astrocytes have been observed in different stages
of the disease (28). Studies in acute EAE showed the presence of
hypertrophic reactive astrocytes at a very early stage of the
symptomatic phase, even before immune cells cross the BBB
and enter into the CNS parenchyma (35, 36). In acute MS lesions
from post-mortem brain biopsies, hypertrophic reactive
astrocytes with damaged end-feet processes were detected in
active plaques as well as in the adjacent normal white and grey
matter, thus suggesting their pivotal role in both the
development and sustainment of the lesions (28, 37, 38).
Astrocytes with a very swollen cytoplasm due to the
accumulation of GFAP+ filaments were also found in active-
acute lesions (28). Furthermore, the phenotypic characterization
of reactive astrocytes in active demyelinating MS lesions
evidenced that they lose most of their homeostatic functions
and acquire a highly inflammatory and neurotoxic phenotype,
thus inducing the death of both neurons and mature
oligodendrocytes (39, 40). As recently evidenced by magnetic
resonance imaging (MRI)-informed scRNAseq, astrocytes still
remain active in chronic active demyelinated lesions and form an
astroglial scar as soon as chronic lesions became inactive (41).
Consistently, scRNAseq analysis of CNS samples from EAE mice
identified a dominant cluster of high proinflammatory and
neurotoxic astrocytes, characterized by increased GM-CSF
signalling, NF-kB activation and iNOS expression. The
presence of this reactive astrocyte subpopulation was also
confirmed in post-mortem brain tissues from MS patients who
underwent euthanasia followed by rapid autopsy (42).

BBB Breakdown and Leukocyte
Recruitment
The breakdown of the BBB is one crucial hallmark of MS (43, 44)
that precedes the infiltration of peripheral leukocytes and
autoreactive T lymphocytes that, once entered into the CNS,
contribute to the development and expansion of MS lesions by
damaging various cellular components of the BBB (45–50). The
BBB is a continuous endothelial barrier between the CNS and
peripheral blood that provides oxygen and critical nutrients to
the CNS and limits the entry of toxic substances and immune
cells. The integrity and functionality of the BBB are ensured by
the physiological properties of highly specialized endothelial cells
(EC) that, by interacting with pericytes, perivascular astrocytes
and neurons, form a neurovascular unit (NVU) that limits both
paracellular and transcellular movement of cells and solutes (51,
52). Perivascular astrocytes are crucial structural and functional
components of the BBB that through their end-feet interact with
ECs and ensheathe the brain vasculature (53). Disruption of the
astroglia/NVU communication has been linked to BBB
February 2022 | Volume 13 | Article 824411
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breakdown in both EAE and MS (37, 54). At the NVU, astrocytes
produce several vasoactive molecules such as nitric oxide (NO),
prostaglandins and arachidonic acid that regulate cerebral blood
flow (55). Moreover, the specialized water-channel aquaporin-4
(AQP-4), the inward rectifying potassium channel (Kir) Kir4.1
and the gap junction-forming protein connexin 43 (Cx43)
expressed by the end-feet at the level of glia limitans confer to
astrocytes the ability to regulate the exchange of water and ions
across the BBB (56). Extensive loss of Cx43 with concomitant
patchy loss of AQP-4 was observed in actively demyelinating and
chronic active lesions of progressive MS patients with high
relapse rates (57), thus contributing to the weakened of BBB
and to the vasogenic oedema due to increased hydrostatic
vascular pressure and shear stress (Figure 1) (58).

The integrity of the BBB is also maintained by the tight
junctions (TJs), large multiple transmembrane proteins
containing occludins, claudins and junctional adhesion
Frontiers in Immunology | www.frontiersin.org 3
molecules (JAMs), which mediate tight adhesion between
adjacent ECs. Claudins are the major components of BBB TJs
and are essential for the maintenance of BBB integrity (19). The
downregulation of claudin-5 and claudin-11 at the BBB has been
associated with the impairment of barrier function (59, 60). In
both MS and EAE lesions, reactive astrocytes upregulate
thymidine phosphorylase (TYMP) and vascular endothelial
growth factor A (VEGFA), which mediate the downregulation
of occludin and claudin-5, thus contributing to BBB breakdown
(61, 62). Furthermore, reactive astrocytes also produce CC-
chemokine ligand 2 (CCL2), which contributes to the
disassembly of TJs (63) and to the downregulation of both
occludin and claudin-5 (64).

