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Abstract
We construct invariant measures associated to the integrals of motion of the periodic
derivative nonlinear Schrödinger equation (DNLS) for small data in L2 and we show
these measures to be absolutely continuous with respect to the Gaussian measure.
The key ingredient of the proof is the analysis of the gauge group of transforma-
tions associated to DNLS. As an intermediate step for our main result, we prove
quasi-invariance with respect to the gauge maps of the Gaussian measure on L2 with
covariance (I + (−�)k)−1 for any k � 2.

Mathematics Subject Classification 35Q30 · 35BXX · 37K05 · 37L50 · 35Q55 ·
37K10 · 37K30 · 17B69 · 17B80

1 Introduction

In this paper we continue our studies on the periodic DNLS equation

{
i∂tψ + ψ ′′ = iβ

(
ψ |ψ |2)′

ψ(x, 0) = ψ0(x), x ∈ T,
(1.1)
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1076 G. Genovese et al.

where ψ(x, t) : T × R → C, ψ0(x) : T → C, ψ ′(x, t) denotes the derivative of
ψ with respect to x , and β ∈ R is a real parameter. We denote by �t the associated
flow-map.

This is a dispersive nonlinear model describing the motion along the longitudinal
direction of a circularly polarized wave, generated in a low density plasma by an
external magnetic field [17]. It is an integrable system [13] (see also [8]), in the sense
that there is an infinite sequence of linearly independent quantities (integrals ofmotion)
which are conserved by the flow of (1.1) for sufficiently regular solutions.

In our previous work [9] we constructed a family of Gibbs measures, supported on
Sobolev spaces of increasing regularity, associated to the integrals of motion of the
DNLS equation. In this paper we construct a sequence of measures invariant along the
flow.We prove thesemeasures to be absolutely continuouswith respect to theGaussian
measures, however we cannot show them to coincide with the Gibbs measures (albeit
this is expected to be true).

The studies of PDEs from the perspective of statistical mechanics started with
the seminal paper by Lebowitz et al. [16], where the periodic one dimensional NLS
equation was studied by introducing the statistical ensembles naturally associated
to the Hamiltonian functional. Successively, starting from the paper [3] Bourgain
gave fundamental contributions to the development of this field, for a comprehensive
exposition we refer to [4] and the references therein. For integrable PDEs one can
profit from an infinite number of higher Hamiltonian functionals, in order to construct
infinitely many invariant Gibbs measures. This was originally noted by Zhidkov [35],
in the context of Korteweg–de Vries (KdV) equation and cubic nonlinear Schrödinger
(NLS) equation onT. A similar result was achieved in the last years for the Benjamin–
Ono equation on T via a series of papers by Tzvetkov, Visciglia and Deng [6,7,27,30–
32]. In this case (likewise for DNLS) a more careful construction of the (invariant)
measures is required compared to KdV and NLS. Recently a renewed interest invested
the subject and numerous works treating different aspects of it for a large class of
equations appeared. However we are not attempting here to give an exhaustive account
of the literature, but we focus just on DNLS.

The construction of the Gibbs measure associated to the energy functional of the
DNLS equation

E1[ψ] = 1

2
‖ψ‖2

Ḣ1 + 3i

4
β

∫
|ψ |2ψ ′ψ̄ + β2

4
‖ψ‖6L6 , (1.2)

was achieved in [29], while in [20,21] the measure was proven to be invariant. The
proof of [20] uses quite a sophisticated strategy, that we briefly explain. The best local
well-posedness result for theDNLSequation in Sobolev spaces is for data in H1/2 [11],
which falls outside the support of the Gibbs measure (for existence of weak solutions
below H1/2 see [26]). However in [10] local well-posedness in the Fourier–Lebesgue
spaces FLs,r (T) with r ∈ [2,∞) and (s − 1)r < −1 is proven. The authors of [20]
showed these spaces to be of full measure or more precisely that (ı, H1,FLs,r ) is an
abstract Wiener space, where ı : H1 �→ FLs,r is the inclusion map (see [14]). Then
they establish energy growth estimates for each single solution, in a localised-in-time
version of the Bourgain space X2/3−,1/2

3 , for initial data in FL2/3−,3.
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1077

In the present paper, we opt for a more probabilistic approach, closer to the one
developed by Tzvetkov andVisciglia in the context of the Benjamin–Ono equation. As
in [20], the gauge transformation introduced by Herr in the periodic setting (see [11])
constitutes one of the main ingredient of our proof, even though we make a different
gauge choice. Indeed our gauge simplifies the integrals of motion rather than the
equation.More preciselywe consider a one-parameter family of gauge transformations
(see (2.1) in Sect. 2), and for each integral of motion we select an appropriate value
of the parameter. One of the advantages of this approach is that we can simply work
in Sobolev spaces, without introducing any auxiliary functional space.

In the rest of the introduction we present the set-up in which our main Theorem 1.2
is stated and we explain the strategy of the proof.

1.1 Set-up andmain results

We introduce here the objects we are going to deal with. According to a standard
notation we denote by Hs(T), s � 0, the completion of C∞(T) with respect to the
norm induced by the inner product

( f , g)Hs :=
∑
n∈Z

(1 + n2s) f (n)ḡ(n),

where f (n) is the n-th Fourier coefficient of f . For every s � 0, Hs(T) is a separable
Hilbert space, with H0(T) = L2(T). A function in Hs(T) is represented as a sequence
{ f (n)}n∈Z such that

∑
|n| � N (1 + n2s)| f (n)|2 converges as N → ∞. We also use

the homogeneous Sobolev spaces Ḣ s(T), defined as the completion of C∞(T) with
respect to the norm induced by the inner product

( f , g)Ḣ s :=
∑
n∈Z

n2s f (n)ḡ(n).

For N � 0, we consider the canonical projections

PN : L2(T) �→ EN := spanC{einx : |n| � N }, (1.3)

defined as

PN f :=
∑

|n| � N

einx f (n), PN=∞ f = f .

The orthogonal projections are P>N := I − PN .
The space L2(T) can be equipped with a measurable-space structure as follows.

Let A ∈ B(C2N+1) be a Borel subset of C2N+1. We introduce the cylindrical sets

MN (A) := { f ∈ L2(T) : ( f (−N ), . . . , f (N )) ∈ A}. (1.4)
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1078 G. Genovese et al.

Hence, we define TN := {MN (A)}A∈B(C2N+1) and T := ⋃N∈N TN , namely the
algebra of cylindrical sets with Borel basis given by (1.4). We also denote by σ(T )

the smallest σ -algebra generated by T . For any N ∈ N0 := N∪{0}, TN is isomorphic
to B(C2N+1), therefore we can identify σ(T ) with B(L2(T)), namely the Borel σ -
algebra on L2(T). The Lebesgue measure on C

2N+1 naturally induces a measure on
(MN (C2N+1), TN ), which (with a little abuse) we still refer to as Lebesgue measure,
through

|MN (A)| := cN

∫
A

⎛
⎝ ∏

|n| � N

d f (n)d f̄ (n)

⎞
⎠ . (1.5)

where cN is a suitable constant. For any k ∈ N, let I+ (−�)k be the closure in L2(T)

of the operator 1+
(
− d2

dx2

)k
acting on C∞(T). This is a positive self-adjoint operator

with a trivial kernel and its inverse (I+(−�)k)−1 is bounded and trace class. Therefore
there exists a centred Gaussian probability measure with covariance (I + (−�)k)−1

(a standard reference is [14]), which we denote by γk , such that

γk(MN (A)) := 1

ZN

∫
A

⎛
⎝ ∏

|n| � N

d f (n)d f̄ (n)

⎞
⎠ e− 1

2

∑
|n| � N (1+n2k)| f (n)|2

, (1.6)

where ZN is the normalisation constant.
For any k ∈ N the triple (L2(T),B(L2(T)), γk) is a Gaussian probability space. It

is worth to recall that each measure γk concentrates on functions with less than k − 1
2

derivatives in L2(T). More precisely

γk

⎛
⎜⎝ ⋂

s<k− 1
2

Hs(T)

⎞
⎟⎠ = 1, γk

(
Hk− 1

2 (T)

)
= 0.

