
Exploiting Time Dynamics for One-Class and
Open-Set Anomaly Detection

Lorenzo Brigato1, Riccardo Sartea2, Stefano Simonazzi2, Alessandro Farinelli2,
Luca Iocchi1, and Christian Napoli1

1 Department of Computer, Automation and Management Engineering
La Sapienza University of Rome,

Viale Ariosto 35, 06121 Roma, Italy
{brigato; iocchi; cnapoli}@diag.uniroma1.it

2 Department of Computer Science
University of Verona,

Strada le Grazie 15, 37134 Verona, Italy
{alessandro.farinelli; riccardo.sartea}@univr.it

Abstract. In this paper we describe and compare multiple one-class
anomaly detection methods for Cyber-Physical Systems (CPS) that can
be trained with data collected only during normal behaviors. We also
consider the problem of detecting which group of sensors is most affected
by the anomalous situation solving an open-set classification task. The
proposed methods are domain independent and are based on a temporal
analysis of data collected by the system. More specifically, we use dif-
ferent flavours of deep learning architectures, including recurrent neural
networks (RNN), temporal convolutional networks (TCN), and autoen-
coders. Experimental results are conducted in three different scenarios
with publicly available datasets: social robots, autonomous boats and
water treatment plants (SWaT dataset). Quantitative results on these
datasets show that our approach achieves comparable results with re-
spect to state of the art approaches and promising results for open-set
classification.

1 Introduction

Cyber-Physical Systems (CPS) such as robots, industrial machinery, autonomous
vehicles, etc., are employed in an ever increasing variety of environments. In
many cases these systems have a direct impact on society, e.g., power or water
treatment plants. It is therefore crucial to ensure the correct and safe opera-
tion of CPS, as the consequence of unexpected failure or disruption could harm
people and business. In this work we aim to detect behaviors of CPS that do
not conform to the known normal operation, i.e., anomalies. Furthermore, since
attacks to CPS cause unwanted behaviors that differ from the normal, detect-
ing an anomaly allows also to detect the underlying attack. A key problem of
anomaly detection is the lack of data regarding the anomalies. In fact, it is easy

2 Napoli et al.

to profile the normal behavior of a CPS, however it is more complex to observe
the CPS under a realistic anomalous behavior. Moreover, it is almost impossible
to predict all the possible types of anomalies that may occur in complex CPS.
For this reason, the anomaly detection problem is often addressed as a one-class
classification problem, i.e., the only available data for training belongs to the
class referring to the normal behavior. The works in [1] proposes a multivariate
anomaly detection method based on Generative Adversarial Networks (GAN),
using Long Short-Term Memory Recurring Neural Networks (LSTM-RNN) for
generator and discriminator models. After the training process, the discriminator
is used to distinguish between normal and abnormal behavior. The DAGMM ap-
proach proposed in [2] makes use of autoencoders and Gaussian Mixture Model
(GMM) that takes the low-dimensional input from the compression network and
outputs mixture membership prediction for each sample. Anomaly detection for
CPS, and specifically robots, has been recently addressed in [3], where authors
propose to extract system logs from a set of internal variables of a robotic system,
transform such data into images, and train different Autoencoder architectures
to detect anomalies. In this work, we propose a new transformation of the in-
put specifically designed for Convolutional Autoencoders that takes time into
account. We show that such transformation increases the robustness of Con-
volutional Autoencoders, without changing the underlying model. In this work
we also propose a regression approach to the open-set classification of anoma-
lies that is capable of identifying which sensors of a CPS are most likely the
cause of a detected anomaly. This information is very valuable as it allows for
an interpretation of the anomaly and helps the analysis of its causes. In par-
ticular, the open-set refers to the different classes of possible anomalies that
are not known at training time since the training process is one-class, i.e., only
normal behavior. In the empirical evaluation we compare our solutions with sev-
eral statistical methods and state of the art approaches for anomaly detection,
considering techniques that use both explicit [4],[5] and implicit [6],[7],[8],[9],[1]
representations of the time dimension. We use three datasets for testing: au-
tonomous water drone Boat [3], the Pepper social robot [3], and SWaT [10].
The first two were collected from robotic platforms3, whereas the third one was
collected from an industrial CPS of a water treatment plant. Moreover, we also
show a use case for the Pepper social robot involved in a public demonstration
subject to a simulated attack. This use case is employed as additional test set for
the anomaly detection methods described in the paper. Crucially, in this test we
run models trained on the mentioned dataset on a log that has been acquired in
a very different situation, e.g., different environment, different means of interac-
tion. The analysis confirms that the simulated attack can be detected by using
our approach. Overall results of the experiments show that deep learning archi-
tectures are suitable to detect anomalies in one-class and open-set settings and
that exploiting time dynamics generally improve such performance. In summary,
the contributions of this paper are the following: i) we propose a new transfor-
mation of the input specifically designed for Convolutional Autoencoders that