In addition to produce soluble factors that increase the
permeability of the BBB, reactive astrocytes secrete several
chemokines that favour the recruitment of circulating
leukocytes into the CNS (Figure 1). CCL2 upregulation was
FIGURE 1 | Regulation of astrocyte functions by pathogenic T cells and lineage-defining cytokines in MS. Pathogenic Th1, Th17, Th1-like Th17 and CD8+ T cells
migrate into the CNS where they are reactivated and produce lineage-defining cytokines, which induce astrogliosis and negatively regulate several homeostatic
functions of astrocytes, such as the maintenance of BBB integrity, clearance of excessive ions and glutamate from the synaptic cleft, energy support to neurons and
oligodendrocytes. CNS, central nervous system; BBB, blood-brain-barrier; MHC-II, major histocompatibility complex II; ICAM-1, intercellular adhesion molecule-1;
VCAM-1, vascular adhesion molecule-1; AQP-4, aquaporin 4; Cx43, connexin 43; Kir4.1, inward rectifying potassium channel 4.1.
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observed in astrocytes from the white matter lesions of both MS
post-mortem brains and EAE mice, where it plays a critical role
in both macrophage and T cell infiltration into the white matter
of spinal cord (31, 65, 66). In EAE and MS lesions, reactive
astrocytes have been also identified as the major source of CCL20
(32, 33, 67), a chemokine that mediates the recruitment of
pathogenic CCR6+ Th17 and Th1-like Th17 cells into the
inflamed CNS (68). Furthermore, high levels of CXCL10
production by astrocytes correlated with the accumulation of
CXCR3+ Th1 and Th1-like Th17 cells into the inflamed spinal
cord and demyelinated lesions in EAE (25) (Figure 1).

Impaired Astrocyte-Neuron
Communication in MS
In the CNS, astrocytes are closely associated with neurons, by
tightly enwrapping neuronal cell bodies, axons and synapses
(Figure 1). The association between astrocytes and synapses is
important to maintain the brain homeostasis and to regulate
neuronal synaptic transmission (69). Astrocytes regulate synaptic
functions by tuning glutamate concentration in the synaptic cleft
(70). Glutamate is the major excitatory neurotransmitter in CNS
that, if accumulates in the synaptic and extra-synaptic space, may
lead to the hyperexcitation of neurons and neuronal death
through a process known as glutamate excitotoxicity (71). After
release from presynaptic neurons, glutamate is taken up from
post-synaptic receptors such as mGluRs (metabotropic glutamate
receptors), NMDARs (N-methyl-D-aspartate receptors) and
AMPARs (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors), which in turn transmit the excitatory impulse
(72). Excessive and prolonged stimulation of glutamate receptors
leads to the depolarization of postsynaptic membranes and
mitochondrial Ca2+ overload that triggers excessive production
of reactive oxygen species (ROS) and nitric oxide (NO) and the
opening of the mitochondrial transition pore, thus favouring the
release of pro-apoptotic proteins and neuronal cell death (73).
Astrocytes play a crucial role in removing the excess of glutamate
by using specific glutamate transporters such as glutamate-
aspartate transporter (GLAST) and glutamate transporter-1
(GLT-1), which uptake more than 80% glutamate released in
the synaptic cleft. In astrocytes, glutamate is then metabolized by
glutamine synthase (GS) into glutamine that in turn is released,
taken up by neurons and used for the synthesis of glutamate and
gamma-aminobutyric acid (GABA) (71). Increased levels of
glutamate were observed in the CSF of RRMS patients with
active lesions during relapse as well as in SPMS patients (74).
Moreover, in both MS and EAE, impaired glutamate homeostasis
has been related to both decreased glutamine synthetase and
increased glutaminase, the enzyme responsible for glutamate
synthesis, as well as to the downregulation of the glutamate
transporters GLT-1 and GLAST (75–79). In addition to
impaired glutamate uptake, reactive astrocytes were also
described to release glutamate at the peak stage of EAE by up-
regulating the glutamate carboxypeptidase II, a metalloprotease
that converts the neuropeptide N-acetylaspartylglutamate into N-
acetyl aspartate and glutamate (80).