With L p(γk) we denote the L p spaces associated to γk .
We can now introduce the Gibbs measures constructed in [9]. Let R > 0 and let

χR(x) := χ(x/R) where χ : R → [0, 1] is a smooth compactly supported function
such that χ(x) = 1 for |x | � 1/2 and χ(x) = 0 for |x | > 1. For k � 2, let us fix
Rm > 0, for m = 0, . . . , k − 1, and define the k-th Gibbs measure associated to the
DNLS equation by

ρk(A) :=
∫
A

(
k−1∏
m=0

χRm (Em[ψ])
)
e−Qk [ψ]γk(dψ), A ∈ B(L2(T)), (1.7)

where

Qk[ψ] := Ek[ψ] − 1

2
‖ψ‖2

Ḣ k (1.8)

and E1, . . . , Ek are integrals of motion of the DNLS equation; see (2.15), (2.19).
The measure ρk must be understood as the weak limit of the following sequence of
measures. Given A ∈ B(L2(T)), we denote
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1079

MN (A) := { f ∈ L2(T) : PN f ∈ PN A} (1.9)

the (cylindrical) set of all the L2(T) functions with base PN A. Then we define

ρk,N (A) :=
∫
MN (A)

(
k−1∏
m=0

χRm (Em[PNψ])
)
e−Qk [PNψ]γk(dψ).

Then the main result of [9] can be reformulated as follows:

Theorem 1.1 [9]Let k � 2and let R0 sufficiently small. Then (L2(T),B(L2(T)), ρk)

is a probability space. Moreover, there exists p0 = p0(R0, . . . , Rk−1, k, |β|) > 1 such
that, for all 1 � p < p0, the Radon–Nykodim derivative dρk

dγk
belongs to L p0(γk).

We can take p0 arbitrarily large (but not p0 = ∞) provided we choose a sufficiently
smaller R0.

The small mass condition R0 	 1 deserves few comments. As already mentioned,
the periodic DNLS equation has been shown to be locally well-posed for initial data in
Hs � 1/2 in [11]. Then, a standard procedure allows to globalise the local H1 solutions
with ‖ψ0‖L2 < δ, as long as δ is sufficiently small, by using the integral of motion E1
and the Gagliardo–Nirenberg inequality

‖ f ‖3L6(T)
� ‖ f ‖Ḣ1(T)‖ f ‖2L2(T)

+ 1

2π
‖ f ‖3L2(T)

. (1.10)

However this approach does not give the best possible value for δ, which is an interest-
ing open problem. The highest value of the mass for which global existence in H1(T)

holds is δ = 2
√

π/|β|. This was shown for the non-periodic framework in [34] and
the argument was adapted to periodic DNLS in [19] (similarly, for the best result in

H
1
2 (T) see [18]). Existence of global solution of DNLS on R without any condition

on the mass has been proven by inverse scattering method in [15]. In our approach
the small mass condition is required to prove the integrability of the Gibbs densities.
However from the standpoint of integrable systems it is reasonable to think that in
the role of R0 could be replaced by any R j (once one looks at sufficiently regular
solutions).

The main contribution of the present paper follows.

Theorem 1.2 Let k � 2and let R0 be sufficiently small. Then there exists a probability
measure ρ̂k on (L2(T),B(L2(T))) a.c. w.r.t. γk , such that the flow-map�t associated
to DNLS is measure preserving in (L2(T),B(L2(T)), ρ̂k).

An immediate but significant corollary followsby thePoincaré recurrenceTheorem:

Corollary 1.3 Let k � 2 and let ψ be a solution of the DNLS equation with initial
datum ψ(x, 0) ∈ Hs(T) with s < k − 1

2 . For ρ̂k-a.e. ψ(x, 0) there exists a divergent
sequence {tn}n∈N such that
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1080 G. Genovese et al.

lim
n→∞ ‖ψ(x, tn) − ψ(x, 0)‖Hs = 0.

An analog conclusion for k = 1 follows from [20]. To the best of our knowledge,
these are the sole known results on the long-time behaviour of the DNLS equation.

1.2 Strategy of the Proof

An alternative formulation of our main Theorem 1.2 is that for any k � 2 (in fact
k � 1 considering also the result of [20]) the DNLS equation has the structure of
an infinite-dimensional (Hamiltonian) dynamical system. Since the earlier works of
Bourgain and Zhidkov it has revealed useful to approximate the infinite dimensional
problem with a finite dimensional one, by considering the evolution of the first |n| �
N Fourier modes of the solutions. These systems are actually Hamiltonian, but in
general they do not preserve all the integrals of motion. This is often a major issue
to cope with in this class of problems. However one expects the integrals of motion
to be conserved in the limit N → ∞. Following an approach developed by Tzvetkov
and Visciglia for the Benjamin–Ono equation, we will show that the derivative of
the integrals of motion along the flow of the truncated systems vanishes in the L2(γk)

mean. Actually, as first observed in [31], one can reduce to consider only the derivative
at the initial time, which is a crucial simplification.

It is helpful to recall that the integrals of motion of DNLS have the following form

Ek[ψ] = 1

2
‖ψ‖2

Ḣ k − 1

2
β(2k + 1)Im

∫
ψ(k)ψ̄(k−1)|ψ |2 + remainders, k � 2,

(1.11)
where we consider as remainders all the terms that are bounded in the support of γk .
The difficulty to show the asymptotic (w.r.t. N ) conservation of Ek comes form the
second addendum in the r.h.s. of Eq. (1.11). Notably the integrals of motion of the
Benjamin–Ono equation have an analog structure. However in that case a convenient
cancellation coming from the symmetries of the problem simplifies substantially the
computations. We cannot find a similar cancellation here. Nevertheless it is possible
to eliminate the troubling term using a suitable gauge transformation. As already
mentioned, these gauge transformations form a one-parameter group Gα indexed by
α ∈ R (see (2.1)). A generic gauge choice yields the following expression for the
integrals of motion of the gauged equation

Ek[ϕ] = 1

2
‖ϕ‖2

Ḣ k + ikαμ

∫
ϕ̄(k)ϕ(k−1) − 1

2
((2k + 2)α

+(2k + 1)β) Im
∫

ϕ(k)ϕ̄(k−1)|ϕ|2 + remainders,

where ϕ = Gαψ is the solution of the gauged equation and we shortened

μ := 1

2π
‖ϕ‖2L2 = 1

2π
‖ψ‖2L2 .
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1081

In general we will use the notation μ[ f ] := 1
2π ‖ f ‖2

L2 and we will simply write μ if
there will be no ambiguity. We recover (1.11) as α = 0. Setting

α = −2k + 1

2k + 2
β, (1.12)

we reduce to

Ek[ϕ] = 1

2
‖ϕ‖2

Ḣ k − ik
2k + 1

2k + 2
βμ

∫
ϕ̄(k)ϕ(k−1) + remainders.

This form of the integrals of motion is much more suitable in order to prove the
asymptotic conservation property and such a reduction is the crux of our proof. Of
course also the flow ofDNLS changes accordingly to the gauge transformation: indeed
our gauge choice leads to a somewhat more involved form for the equation (see (2.8)).
However this does not introduce significant difficulties, as the form of the nonlinearity
is essentially the same and we are working with rather regular solutions (at least in
Hs>5/4). It is worthy to point out the difference with what is usually done in the low
regularity theory for DNLS, where the choice of the gauge parameter α = −β aims
to simplify the equation; see also Remark 1.5.

