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inference of ranking data modelling
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The Plackett-Luce model (PL) for ranked data assumes the forward order of the ranking

process. This hypothesis postulates that the ranking process of the items is carried out by

sequentially assigning the positions from the top (most liked) to the bottom (least liked)

alternative. This assumption has been recently relaxed with the Extended Plackett-Luce

model (EPL) through the introduction of the discrete reference order parameter,

describing the rank attribution path. By starting from two formal properties of the EPL,

the former related to the inverse ordering of the item probabilities at the first and last

stage of the ranking process and the latter well-known as independence of irrelevant

alternatives (or Luce’s choice axiom), we derive novel diagnostic tools for testing the

appropriateness of the EPL assumption as the actual sampling distribution of the observed

rankings. These diagnostic tools can help uncovering possible idiosyncratic paths in the

sequential choice process. Besides contributing to fill the gap of goodness-of-fit methods

for the family of multistage models, we also show how one of the two statistics can be

conveniently exploited to construct a heuristic method, that surrogates the maximum

likelihood approach for inferring the underlying reference order parameter. The relative

performance of the proposals, compared with more conventional approaches, is

illustrated by means of extensive simulation studies.

1. Introduction

Psychological and behavioural studies typically investigate personality traits, such as

preferences and attitudes, that cannot be directly observed or are difficult tomeasure. For

this reason, research in these fields is often conducted by assessing choice and decision

processes that lead to the collection of ordinal data, rather than observations on the

numerical scale.

Let us consider, for example, an experiment inwhich a sample ofN judges are asked to

rank a set I = {1,. . .,K} of K labelled alternatives, namely items, according to a certain
criterion. The final outcome of the comparative evaluation is an ordered sequence

collecting the positions attributed to each object, called ranking. Formally, a ranking is a

vector π = (π(1),. . .,π(K)) where the entry π(i) indicates the position attributed to the ith

alternative. Equivalently, data can be recorded in the ordering format π−1 = (π−1(1),-
. . .,π−1(K)), where the generic component π−1(j) indicates the item ranked in the jth
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position. This implies that ranking/ordering data are multivariate ordinal data taking

values in the set of permutations SK of the first K integers.

These observations are common also in other areas of research, involving market

surveys on customers’ preferences for consumer goods (Gormley &Murphy, 2010; Yao &
Böckenholt, 1999) and voting systems allowing for the elicitation of an ordering of the

candidates in elections (Gormley &Murphy, 2008; Lee & Yu, 2012). Ranking data emerge

also from the literature on expert opinion elicitation when, in order to reduce the

elicitation burden, judgements are expressed in ordinal form instead of as numerical

assessments (Overland & Juraev, 2019; Wang & Bier, 2013). Another relevant field

concerns the competition/sport context, where the competitors (players, teams) are

ranked according to a certain measure of ability, such as the finishing time in a race or the

score amassed during a championship (Henderson & Kirrane, 2018; Henery, 1981; Stern,
1990).

The broad statistical literature on methods and models for analysing ranking data is

reviewed in Marden (1995) and, more recently, in Alvo and Yu (2014) and Liu, Crispino,

Scheel, Vitelli, and Frigessi (2019). By focusing on the parametric modelling approach,

distributions for random permutations are traditionally classified into four main

categories: (i) order statistics models (OSMs), whose seminal work is represented by

Thurstone (1927); (ii) paired comparison models (Bradley, 1976, 1984); (iii) distance-

based models (DBMs) (Fligner & Verducci, 1986; Mallows, 1957); and (iv) stagewise
models (Fligner & Verducci, 1988). This work concentrates on the parametric family of

type (iv), relying on the idea that the rankingprocess canbe decomposed into consecutive

stages for each position that has to be assigned, in particular on the Extended Plackett–
Luce model (EPL) introduced by Mollica and Tardella (2014). The EPL generalizes the

popular Plackett–Luce model (PL), presented by Luce (1959) and Plackett (1968), by

relaxing the implicit forward order assumption, according to which the ranking process

of the alternatives proceeds sequentially from the most liked to the least liked item. This

extension was accomplished by adding the reference order parameter ρ = (ρ(1),. . .,ρ
(K)) in the PL formulation. It indicates the rank assignment order, that is, the component

ρ(t) denotes the position attributed at the tth stage.

One aspect which is very often overlooked in the ranking data literature concerns the

assessment ofmodel adequacy for the observed data. Traditional approaches are based on

the construction of diagnostics to detect possible lack of fit of generic sample quantities,

rather than assessing the conformity of the data with peculiar features of the postulated

model. Moreover, the investigation of the effectiveness of thesemethods has been limited

to a few parametric families, such as the DBM (Cohen & Mallows, 1983; Feigin & Cohen,
1978) and the OSM (Tsai & Yao, 2000; Yao & Böckenholt, 1999; Yu, 2000). Nevertheless,

model-specific diagnostics are valuable to support the crucial phase of model building,

that is, to motivate the adoption of a certain parametric distribution with the aim of

optimizing data description or gaining computational convenience.

These arguments motivated us to review the existing methods and develop some

original tools to appropriately check the model misspecification issue for the class of

multistagemodels, specifically for the EPL assumption as the data-generating mechanism.

Wefirst introduced twonovel test statistics: the former is based on a formal property of the
EPL class which, to the best of our knowledge, has not been highlighted earlier in the

literature, while the latter relies on the well-known assumption of the PL distribution,

known as the independence of irrelevant alternatives or Luce’s choice axiom (Luce,

1959). We believe that the former property can be of great interest in those contexts

where some idiosyncratic attitude could guide the ranker to assign positions in a non-
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canonicalway, deviating from themost common and natural forward or backward orders.

Some evidence of this phenomenon has been highlighted in some real data applications

(Mollica & Tardella, 2021). Through an extensive simulation study under different model

specifications,we compared thepower of the twoproposed diagnosticswith that ofmore
frequently used test statistics. The analysis of simulated data revealed the relative merits

and limits of the competing diagnostics for the EPL assumption, allowing us to provide

some reasonable general guidelines.

As a by-product of our interest in the stagewise parametric class,we further considered

the former EPL property from the inferential perspective as the key element of a heuristic

method to estimate ρ. We implemented a simulation study to quantify the inferential

ability of the proposed likelihood-free estimation strategy to recover the actual reference

order parameter. It showed promising and consistent behaviour by the heuristic
technique, which could be effectively exploited to reduce the computation burden

affecting the EPL estimation task as well as for the relative assessment of model goodness

of fit.

This paper is organized as follows. In Section 2 a review of the fundamental ranking

models is provided, with a special focus on the EPL and related inferential approaches.

Section 3 gives a detailed overview of the strategies proposed in the literature to address

the model assessment issue for ranking distributions within the frequentist and Bayesian

paradigms. Two novel goodness-of-fit diagnostics for the EPL parametric class are then
introduced in Section 4, and a comparative evaluation with more standard measures of

model adequacy follows in Section 5. The application of the model assessment tools

considered is illustrated in Section 6. An original heuristic method to infer the reference

order parameter from the likelihood-free perspective is defined in Section 7, where its

effectiveness is also investigated with an extensive simulation study. Concluding remarks

and proposals for future work are discussed in Section 8.

2. An overview of parametric ranking models

2.1. Ordered statistics models

The class of OSMs, also known as random utility models, was originally introduced in

Thurstone (1927). Thurstone proposed the existence of a unobserved quantitative

mechanism underlying the ranking process, such that each item i is associated with a

continuous latent random variable (r.v.)Wi, also called score or utility. The score should
be intended as a latent item feature, measurable on a unidimensional scale and on which

the comparative judgement is based, such as a preference/liking measure. In this

perspective, the Thurstone model (TM) can be defined by assuming a parametric joint

distribution for theWs and considering the ranking sequence as the result of the ordering

of the item utilities with probability given by

PðπÞ ¼ PðW π�1ð1Þ < ::: <W π�1ðKÞÞ π ∈ SK : (1)

Originally, the TM involved only two items, and Daniels (1950) extended it for K > 2

alternatives.