3 sites.google.com/diag.uniroma1.it/robsec-data

Time Dynamics for Anomaly Detection 3

characterize the temporal evolution of system variables; ii) we propose a novel
approach based on regression for the open-set classification of anomalies that
is capable of identifying which sensors of a CPS are most likely the cause of a
detected anomaly; iii) we conduct an extensive empirical evaluation of multiple
techniques on real datasets of robotic platforms and industrial CSP. Moreover,
we also present the results on a different instance of real usage scenario for the
Pepper platform.

2 Problem definition

Let us consider a general CPS S that can be described by a set of variables V
characterizing its internal state over time. We denote K = |V |. The evolution
over time of V characterizes the behavior of S, that can either be normal or
fall into a class of anomalies, generally denoted as abnormal. Let rt be a record,
i.e., a tuple of values of V collected at time t, note that |rt| = K. We define
πt,d = {rt−d, . . . , rt} a system log of a behavior containing the values of variables
V recorded from time (t− d) to time t. Let us consider a scenario in which the
logs are taken when S is performing a normal behavior, we denote with Dr the
set of collected normal behavior records, and Dt a set of unknown behaviors
potentially containing both normal and abnormal records. The first problem we
define aims at producing a binary classifier of normal and abnormal behaviors
of system logs, trained only with normal samples. The practical importance of
this problem is that it is not necessary to collect abnormal situations, which
are often very difficult to acquire in a significant quantity and variety to train a
reliable model.

Definition 1 One-class classification of system logs. Given a dataset of system
logs Dr, generate a model that is able to classify new instances πt,d ∈ Dt.

The second problem considers the use of the model computed as a solution to
Problem Definition 1, to compute the subset of variables H ∈ 2V that better
explains the anomaly, when this is detected. This problem is also of practical
importance, as the information produced helps in directing the investigation of
the causes towards the sensors that are most likely involved in the anomaly.

Definition 2 Open-set classification of system logs. Given a dataset of system
logs Dr, generate a model that is able to classify new instances πt,d ∈ Dt and,
when an anomaly is detected, estimate the subset of variables H ∈ 2V that
contribute the most to the anomaly.

3 Log-to-temporal-image Anomaly Detection

We propose a new solution to the one-class classification problem based on trans-
forming logs into images described in [3]. We focus our attention on the temporal
aspect of the logs and aim to improve the performance of Convolutional Autoen-
coders that resulted to be the worst models in terms of performance [3]. A key el-
ement in our approach is the transformation of each record rt ∈ R into a squared

4 Napoli et al.

image I ∈ I (denoting with I the set of images). To this end, we implemented
a log-to-image transformation function σ : R→ I able to transform log records
into images. Dr,I = {(σ(rt),normal) | ∀ rt ∈ Dr} computed from the system logs
that will be used for generating the class model. More precisely, given dataset Dr

we define a new dataset of labeled images Dr,I = {(σ(rt),normal) | ∀ rt ∈ Dr}
computed from the system logs that will be used for generating the class model

3.1 Log-to-temporal image Transformation

Since logs represent temporal data, the temporal information includes important
features that may be needed to detect anomalies. However, convolutions do not
exploit such information since their filters work over spatial dimensions that do
to take time into account. Moreover, features in data are expected to be dense.
This condition is not fulfilled unless the input space is low dimensional. The
standard min max normalization implemented in [3] penalized Convolutional
Autoencoders when tested on Pepper dataset. Indeed, 1) each image does not
consider the values of the previous record, 2) the vector is simply reshaped to
generate an image (padding if needed) so, values are located without following
any reasoning. To solve the mentioned issues we define a log-to-image trans-
formation function σ : R → I implemented as follows. Let (rk)t be the k-th

variable within a record at time t and let (ρk)t = ∂(rk)t
∂t and (θk)t = ∂2(rk)t

∂t2 be
respectively the first and second time derivatives. They characterize the tempo-
ral evolution of the logs variables. Variables that follow similar patterns through
time should be closely located to each other. On the other hand, variables whose
temporal profile greatly differ should be mapped far from each other. In this
manner, convolution kernels can extract the information needed to characterize
the normality of the current sample. The first step regards the transformation of
the derivatives to polar coordinates. The first derivatives are interpreted as radii,
in polar coordinates, that originates at the image center. Since the image edge
has a defined dimension Ie, (ρk)t is remapped to the interval [0, Ie