The next step is to define for any k � 2 a gauged Gibbs measure starting from the
gauge-transformed (or gauged) integrals of motion and to prove its invariance w.r.t.
the gauged flow. This requires some groundwork, namely a careful analysis of the
DNLS-flow and gauge-flow maps, in order to adapt the strategy of [31].

The invariance of the gauged Gibbs measure under the gauged flow easily implies
the invariance of the push-forward of it through Gα under the DNLS flow. This will be
our invariant measure ρ̂k . We stress that in principle one expects ρk = ρ̂k . The missing
step to show the invariance of the Gibbs measures is the proof of absolute continuity
of the pull-back γk ◦ Gα w.r.t. γk with the explicit density. So far what we can prove
is the following theorem:

Theorem 1.4 Let R0 > 0 small enough and

γ̃k(A) = γk(A ∩ { f ∈ L2 : μ[ f ] � R0}).

Then for any k � 2 and α ∈ R the measure γ̃k ◦Gα is absolutely continuous w.r.t. γk .

The absolute continuity of ρ̂k w.r.t. γk is then a direct consequence of Theorem 1.4;
see Remark 7.1.

The change of variable formula for k = 1 was established in [21]. This is however
a very special case, as the typical trajectories for γ1 are complex Brownian bridges,
whose properties are crucially employed in the argument of [21]. For more regular
processes one cannot expect to reproduce the same proof and some new idea is needed.
Since the work of Ramer [25], much attention has been given to the transformation
properties of Gaussian measures under anticipative transformations (as the DNLS
gauge is). However the gauge group does not match the typology of transformations
studied by Ramer onward. For this reason the study of the quasi-invariance of γk under
the gauge map is of independent interest.
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1082 G. Genovese et al.

Recently Tzvetkov [28] proposed a strategy for proving quasi-invariance of the
Gaussianmeasure under a one-parameter group of transformations via a soft argument,
which does not provide the explicit density. The method has been successively refined
in [22–24]. We use this approach to prove Theorem 1.4, from which we deduce the
absolutely continuity of ρ̂k w.r.t. γk . To prove that the Gibbs measures are invariant,
one should known the exact form of the densities after the change of variables given
by the gauge also for k � 2. As in the case k = 1, these densities should complete
exactly the part of the integrals of motion missing in the gauged Gibbs measure. We
do not give here further details, leaving the discussion of this problem to future works.

Remark 1.5 Finally we come back briefly to the case k = 1. As we have noted, the
gauge transformation relative to the choice (1.12) introduces a significant simplifica-
tion in the form of the conservation laws. This allows us to obtain the key Proposition
4.1, which can be easily extended to the case k = 1. In [20, Theorem4.2] they prove
a (deterministic) analogous of this proposition, which is again the main step in the
proof of the invariance of the measure, but their choice α = −β does not give any
simplification in this part. Our argument does not immediately cover the case k = 1,
since the missing step is to extend the stability Proposition 3.4 to low regularity. In
particular, the works of Herr [11] and Grünrock–Herr [10] suggest that such a result
should be harder to achieve under our choice (1.12) of α in place of the usual α = −β.

1.3 Organisation of the paper

The paper is organised as follows. In Sect. 2 we introduce the gauge transformation
used throughout the paper and we analyse the way the DNLS equation and its integrals
of motion change according to it. This leads to the gauged DNLS Eq. (2.8), which
we refer to as GDNLS, and to the gauged integrals of motion E�, � ∈ N0, defined
in (2.16). The main results of this section are Corollaries 2.11 and 2.12 where the
explicit representation of the gauged integrals of motion E� is obtained. In Sect. 3 we
introduce the truncated GDNLS equation (3.1) and we show in Proposition 3.3 that its
flow preserves the Lebesgue measure (1.5). Moreover, we show that this flow is close
to the one of the GDNLS equations in a suitable Sobolev topology for short time, see
Proposition 3.4. Sect. 4 is devoted to the study of the asymptotic conservation of the
integrals of motion in the probabilistic sense. We show in Proposition 4.1 that the L2

norm w.r.t. γk (k � 2) of the time derivative calculated at t = 0 of the integrals of
motion E� vanishes as N → ∞ (namely as the truncation disappears). In order to prove
this result we need to study the asymptotic conservation of themonomials appearing in
the explicit form of the integrals of motion E� obtained in Sect. 2. For most of themwe
have also convergence γk-a.s. for k � 2, as proved in Lemmas 4.3 and 4.4. However
this is can not be easily proved in general. The more complicated terms are handled
using Wick theorem in Lemmas 4.5 and 4.6. In Sect. 5 we perform the construction of
the invariant measures of Theorem 1.2. First we construct the gauged Gibbs measures,
essentially repeating the argument used for the Gibbs measures in [9] starting by the
gauged integrals of motions. Then, following [31], we prove that they are invariant
under the flow of the GDNLS equation, using the results of Sects. 3 and 4. The last
two sections are devoted to the proof of absolute continuity of the invariant measures
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1083

w.r.t the Gaussian measures via the quasi-invariance of the latter under the gauge flow.
In Sect. 6 we introduce and analyse the truncated gauge flow in analogy with what
was done in Sect. 3. In Sect. 6 we exploit the argument of [28] to prove Theorem 1.4.
This ultimates also the proof of Theorem 1.2.

Notations

Throughout f will always be a generic complex function, ψ a solution of DNLS,
ϕ the image of ψ via the gauge transformation, u can be either ϕ or ϕ̄. We denote
by f (n) the n-th Fourier coefficient of f : T → C. We set μ[ f ] := 1

2π ‖ f ‖2
L2 and

sometimes we shorten this simply writing μ. For the ease of notation, E[·] denotes
the expectation value w.r.t. γk , regardless of k. Anyway the particular γk considered
will be always clear from the context. Bs(R) is the ball of center zero and radius R in
the topology induced by ‖ · ‖Hs . We write X � Y to denote that X � CY for some
positive constant C independent on X ,Y . We also use the symbol O for the Landau
big O. We denote N0 = N ∪ {0}. We use the following notations for further (space)
derivatives of the solutions ϕ′ := ∂xϕ, ϕ′′ := ∂2xϕ, ϕ

(k) := ∂kxϕ, k � 3.

2 Gauge transformations

The DNLS equation has interesting transformation properties with respect to a group
of gaugemaps (introduced in the periodic setting in [11]) which will be now discussed.

For α ∈ R let Gα : L2(T) → L2(T) be defined by

(Gα f )(x) := eiαI[ f (x)] f (x). (2.1)

where

I[ f (x)] := 1

2π

∫ 2π

0
dθ

∫ x

θ

(
| f (y)|2 −

‖ f ‖2
L2(T)

2π

)
dy. (2.2)

One can easily check that the (real) function I[ f (x)] is the unique zero average (2π -
periodic) primitive of | f (x)|2− (2π)−1‖ f ‖2

L2 . Note that | f | = |Gα f | and Gα f is 2π -

periodic. Hence, Gα maps L2(T) into L2(T) preserving the norm (namely ‖Gα f ‖L2 =
‖ f ‖L2 ). Using that I[ f ] = I[Gα( f )] one can easily show that the map α → Gα is a
one parameter group of transformations on (R,+), namely

G0 = I and Gα1 ◦ Gα2 = Gα1+α2 , for any α1, α2 ∈ R. (2.3)

For any s � 0 the gauge transformation Gα is also a homeomorphism of Hs(T) into
itself. This is an immediate consequence of the following useful inequality

‖(eiαI[ f ]−eiαI[g])h‖Hs � Ce|α|C(‖ f ‖2Hs+‖g‖2Hs )(‖ f ‖Hs +‖g‖Hs )‖ f −g‖Hs‖h‖Hs ,

(2.4)
where C only depends on s, proved in [11] in the case α = −1 (the adaptation of the
proof to the general case α ∈ R is straightforward). Let indeed assume f , g ∈ Bs(R),
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1084 G. Genovese et al.

where Bs(R) is the ball of center zero and radius R > 0 in the topology induced by
‖ · ‖Hs . Using (2.4) one easily deduces

‖Gα f − Gαg‖Hs � ‖(eiαI[ f ] − eiαI[g]) f ‖Hs

+ ‖(eiαI[g] − 1)( f − g)‖Hs + ‖ f − g‖Hs

� (2C̃ R2e|α|2C̃ R2+C̃ R2e|α|C̃ R2+1)‖ f − g‖Hs

� CR2e|α|CR2‖ f − g‖Hs , (2.5)

where the constants C � C̃ > 1 here still only depends on s.