By postulating that the Ws are independent and normally distributed with different

means but equal variances, expression (1) translates into the Thurstone–Mosteller–
Danielsmodel orCase Vmodel (Daniels, 1950;Mosteller, 1951). More general versions of

this approach relax the hypothesis of homoscedasticity of the independent normal
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distributions (Case IIImodel) or contemplate other parametric laws for the item scores.

For example, Henery (1983) and Luce (1959) considered independent Gamma and

Gumbel distributions, respectively. The Gumbel case is very popular because it leads to

the PL.
The flexibility in the choice of the latentmultivariatemodelmakes theOSMclass a very

broad family of ranking distributions. However, the most common specifications

postulate independent utilities whose distribution belongs to a location family with

possibly different location parameters. Under this assumption, the TM satisfies a specific

property not shared by the other classes, which we will later consider to clarify the

relationship with the EPL, such that the relative order of any subset of the items is

independent of the ordering of any disjoint subset (Critchlow, Fligner, & Verducci, 1991).

2.2. Ranking models based on paired comparisons

This approach relies on the possibility of converting a ranked sequence into the

corresponding set of K(K−1)/2 comparisons between pairs of items. Nevertheless, a

generic set of paired comparisons (PCs) is not necessarily consistentwith the definition of

a ranking. In fact, intransitivities (or circularities) of the type π(1) < π(2) < π(3) < π(1)
are allowed in pairwise comparison modelling, whereas they are not consistent with a

ranking elicitation.
Let us define with Xii’ ∼ Bernðηii’Þ the distribution of the binary r.v. indicating the

preference for item i over i0 in the paired comparison (1 ≤ i < i0 ≤ K). By assuming that

all theK(K−1)/2 comparisons are drawn independently and governedby the probabilities

ηii0, the sequence of paired preferences is considered valid if it does not contain any

circularity, otherwise it is discarded and the comparisons are repeated until no circularity

is present. In this setting, the probability of each ranking is

Pðπjη
�
Þ /

Y
i< i’

ηxii’ðπÞii’ ð1� ηii’Þ1�xii’ðπÞ π ∈ SK ,

which is known in the literature as the Babington Smith model (BSM), originally

proposed by Babington Smith (1950). By setting special forms for the Bernoulli
probabilities, popular subclasses of the BSM can be derived. For example, Bradley and

Terry (1952) introduced parameters pi > 0 reflecting the skill rate of each item and

constrained the paired comparison probabilities as follows

ηii’ ¼
pi

pi þ pi’
: (2)

This is the basic equation of the well-known Bradley–Terry model (BTM), which the

authors applied only to PC data. Mallows (1957) suggested substituting expression (2)

into the BSM, leading to the Mallows–Bradley–Terry model. Mallows proposed other

simplifications reducing the BSM to specific DBMs, extensively described in Section 2.3.

We conclude this subsection by stressing that the BTM corresponds to the TM with only

two items whose utilities follow the Gumbel distribution. Fundamental works on models
for PCs are Bradley and Terry (1952) and Bradley (1976, 1984), whereas for a detailed

review the reader can refer to Cattelan (2012).
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2.3. Distance-based models

Roughly speaking, the DBM can be interpreted as the analogue of the normal distribution

on the finite discrete space SK. In fact, it is an exponential location–scalemodel indexedby

a discrete location parameter σ ∈ SK , called modal or consensus ranking, and a
concentration parameter λ∈þ

0 . Each distribution in the DBM class takes the form

Pðπjσ, λÞ ¼ 1

ZðλÞ e
�λdðπ;σÞ π ∈ SK , (3)

where ZðλÞ ¼ ∑π ∈ SK
e�λdðπ;σÞ is the normalization constant and dð�, �Þis a metric on SK.

More generally, due to the pioneering work of Mallows (1957), one usually refers to the

probability function (3) as the Mallows model. The probability mass function (3) is

unimodal at π = σ and decreases symmetrically as the distance from σ increaseswith a rate

calibrated by the concentration λ.
By changing the distance measure d in (3), one can define different families of

parametric distributions for ranked data. Examples of the most common metrics for

rankings are:

� Kendall’s distance dK(π,σ), equal to the minimum number of adjacent transpositions
needed to transform π−1 into σ−1.

� Cayley’s distance dC(π,σ), equal to the minimum number of arbitrary transpositions

needed to transform π−1 into σ−1.
� Hamming’s distance dH(π,σ), equal to the number of items ranked differently in π and

σ.
� Spearman’s distance dSðπ, σÞ ¼ ∑K

i¼1ðπðiÞ � σðiÞÞ2.
The determination of Z(λ) could be computationally demanding, as it requires the

summation over all possible rankings. Nevertheless, some distances such as dK, dC and dH
lead to a convenient closed-formexpression forZ(λ) depending only on λ andK (Fligner&

Verducci, 1986).

Popular instances of the DBM class are obtained by adopting the distances dK or dS
leading, respectively, to theMallowsϕ-or θ-model. Actually, Mallows (1957) derived such

restricted DBMs in the attempt to simplify the BSM, by setting the special form

ηii0 ¼ ð1þ tanhðði0 � iÞlogθ þ logϕÞÞ=2 and fixing either θ = 1 orϕ = 1. This implies that

both Mallows models are nested in the BSM.

2.4. Stagewise models

Stagewise models rely on the assumption that the ranking process can be decomposed

into a sequence of K−1 independent stages. A fundamental contribution to this class

can be found in Fligner and Verducci (1988), introducing a very general family of

probability distributions called multistage models. It is based on the existence of a true

reference ranking in the population, as also assumed in the DBM. Any ranking π can be

equivalently expressed in terms of the vector V ðπjσÞ ¼ ðV 1ðπjσÞ, . . . , VK�1ðπjσÞÞ
collecting the number of mistakes made by judge π over the K−1 stages with respect to

the presumed correct ranking σ. By assuming that the Vts are independent, the model

set-up
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PðπjσÞ ¼ PðV ðπjσÞÞ ¼
YK�1

t¼1

PðV tðπjσÞ ¼ vtÞ π ∈ SK (4)

is known as the free model (FM). Equation (4) represents the most general multistage

ranking model, indexed by the choice probabilities

PðV t ¼ vtÞ : vt ¼ 0, . . . , K � t and t ¼ 1, . . . , K � 1f g. An important subclass of
the FM can be obtained by setting an exponential form for the choice probabilities

PðV t ¼ vt jλtÞ ¼ e�λtvt

∑K�t

v¼0e
�λtv

t ¼ 1, . . . , K � 1,

leading to the so-called ϕ-component model. In a previous work (Fligner & Verducci,

1986), the same authors had already derived the ϕ-component model by starting from a

different motivation, specifically a multiparameter extension of the DBM. The starting
point is the property of some metrics for rankings, such as dK and dC, being

decomposable into the sum of K−1 independent components,

dðπ, σÞ ¼ ∑
K�1

t¼1

V tðπjσÞ, (5)

which can be regarded as the factorization of the global distance into the discrepancies

over the ranking stages. By applying a non-negative constant λt to each term, Fligner and

Verducci (1986) further proposed plugging (5) into (3), in order to transfer the stagewise

construction to the DBM and derive the generalized Mallows model (GMM), given by

Pðπjσ, λ
�
Þ ¼ e�∑K�1

t¼1 λtV tðπjσÞ

Zðλ
�
Þ π ∈ SK : (6)

By recognizing in (6) the product of independent exponential models on the Vts, the

coincidence of the GMM with the ϕ-component model becomes apparent. The equality

constraint λt = λ for all t = 1,. . .,K−1 leads directly to the standard DBM with either

d = dK or d = dC.