2 − 1]. The
absolute value of the second derivatives |(θk)t| is then interpreted as the polar
coordinates’ angle, and therefore normalized accordingly to belong to [0, 2π].
The image row (ik)t and column (jk)t to which a variable of the log record (rk)t
is mapped, are computed as:

(ik)t =
⌊
(ρk)t cos(θk)t + Ie

2

⌋
(jk)t =

⌊
(ρk)t sin(θk)t + Ie

2

⌋ (1)

Note that i and j are floored to integer values. Some variables could be mapped
to the same pixel, for instance, constant variables. We will refer to this circum-
stance as pixel superposition. Generally, when such a superposition occurs it
means that some variables are concurrently and consistently varying over time.
In Equation (2) we tackle this problem and the related formal complications. We
could consider such covaring variables as correlated noise. In this latter fashion,
it is useful to drop out such variables since they can become detrimental for

Time Dynamics for Anomaly Detection 5

Fig. 1. Temporal image generated from a normal (left) and an abnormal (right) sample
taken from Pepper dataset.

correct classification. On the other hand, the produced image size matters for
the quantization error. In fact, small outputs will determine a high probability of
pixel superposition whether or not variables covariate. We let the transformation
overwrite values over the same pixels. Experiments proved that such mapping
does not hurt performance. The image I is composed of three channels R, G
and B. The red channel is filled with the normalized value of the log record
(r̂k)t = minmax((rk)t). The green channel refers to the semantic meaning of
the variable while the blue channel is filled with zeros. In order to compose a
mathematically consistent formalism, let define

Λt = {((ik)t, (jk)t) ∀ k ∈ [0,K] ∩ N}
k̄ijt , max{k : (ik)t = i, (jk)t = j}
χijt , [(r̂k̄ijt

)t,
k̄ijt

K , 0]

(2)

It follows that for each pixel in position (i, j) at a time instant t is represented
by an RGB vector computed as

Iij(t) ,

{
χijt (i, j) ∈ Λt

[0, 0, 0] (i, j) /∈ Λt

(3)

Normalization bounds (minimum and maximum) are based on the training data
distribution. At testing time, some values might be mapped outside the desired
intervals. In this latter circumstance, these values are forced to the closest allowed
value. An example of a couple of generated images from the Pepper dataset is
shown in Figure 1.

3.2 Class Modelling

Class modelling is performed through two different phases, as done in [3]. Since
in this work we used images transformed following the previously described strat-
egy, we will refer to this method as (tConvEnc). The network is trained over the
majority of the one-class dataset Dr to learn its latent representation. Then,
the affiliation to the normal class follows a decision rule based on a threshold.
Such threshold is computed through the loss function and estimated on a smaller
sample that we will call Dthr ⊂ Dr. Dthr is not fed to the autoencoder. Given

6 Napoli et al.

Dthr and the loss function L of a trained network, we compute l = L(Dthr),
with l being a vector containing the loss values for each record rt ∈ Dthr. We
keep the approach used in [3] to compute the range of expected normal losses.
We choose the upper and lower bounds as δu, δl = µ(l) ± z ·σ(l), where µ is the
mean and σ is the standard deviation of the values in l. The value of z can be
tuned to vary the interval. A testing sample is classified as normal if the value
of its loss lt is in between δu and δl.