Astrocyte end-feet express several channels and ion
transporters , which regulate ion homeostas i s and
Frontiers in Immunology | www.frontiersin.org 4
neuronal excitability. In particular, Kir4.1 K+ channel, co-
expressed together with AQP4 in the astrocytes end-feet, faces
neuronal synapses and allows a rapid clearance of K+ ions from
the extracellular space, thus facilitating the repolarization of
neuronal membranes and neuronal firing (81). Reduced levels
of Kir4.1 were observed in perivascular astrocytes in both acute
and chronic active demyelinated MS lesions (82). The reduction
of astroglial Kir4.1 channel was associated to increased serum
levels of complement-fixing IgG subclasses, suggesting a role of
anti-Kir4.1 autoantibody in amplifying inflammation and tissue
damage in MS (82, 83).

Another important function of astrocytes is to regulate the
brain energy supply required for the transmission of synaptic
impulses and neuron functions (18). Astrocytic end-feet rapidly
uptake glucose from the brain capillaries and metabolize it in the
glycolytic route to generate lactate. Lactate is then transferred
through monocarboxylate transporters (MCT) to neurons where
it is converted to pyruvate and oxidized for energy production in
mitochondria (84). Interestingly, a significant reduction in the
expression of genes encoding for both the astrocyte-neuro lactate
shuttle (ANLS), including MCT1, and the glutamate–glutamine
cycle (GGC), including glutamine synthase and GLT-1, has been
observed in the grey matter from post-mortem brain tissues of
chronic SPMS and PPMS patients (85). The downregulation of
both ANLS and GGC genes observed in MS was also associated
with the simultaneous up-regulation of inflammatory cytokines
suggesting a role of immune-related signalling in the impairment
of astrocyte metabolic functions (85). Consistently, Ponath et al.
found that astrocytes derived from pluripotent stem cells of MS
patients carrying the risk allele variant rs7665090G produced
large amounts of proinflammatory factors and displayed a
significant reduced ability to release lactate and reuptake
glutamate after stimulation (86). The further analysis of
reactive astrocytes in white matter lesions from post-mortem
tissues suggested the presence of harmful hypertrophic astrocytes
in MS patients carrying the risk allele variant (86). The impaired
metabolic functions of astrocytes observed in MS also involve the
synthesis of cholesterol that is required for myelin sheath
formation, the maintenance of axonal membrane and synapses
integrity (87). Astrocytes from spinal cord, cerebellum and optic
nerve of chronic EAE showed a reduction in the expression of
several genes involved in cholesterol synthesis. Similar results
were observed by the gene expression analyses of astrocytes from
optic chiasm autopsy tissues from MS patients (88).