2.4.1. The Extended Plackett–Luce model
The idea of the ranking process divided into independent stages is shared also by the EPL,

an extension of the PL suggested by Mollica and Tardella (2014) and based on the

relaxation of the canonical forward order assumption. The EPL is a stagewise model

postulating that

PEPLðπ�1jρ, p
�
Þ ¼ PPLðπ�1∘ρjp

�
Þ ¼

YK
t¼1

pπ�1ðρðtÞÞ
∑K

v¼tpπ�1ðρðvÞÞ
π�1 ∈ SK , (7)

where the symbol ∘denotes composition between twopermutations, the reference order

ρ ¼ ðρð1Þ, . . ., ρðKÞÞ∈ SK is the discretemodel parameter and the positive quantities pis

are referred to as support parameters. The latter are proportional to the probabilities
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P(π−1(ρ(1)) = i) for each item i = 1,. . .,K to be ranked in theposition ρ(1) indicated by the
first entry of the reference order ρ. Henceforth, wewill refer tomodel (7) as EPLðρ, pÞ for
short. For example, if K = 4 and ρ = (4,1,3,2), it means that the ranker follows an

alternating attribution of the positions, starting with the specification of the least liked
item at the first stage (ρ(1) = 4), then the most liked one at the second step (ρ(2) = 1),

followed by the attribution of the third (ρ(3) = 3) and the second position (ρ(4) = 2) in

the last two stages. This implies that PEPL(π−1 = (2,3,1,4)) = PPL(π−1 = (4,2,1,3)).

The popular PL is the special instance of the EPL with the forward reference order

ρF = (1,2,. . .,K), where the ranker assigns sequentially the positions from the top to the

bottom and the order of the ordering entries coincides with that of the item selections. By

considering the reversed rank assignment process ρB = (K,K−1,. . .,1), one has another

special case of the EPL referred to as backward PL.
The crucial difference between the EPL (and hence the PL) and the FM is the following:

in the former, the stepwise probabilities are indexedby the available alternatives,whereas

in the latter they depend on the stages and the amount of disagreementwith respect to the

correct choice σ.
Finally, without loss of generality, let us consider the case of K = 4 items and the

EPLðρ, p ¼ ð:4, :3, :2, :1ÞÞ. One can easily verify that the equality

Pðπð1Þ< πð3Þjπð2Þ< πð4ÞÞ ¼ Pðπð1Þ< πð3Þjπð4Þ< πð2ÞÞ,

implied by the peculiar property of the TM recalled at the end of Section 2.1, is met only

when ρ ¼ ρF and ρ ¼ ρB. This means that, in general, the EPL does not belong to the broad
OSM family.

2.4.2. Inference for the EPL

Inference on the EPL and its generalization into a finite mixture framework was originally

addressed from the maximum likelihood estimation (MLE) perspective in Mollica and
Tardella (2014) via the hybrid expectation-maximization-minorization (EMM) algorithm.

Recently,Mollica andTardella (2021) introduced theBayesian inference of the EPL,where

a discrete uniform distribution for the reference order and independent conjugate gamma

densities for the support parameterswere chosen for the prior specification. A tuned joint

Metropolis-within-Gibbs sampling (TJM-within-GS) was developed to conduct approxi-

mate posterior inference on themixed-type parameter space. The TJM-within-GSwas also

adapted for the inference of the Bayesian EPL mixtures (Mollica & Tardella, 2019) and for

the EPL with order constraints on the reference order (Mollica & Tardella, 2018). The
Markov chain Monte Carlo (MCMC) procedure reduces to a GS scheme for the inference

on the mixtures of PL (Mollica & Tardella, 2017). Bayesian estimation for the EPL has

recently also been considered in Johnson, Henderson, and Boys (2021).

3. Goodness-of-fit diagnostics for ranking models: a review

In the existing reviews of the ranking data literature (Alvo & Yu, 2014; Liu et al., 2019;

Marden, 1995), a very limited emphasis is placed on themodel assessment issue, testifying

to the lack of a systematic and updated overview on the topic and, at the same time, the

wide margin of new research directions. In this section we provide a unified and

comprehensive review of the model fit diagnostics developed for the analysis of ranking

Remarkable properties of ranking data modelling 7



data in both the frequentist and the Bayesian inferential framework, althoughwewill then

concentrate on our own original methods from the former estimation perspective.

3.1. Frequentist literature

In the frequentist framework, the assessment ofmodel adequacy for the observed data can

be addressedwith standardmethods such as the likelihood ratio or the chi-squared test for

finite discrete distributions. One of the first contributions on evaluating the fit of ranking

models was made by Cohen and Mallows (1983), who handled separately the two cases

K < 5 and K ≥ 5. In the former situation, the cardinality of the ranking space support is

manageable and the K! ranked sequences can be regarded as the categories of a

multinomial distribution. Thus, when K is small and N is large enough, model fit can be
assessed by appropriately quantifying the dissimilarity between the observed frequencies

of each ranking and the expected ones under the estimated model.

However, the rapidly increasing cardinality of the ranking space makes this approach

impracticable for larger values ofK, due to the possible occurrence of sparse data. In fact,

null or low frequencies encountered for some ranking patterns imply that the asymptotic

properties of the aforementioned test statistics do not work well in practice. So, for the

caseK ≥ 5, amore parsimonious representation of the data is typically needed andCohen

and Mallows (1983) suggested to identify relevant partitions of the permutation set
capturingmeaningful features of the preference elicitation. In so doing, model fitness can

then be evaluated on each subset as previously described for smaller values of K. Some

examples are the groupings of the rankings according to their Kendall distance from the

estimated modal sequence, formerly proposed by Feigin and Cohen (1978) as a natural

diagnostic tool for the ϕ-model. Additionally, Cohen and Mallows (1983) adopted the

partition inducedby the PCs and employed them to check the adequacy of the Thurstone–
Mosteller–Danielsmodel. For the latter, under the independence assumption, they further

computed the standardized deviates to measure the difference between expected and
observed frequencies and also displayed the absolute values of the statistics on a half

normal probability plot, to better highlight local misfits of the data. A similar method was

employed by Yu (2000), who divided the rankings into the subgroups of the sequences

with the same item in the top position and compared the sample top frequencies with

those expected under the OSM with correlated normal utilities.

Finally, we recall an interesting strand of the goodness-of-fit literature on the TM based

on the preliminary transformation of the rankings into the PCs. For example, by exploiting

the resulting multivariate binary data structure, Maydeu-Olivares and Böckenholt (2005)
revisited the TM within the structural equation modelling framework and proposed to

overcome theproblemof sparsedataby applying themeanadjusted test statistics defined in

Satorra and Bentler (1994, 2001). Still in the context of the TM and its possible connections

with item response theory, Maydeu-Olivares and colleagues (Maydeu-Olivares, 2001, 2002;

Maydeu-Olivares & Brown, 2010;Maydeu-Olivares & Joe, 2006) investigated the properties

and usefulness of limited information methods to develop model estimation procedures

and diagnostic tools. The sparsity issue is mainly addressed by considering the first- and

second-order marginals of the multidimensional contingency tables.

3.2. Bayesian literature

Relevant goodness-of-fit diagnostics appeared in more recent works within the Bayesian

ranking literature. In this framework, goodness-of-fit assessment accounts for the
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randomness of the parameter, rather than relying on a single point estimation as is typical

in the frequentist domain. Specifically, the Bayesian approach relies on the constructionof

a discrepancy variable, which depends on both data and parameters and can be

employed in the so-called posterior predictive check. The core idea is to assess the
conformity of the observed value of the discrepancy with its realizations obtained by

sampling from the posterior predicted distribution under the estimated model. The

computation of the reference distribution of the discrepancymeasure under the assumed

model is straightforward when a sample from the posterior distribution is available, as in

the output ofMCMCmethods. SeeMeng (1994) and Gelman, Meng, and Stern (1996) for a

general description of Bayesian assessment methods via posterior predictive checks and

the more recent works by Hjort, Dahl, and Steinbakk (2006) and Kollenburg, Mulder, and

Vermunt (2017) on the calibration of posterior predictive p-values. For model-based
ranking analysis, Yao and Böckenholt (1999) focused on paired, triple and quadruple

comparisons as empirical summaries. Tsai and Yao (2000) conducted an extensive Monte

Carlo simulation study to evaluate the validity of the posterior predictive check for testing

the adequacy of alternative OSM. They considered different discrepancy measures and

analysed the effect of the number K of alternatives, the sample size N and the type of

misspecification on the lack-of-fit detection. In particular, they proved the usefulness of

themarginal rank distributions, also known asfirst-ordermarginals, providing the counts

that each item i is ranked in position j. Finally, Mollica and Tardella (2017) constructed
two discrepancy variables, based respectively on the top and the PC frequencies, and

described how to use them to conduct the posterior predictive check for the Bayesian PL

mixture unconditionally and conditionally on the length of the observed partial top

rankings.