3.3 Architecture of the Autoencoders

Pepper: The tConvEnc is composed by eight convolutional layers with kernel
size of dimensions (6, 6). The first three are followed by Max-pooling layers with
stride dimensions equal to 2 whereas the central three layers with Up-sampling.
The kernels for each convolutional layer are respectively [100, 50, 30, 10, 30,
50, 100, 3]. The batch size was set to 64. Boat: The tConvEnc is composed by
six convolutional layers with kernel size of dimensions (3, 3). The first two are
followed by Max-pooling layers with stride dimensions equal to 2 whereas the
central two layers with Up-sampling. The kernels for each convolutional layer
are respectively [32, 16, 8, 16, 32, 3]. The batch size was equal to 64. SWaT: The
tConvEnc is composed by six convolutional layers with kernel size of dimensions
(6, 6). The first two are followed by Max-pooling layers with stride dimensions
equal to 2 whereas the central two layers with Up-sampling. The kernels for each
convolutional layer are respectively [32, 16, 8, 16, 32, 3]. The batch size was equal
to 1024. All input images are zero-padded. Each network was trained with Binary
Cross-Entropy Loss and Adam optimizer (default learning rate). We fixed the
number of epochs to 30. We used ReLUs for all hidden layers and Sigmoids for
the output layers.

4 Regression

As an alternative approach we propose to use regression temporal models in order
to address both problem definitions of Section 2. We used three different models:
a Recurrent Neural Network (RNN), a dense neural network and a Temporal
Convolutional Networks (TCN). The RNN has two layers and is composed of
Gated Recurrent Units (GRU) gating mechanism with a hidden layer size of 64.
The hidden layer is connected to the network output through a dropout layer.
The dense neural network has a batch-norm layer, two hidden layers of dimension
64 units, both followed by dropout. The TCN uses 3 layers of size 30 and has
kernel size of 3. All models take in input a contiguous time sequence of size (K, t),
where t is the number of time intervals considered (1 < t) and return an output
of size K. We trained RNN with Backpropagation Through Time (BPTT). On
the other hand, we created and shuffled all possible contiguous subsequences of
length t for TCN and dense network.

The model, used for regression, takes in input a sequence πt−1,d−1 and re-
turns in output the predicted value of rt, called r̂t. To train the networks, Mean

Time Dynamics for Anomaly Detection 7

Squared Error (MSE) loss and Adam optimizer have been employed, using as
labels the values in the log at time t, rt. We fixed the dropout rate to 0.4, and
the number of epochs has been tuned to maximize performance while avoiding
over-fitting. The evaluation of a new sequence πt,d ∈ Dt follows these steps: if
the MSE between the predicted values r̂t and the actual values rt ∈ πt,d is above
the threshold tr an attack is detected. The threshold is computed from the pre-
dictions Predt on the training data Dr by selecting the p percentile (usually
between 70 and 99.5).

Predt =

∑K
i=1(rt,i − r̂t,i)2

K
(4)

tr = Percp({Pred1, ..., P red|Dr|}) (5)

5 Open-set classification

To solve the problem in Definition 2, we consider a variation of the regression
approach presented in Section 4 by changing how the results of the regression
model are used (while the training does not change). In particular, instead of
computing a single threshold tr as before, we compute a threshold ti for each
dimension 0 < i ≤ K as follows

Predt,i = (rt,i − r̂t,i)2 (6)

tri = Percp({Pred1,i, ..., P red|Dr|,i}) (7)

Now, suppose we want to classify a new sequence πt,d ∈ Dt. First, we retrieve the
model prediction r̂t (just as in Section 4). Then, we compute the squared errors
between every dimension rt,i and r̂t,i (as in Equation 6) and divide the result
by the respective threshold tri, in order to normalize between the thresholds of
the dimensions. After that, dimensions whose normalized values are greater than
1 are ranked according to such values, and the first k dimensions determine a
subset of variables, called H. The value k is domain dependent and can be set by
using different criteria, such as the number of variables present in the dataset, by
fixing a threshold on the ranking value, or by considering the number of variables
typically involved in an anomaly (or attack). In our empirical evaluation we use
this later criteria (see Section 6.2).

6 Experimental Results

6.1 Anomaly detection results

In the experimental results we follow the standard anomaly detection nomencla-
ture: we consider abnormal samples as positives and normal samples as negatives.
Therefore, true positive are abnormal recognized abnormal. Due to unbalanced
data, typically used in anomaly detection, in addition to precision and recall,
we consider F1-score. For all domains, we computed the results by varying the