In order to support the correct neuronal effector responses,
astrocytes also secrete neurotrophic factors including nerve
growth factor (NGF), brain-derived neurotropic factors
(BDNF), fibroblast growth factor (FGF) and ciliary
neurotrophic factor (CNTF), which are required for the
optimal survival, growth and differentiation of neurons and for
preventing neurodegeneration (89). Impaired production of
neurotrophic factors was observed in astrocytes exposed to T
cell-derived inflammatory cytokines in EAE (90). Moreover, in
both EAE and chronic MS lesions, astrocytes up-regulated the
BDNF receptor TrkB that upon stimulation with BDNF induced
a strong release of NO, thus contributing to oxidative stress and
neuronal damage (91).
February 2022 | Volume 13 | Article 824411
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Impaired Astrocyte-Oligodendrocyte
Communication in MS
Reactive and hypertrophic astrocytes, accumulating in MS
demyelinating lesions, also contribute to oligodendrocyte loss and
demyelination by favouring lesion development and progression
(38, 92). In healthy brains, astrocytes regulate the homeostasis of
myelin sheaths by releasing several neurotrophic factors that
promote the proliferation of oligodendrocyte progenitor cells
(OPCs) their migration and differentiation to oligodendrocytes
(93). The platelet-derived growth factor (PDGF) and BDNF
secreted by astrocytes promote OPCs proliferation, migration
and maturation to myelinating oligodendrocytes (94). During
neuroinflammation, astrocytes also exert neuroprotective effects
on oligodendrocytes by producing CXCL1 and CNTF, which
favour OPCs recruitment to axons and their differentiation into
mature myelinating oligodendrocytes, respectively (95).
Consistently, reactive astrocytes in acute MS lesions secrete
several remyelinating factors (96) and increased BDNF release by
reactive astrocytes was found to induce remyelination in a
cuprizone-induced demyelination model (97). However, with the
progression of MS to a chronic stage, reactive astrocytes form a
dense glial scar around the axons and secrete hyaluronan and
proteoglycans, thus preventing OPCs recruitment and maturation
into the demyelinated areas (97, 98). Moreover, astrocytes also
supply lipids, especially cholesterol, to oligodendrocytes necessary
for myelin synthesis (16, 99). This astrocyte-oligodendrocyte
network is finely regulated by a physical interaction through
connexins Cx30/Cx32 and Cx43/Cx47, which are fundamental
for the exchange of potassium ions and metabolic factors
required for myelin maintenance (16, 100, 101). A strong
reduction of Cx47 in both cell bodies and proximal
oligodendrocyte processes as well as of the astrocyte binding
partner Cx43 was observed in EAE lesions. A concomitant loss of
Cx32was also detectedwithin and around the lesions that persisted
throughout the disease course (102). Similar results were obtained
by immunohistochemical analysis of post-mortem brain tissues
from MS patients, where a strong reduction of both
oligodendrocyte Cx32 and Cx47 was observed in and around
chronic lesions as well as in the normal-appearing white matter
(NAWM) (103). On the contrary, the expression of Cx30 andCx43
on astrocytes was increased in both lesions and NAWM and
correlated with astrogliosis and the acquisition by astrocytes of an
inflammatory phenotype, while higher Cx32 expression was
associated with a longer disease duration (104). So, the loss of
connection between oligodendrocytes and reactive astrocytes
during chronic inflammation may accelerate MS progression by
contributing to demyelination and axonal damage. Consistently,
Cx43 loss was associated with a rapidly progressive MS course,
oligodendrogliopathy and active demyelinating lesions (57).

DYSREGULATION OF ASTROCYTE
FUNCTIONS BY INFLAMMATORY
T CELLS IN MS

The immunopathogenesis of MS relies on the recruitment of
specific autoreactive Th cell subsets and CD8+ T cells within CNS
Frontiers in Immunology | www.frontiersin.org 5
where they are reactivated and secrete cytokines and chemokines
that modulate the activity of several glial cells, including
astrocytes (11, 105). Among Th cells, Th1, Th17 and Th1-like
Th17 cells have been identified as key players of MS
pathogenesis, by producing one or more lineage-defining
cytokines, which affect several astrocyte functions as discussed
below (Figure 1).

Th1-Mediated Regulation of Astrocytes
in MS
Th1 cells are a subset of CD4+ T lymphocytes characterized by
the expression of the CXC chemokine receptor type 3 (CXCR3),
interleukin (IL)-12 receptor (IL-12R) chains b1/b2, the master
transcription factor T-bet and by the production of the lineage-
signature cytokine IFN-g together with GM-CSF and TNF-a
(106). The neuropathological functions of Th1 cells in MS have
been extensively studied in EAE animal models (11) and
associated to their ability to trigger the activation of resident
microglia and their differentiation into a high inflammatory and
neurotoxic phenotype (107, 108). More recent studies evidenced
that Th1 cells and their effector cytokines may also affect the
phenotype and functions of astrocytes in MS (109). Human
astrocytes, indeed, were found to express IFN-g receptor
(IFNGR) that was also up-regulated in the cortex of post-
mortem MS brain tissues and associated with the acquisition
of a neurotoxic phenotype (110). Silencing of IFN-g signalling in
murine astrocytes, suppressed EAE by inhibiting inflammatory
chemokine production and the infiltration of Th1 and Th17 cells
into the CNS (111, 112). Moreover, IFN-g-treated astrocytes up-
regulated the expression of chemokines such as CCL20, CXCL10
and CXCL12 involved in the recruitment of both Th1 and Th17
cells into the CNS, and CCL2 (90, 113) that contributes to BBB
breakdown by inducing both disassembly and downregulation of
TJs (63, 64). In addition to favour the infiltration of
inflammatory T cells within CNS, IFN-g-activated astrocytes
were also described to promote the proliferation of myelin-
specific T cells during EAE by up-regulating major
histocompatibility complex class II (MHC-II) molecules and
contributing to the reactivation of pathogenic T lymphocytes
as antigen-presenting cells (APC) (114). Interestingly, astrocytes
in chronic active lesions from post-mortem MS brain tissues
were found to express MHC-II together with B7.1 and B7.2 (115,
116), two important costimulatory molecules that are required
for optimal APC functions and up-regulated by IFN-g (117, 118).
However, IFN-g was also described to mediate protective effects
on astrocytes during chronic EAE. Smith et al. observed an
exacerbation of chronic EAE, an increase of the lesion size and
enhanced oxidative stress, in mice with IFNGR-deficient
astrocytes (119). Similar results were obtained in EAE
transgenic mice expressing a signalling deficient dominant
negative IFNGR1 on astrocytes (120).