4. Novel EPL diagnostics

The reviews provided in Section 3 reveal that specific diagnostic tools to evaluate the

model adequacy of the class of multistage ranking distributions are very limited and their

effectiveness has not been deeply explored and compared. One of the objectives of the

present work is to address the goodness-of-fit issue for the EPL specification from the

frequentist point of view.

4.1. Inverse monotonicity of the last-stage item probabilities

Let us suppose that EPLðρ, pÞ is the sampling distribution of the ranked observations.

Under this model scenario, the marginal item selection probabilities at the first stage are

proportional to the support parameters. When the first entry of the reference order is

ρ(1) = 1, these coincide with the marginal probabilities for each item to be ranked top

and, hence, preferred to all the other alternatives. On the other hand, the marginal item

selection probabilities at the last stage follow the reverse order of the support parameters.

Henceforth, wewill refer to this remarkable property as inversemonotonicity of the last-

stage item probabilities. WhenK is small, it is rather easy to determine the last-stage item

probabilities (see the illustrative example for K = 3 in Appendix 1). However, the

computational burden needed to exactly compute the marginal item probabilities at each

stage represents a non-trivial task that becomes infeasible for larger values ofK. The formal

proof of the inverse monotonicity of the last-stage item probabilities for any K is, to the

best of our knowledge, new and it is provided in Appendix 2. The proof relies on an

Remarkable properties of ranking data modelling 9



appropriate method to index the sequences contributing to the construction of the

marginal item probabilities, which facilitates the ordinal comparison between them.

4.2. Testing the inverse monotonicity of the last-stage item probabilities

So, ifwehave somedata simulated fromEPLðρ, pÞ,we expect themarginal frequencies of

the items at the first stage to be ranked according to the order of the corresponding

support parameter components. On the other hand, we expect the marginal frequencies

of the items at the last stage to be ranked according to the reverse order of the

corresponding support parameter components. One can then derive that the ranking of

the marginal frequencies of the items corresponding to the first and last stage should sum

to K+1, no matter what their support is. Of course, this is less likely to happen when the
sample size is small or when the support parameter components are not so different. In

any case, one can define a test statistic by considering, for each couple of integers (j,j0) that
may represent the first- and the last-stage ranks, namely ρ(1) and ρ(K), a discrepancy

measure Tjj’ðπ
�
ÞbetweenK+1 (the sumof the expected ranks) and the sumof the observed

ranks of the frequencies corresponding to the same item extracted in the first and in the

last stage. Formally, let r
½1�
j ¼ r

½1�
j1, . . . , r

½1�
jK

� �
and r

½K �
j’ ¼ r

½K �
j’1, . . . , r

½K �
j’K

� �
be the

marginal item frequency distributions for the jth and j0th positions to be assigned,

respectively, at the first [1] and last [K] stage. In other words, the generic entry r
½s�
ji is the

number of times that item i is ranked jth at the sth stage. The proposed EPL diagnostic

relies on the discrepancy

Tjj’ðπ
�
Þ ¼ ∑

K

i¼1

jrank r
½1�
ji

� �
þ rank r

½K �
j’i

� �
� ðK þ 1Þj, (8)

implying that the smaller the value of Tjj’ðπ
�
Þ, the greater the plausibility that the two

integers (j,j0) represent the first and the last components of the reference order. In this

sense, Tjj’ðπ
�
Þ can be also reinterpreted as ameasure of the closeness of the positions j and

j0 in the rank attributionpath. To globally assess the conformity of the samplewith the EPL,

we consider the statistic

Tmðπ
�
Þ ¼ min

j< j’
Tjj’ðπ

�
Þ: (9)

4.3. Testing the independence of irrelevant alternatives

With the aim of further enlarging the collection of diagnostics of fit for the EPL class, we

focus our attention also on awell-known property of the PL. In particular, we consider the

distinguishing assumption of the PL known as Luce’s choice axiom or the independence

of irrelevant alternatives (IIA) to construct another specification test. The IIA states that

the relative preference between two items i and i0 does not depend on the liking for the
other alternatives belonging to the choice set. For the EPL, the IIA hypothesis implies that

the probability ratio of selecting item i over item i0 is constant over the stages of the

ranking process (constant ratio rule), as long as the two items are both still available.

Formally, let Ist¼ Infπ�1
s ðρð1ÞÞ, . . ., π�1

s ðρðt � 1ÞÞg be the choice set composed of the
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alternatives available at the tth stage for subject s, that is, those itemswhich have not been

selected by the ranker s before stage t, and hence removed from the comparison. By

introducing the binary indicator

ξii’st ¼
1 i, i’∈ Ist ,

0 otherwise,

�

one can compute the observed PCs at stage t, where item i is selected before item i0, as

τii’t ¼ ∑
N

s¼1

ξii’st ρ�1ðπsðiÞÞ< ρ�1ðπsði’ÞÞ½ �:

The IIA implies that the expected PC frequency at stage t of choosing item i over item i0 is

τ∗ii’t ¼ Nii’t

pi

pi þ pi’
,

equal to the product of the total number Nii0t of PCs between i and i0 at stage t, given by

Nii’t ¼ τii’t þ τi’it ¼ ∑
N

s¼1

ξii’st ,

and the theoretical PC probability under the EPL, concerning the choice of the two items

from the entire set I of the K alternatives. Hence, a chi-squared statistic for the IIA

assumption can be defined as

X2
IIA ¼ ∑

K�1

t¼1

∑
i< i’

ðτii’t � τ∗ii’tÞ2
τ∗ii’t

:

The IIA diagnostic operates in a stagewise manner by assessing the relative selection

probability of each pair of items (i,i0) at each stage t = 1,. . .,K−1 of the ranking process.

5. Comparative assessment of goodness-of-fit diagnostics for ranking

models

5.1. Plan of the simulation study

After introducing the novel test statistics (9) and (10), one should inquire into their

inferential effectiveness. In order to do so, we first provided an approach for controlling

their Type I error rate, and thenwe investigated their comparative power properties with

respect to those of some standard goodness-of-fit tools for rankingmodels. In the absence

of analytical results for the reference distribution under the null hypothesis (EPL

assumption), a bootstrap approachwas adopted. Specifically, the probability that the test

statistic is greater than or equal to the observed value under the EPL assumption was
approximated with bootstrap p-values based on 1,000 data sets drawn from the inferred

EPL. Deviations from the EPL model should yield greater values of the test statistics than

those expected under the model generated, and hence smaller p-values. Finally, for each

model adequacy criterion, we estimated the Type I error and correct rejection rates

Remarkable properties of ranking data modelling 11



(power) by the proportion of the times that the p-value was smaller than or equal to the

nominal .05 critical threshold, depending on the true generating model.

A simulation study was conducted under alternative model specifications, involving

the comparison with the chi-squared statistics based on the marginal top selection
frequencies, the first-order marginals and the PCs, given respectively by

X2
TOP ¼ ∑

K

i¼1

ðm1i �m∗
1iÞ2

m∗
1i

X2
M ¼ ∑

K

t¼1

∑
K

i¼1

ðmti �m∗
tiÞ2

m∗
ti

X2
PC ¼ ∑

i< i’

ðτii’ � τ∗ii’Þ2
τ∗ii’

:

The marginal expected frequencies were obtained as m∗
1i ¼ Npi, τ

∗
ii’ ¼ Npi=ðpi þ pi’Þ

whereas, due to complexity of their exact computation, them∗
ti were estimated byMonte

Carlo simulation.