2.1 Gauged DNLS equation

Let ψ be a solution of the DNLS Eq. (1.1). For any α ∈ R, we set for brevity

ϕ := Gαψ. (2.6)

From (2.3) we clearly have ψ = G−α(ϕ). We also have

ψ(k) = ∂kx (G−α(ϕ)) = e−iαI(ψ)(∂x − iα(|ϕ|2 − μ[ϕ]))kϕ, (2.7)

where μ[ f ] := 1
2π ‖ f ‖2

L2 . Note that, since |ϕ| = |ψ |, we have μ[ϕ(x, t)] =
μ[ψ(x, t)] and, since this quantity is conserved by the flow of the DNLS equation
(see (2.15), namely μ[ψ(x, t)] = μ[ψ(x, 0)] for all t ∈ R) we will often simply
denote it by μ.

The following proposition specifies the gauged form of the DNLS equation. For
brevity we denote throughout by ϕ the solution of this one parameter family of equa-
tions, even if ϕ depends on the choice of the parameter α, see (2.6).

Proposition 2.1 Let ψ be a solution of the DNLS Eq. (1.1). Then, for any α ∈ R, the
function ϕ = Gα(ψ) satisfies the equation

i∂tϕ + ϕ′′ + 2iαμϕ′ = ic1|ϕ|2ϕ′ + ic2ϕ
2ϕ̄′ + c3|ϕ|4ϕ + c4μ|ϕ|2ϕ + �[ϕ]ϕ , (2.8)

where

c1 = 2(α + β), c2 = 2α + β, c3 = −α2 − αβ

2
, c4 = −αβ (2.9)

and

�[ f ] =
(
3αβ

4π
+ α2

π

)
‖ f ‖4L4 − α2μ[ f ]2 + iα

π

∫
T

f ′ f̄ . (2.10)

Proof Using (2.7) we get

ψ ′′ = e−iαI(ψ)(ϕ′′ − 3iα|ϕ|2ϕ′ − iαϕ2ϕ̄′ + 2iαμϕ′

−α2|ϕ|4ϕ + 2α2μ|ϕ|2ϕ − α2μ2ϕ),

(|ψ |2ψ)′ = e−iαI(ψ)(2|ϕ|2ϕ′ + ϕ2ϕ̄′ − iα|ϕ|4ϕ + iαμ|ϕ|2ϕ). (2.11)
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Note that
∂tψ = e−iαI[ψ] (∂tϕ − iαϕ∂tI[ψ]) . (2.12)

Using the DNLS equation (1.1), integration by parts, and Eq. (2.7) it is straightforward
to get

∂tI[ψ] = iϕ′ϕ̄ − iϕϕ̄′ + (2α + 3β
2

)|ϕ|4 − 2αμ|ϕ|2
+2αμ2 − ( 3β4π + α

π

)‖ϕ‖4
L4 − i

π

∫
T ϕ′ϕ̄. (2.13)

Substituting (2.11) and (2.12) in the DNLS equation (1.1) and using Eq. (2.13) we get
the statement. �
Remark 2.2 Note that c1, c2, c3 and c4 in (2.9), and �[ f ] in (2.10) are real (indeed,
using integration by parts, one can check that

∫
f ′ f̄ is purely imaginary).

We call Eq. (2.8) with coefficients given by (2.9) and (2.10) the gauged derivative
nonlinear Schrödinger (GDNLS) equation. We recall that�t denotes the flow-map of
the DNLS Eq. (1.1). Then, the flow defined by the GDNLS Eq. (2.8) is given by

�t,α := Gα �t G−α, α ∈ R. (2.14)

Remark 2.3 For the choice of α = −β = −1 the GDNLS equation (2.8) already
appeared in [11,20].

2.2 Integrals of motion

Recall from [13] (see also [8,9]) that there exists an infinite sequence of integrals of
motion {Ek[ψ]}k∈ 1

2N0
for the DNLS Eq. (1.1). The first few of them are listed below:

E0[ψ] = 1

2
‖ψ‖2L2 ,

E 1
2
[ψ] = i

2

∫
ψ ′ψ̄ + β

4
‖ψ‖4L4 ,

E1[ψ] = 1

2
‖ψ‖2

Ḣ1 + 3i

4
β

∫
|ψ |2ψ ′ψ̄ + β2

4
‖ψ‖6L6 ,

E 3
2
[ψ] = i

2

∫
ψ ′′ψ̄ ′ + β

4

∫
((ψ ′)2ψ̄2 + 8|ψ |2ψ ′ψ̄ ′ + ψ2(ψ̄ ′)2)

+5i

4
β2
∫

|ψ |4ψ ′ψ̄ + 5

16
β3‖ψ‖8L8 ,

E2[ψ] = 1

2
‖ψ‖2

Ḣ2 + 5i

4
β

∫
|ψ |2(ψ ′′ψ̄ ′ − ψ ′ψ̄ ′′) + 5

4
β2
∫

|ψ |2((ψ ′)2ψ̄2

+ψ2(ψ̄ ′)2) + 25

4
β2
∫

|ψ |4ψ ′ψ̄ ′ + 35i

16
β3
∫

|ψ |6ψ ′ψ̄ + 7

16
β4‖ψ‖10L10 .

(2.15)
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Remark 2.4 These integrals of motion are slightly different from those appearing in
the introduction of [9], where there is a typo in the coefficient of β of E1[ψ].

In this section we study the way the sequence of integrals of motion of the DNLS
equation {Ek[ψ]}k∈ 1

2N0
changes under the gauge transformation Gα .

Recall that we have denoted by ψ a solution of the DNLS Eq. (1.1) and we proved
in Proposition 2.1 that ϕ = Gα(ψ) is a solution of the GDNLS Eq. (2.8), for every
α ∈ R. We can rewrite the integrals of motion Ek[ψ], k ∈ 1

2N0, in terms of the new
variables ϕ(k) := ∂kxϕ in the following way

Ek[ϕ] := Ek[G−αϕ] = Ek[ψ], k ∈ 1

2
N0. (2.16)

Again, we will omit the dependence on α of Ek in order to simplify the notations.
Clearly, when α = 0 we have Ek = Ek . By a direct calculation one can check that the
first few integrals of motion (2.15) of the DNLS equation rewrite in the new variables
ϕ(k) as follows:

E0[ϕ] = 1

2
‖ϕ‖2L2 ,

E 1
2
[ϕ] = i

2

∫
ϕ′ϕ̄ + 1

4
(2α + β)‖ϕ‖4L4 − παμ2,

E1[ϕ] = 1

2
‖ϕ‖2

Ḣ1 + iαμ

∫
ϕϕ̄′ + i

4
(4α + 3β)