8 Napoli et al.

t 5 20

perc. P R F1 P R F1

dense

70 0.820 0.970 0.889 0.794 0.971 0.874

80 0.852 0.949 0.898 0.852 0.947 0.897

90 0.890 0.866 0.878 0.896 0.902 0.899

95 0.922 0.784 0.847 0.921 0.750 0.827

99 0.872 0.188 0.309 0.970 0.279 0.433

RNN

70 0.841 0.794 0.817 0.827 0.797 0.812

80 0.863 0.708 0.778 0.900 0.711 0.794

90 0.894 0.596 0.715 0.923 0.486 0.637

95 0.884 0.388 0.539 0.920 0.394 0.552

99 0.694 0.039 0.075 0.883 0.026 0.051

TCN

70 0.822 0.726 0.771 0.890 0.729 0.802

80 0.841 0.607 0.705 0.888 0.614 0.726

90 0.876 0.451 0.595 0.929 0.548 0.689

95 0.878 0.370 0.521 0.917 0.373 0.530

99 0.644 0.033 0.063 0.899 0.018 0.036

Table 1. One-class problem on Pepper. Results for the RNN, Dense and TCN. Results
are given in terms of Precision (P), Recall (R), F1-score (F1).

number of records t and the percentile value used to derive the threshold. Table
1 shows the values for Pepper, the SWaT behavior is similar, while for Boat
most values are close to 1. We can see that all models have similar results,
with slightly better results for the dense model, particularly in the recall. The
precision remains high, exceeding 92% in some cases. As expected, we can ob-
serve that, as the percentile threshold value increases, the precision increases
while reducing the recall and vice-versa. Instead, against expectations, we do
not notice big differences by changing the number t of records considered. The
best results, considering F1-score, were achieved by choosing as a percentile a
value of 80 for Pepper and Boat while 99.5 for SWaT. We suppose that this is
affected primarily by two factors: (i) the different distribution of normal and at-
tack data, dictated by the availability of data, (ii) SWaT has a regular periodic
normal behavior, while for robots, their behaviors vary significantly over time.
Table 2 presents the results obtained for the anomaly detection task. We com-
pare our approach with several competitors: One-Class Support-Vector Machine
(OC-SVM) [6], Isolation Forest (IF) [7], Kernel Density Estimator (KDE) [8,
9], Generative Adversarial Networks-based Anomaly Detection (GAN-AD) [1],
Principal Component Analysis (PCA), K-Nearest Neighbours (KNN), Feature
Bagging (FB), Autoencoder (AE), Multivariate Anomaly Detection for time se-
ries data with Generative Adversarial Networks (MAD-GAN) [4] and Efficient
Gan-based anomaly detection (E-GAN) [5]. In the SWaT dataset we observed
that one sensor (AIT201), from about half the normal test data, has values 4
times higher than the maximum value of the training data, so we try to use
only the first n components, obtained with PCA, as proposed in state of the art
approaches [1, 4, 5]. We can see that if we use all the original data our regression

Time Dynamics for Anomaly Detection 9

Boat Pepper Swat

Method P R F1 P R F1 P R F1

1SVM 0.609 1.000 0.757 0.982 0.366 0.533 0.149 0.907 0.256

LOF 0.918 0.071 0.132 0.885 0.323 0.473 0.122 0.996 0.217

EE 0.919 1.000 0.958 0.604 0.542 0.571 0.077 0.004 0.007

IF 0.538 0.446 0.487 0.823 0.512 0.631 0.256 0.791 0.387

GAN-AD [1] – – – – – – 0.933 0.636 0.750

PCA [4] – – – – – – 0.249 0.216 0.230

KNN [4] – – – – – – 0.078 0.078 0.080

FB [4] – – – – – – 0.102 0.102 0.100

AE [4] – – – – – – 0.726 0.526 0.610

EGAN [5] – – – – – – 0.406 0.677 0.510

MAD-GAN [4] – – – – – – 0.990 0.637 0.770

Enc [3] – – 0.99 – – 0.90 0.973 0.612 0.751

DeepEnc [3] – – 0.99 – – 0.94 0.985 0.608 0.752

ConvEnc [3] – – 0.99 – – 0.77 0.992 0.618 0.761

tConvEnc 0.992 0.989 0.990 0.860 0.946 0.901 0.993 0.582 0.734

Dense 0.999 1.000 0.999 0.896 0.902 0.899 0.485 0.589 0.532

RNN 1.000 1.000 1.000 0.841 0.794 0.817 0.392 0.665 0.493

TCN 1.000 1.000 1.000 0.890 0.729 0.802 0.189 0.743 0.301

Dense (pc=8) 0.988 0.998 0.993 0.813 0.890 0.849 0.975 0.627 0.763

RNN (pc=8) 0.996 1.000 0.998 0.672 0.236 0.349 0.959 0.632 0.762

TCN (pc=8) 0.998 1.000 0.999 0.444 0.143 0.217 0.997 0.592 0.743

Table 2. Comparison of approaches and domains. Results are given in terms of Pre-
cision (P), Recall (R) and F1-score (F1). The results are shown in groups (top-down:
literature, past experiments, new experiments and new experiments with PCA).