Finally, note thatX2
M is a stagewise extension of the classical chi-squared statisticX2

TOP.
In fact, the latter is obtained fromX2

M by considering only the term t = 1 of the outer sum,

concerning the marginal item distribution in the top stage, that is,

m1i ¼ ∑
N

s¼1

 π�1
s ðρð1ÞÞ¼i½ �:

Similarly, the IIA diagnostic can be regarded as a stagewise generalization of X2
PC . For the

latter, the comparison between item i and i0 is considered only at the first stage, that is, in

the context of the whole item set I for whichNii01 = N. Finally, note thatX2
PC is based on a

quadratic form of the PC frequencies and coincides with the first-order moment statistic

introduced in Maydeu-Olivares and Böckenholt (2005) in the general context of limited

information diagnostics for multivariate binary data. It is worth mentioning that the
adaptation of the limited information diagnostics introduced in Maydeu-Olivares and

Böckenholt (2005) to the context of ranking data analysis is not straightforward. In any

case, although it could lead to better control of the asymptotic properties of the test

statistics, we cannot pursue this direction since, for the mixed-type (continuous and

discrete) EPL parametrization, we cannot rely on the required best asymptotic normal

property of the MLE.

5.2. Simulation study

A comparative evaluation of the diagnostic tools was carried out bymeans of an extensive

simulation study. For eachpossible combination (K,N),with values varying respectively in

the grids K ∈ f5, 10, 20, 40g and N ∈ f300, 450, 600g, we drew 100 data sets with N

orderings of K items from the following ranking distributions:

� EPL;

� DBM with the Kendall distance (DBM-Kend);

� DBM with the Cayley distance (DBM-Cay);

� DBM with the Hamming distance (DBM-Ham);

� TH with independent normal latent scores (TH-norm), corresponding to the Case III

model.

The true parameter values of the above model scenarios were generated according to
the following schemes: (i) ρ ∼ Unif fSKg and pi ~

iid Unif ð0,1Þ for the EPL; (ii)

σ0 ∼ Unif fSKg and λ ∼ Unif ð0,3Þ for the modal ranking and the concentration

12 Cristina Mollica and Luca Tardella



parameter of the three DBMs considered; and (iii) μi, σi ~
iid Unif ð0,1Þ for themeans and

the standard deviations of the latent item scores of the TH-norm.

The estimated Type I error rates and power are reported in Appendix 4 and can be

more easily evaluated in Figures 1 and 2. The simulation study revealed satisfactory
performance of all the diagnostics considered regarding Type I error rates as long as

K ≤ 20. In fact, in all these settings, they were below .05. However, for K = 40, some

troublesome deviations from the nominal level were detected forX2
TOP ,X

2
M ,X

2
PC andX

2
IIA.

For X2
IIA, the departure from .05 is less remarkable, whereas the Tm diagnostic is

consistently under the .05 threshold for all sample sizes considered.

On the other hand, noteworthy differences among the statistics emerged in terms of

power. Firstly, Tm exhibited consistently lower performance of the estimated power

under almost all the model scenarios considered. However, this diagnostic is the only one
which can safely be usedwith the largest valueK = 40, since it takes the Type I error rate

under control. Hence, its estimated power is not overestimated, as in the case of the other

diagnostics which exceed the nominal rejection rate under the null hypothesis (EPL

assumption). At least two motivations can be put forward to argue the evidence of lower

power of Tm. The first is related to its formal definition; in fact, this is a parameter-free

measure based on the ranks of the expected marginal frequencies, rather than on the

computation of the parameter-dependent first- and last-stage theoretical probabilities.

This makes Tm by construction a rougher diagnostic in the comparison with the other
statistics. Secondly, its remarkably low power for the DBM-Kend suggested that the

monotonicity property of the first- and last-stage item probabilities is not specific to the

EPL, but it is shared by other rankings models. This implies that the Tm statistic could not
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Figure 1. Type I error rates (%) of alternative goodness-of-fit diagnostics under the EPL assumption.

The diagnostic tools considered are Tm, X
2
TOP , X

2
M ,X

2
PC and X2

IIA, respectively labelled in the legend

as EPL, TOP, MARG, PC and IIA. The reference distributions of all the test statistics under the EPL

assumption have been approximated with the bootstrap method.
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discriminate the EPL from other parametric families with sufficient flexibility to describe

an underlying stagewise elicitation process with a certain coherence, over the stages,

about the preferences of the items. This is also the case for some subclasses of the TM. In

fact, besides the trivial case of the OSM with Gumbel distributions for latent utilities

(corresponding to the PL), the property is recovered also when adopting independent

normals with varying means and constant variances (Case V model). Conversely, the

property does not hold in general for the DBMs with any metric other than the Kendall.

Although an exact computation of the marginal item distributions at each stage is a
difficult task (see, for example, the case of the EPLðρ, pÞ in Appendix 2), these claims can

easily be verified for a specific ranking model via a simulation approach. In fact, here we

recorded evidence of better power performance for Tm with the use of the Cayley and

Hamming distances.

Another consistent piece of evidence highlighted by the comparative analysis

concerns the best-performing diagnostic, which turned out to be the one relying on the

first-order marginals. However, it is no less apparent that, for higher values ofK andN, the

performance of the new IIA statistic under DBM-Ken and TH-norm is pretty much
equivalent to that of X2

M and, in general, always better than the remaining competing

statistics typically used in real-data applications. For DBM-Cay andDBM-Ham, on the other
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Figure 2. Rejection rates (%) of the EPL assumption for alternative goodness-of-fit diagnostics

computed on simulated data from different model scenarios. The diagnostic tools considered are

Mn,X
2
TOP ,X

2
M ,X

2
PC andX

2
IIA, respectively labelled in the legend as EPL, TOP, MARG, PC and IIA. The

reference distributions of all the test statistics under the EPL assumption have been approximated

with the bootstrap method.
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hand, its performance is close to that of the Tm statistic. So, by noting also that the X2
IIA

seems to suffer less from lack of control of the Type I error rate forK = 40 than the generic

ranking model test statistics, from the simulation study an overall positive verdict can be

given about the novel IIA diagnostic.

6. Illustrative applications of the goodness-of-fit diagnostics

6.1. Application to the salad data set

As a first application, we considered the salad data set available in the prefmod package

(Hatzinger & Dittrich, 2012) in R, containing N = 32 rankings of K = 4 types of salad
dressings compared in terms of the perceived level of tartness.

As displayed in Table 1, all the test statistics considered turned out to bewell above the

critical .05 threshold, and hence did not highlight any issue of lack-of-fit for the estimated

EPL in terms of the descriptive summaries considered.

6.2. Application to the occupation data set

For the second application, we focused on a data set with higher values of both K and N,
specifically, the occupation data set available in the PLMIX package (Mollica & Tardella,

2020) in R. This came from a survey conducted on graduates from the Technion-Israel

Institute of Technology. A sample of N = 143 graduates were asked to rank K = 10

professions according to their perceived prestige: 1 = faculty member, 2 = owner of a

business, 3 = applied scientist, 4 = operations researcher, 5 = industrial engineer, 6 =
manager, 7 = mechanical engineer, 8 = supervisor, 9 = technician, 10 = foreman.

With the sole exception of theX2
TOP diagnostic based on the frequencies of selection at

the first stage, all the available diagnostics suggested the rejection of the EPL assumption
(Table 1). We then further explored the usefulness of the EPL goodness-of-fit diagnostics

to gain further insights into the same data set. For illustrative purposes we inspected the

possible presence of a group structure in the sample by estimating finite EPL mixtures

with a varying number of components (G = 1,2,3,4) through the iterative EMMprocedure

described in Mollica and Tardella (2014) and compared them using the Bayesian

information criterion (BIC) introduced by Schwarz (1978). A mixture of EPLs with two

groupswas selected as the optimalmodel (BIC= 2,959.37)with, respectively,weights .72

and .28, support parameters (0.002,0.001,0.003,0.009,0.011,0.010,0.026,0.018,0.390,
0.531) and (0.466,0.039,0.270,0.095,0.077,0.009,0.039,0.004,0.001,0.000) and almost

opposite reference orders (10,9,8,7,5,6,4,3,2,1) and (1,2,3,5,4,6,7,8,9,10). We then

assessed the goodness of fit of the EPL on both subgroups of data separately. As displayed

inTable 1, there is less critical evidenceof EPLmisfitwhenwe separately consider the two

subgroups for which two distinct reference orders are estimated.