∫
|ϕ|2ϕ′ϕ̄

+ πα2μ3 − α

4
(4α + 3β) μ‖ϕ‖4L4 + 1

4
(α + β)(2α + β)‖ϕ‖6L6 , (2.17)

E 3
2
[ϕ] = i

2

∫
ϕ′′ϕ̄′ − 3

2
αμ

∫
ϕ′ϕ̄′ + 1

4
(2α + β)

∫
((ϕ′)2ϕ̄2 + ϕ2(ϕ̄′)2)

+ 1

2
(5α + 4β)

∫
|ϕ|2ϕ′ϕ̄′ + 3

2
iα2μ2

∫
ϕ′ϕ̄ − 3iα(α + β)μ

∫
|ϕ|2ϕ′ϕ̄

+ i

4
(6α2 + 12αβ + 5β2)

∫
|ϕ|4ϕ′ϕ̄ − πα3μ4 + 3

2
α2(α + β)μ2‖ϕ‖4L4

− 1

4
α(6α2 + 12αβ + 5β2)μ‖ϕ‖6L6 + 1

16
(2α + β)(4α2 + 10αβ + 5β2)‖ϕ‖8L8 ,

E2[ϕ] = 1

2
‖ϕ‖2

Ḣ2 − 2iαμ

∫
ϕ′′ϕ̄′ + 1

4
i(6α + 5β)

∫
|ϕ|2(ϕ′′ϕ̄′ − ϕ′ϕ̄′′)

− 1

2
iα
∫

((ϕ′)2ϕ̄ϕ̄′ − ϕϕ′(ϕ̄′)2) + 3α2μ2
∫

ϕ′ϕ̄′ − 10α(α + β)μ

∫
|ϕ|2ϕ′ϕ̄′

− 1

4
α(8α + 5β)μ

∫
((ϕ′)2ϕ̄2 + ϕ2(ϕ̄′)2) + 1

4
(4α + 5β)(8α + 5β)

∫
|ϕ|4ϕ′ϕ̄′

+ 5

4
(α + β)(2α + β)

∫
|ϕ|2(ϕ2(ϕ̄′)2 + ϕ̄2(ϕ′)2) − 2iα3μ3

∫
ϕ′ϕ̄

+ 3

4
iα2μ2(4α + 5β)

∫
|ϕ|2(ϕ′ϕ̄ − ϕϕ̄′)
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− 3

4
iαμ(4α2 + 10αβ + 5β2)

∫
|ϕ|4(ϕ′ϕ̄ − ϕϕ̄′)

+ 1

16
i(32α3 + 120α2β + 120αβ2 + 35β3)

∫
|ϕ|6ϕ′ϕ̄ + πα4μ5

− 1

2
α3(4α + 5β)μ3‖ϕ‖4L4 + 3

4
α2(4α2 + 10αβ + 5β2)μ2‖ϕ‖6L6

− 1

16
α(32α3 + 120α2β + 120αβ2 + 35β3)μ‖ϕ‖8L8

+ 1

16
(α + β)(2α + β)(4α2 + 14αβ + 7β2)‖ϕ‖10L10 .

We have ψ(x, t) = �t (ψ(x, 0)), as ψ solves (1.1). Hence, from (2.16) and the
conservation of Ek[ψ] for the DNLS flow, it is Ek[ϕ(x, t)] = Ek[ψ(x, 0)]. In other
words, Ek[ϕ] is an integral of motion for the GDNLS equation (2.8) for every k ∈ 1

2N0.
We want to give a more detailed description of the integrals of motion {Ek[ϕ]}k∈N0

defined in (2.16). We start by reviewing some results from [9] about the structure of
the integrals of motion Ek[ψ] of the DNLS equation.

Let V = [ψ(n), ψ̄(n) | n ∈ N0] be the algebra of differential polynomials in
the variables ψ and ψ̄ . On the differential algebra V we have the usual polynomial
degree, which we denoted by deg, defined by setting deg(ψ(n)) = deg(ψ̄(n)) = 1,
for every n ∈ N0, and the usual differential degree, which we denoted by dd, defined
by setting dd(ψ(n)) = dd(ψ̄(n)) = n, for every n ∈ N0. For n ∈ N0, we also let
Vn = { f ∈ V | ∂ f

∂u(m) = 0, for every m > n, u = ψ or ψ̄}.
It is shown in [9] that there exists an infinite sequence {hk}k∈N0 ⊂ V such that

the local functionals
∫
hk , k ∈ N0, are integrals of motion for the DNLS Eq. (1.1).

Moreover

hk =
k∑

m=0

βmhk,m, (2.18)

with deg(hk,m) = 2m+2 and dd(hk,m) = k−m, for everym = 0, . . . , k. The integrals
of motion {Ek[ψ]}k∈N0 , introduced at the beginning of this section are defined by

Ek[ψ] = ∫ h2k, k ∈ N0. (2.19)

Remark 2.5 We recall from [9] that the Gibbs measures for the DNLS equation are
associated to the integrals

∫
h2k , k ∈ N0.

Let us introduce an integral grading on V , which we denote by deg, by setting

deg(ψ(n)) = − deg(ψ̄(n)) = 1, n ∈ N0.

We also write V =⊕m∈Z V[m], where V[m] = { f ∈ V | deg( f ) = m} denotes the
space of homogeneous elements of degree m ∈ Z.

Lemma 2.6 Let m ∈ Z, and let f /∈ C be such that f ∈ V[m].
(a) For every n ∈ N0, we have that deg( ∂ f

∂ψ(n) ) = deg( f ) − 1 and deg( ∂ f
∂ψ̄(n) ) =

deg( f ) + 1.
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(b) We have that deg(∂ f ) = deg( f ). Hence, deg(∂n f ) = deg( f ), for every n ∈ N0.
(c) If f /∈ ∂V , then deg( δ f

δψ
) = deg( f ) − 1 and deg( δ f

δψ̄
) = deg( f ) + 1.

Proof Part (a) is clear. Part (b) follows from part (a) and the fact that ∂ =∑
n∈N0

(ψ(n+1) ∂

∂ψ(n) + ψ̄(n+1) ∂

∂ψ̄(n) ). Part (c) follows from parts (a) and (b), the

definition of the variational derivatives δ
δψ

= ∑
n∈N0

(−∂)n ∂

∂ψ(n) and δ

δψ̄
=∑

n∈N0
(−∂)n ∂

∂ψ̄(n) , and the fact that Ker δ
δψ

= Ker δ
δψ

= C + ∂V (see [1]). �
Proposition 2.7 hk ∈ V[0] for every k ∈ N0.

Proof The differential polynomials hk ∈ V are inductively defined (up to total deriva-
tives) by the recurrence relation (2.10) in [9]. In terms of the variables ψ = a − ib
and ψ̄ = a + ib, it becomes (k ∈ N0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂((ψ + ψ̄)g) = −2ψ∂
(

δhk
δψ

)
− 2ψ̄∂

(
δhk
δψ̄

)
δhk+1
δψ

= −i∂
(

δhk
δψ

)
− β

2 ψ̄(ψ + ψ̄)g
δhk+1

δψ̄
= i∂
(

δhk
δψ̄

)
− β

2ψ(ψ + ψ̄)g ,

(2.20)

where g, δhk+1
δψ

and δhk+1

δψ̄
are uniquely determined by this recurrence if we know δhk

δψ

and δhk
δψ̄

. We can directly check from Eq. (2.15) that deg(h0) = 0. Moreover, since

the integrals of motion
∫
hk are non-trivial, we have that hk /∈ ∂V , for every k ∈ N0.