Th1-derived cytokines have been also implicated in polarizing
astrocytes to a neurotoxic phenotype. In astrocytes from EAE
mice, Th1-derived cytokines such as IFN-g and GM-CSF
impaired the expression of neurotrophic factors such as NGF,
CNTF and BDNF, and up-regulated the expression of NO
synthase (90). Moreover, the loss of Cx43 in astrocytes from
February 2022 | Volume 13 | Article 824411
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acute demyelinating MS lesions has been recently associated to
Th1-derived IFN-g via microglia-dependent production of IL-
1b, thus contributing to the disruption of astrocyte intercellular
communications and MS progression (121).

Th17-Mediated Regulation of Astrocytes
in MS
Th17 cells are characterized by the expression of CCR6, CCR4,
CD161, IL-23R, IL-1R, the master transcription factor retinoic
acid receptor-related orphan nuclear receptor gt (RORgt) and the
production of the lineage-signature cytokines IL-17A-F and IL-
21 together with IL-22 (122). The pathogenic functions of Th17
cells in MS have been associated to BBB breakdown and CNS
inflammation (123, 124) by targeting both resident microglia and
astrocytes (90, 107). Astrocytes, indeed, express a functional IL-
17R and are responsive to IL-17 by polarizing towards a reactive
phenotype and by producing several inflammatory cytokines and
chemokines during EAE (67, 125–127). The impairment of IL-
17-mediated signalling in astrocytes through the selective
ablation of key signalling mediators was shown to ameliorate
EAE by inhibiting the production of inflammatory chemokines,
the infiltration of inflammatory cells (128, 129) and the
percentage of Th17 cells within CNS (130). For instance, in
astrocytes, IL-17 induces the expression and production of IL-6
that, by acting in a positive feedback loop, may amplify Th17 cell
differentiation (131–133). IL-17 also enhances the production of
CCL20 in astrocytes (67, 128), thus facilitating the recruitment of
Th17 cells within CNS (90). Moreover, by up-regulating the
expression of vascular adhesion molecule-1 (VCAM-1) on brain
stem astrocytes, Th17-associated cytokines may further enhance
the recruitment of both Th1 and Th17 cells within the
CNS (134).

IL-17-mediated signalling in astrocytes also promotes the
secretion of matrix metalloproteinases such as MMP-3 and
MMP-9 that further compromise the integrity of the BBB
favouring the recruitment of encephalitogenic T cells into the
CNS (129, 130).

Th17 cell-associated cytokines were also shown to affect the
homeostatic functions of astrocytes. Kostic et al. reported that
low doses of IL-17A impaired the ability of astrocytes to uptake
glutamate from the extracellular space by reducing the
expression of GLT-1 and GLAST transporters as well as of
glutamine synthetase. In addition to reduce glutamate uptake,
exposure of astrocytes to IL-17A also caused a Ca2+-dependent
glutamate release, thus favouring excitotoxic damage
(Figure 1) (135).

Role of Th1-Like Th17 Cells on Astrocyte
Functions in MS
Despite most of the studies carried out to investigate the crosstalk
between inflammatory Th cells and astrocytes focused on Th1
and Th17 cells, the recent identification of highly pathogenic
Th1-like Th17 cells in both EAE (49, 136) and MS (136–140)
suggests their contribution in promoting the morphological and
functional changes occurring during astrogliosis. Th1-like Th17
produce TNF-a, GM-CSF, IL-17A, although at lower levels than
Frontiers in Immunology | www.frontiersin.org 6
Th17 cells, high levels of IFN-g, co-express CXCR3 and T-bet
together with CCR6 and RORgt, and express IL-23R (122,
141, 142).