approach is not very effective on SWaT. This is not surprising because of the
abnormal sensor in the normal data that is recognized. If we use only the first n
components instead the anomaly tends to fade and our approach improves per-
formance, reaching, in the case of SWaT, the best approaches considered using
GAN. It should be noted, however, that our method does not require the use of
the principal components and indeed we have verified, with the other datasets,
that using only the first n components, the performance drops. The F1-score
values also decrease accordingly, from about 0.9 using all sensors: 0.89 with 100
components, 0.86 with 30 components, 0.80 with 10 components, 0.61 with 3
components and 0.24 with only one component. With SWaT, the performance
increase because by reducing dimensions we are removing the abnormal behavior
of sensor AIT201. Considering the tConvEnc, we tried different image sizes, by
changing the dimension of the edge Ie. We found out that large edges increase
data sparsity and consequently reduce the performance of tConvEnc, while nar-
row edges increase the probability of pixel superposition. This is reasonable since
convolutions prefer dense features. For the Pepper dataset we generated images
with edge of size Ie = 24, for the Boat dataset Ie = 16 and for the SWaT dataset
Ie = 12. The hyperparameter z has been varied in the range [0, 6]. The reported

10 Napoli et al.

Boat dense RNN TCN Pepper dense RNN TCN

Dos 0.004 0.692 0.985 joint 0.445 0.533 0.494

DosPay 0.000 0.736 0.963 led 0.462 0.674 0.785

GpsDown 0.000 0.997 0.000 wheel 0.145 0.681 0.394

Stuck 0.454 0.550 0.806

avg 0.115 0.744 0.688 avg 0.351 0.630 0.558

Swat dense RNN TCN dense RNN TCN

2 0.933 0.867 0.878 22 0.702 0.904 0.436

6 0.875 0.825 0.775 32 0.926 0.876 0.843

7 0.931 0.897 0.885 38 0.807 0.684 0.684

8 0.974 0.959 0.263 40 0.016 0.016 0.869

10 0.121 0.758 1.000 41 0.387 0.834 0.722

20 0.925 0.875 0.888 avg 0.290 0.317 0.298

Table 3. Open-set classification problem. Results are given in terms of Accuracy. Due
to space constraints we only report a subset of all the attacks for SWaT

results are obtained choosing z that maximized the F1 score. It is clear that the
new transformation increases the robustness of Convolutional Autoencoders. In-
deed, tConvEnc reaches 0.901 F1-score while ConvEnc scored 0.77 on Pepper.
For the Boat and SWaT datasets results are comparable with the normalized
ConvEnc. We suppose that ConvEnc manages to maintain a good performance
in these two datasets due to the small input dimensionality and the consequent
small image size. The proposed temporal input transformation allows the tCon-
vEnc to match the performance of the other autoencoders and state of the art
methods. For instance, tConvEnc reaches an F1-score of 0.734 which is close the
MAD-GAN F1-score of 0.770 on SWaT.

6.2 Open-set classification results

In this set of experiments, we evaluate the performance of the system in provid-
ing classes of anomalies that are not seen at training time. In order to perform a
quantitative analysis, we have used test sets with labels of specific attacks, cor-
responding to subsets of variables affected by such attacks. More specifically, for
each kind of attack in the test set, e.g., an attack that takes control of the motors
of the robots, we have specified the corresponding affected subset of variables
G ∈ 2V . We then compare all these subsets with the output of the open-set
classification, i.e., the set H, by computing the Jaccard index J [11] between
H and each subset G, and selecting the maximum. For these experiments the
classification is evaluated with accuracy (since we are using the Jaccard index).
However, the system has still been trained only with normal data, so test classes
were never seen at training time. Table 3 reports the accuracy for each model
with respect to each type of attack, whose names match those used in the docu-
mentation. From the Boat dataset, we can see that RNN correctly identifies each
attack with accuracy from 55% (Stuck) to 99% (GpsDown). The TCN model
has higher accuracy for some kinds of attacks, but it is not able to identify the

Time Dynamics for Anomaly Detection 11

Fig. 2. Pepper prediction behavior under an attack: MSE value of Dense model (blue)
vs. 99.7 percentile (red).