Let us assume that deg(hk) = 0 and let us show that deg(hk+1) = 0. By Lemma 2.6
(b) and (c), from the first identity in (2.20) we get that deg((ψ + ψ̄)g) = 0. Hence,
using Lemma 2.6 b) the RHS of the second identity in (2.20) is homogeneous of
degree deg(hk) − 1 = −1 by inductive assumption. This force deg(hk+1) = 0 using
Lemma 2.6 (c). �

Let us denote by Ṽ = C[ϕ(n), ϕ̄(n) | n ∈ N0] the algebra of differential polynomials
in the variables ϕ and ϕ̄. By an abuse of notation we denote with the same symbols the
polynomials and differential gradings of V and Ṽ . Clearly, on Ṽ , they are defined by
deg(ϕ(n)) = deg(ϕ̄(n)) = 1, and dd(ϕ(n)) = dd(ϕ̄(n)) = n, for n ∈ N0. For n ∈ N0,
we also let Ṽn = { f ∈ Ṽ | ∂ f

∂u(m) = 0, for every m > n, u = ϕ or ϕ̄}. Using Eq. (2.7)
we get a linear map

V[0] → Ṽ[α,μ] (2.21)

from the space V[0] to the algebra of polynomials in the variables α and μ with
coefficients in Ṽ .

Lemma 2.8 For every k ∈ N0, the integrals of motion Ek[ϕ] of the GDNLS equation
have the form

Ek[ϕ] =
2k∑

m=0

2k−m∑
p=0

p∑
q=0

βmα pμq∫ h̃2k,m;p,q , (2.22)

where h̃2k,m;p,q ∈ Ṽ are such that deg(̃h2k,m;p,q) = 2(m + p + 1 − q) and
dd(̃h2k,m;p,q) = 2k − m − p.
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Proof By expanding the RHS of Eq. (2.7) we have that (n ∈ N0)

ψ(n) = e−iαI[ψ]
n∑

p=0

p∑
q=0

α pμq Pp,q , (2.23)

where Pp,q ∈ Ṽ are such that deg Pp,q = 2(p − q) + 1 and dd(Pp,q) = n − p. By
Proposition 2.7, and Eqs. (2.16) and (2.19) it follows that Ek[ϕ] = ∫ h̃2k , where h̃2k is
the image of h2k in Ṽ[α,μ]. The result thus follows by substituting (2.23) in (2.18). �

By expanding the RHS of Eq. (2.7), we can write (k � 2)

ψ(k) = e−iαI(ψ)(ϕ(k)−ikα|ϕ|2ϕ(k−1)+ikαμϕ(k−1)−iα(|ϕ|2)(k−1)ϕ+gk), (2.24)

where gk ∈ Ṽk−2.

Lemma 2.9 Under the gauge transformation (2.1) we have (k � 2)

‖ψ‖2
Ḣ k = ‖ϕ‖2

Ḣ k + 2ikαμ

∫
ϕ(k−1)ϕ̄(k)

+i(k + 1)α
∫

|ϕ2|
(
ϕ(k)ϕ̄(k−1) − ϕ(k−1)ϕ̄(k)

)
+
∫

rk,

where rk ∈ Vk−1.

Proof Using Eq. (2.24) and integration by parts we get

‖ψ‖2
Ḣ k = ‖ϕ‖2

Ḣ k + 2ikαμ

∫
ϕ(k−1)ϕ̄(k) + ikα

∫
|ϕ|2
(
ϕ(k)ϕ̄(k−1) − ϕ(k−1)ϕ̄(k)

)

+iα
∫

(|ϕ|2)(k−1)
(
ϕ(k)ϕ̄ − ϕϕ̄(k)

)
+
∫

ϕ(k)ḡk +
∫

gk ϕ̄
(k) +

∫
rk,

(2.25)

where rk ∈ Ṽk−1. Note that, using integration by part we have

∫
ϕ(k)ḡk = −

∫
ϕ(k−1)∂ ḡk =

∫
f , (2.26)

for some f ∈ Ṽk−1, since ∂ ḡk ∈ Ṽk−1. Similarly we have

∫
gk ϕ̄

(k) =
∫

h, (2.27)
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for some h ∈ Ṽk−1. Using again integration by parts we have

∫
(|ϕ|2)(k−1)ϕ(k)ϕ̄ = −

∫
(|ϕ|2)(k)ϕ(k−1)ϕ̄ +

∫
qk

= −
∫

ϕ(k)ϕ(k−1)ϕ̄2 −
∫

|ϕ|2ϕ(k−1)ϕ̄(k) +
∫

q̃k, (2.28)

where qk, q̃k ∈ Ṽk−1. In the second identity we have used

∂k(ab) =
k∑

i=0

(
k

i

)
a(i)b(k−i),

which holds for any a, b ∈ V . Recall from [9, Proof of Corollary 2.9] that

ϕ(k)ϕ(k−1)ϕ̄2 =
∫

l, (2.29)

for some l ∈ Ṽk−1. Using Eq. (2.28) (and its conjugate version) and (2.29) we get

∫
(|ϕ|2)(k−1)

(
ϕ(k)ϕ̄ − ϕϕ̄(k)

)
=
∫

|ϕ|2
(
ϕ(k)ϕ̄(k−1) − ϕ(k−1)ϕ̄(k)

)
+
∫

˜̃qk,
(2.30)

where ˜̃qk ∈ Vk−1. The proof is concluded by combining Eqs. (2.25), (2.26), (2.27)
and (2.30). �

Lemma 2.10 Under the gauge transformation (2.1) we have (k � 2)

∫
|ψ |2ψ(k)ψ̄(k−1) =

∫
|ϕ|2ϕ(k)ϕ̄(k−1) +

∫
r̃k,

where r̃k ∈ Ṽk−1.

Proof It is immediate using Eq. (2.24), integration by parts and the fact that ∂Ṽn ⊂
Ṽn+1, for every n ∈ N0. �

Recall from [9] that, for k � 2, we have

Ek[ψ] = 1

2
‖ψ‖2

Ḣ k + i
2k + 1

4
β

∫
|ψ |2
(
ψ(k)ψ̄(k−1) − ψ(k−1)ψ̄(k)

)
+
∫

Rk,

(2.31)
where Rk ∈ Vk−1. Hence, we get the following result about the structure of the
integrals of motion of the GDNLS equation.
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Corollary 2.11 For every k � 2, the integrals of motion of the GDNLS equation
(2.31) may be written as

Ek[ϕ] = 1

2
‖ϕ‖2

Ḣ k + ikαμ

∫
ϕ(k−1)ϕ̄(k)

+ i

4
((2k + 2)α + (2k + 1)β)

∫
|ϕ|2
(
ϕ(k)ϕ̄(k−1) − ϕ(k−1)ϕ̄(k)

)
+
∫

Rk,

(2.32)

where Rk ∈ Ṽk−1.

Proof It follows by the definition of Ek[ϕ] given in (2.16), Eq. (2.31) and Lemmas 2.9
and 2.10. �

In Sect. 4, for every k � 2, we will make a choice of the parameter α in order to
simplify the expression of the integrals of motion Ek[ϕ] given by (2.32) as stated in
the next result.