Most of the cytokines produced by Th1-like Th17 cells may
exhibit synergistic detrimental effects on astrocytes. For instance,
IFN-g and TNF-a cooperate with IL-17A by inducing the
production of inflammatory chemokines in astrocytes and
enhancing the recruitment of encephalitogenic T cells into the
CNS (90, 128, 132, 143). Moreover, IFN-g and IL-17A produced
by Th1-like Th17 cells induce the up-regulation of intercellular
adhesion molecule-1 (ICAM-1) and VCAM-1 in cortical
astrocytes within CNS lesions during EAE (144). Finally, a
detrimental contribution of Th1-like Th17 cells on astrocytes is
strongly supported by the above cited effects of IFN-g in
combination with GM-CSF. Indeed, these cytokines cooperate
in impairing the production of neurotrophic factors as well as in
promoting oxidative stress in astrocytes (90) and enhance
astrocyte-dependent glutamate excitotoxicity induced by IL-
17A (Figure 1) (135). Nevertheless, further studies are
required to elucidate this issue.

Crosstalk Between CD8+ T Cells and
Astrocytes in MS
Although inflammatory Th cell subsets have long been regarded
as the main effectors of MS pathogenesis, an important
pathophysiological role of CD8+ T cells has also recently been
recognized. Histopathological studies of immune cell infiltrates
in post-mortem brain tissues from MS patients showed a
prevalence of CD8+ T cells compared to CD4+ T cells (105,
145). Moreover, sRNA-seq analyses revealed a prominent
oligoclonal expansion of CD8+ T cells in the peripheral blood
and CSF of MS patients (146, 147).

Activated CD8+ T cells may contribute to BBB breakdown by
inducing the activation of astrocytes and the downregulation of
both occludin and claudin-5 in perforin-dependent and non-
apoptotic manner (148). Once entered into the CNS, CD8+ T
cells may be reactivated by MHC class I-expressing resident glial
cells, including reactive astrocytes (145), thus contributing to
tissue damage and neuroinflammation (149). In EAE, CD8+ T
cells also produce IL-17 thus supporting Th17-mediated
dysregulation of astrocyte functions (150). Astrocytes in turn
may enhance the cytotoxic activity of CNS-infiltrating CD8+ T
cells by producing IL-15 (151). Immunohistochemistry analysis
of post-mortem brain tissues from MS patients revealed the
expression of IL-15 in reactive GFAP+ astrocytes located in both
acute and subacute MS lesions as well as near blood vessels. The
exposure of CD8+ T cells to astrocyte-derived IL-15 enhanced
antigen-specific cytotoxicity as well as the expression of lytic
enzymes (granzyme B and perforin) and natural killer group 2
member D (NKG2D) (151). NKG2D is a transmembrane
receptor constitutively expressed on human CD8+ T cells that
recognizes stress-induced ligands on target cells and enhances
TCR-mediated cytotoxicity (152). Notably, ULBP4, a NKG2D
ligand, was highly expressed on astrocytes in active and chronic
active MS lesions from post-mortem brain tissues. Furthermore,
the addition of soluble ULPB4 to CD8+ T cells from MS patients
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co-cultured with astrocytes enhanced the production of
inflammatory cytokines and increased T cell motility, thus
suggesting an important contribution of the crosstalk between
CD8+ T cells and astrocytes in synergy with CD4+ Th cells to
CNS damage in MS (153).

Impact of T Cell Targeting MS Therapeutic
Drugs on Astrocytes
The crosstalk between inflammatory T cells and astrocytes in
sustaining neuroinflammation and neurodegeneration in MS is
supported by recent evidences that some of the disease-
modifying drugs target both inflammatory T cells (11) and
astrocytes (154).