Table 1. p-values of the goodness-of-fit diagnostics for the salad and occupation data sets

Salad Occupation

(full sample)

Occupation

(group 1)

Occupation

(group 2)

Tm 1.000 0.034 0.126 0.288

X2
TOP 0.631 0.164 0.201 0.509

X2
M 0.739 0.007 0.042 0.138

X2
PC 0.775 0.000 0.021 0.187

X2
IIA 0.880 0.025 0.416 0.603
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7. Likelihood-free estimation of the reference order

In this section we explore the utility of the statistic Tm from the inferential point of view.
We show how one can quickly obtain from the observed rankings a candidate best-fitting

reference order relying on the observation that Tjj’ðπ
�
Þ can be considered as a measure of

proximity between the pair of positions j and j0 in the unknown sequence ρ.

7.1. The novel heuristic method

Let T ðπ
�
Þ ¼ ðTjj’ðπ

�
ÞÞ be the K × Kmatrix with entries defined in (8). The computation of

T ðπ
�
Þ is illustrated by an example reported in Appendix 3. For each component Tjj’ðπ

�
Þ, we

have

Tjj’ðπ
�
Þ ≤ uK ,

where the upper bounduK corresponds to the constant value in themain diagonal, that is,

uK ¼ T jjðπ
�
Þ ¼ ∑

K

l¼1

j2l � ðK þ 1Þj ¼ 2 ∑
ðK�1Þ=2

l¼1

2l

 !K mod 2

∑
K=2�1

l¼0

ð2l þ 1Þ
 !1�K mod 2

:

This means that the maximum value in T ðπ
�
Þ depends on the observed data only through K:

for K odd, uK is the double sum of the first (K+1)/2 even numbers (starting from zero);

for K even, uK is the double sum of the first K/2 even numbers.

Our heuristic method to estimate the unknown parameter ρ consists of the following

steps:

1. Compute

Dðπ
�
Þ ¼ jT ðπ

�
Þ � uKJK j,

where JK is aK × Kmatrix consisting entirely of 1s, so that each componentDjj’ðπ
�
Þ can be

interpreted as a measure of the distance between positions j and j0 in the sequential rank

assignment process.

2. Use the matrix Dðπ
�
Þ as the input of a principal component analysis (PCA).

3. Estimate ρ by taking the non-decreasing ordering of the scores ðζ1, . . ., ζKÞ of theK
positions on the first principal component, given by

ρ̂ ¼ ðρ̂ð1Þ, . . . , ρ̂ðKÞÞ : ζρ̂ð1Þ ≤ . . . ≤ ζρ̂ðKÞ:

7.2. Effectiveness of the heuristic method

The inferential effectiveness of the proposal to recover the true discrete parameter was

explored by means of a simulation study with a varying cardinality K of the item set and

sample size N. For each possible combination (K,N), where K ∈ f5, 10, 15, 20, 40g
and N ∈ f50, 200, 1000, 10000g, we drew 100 data sets π�1

ðRÞ with R = 1,. . .,100 from
the EPL according to the scheme described in Section 5.2. For comparison purposes, we

inferred the reference order of each simulated sample with: (i) the heuristic strategy

described in Section 7.1; (ii) the same heuristic scheme with the PCA replaced by
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multidimensional scaling (MDS); and (iii) the MLE approach via the EMM algorithm

proposed inMollica and Tardella (2014), which is considered as the referencemethod for

the present estimation task. Finally, the estimation performance of the competing

strategies was compared in terms of:

� % recoveries = ∑
100

R¼1

½ρðRÞ ∈ ρ̂equivðRÞ �, the percentage of times that the actual reference order

belongs to the equivalence class corresponding to the estimated reference order. Two

distinct reference orders ρ and ρ0 are considered equivalentwith respect to the distance
matrix Dðπ

�
Þ if, for all t = 1,. . .,K, either ρðtÞ ¼ ρ0ðtÞ or DρðtÞρ’ðtÞðπ

�
Þ ¼ 0.

� rðρ�1, ρ̂�1Þ ¼ 1
100

∑
100

R¼1

r ρ�1
ðRÞ, ρ̂�1

ðRÞ
� �

, the average rank correlation coefficient.

The results are shown in Table 2. It is evident that PCA and MDS exhibited essentially

the same ability. Compared with the MLE, the heuristic methods exhibited very good

results. The percentage of matching consistently grows with N and, by also checking the

caseswhere there is not an exact correspondence, on average an analogous trend is found
for the correlation. Additionally, if we look at a fixed N, the percentage of recoveries

shows aworse tendency for larger values ofK. In this regard, the casesK ≥ 10, combined

with a relatively very low (N = 50) and very high (N = 10,000) sample size, deserve some

considerations to stress typical issueswhich canbe encountered in a ranking data analysis.

First, in a sparse data situation, all of the estimation techniques exhibit great uncertainty in

Table 2. Inferential performance of the heuristic methods via PCA and MDS in estimating the

reference order on simulated data compared to the MLE via EMM algorithm

% recoveries rðρ�1, ρ̂�1Þ
(K,N) PCA MDS MLE PCA MDS MLE

(5,50) 54 50 54 0.57 0.49 0.76

(5,200) 76 73 86 0.65 0.66 0.95

(5,1000) 90 87 98 0.85 0.78 1.00

(5,10000) 97 98 – 0.92 0.94 –
(10,50) 2 3 4 0.56 0.56 0.90

(10,200) 18 16 25 0.83 0.86 0.96

(10,1000) 47 49 74 0.94 0.92 0.99

(10,10000) 77 76 – 0.96 0.96 –
(15,50) 0 0 0 0.83 0.83 0.91

(15,200) 1 1 3 0.79 0.83 0.97

(15,1000) 24 25 44 0.97 0.97 1.00

(15,10000) 68 73 – 0.97 0.97 –
(20,50) 0 0 0 0.81 0.76 0.92

(20,200) 0 0 0 0.91 0.91 0.98

(20,1000) 2 0 11 0.97 0.95 0.99

(20,10000) 22 19 – 0.98 0.98 –
(40,50) 0 0 – 0.86 0.89 –
(40,200) 0 0 – 0.95 0.95 –
(40,1000) 0 0 – 0.97 0.98 –
(40,10000) 0 0 – 0.98 0.98 –
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exactly recovering the actual ρ, as testified by the negligible values of the recovery

percentage. From a computational perspective, although a better behaviour of the MLE is

expected for N = 10,000, this has not been implemented since, without a specialized

program, fitting the EPL to a large sample can be extremely demanding, if not downright
infeasible. This is especially true for the more flexible EPL class, due to the impact of the

reference order on the normalizing term of the likelihood and the need for its iterative

update during the optimization procedure (Mollica & Tardella, 2014). Moreover, the

computational burden is further aggravated by the multiple initializations needed to

address the issue of local maxima. Of course, even if one increases the number of starting

values, the fast-growing dimension of the reference order space SK canmake the multiple

starting point strategy rapidly ineffective for larger values of K to reach the global

maximum. In the light of these remarks on the MLE, the likelihood-free approach can be
motivated as a straightforward method that can be combined with the MLE procedure or

with an MCMC method in the Bayesian estimation framework. In fact, at a limited

computational cost, it can be implemented as a preliminary step of the inferential process

to obtain a promising initialization, which can guide and speed up the parameter space

exploration towards the achievement of the global optimum, resulting in substantial time

savings.

8. Conclusions

After a careful review of the existing literature on ranking data models diagnostics, in this

work we presented new methods for improving the analysis of ranking data under the

assumption that the observations were generated from the stagewise EPL distribution. In

particular, we focused on the lack of specific goodness-of-fit statistics for multistage

ranking models and on the peculiar issue related to the EPL concerning inference on the
discrete parameter component.