Corollary 2.12 Let k � 2 and let us fix α = − 2k+1
2k+2β. Then, the integrals of motion

of the GDNLS equation have the form (� ∈ N0):

E�[ϕ] = 1

2
‖ϕ‖2

Ḣ� + i
2k + 1

2k + 2
�βμ

∫
ϕ(�)ϕ̄(�−1)

+ i

4

� − k

k + 1
β

∫
|ϕ|2(ϕ(�)ϕ̄(�−1) − ϕ(�−1)ϕ̄(�)) +

∫
R� , (2.33)

where R� ∈ Ṽ�−1. For � �= k any monomial h giving contribution to R� satisfies
dd(h) � 2� − 1. For � = k the term Rk can be decomposed as Rk,W + Rk,P ,
where Rk,W is a linear combination of monomials of the following form (and of their
conjugates)

(1) ϕ(k−1)ϕ̄(k−1)ϕ′ϕ̄, (2) ϕ(k−1)ϕ(k−1)ϕ̄′ϕ̄,

(3) ϕ(k−1)ϕ̄(k−1), (4) ϕ(k−1)ϕ(k−1)ϕ̄2 ,

(5) ϕ(k−1)ϕ(k−1)ϕϕ̄3, (6) ϕ(k−1)ϕ̄(k−1)|ϕ|2m, m = 1, 2,
(2.34)

while Rk,P is a linear combination of monomials of the form (m � 2)

u(α1) · · · u(αm ), k − 1 � α1 � · · · � αm � 0, α2 � k − 2 , (2.35)

where u may be either ϕ or ϕ̄.

Proof It follows from Corollary 2.11, letting α = − 2k+1
2k+2β into (2.32), and Lemma

2.8. �
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3 Truncated GDNLS equation

We recall that given a function f : T → C we denote by f (n) its n-th Fourier
coefficient, and that the canonical projections (see (1.3)) PN , for N ∈ N0, are defined
by

PN f :=
∑

|n| � N

einx f (n), P>N := I − PN .

For every N ∈ N0, we define the truncated GDNLS equation as the following equation

i∂tϕN + ϕ′′
N + 2iαμ[ϕN ]ϕ′

N = ic1PN (|ϕN |2ϕ′
N ) + ic2PN (ϕ2

N ϕ̄′
N )

+ c3PN (|ϕN |4ϕN ) + c4μ[ϕN ]PN (|ϕN |2ϕN )

+ �[ϕN ]ϕN , (3.1)

with initial datum
ϕN (x, 0) := PNϕ(x, 0) , (3.2)

where the constants c j and the functional � have been defined in (2.9) and (2.10).
Again, for brevity, we simply denote the solutions of (3.1) by ϕN even if they also
depend on the parameter α. Note that any solution of the truncated GDNLS equation
(3.1)–(3.2) satisfies ϕN = PNϕN . We denote with �N

t,α the flow associated to equa-
tion (3.1). It is immediate to show that the flow map is locally (in time) well defined
looking at the Fourier transform of Eq. (3.1). and solving the associated ordinary dif-
ferential equation. Then, since the local existence time only depends on the L2 norm
of the initial datum which is a conserved quantity, as shown in Proposition 3.2, also
the global well-posedness follows.

When α = 0 the truncated GDNLS equation reduces to the truncated DNLS equa-
tion

i∂tψN + ψ ′′
N = iβPN (|ψN |2ψN )′, (3.3)

with initial datum
ψN (x, 0) := PNψ(x, 0) . (3.4)

Indeed, for α = 0 we have c1 = 2β, c2 = β, c3 = c4 = c5 = � = 0. We shorten
�N

t,α=0 = �N
t for the flow associated to (3.3).

Since ψN = PNψN , passing to the Fourier coefficients, equation (3.3) rewrites as
a system of ordinary differential equations

d

dt
ψN (n) = −in2ψN (n) + iβn

∑
|k|,|�|,|m| � N
k+m=�+n

ψN (k)ψ̄N (�)ψN (m), |n| � N , (3.5)

which can be written in a Hamiltonian form and preserves the Euclidean norm. This
well-known facts are stated without proof in the next proposition.
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Proposition 3.1 Let {·, ·} be the Poisson bracket defined through

{ψN (n), ψN (n)} = {ψ̄N (n), ψ̄N (n)} = 0, {ψN (n), ψ̄N (m)} = −2inδn,m .

and define h = E 1
2
[PNψ] (see (2.15)), namely

h = −1

2

∑
|m| � N

mψN (m)ψ̄N (m) + β

4

∑
|p|,|q|,|k|,|�| � N

p+k=q+�

ψN (p)ψ̄N (q)ψN (k)ψ̄N (�).

Then, the system (3.5) can be written as

d

dt
ψN (n) = {h, ψN (n)}, |n| � N .

Moreover, we have
d

dt

∑
|n| � N

|ψN (n)|2 = 0. (3.6)

Equation (3.6) means that the mass μ is an integral of motion of the truncated
GDNLS equation when α = 0. This actually holds for any value of α ∈ R, as shown
in Proposition 3.2. As we already observed, as consequence we have that the truncated
flow map �N

t,α , t ∈ R, is globally well defined for initial data in L2.

Proposition 3.2 Let ϕN be a solution of the truncated GDNLS Eq. (3.1). Then, we
have

d

dt

∑
|n| � N

|ϕN (n)|2 = 0.

Proof We want to show that d
dt

∫ |ϕN |2 = 2Re
∫

ϕ̄N ∂tϕN = 0. By the truncated
GDNLS Eq. (3.1) we get

∂tϕN = iϕ′′
N −2αμ[ϕN ]ϕ′

N + c1|ϕN |2ϕ′
N + c2ϕ

2
N ϕ̄′

N −ic3|ϕN |4ϕN

−ic4μ[ϕN ]|ϕN |2ϕN −i�[ϕN ]ϕN

− c1P>N (|ϕN |2ϕ′
N ) − c2P>N (ϕ2

N ϕ̄′
N )

+ ic3P>N (|ϕN |4ϕN ) + ic4μ[ϕN ]P>N (|ϕN |2ϕN ).

Using the above formula, Remark 2.2, and the orthogonality relation
∫
P>N ( f )PN (g)

= 0, which holds for any f , g ∈ L2(T), we are left to show that

Re
∫

ϕ̄N ∂ϕN = Re
∫

i ϕ̄Nϕ′′
N + c1|ϕN |2ϕ̄Nϕ′

N + c2|ϕN |2ϕN ϕ̄′
N = 0. (3.7)
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Using integration by parts, it is straightforward to check that
∫

f ′′ f̄ is real, while∫ | f |2 f ′ f̄ is purely imaginary, for every f ∈ L2(T). Hence, Eq. (3.7) follows by the
above considerations and the fact that c1 and c2 are real numbers, see Remark 2.2. �

Another consequence of Proposition 3.1 is that, when α = 0, the truncated flow
relative to (3.1) preserves the Lebesgue measure on MN (C2N+1) (see (1.5)). Again,
this is indeed the case for any α ∈ R (see [20] for α = −1). Recall that MN (A) is the
cylindrical set (1.4) with base A ∈ B(C2N+1) and TN is the σ -algebra generated by
these sets.

Proposition 3.3 The flow�N
t,α preserves the Lebesguemeasure (1.5) on (MN (C2N+1),

TN ).

Proof Passing to the Fourier coefficients, the truncated GDNLS Eq. (3.1) rewrites as

d

dt
ϕN (n) = Fn, |n| � N , (3.8)

where
Fn := F0

n + F1
n + F2

n + F3
n + F4

n , (3.9)

with

F0
n : = iϕ′′

N (n) − 2αμ[ϕN ]ϕ′
N (n) ,

F1
n : = c1(PN (|ϕN |2ϕ′

N ))(n) + c2(PN (ϕ2
N ϕ̄′

N ))(n)

=
∑

|k|,|�|,|m| � N
k+�=m+n

i(c1� − c2m)ϕN (k)ϕN (�)ϕ̄N (m) ,

F2
n : = −ic3(PN (|ϕN |4ϕN ))(n)

= −ic3
∑

|k|,|�|,|m|,|p|,|q| � N
k+�+p=m+n+q

ϕN (k)ϕN (�)ϕ̄N (m)ϕN (p)ϕ̄N (q) ,

F3
n : = −ic4μ[ϕN ](PN (|ϕN |2ϕN ))(n) = −ic4μ[ϕN ]

∑
|k|,|�|,|m| � N
k+�=m+n

ϕN (k)ϕN (�)ϕ̄N (m) ,

F4
n : = −i(�[ϕN ]ϕN )(n)

= −i

(
3αβ

4π
+ α2

π

)
μ[ϕ2

N ]ϕN (n) + iα2μ[ϕN ]2ϕN (n) + iα

π
ϕN (n)

∑
|m| � N

m|ϕN (m)|2.