Glatiramer acetate (GA), an acetate salts composed of a
mixture of four synthetic polypeptides (glutamate, lysine,
alanine, and tyrosine), suppresses inflammatory Th1 cells by
promoting their shift to an anti-inflammatory Th2 cell
phenotype (155–157) and by increasing the frequency of
suppressive regulatory T cells (Treg) (158). In EAE mice, GA-
specific Th2 cells produced high levels of BDNF, IL-10 and TGF-
b following their adoptive transfer within CNS (159). Moreover,
the production of immunosuppressive cytokines and
neurotrophic factors by GA-specific T cells primed astrocytes
to produce IL-10 and TGF-b (159), thus promoting their
transition from a neurotoxic to a neuroprotective phenotype
(160). More recent data from Eilam et al. also evidenced that GA
treatment of EAE mice partially abrogated BBB disruption by
increasing the expression of claudin-5 on astrocytes and by
restoring their end-feet connections with the NVU (54).

Dimethyl fumarate (DMF) acts on T cells by reducing the
total number of circulating T cells (161, 162), in particular of
IFN-g- and IL-17-producing Th cell subsets and CD8+ T cells
(163, 164), and by increasing the percentage of Th2 and Treg
cells (165, 166). DMF treatment of primary reactive astrocytes
derived from both human and murine brains evidenced the
ability of this drug to reduce the secretion of inflammatory
cytokines and chemokines as well as to prevent the production
of ROS (167) by promoting anti-oxidant gene expression (168).
Similar effects were observed by treating human astrocytes with a
novel fumarate, isosorbide-DMF (IDMF). Genome-wide
expression analysis of human astrocytes treated with DMF and
IDMF evidenced the ability of both compounds to downregulate
the expression of several genes associated with neurotoxic
reactive astrocytes, including MMP9, CCL2 and ICAM1 (169).

Fingolimod (FTY720) and siponimod (BAF312) are two
antagonists of the sphingosine-1-phosphate receptor (S1PR)
approved for RRMS and SPMS, respectively (11, 170). Both
drugs bind S1PR and induce its internalization, thus sequestering
T cells in lymphoid organs and reducing circulating
inflammatory CD4+ and CD8+ T cells (11, 170–172). In both
human and murine astrocytes, fingolimod treatment was shown
to impair the production of inflammatory and neurotoxic factors
(173) and to promote the secretion of neurotrophic mediators
(174). Moreover, Trkov Bobnar et al. showed that fingolimod
reduced the expression of MHC-II on the surface of IFN-g-
treated astrocytes, thus preventing their activity as APCs (175).
Frontiers in Immunology | www.frontiersin.org 7
As fingolimod, siponimod was reported to impair inflammatory
cytokine expression in human astrocytes and to restore
astrocyte-endothelial cell connections by up-regulating the
expression of claudin-5 and ZO-1 (176, 177). Finally, in
human astrocytes, both fingolimod and siponimod prevented
glutamate neurotoxicity by restoring the expression of GLAST
and GLT1 on astrocytes and glutamate uptake (177, 178).

Laquinimod (LQ) is a quinoline-3-carboxamide derivate
under clinical trial evaluation for the treatment of RRMS (179).
In EAE, LQ treatment ameliorated disease progression by
reducing the polarization and recruitment of Th17 cells as well
as the production of inflammatory cytokines (180, 181).
Treatment of human astrocytes with LQ inhibited IL-1b-
induced downregulation of glutamate transporters GLAST and
GLT1 and restored astrocyte glutamate uptake (178).
Consistently, LQ treatment ameliorated EAE by suppressing, in
astrocytes, the expression of inflammatory mediators such as IL-
6 and ROS and by inducing a transcriptional program associated
to homeostatic chemokines, neurotrophin, axonal guidance and
transendothelial migration (182).
CONCLUSIONS

The contribution of Th1, Th17, Th1-like Th17 inflammatory
cytokines in activating astrocytes to gain a neurotoxic phenotype
is beginning to be studied in MS. However, astrocytes may also
counteract inflammation by producing several factors, which
reduce BBB breakdown, leucocyte infiltration and promote
remyelination, axonal regeneration and neurogenesis (21).
Therefore, therapeutic strategies aimed at counteracting the
infiltration of inflammatory Th cell subsets into the CNS and
at polarizing reactive astrocytes towards a neuroprotective
phenotype may be beneficial to arrest disease progression as
well as to stimulate repair processes. A deeper understanding of
the cross-talk between T cells and astrocytes in MS will be
seminal for the development of more efficient therapies
dampening inflammatory T ce l l s and st imulat ing
neuroprotective astrocytes.
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