Inspired by two formal properties of the EPL parametric class, one discussed and

proven for the first time in the present work and the other inherited from the PL subclass

(the IIA assumption), we constructed and explored the usefulness of two novel sample

statistics to test the appropriateness of the EPL distribution. The comparative

performance of the two diagnostics with respect to more general goodness-of-fit tests

for ranking models was evaluated by means of a simulation study under alternative data-

generating models. On the one hand, the comparison highlighted the lower power of the
statistics based on the property of inversemonotonicity of the last-stage itemprobabilities

to distinguish the EPL from the other distributions. On the other hand, this turned out to

be the only statistic which preserves Type I error control for all the range of number of

items considered in the simulation study. The simulation study also identified the generic

test statistic based on the first-order marginals as the best-performing one, although for

larger values of K and N the proposed IIA diagnostic exhibited equivalent power. We

stress that, differently from X2
M , the novel X2

IIA represents a specific test for the EPL

assumption. In our opinion, the higher power of the two statistics could depend on a
better account of theK-dimensional rankingprocess, that is, the ability of the two statistics

X2
IIA and X2

M to span the whole multivariate dependence structure, rather than only

univariate or bivariate marginal features of the preference elicitation, such as the tests

based on the top selection frequencies or on the PCs. In this sense, the originality of the

simulation results under the EPL specification could stimulate future research on the

critical issue concerning the evaluation of the adequacy of ranking models.
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We then revisited the usefulness of the property of inverse monotonicity of the last-

stage item probabilities from the inferential perspective, as the core ingredient of a

heuristic method to estimate ρ. The aim was to address the estimation issue with lower

computational costs, by returning a promising sample-based evaluation of ρ that can be
used as a good initialization of iterative inferential procedures. The utility of the proposal

was checked with a comparative simulation study, which highlighted a satisfactory

inferential ability to get consistently close to the true underlying reference order, although

outperformed by the MLE (as expected). Hence, the new likelihood-free strategy could

fruitfully replace or complement the more conventional and time-consuming multiple-

initialization procedure to attain the global optimumof the likelihood.We remark that, by

comparing the computing times of all the settings considered, the execution of the

procedure scales linearly with N, while being cubic in the number of items. Despite the
fact it does not scale well withK, the overall computation cost of the heuristic procedure

remains acceptable: it can be executed with K = 100 and N = 10,000 in slightly more

than15 minutes,while theMLEwould take almost 2 days. In carrying out the goodness-of-

fit procedure, the MLE is always the most computationally demanding component of the

whole procedure. While the MLE scales linearly with the sample size and is quadratic in

the number of items, the implementation of the goodness-of-fit tests scales better overall,

hence it does not represent an issue. Despite the fact that the diagnostic based on the

inverse monotonicity does not compare favourably with that relying on the IIA
assumption in terms of power, the heuristic method derived from it may be of interest

per se as a descriptive tool for measuring and qualifying the presence of some deviations

from the canonical assignment of ordered positions during the sequential elicitation

process.

As a possible future development,wewould like to continuewith the introduction and

evaluation of other specific goodness-of-fit tests for the class of stagewise models, in order

to gain further improvement over standard ranking model diagnostics. In particular, the

extension to the finite mixture framework would be an important enhancement to
address model checking for more flexible ranking data models. Goodness-of-fit diagnos-

tics in the presence of partial observations is also a topic which deserves to be further

developed. In fact, to our knowledge, only in the Bayesian literature there are a few

contributions in this direction (Johnson, Henderson, & Boys, 2020; Mollica & Tardella,

2017). To this end, the statistics considered would initially require the extension of the

MLE for the EPL on samples including partial rankings. Another valuable direction of

research could be the Bayesian extension of the novel diagnostic tools allowing for model

adequacy evaluation via posterior predictive checks.
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Appendix 1: Inversemonotonicity of the last-stage itemprobabilitieswith

K = 3 items

Let us consider the simple case with K = 3 items. Without loss of generality, we assume

that the data-generating mechanism is EPLðρ, pÞ with p1 ≤ p2 ≤ p3 and ρ=(1,2,3). The
marginal probability for each item to be selected at the first stage can be computed as

follows

PEPL π�1ð1Þ ¼ 1jρ, p
�

� �
¼ PPLðπ�1 ¼ ð1,2,3Þjp

�
Þ þ PPLðπ�1 ¼ ð1,3,2Þjp

�
Þ

¼ p1

p1 þ p2 þ p3

p2

p2 þ p3
þ p1

p1 þ p2 þ p3

p3

p2 þ p3

¼ p1

p1 þ p2 þ p3
/ p1,

PEPL π�1ð1Þ ¼ 2jρ, p
�

� �
¼ PPLðπ�1 ¼ ð2,1,3Þjp

�
Þ þ PPLðπ�1 ¼ ð2,3,1Þjp

�
Þ

¼ p2

p1 þ p2 þ p3

p1

p1 þ p3
þ p2

p1 þ p2 þ p3

p3

p1 þ p3

¼ p2

p1 þ p2 þ p3
/ p2,

PEPL π�1ð1Þ ¼ 3jρ, p
�

� �
¼ PPLðπ�1 ¼ ð3,1,2Þjp

�
Þ þ PPLðπ�1 ¼ ð3,2,1Þjp

�
Þ

¼ p3

p1 þ p2 þ p3

p1

p1 þ p2
þ p3

p1 þ p2 þ p3

p2

p1 þ p2

¼ p3

p1 þ p2 þ p3
/ p3,

implying

PEPL π�1ð1Þ ¼ 1jρ, p
�

� �
≤ PEPLðπ�1ð1Þ ¼ 2jρ, p

�
Þ ≤ PEPLðπ�1ð1Þ ¼ 3jρ, p

�
Þ:

The marginal probability for each item to be selected at the third (last) stage can be

computed as follows
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PEPL π�1ð3Þ ¼ 1jρ, p
�

� �
¼ PPLðπ�1 ¼ ð2,3,1Þjp

�
Þ þ PPLðπ�1 ¼ ð3,2,1Þjp

�
Þ

¼ p2

p1 þ p2 þ p3

p3

p1 þ p3
þ p3

p1 þ p2 þ p3

p2

p1 þ p2

¼ p2p3p1

p1 þ p2 þ p3

1

p1

1

p1 þ p3
þ 1

p1 þ p2

� �
,

PEPL π�1ð3Þ ¼ 2jρ, p
�

� �
¼ PPLðπ�1 ¼ ð1,3,2Þjp

�
Þ þ PPLðπ�1 ¼ ð3,1,2Þjp

�
Þ

¼ p1

p1 þ p2 þ p3

p3

p2 þ p3
þ p3

p1 þ p2 þ p3

p1

p1 þ p2

¼ p1p3p2

p1 þ p2 þ p3

1

p2

1

p2 þ p3
þ 1

p1 þ p2

� �
,

PEPL π�1ð3Þ ¼ 3jρ, p
�

� �
¼ PPLðπ�1 ¼ ð1,2,3Þjp

�
Þ þ PPLðπ�1 ¼ ð2,1,3Þjp

�
Þ

¼ p1

p1 þ p2 þ p3

p2

p2 þ p3
þ p2

p1 þ p2 þ p3

p1

p1 þ p3

¼ p1p2p3

p1 þ p2 þ p3

1

p3

1

p2 þ p3
þ 1

p1 þ p3

� �
:

Since p1 ≤ p2, we have

1

p1

1

p1 þ p3
þ 1

p1 þ p2

� �
≥

1

p2

1

p2 þ p3
þ 1

p1 þ p2

� �
,

implying

PEPLðπ�1ð3Þ ¼ 1jρ, p
�
Þ ≥ PEPLðπ�1ð3Þ ¼ 2jρ, p

�
Þ:

Since p2 ≤ p3, we have

1

p2

1

p2 þ p3
þ 1

p1 þ p2

� �
≥

1

p3

1

p2 þ p3
þ 1

p1 þ p3

� �
,

implying

PEPLðπ�1ð3Þ ¼ 2jρ, p
�
Þ ≥ PEPLðπ�1ð3Þ ¼ 3jρ, p

�
Þ,

and hence

PEPLðπ�1ð3Þ ¼ 1jρ, p
�
Þ ≥ PEPLðπ�1ð3Þ ¼ 2jρ, p

�
Þ ≥ PEPLðπ�1ð3Þ ¼ 3jρ, p

�
Þ:
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Appendix 2: Proof of the inverse monotonicity of the last-stage item

probabilities

Without loss of generality, let EPLðρ, pÞ with p1 ≤ . . .≤ pK be the data-generating

mechanism. We denote by q
½t�
l the probability that item l is selected at stage t under the

above EPLðρ, pÞ. Hence, the vector q
½t�
1 , . . ., q

½t�
l , . . ., q

½t�
K

� �
is the marginal item

distribution at stage t. Our interest is in determining the ordering of the probabilitymasses

q
½K �
1 , . . ., q

½K �
l , . . ., q

½K �
K

� �
relative to themarginal itemdistribution at the last stageK. To

simplify the notation in the proof,we adopt the following conventions: for t = 1,. . .,K, we

denote by it = π−1(ρ(t)) the label of the item selected at stage t, implying

q
½t�
l ¼ PEPLðit ¼ ljρ, p

�
Þ, and we denote by p½D� ¼ ∑i∈Dpi the restricted sum of the

support parameters of the items belonging to the choice set D⊆ I . Let us write the

marginal probability for item 1 to be chosen in the final stepK of the ranking process. This

can be obtained by marginalizing out the entries of the previous K−1 stages, that is,