GpsDown attack. The dense model instead usually mis-classifies. Overall, the
best model remains RNN. We also compared how the different types of attacks
are predicted by the one-class classification (Problem Definition 1) and the open-
set classification (Problem Definition 2). In particular, we observe that for some
types of attacks, one approach is more effective than the other. For example,
attack 28 on SWaT is detected very well as an anomaly (one-class), although
the responsible sensors identified are wrong (open-set). Conversely, attack 32 is
not detected (one-class), but sensors involved in this attack are correctly iden-
tified (open-set). This suggests that an approach with higher performance for
anomaly detection may not necessarily be the most useful to detect the source
of anomaly and hence to suggest viable interventions to address it. As an addi-
tional experiment on the open-set classification problem we tried to verify if our
methodologies correctly identify the most involved sensors, before applying the
classification with the Jaccard index. For each time interval in a specific attack,
we have assigned an incremental score to the first 10 sensors involved, from 1 for
the tenth to 10 for the first. In 21 types of attack out of 35 in SWaT, at least one
of the sensors involved is detected. This result gives an idea of the operation at
the basis of the classification and can already be used to understand the nature
of the attack.

6.3 Pepper use case

In this final experiment, we show a use case for the Pepper social robot involved
in a public demonstration subject to a simulated attack. In contrast to the
other experiments, here we run the regression models trained on the previously
mentioned Pepper, testing them on an additional log that has been acquired
in a very different situation: a public space where several people interact with
the robot with diverse goals and modalities. Figure 2 shows the outcome of the
system during a portion of time where the Pepper robot was manually pushed
back by a user. As shown in the figure, the system was able to detect the anomaly
happening in the middle of the logged period, i.e., between time 120 to 250.
Moreover, running the method for open-set classification we notice that the first
sensor that appears in the ranking is the sensor that evaluates the stiffness of the
front left wheel [WheelFLStiff] followed by some of the laser sensors positioned

12 Napoli et al.

on the shovel. This confirms that the method is capable of providing useful
indications on the possible source for the anomaly.

7 Conclusions

In this work, we have presented several one-class anomaly detection methods
that can be trained using logs of robotic platforms and CPS. Moreover, we con-
sider the problem of detecting variables or sensors that are most affected by
the anomalous behavior addressing an open-set classification task. Quantitative
comparison with state of the art methods on several datasets shows that our
approach achieves comparable results for anomaly detection and promising re-
sults for open-set classification. Our work paves the way for several research
directions. In particular, we believe that addressing the open-set classification
problem is a key step to go beyond anomaly detection and move towards system
analysis and diagnosis for robotic platforms. We believe that moving in this di-
rection is crucial to widen the practical use of robotic technologies in real-world
applications.

Acknowledgment

Sapienza University of Tome - funding for scientific research - year 2020

References

1. D. Li et al., “Anomaly detection with generative adversarial networks for multi-
variate time series,” CoRR, vol. abs/1809.04758, 2018.

2. B. Zong et al., “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in Int. Conf. on Learning Representations, 2018.

3. M. Olivato et al., “A comparative analysis on the use of autoencoders for robot
security anomaly detection,” in Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019.

4. D. Li et al., “MAD-GAN: multivariate anomaly detection for time series data with
generative adversarial networks,” CoRR, vol. abs/1901.04997, 2019.

5. H. Zenati et al., “Efficient gan-based anomaly detection,” CoRR,
vol. abs/1802.06222, 2018.

6. B. Schölkopf et al., “Support vector method for novelty detection,” in Advances in
neural information processing systems, pp. 582–588, 2000.

7. F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in 2008 Eighth IEEE
International Conference on Data Mining, pp. 413–422, Dec 2008.

8. E. Parzen, “On estimation of a probability density function and mode,” Ann. Math.
Statist., vol. 33, pp. 1065–1076, 09 1962.

9. M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”
Ann. Math. Statist., vol. 27, pp. 832–837, 09 1956.

10. J. Goh et al., “A dataset to support research in the design of secure water treat-
ment systems,” in Critical Information Infrastructures Security, (Cham), pp. 88–
99, Springer International Publishing, 2017.

11. P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson
Education, 2006.