The analogous marginal probability corresponding to the selection of an item l≠1 at

stage K is

q
½K �
l ¼ ∑

i1 ∈ Inflg
. . . ∑

it ∈ Infl, i1, ⋯, it�1g
. . . ∑

iK�1 ∈ Infl, i1, ⋯, iK�2g

pi1 . . . pit . . . piK�1
pl

p
� ½I �

. . . p
� ½Infi1;...;it�1g�

. . . p
� ½Infi1;...;iK�2g�

pl
:

The (K−1)! ratios in both masses correspond to all possible first K−1 stage sampling

sequences. We remind the reader that the full-stage sampling sequences (i1,i2,. . .,it,. . .,
iK−1,iK) in the twomasses endwith 1 and l, respectively. Note that all the (K−1)! ratios that
are summed in both expressions have been multiplied respectively by p1/p1 and pl/pl, so

that all the numerators are equal. This simplifies the comparison between q
½K�
1 and q

½K �
l

since the numerator is always equal, as in the example of Appendix 1, to the product of all

the support parameter components. Hence, if wewant to assess the relativemagnitude of
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the two probabilities, we should concentrate on the relative magnitude of the (K−1)!
denominators, which all consist of K factors. To this end, one can revisit the notation in

order to simplify the comparison task. In the denominators of q
½K �
1 , the K-tuple of indices

(i1,i2,. . .,it,. . .,iK−1,iK) is such that the last entry iK is fixed (iK = 1), whereas the first K−1
entries range over the set of permutations of the remaining integers in A = I\{1}. We can

list the set of permutations of the K-tuple of indices (i1,i2,. . .,it,. . .,iK−1,1) by using (aσ,1)
with a = (2,3,. . .,K), aσ = (aσ(1),. . .,aσ(K−1)) and σ ∈ SK�1. Similarly, in the denominators

of q
½K �
l , the last component of the stage sampling sequence is fixed (iK = l), whereas the

firstK−1 entries range over the permutations of the integers in B = I\{l}. Analogously, we

can list the set of permutations of theK-tuple of indices (i1,i2,. . .,it,. . .,iK−1,l) by using (bσ,
l) with b = (2,3,. . .,l−1,1,l + 1,. . .,K), bσ = (bσ(1),. . .,bσ(K−1)). In so doing, we can make a

one-to-one comparison of all the homologous denominators, respectively indexed by

(aσ,1) and (bσ,l), by using the same σ ∈ SK�1. We remark that, in this way, the σ(t)th
component of aσ coincides with the σ(t)th component of bσ, the only exception being
σ(t*) = l−1 for which aσðt∗Þ ¼ l and bσðt∗Þ ¼ 1. In order to rewrite the K factors in the

denominators, we will use the subsets Aσ
t and Bσ

t representing the item subsets which

comprise, regardless of their order, the components (aσ(t),. . .,aσ(K−1),1) and (bσ(t),. . .,
bσ(K−1),l), respectively. Hence, the homologous denominators to be compared will be

written as p
� ½Aσ

1�
� . . .� p

� ½Aσ
t �
� . . .� p

� ½Aσ
K
�
and p

� ½Bσ
1�
� . . .� p

� ½Bσ
t �
� . . .� p

� ½Bσ
K
�
. Now we

observe thatAσ
1 ¼ Bσ

1 ¼ I , hence the first factor p
� ½Aσ

1�
¼ p

� ½Bσ
1�
¼ p

� ½I �
is equal to the sum of all

the support parameter components. For similar arguments and in the light of the previous

remarks, we can claim that p½Aσ
t �
¼ p½Bσ

t �
also for t ≤ t

*. For all t > t
*, we have thatAσ

t differs

fromBσ
t since, by construction, the former always contains item 1 and not item l,while the

latter always contains item l but not item 1, as is apparent by comparing (aσ(t),. . .,
aσ(K−1),1) and (bσ(t),. . .,bσ(K−1),l). Hence, the sums p½Aσ

t �
and p½Bσ

t �
differ only for the

presence of p1 in the former, replaced by the presence of pl in the latter. Since p1 ≤ pl, this

implies p½Aσ
t �
≤ p½Bσ

t �
. Finally, for all theK factors, we have p½Aσ

t �
≤ p½Bσ

t �
for all t and σ, hence

the opposite inequality holds for the sum of the reciprocals, yielding q
½K�
1 ≥ q

½K �
l for l≠1.

The same argument, iterated for each item i such that pi ≤ pl, leads to

q
½K �
1 ≥ . . . ≥ q

½K�
K ,

that is, the probability masses of the marginal item distribution at the last stage follow the
reverse order of the support parameters. We referred to this property as inverse

monotonicity of the last-stage item probabilities. The leading argument of the proof is

the definition of a one-to-onemapping between the (K−1)! terms of the two sums q
½K �
1 and

q
½K �
l , obtained by matching the selection stage of the lth item in the sequence (i1,i2,. . .,

it,. . .,iK−1,1)with the selection stage of item 1 in the sequence (i1,i2,. . .,it,. . .,iK−1,l) and all
the other item selections in the first K−1.
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Appendix 3: An example of matrix T(π)̲ under the EPL specification

By using the rPLMIX function of the PLMIX package in R (Mollica & Tardella, 2020), one
can simulate N = 100 orderings of K = 5 items from a genuine EPL model, with a

parameter configuration given by

ρ ¼ ð1, 5, 2, 4, 3Þ p
�
¼ ð:15, :4, :12, :08, :25Þ:

The code to obtain the synthetic data set of this example is

library(PLMIX)

set.seed(12)

sim_data=rPLMIX(n = 100, K = 5, G = 1, p = t(c(0.15,0.4,0.12,0.08,0.25)), ref_order=t(c(1,5,2,4,3)))

Under the above EPL specification, the expected rankings of the items in order of

occurrence at the first and the last stage are indicated in the two rows of Table 3.

ThematrixT ðπ
�
Þ ¼ ðTjj’ðπ

�
ÞÞ for all pairs j,j0 = 1,. . .,K is shown inTable 4. The observed

value of the EPL statistic is TmðπÞ ¼ 0,which is actually the globalminimumof thewhole

matrixT ðπ
�
Þ. In this example the globalminimum is attained in correspondence of the pair

consisting of the true first- and last-stage ranks, namely (j,j0) = (1,3).

Table 3. Expected rankings of the items in terms of number of selections at the first and the last

stage for an EPLðρ ¼ ð1, 5, 2, 4, 3Þ, p ¼ ð:15, :4, :12, :08, :25ÞÞ specification. The true first

and last stage ranks correspond, respectively, to ranks 1 and 3

Item

1 2 3 4 5

rank r
½1�
1

� �
3 1 4 5 2

rank r
½K�
3

� �
3 5 2 1 4

Sum of ranks 6 6 6 6 6

Table 4. Matrix T ðπ
�
Þ for a simulated sample from the EPLðρ ¼ ð1, 5, 2, 4, 3Þ , p

�
¼ ð:15, :

4, :12, :08, :25ÞÞ. The globalminimum is highlighted inbold, aswell as thepair in correspondence

of which the minimum is attained.

j0

j 1 2 3 4 5

1 12 8 0 6 12

2 8 12 8 10 6

3 0 8 12 10 2

4 6 10 10 12 6

5 12 6 2 6 12
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