(3.10)

We will show that
div F = 0 , (3.11)

where the divergence operator is defined as

div F =
∑

|n| � N

(
∂Fn

∂ϕN (n)
+ ∂ F̄n

∂ϕ̄N (n)

)
. (3.12)
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analyzing separately all these contributions. Recalling that the Lebesgue measure
on MN (C2N+1) has density proportional to

∏
|n| � N dϕN (n)dϕ̄N (n), this proves the

statement.
Note that

μ[ϕN ] =
∑

|m| � N

|ϕN (m)|2 = μ[ϕN ], ∂μ[ϕN ]
∂ϕN (n)

= ϕ̄N (n),
∂μ[ϕN ]
∂ϕ̄N (n)

= ϕN (n).

Then, from Eq. (3.10) it is straightforward to get

∂F0
n

∂ϕN (n)
= −in2 − 2iαnμ[ϕN ] − 2iαn|ϕN (n)|2 = − ∂ F̄0

n

∂ϕ̄N (n)
,

∂F1
n

∂ϕN (n)
=
∑

|m| � N

i ((m + n)c1 − 2mc2) |ϕN (m)|2 = − ∂ F̄1
n

∂ϕ̄N (n)
,

∂F2
n

∂ϕN (n)
= −ic3μ[ϕ2

N ] = − ∂ F̄2
n

∂ϕ̄N (n)
,

∂F3
n

∂ϕN (n)
= −ic4ϕ̄N (n)

∑
|k|,|�|,|m| � N
k+�=m+n

ϕN (k)ϕN (�)ϕ̄N (m) − 2ic4μ[ϕN ]2,

∂ F̄3
n

∂ϕ̄N (n)
= ic4ϕN (n)

∑
|k|,|�|,|m| � N
k+�=m+n

ϕ̄N (k)ϕ̄N (�)ϕN (m) + 2ic4μ[ϕN ]2,

∂F4
n

∂ϕN (n)
= −i

(
3αβ

2π
+ 2α2

π

)
ϕN (n)

∑
|k|,|�|,|m| � N
k+�=m+n

ϕ̄N (k)ϕ̄N (�)ϕN (m)

+ iα

π

∑
|m| � N

m|ϕN (m)|2 − i

(
3αβ

4π
+ α2

π

)
μ[ϕ2

N ]

+ iα
(m

π
+ 2αμ[ϕN ]

)
|ϕN (n)|2 + iα2μ[ϕN ]2

∂ F̄4
n

∂ϕ̄N (n)
= i

(
3αβ

2π
+ 2α2

π

)
ϕ̄N (n)

∑
|k|,|�|,|m| � N
k+�=m+n

ϕN (k)ϕN (�)ϕ̄N (m)

− iα

π

∑
|m| � N

m|ϕN (m)|2 + i

(
3αβ

4π
+ α2

π

)
μ[ϕ2

N ]

− iα
(m

π
+ 2αμ[ϕN ]

)
|ϕN (n)|2 − iα2μ[ϕN ]2. (3.13)

Equation (3.11) follows immediately from the decomposition of F given in (3.9) and
taking the sum over all |n| � N of the terms in (3.13). �

Nowwe establish a nearness property of the gauged flow to the truncated one which
will be used in the sequel. Let us recall that Br (R) is the ball in Hr (T) of radius R,
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centered at zero. We write�t,α(A) := {�t,α( f ) : f ∈ A} and�N
t,α(A) := {�N

t,α( f ) :
f ∈ A}. The following proposition is the main achievement of this section.

Proposition 3.4 Let 0 � s < r with r > 5/4 and R > 1. For every ε > 0, there
exists N∗ = N∗(ε) ∈ N, depending also on s, r , |α|, R, |β|, such that

�N
t,α(A) ⊆ �t,α(A) + Bs(ε), |t | � tR, N > N∗ , A ⊂ Br (R) , (3.14)

where 0 < tR < 1 is a sufficiently small threshold which depends on R, r , |α|, |β|.
We need two accessory lemmas. The first one is a (local in time) integral estimate

for solutions of the truncated GDNLS. Similar estimates have been proved for the
Benjamin–Ono equation in [32] and the argument easily adapts to GDNLS.

Lemma 3.5 Let N ∈ N ∪ {∞}. For all r > 5/4 and for any T ∈ [0, 1] we have
∫ T

0
‖ϕ′

N (x, s)‖L∞(T)ds � CT 3/4

(
sup

s∈[0,T ]
‖ϕN (x, s)‖Hr (T)

+|β|T (1 + sup
s∈[0,T ]

‖ϕN (x, s)‖5Hr (T)

))
, (3.15)

where ϕ∞ := ϕ is a solution to the GDNLS Eq. (2.8), ϕN is a solution to the truncated
GDNLS Eq. (3.1), and C is a constant depending on r , |α|, |β| but uniform over N.

Proof Let N ∈ N ∪ {∞} and denote

�0 := P1, � j := P2 j − P2 j−1 , j � 1 ,

Since ϕN is a solution of the truncated GDNLS Eq. (3.1) or of the non truncated
Eq. (2.8), when we pass to the integral formulation and we apply the operator � j∂x ,
since [PN , ∂x ] = 0, we arrive to

∂t� jϕ
′
N = eit∂

2
x � jϕ

′
N + β

∫ t

0
ei(t−s)∂2x � j PN Z(ϕN )′, (3.16)

where we have denoted

Z(ϕN ) := c1|ϕN |2ϕ′
N + c2ϕ

2
N ϕ̄′

N + 2αμ[ϕN ]ϕ′
N − ic3PN (|ϕN |4ϕN )

− ic4μ[ϕN ]PN (|ϕN |2ϕN ) − i�[ϕN ]ϕN .

Using the algebra property of Hs , we easily get

‖Z(ϕN )‖Hs � C(1 + ‖ϕN‖5Hs+1) , (3.17)
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for some C that only depends on s, |α|, |β|. Now, let {t�}�=0,...,2 j ⊂ [0, T ] be such
that

t0 = 0, t2 j = T and t� − t�−1 = T

2 j
.

Looking at the integral Eq. (3.16), using the Strichartz-type estimates (see [2])

(∫ T 2− j

0
‖eit∂2x � j f ‖4L∞(T)dt

) 1
4

� C‖� j f ‖L2(T) , (3.18)

(∫ T 2− j

0

∥∥∥∥
∫ t

0
ei(t−s)∂2x � j F(x, s)

∥∥∥∥
4

L∞(T)

dt

) 1
4

� C
∫ T 2− j

0
‖� j F(x, s)‖L2(T)ds,

(3.19)

valid for all T ∈ [0, 1] and j � 1, for some absolute constant C , we can bound

∫ t�+1

t�
‖� jϕ

′
N (x, t)‖L∞(T)dt � T

3
4 2− 3

4 j
(∫ t�+1

t�
‖� jϕ

′
N (x, t)‖4L∞(T)dt

) 1
4

� T
3
4 2− 3

4 j
(

‖� jϕ
′
N (x, t�)‖L2(T) + |β|

∫ t�+1

t�
‖� j Z(ϕN )′(x, s)‖L2(T)ds

)

� T
3
4 2− j(1+ε)‖� jϕ

′
N (x, t�)‖

H
1
4+ε

(T)

+ |β|T 3
4 2− jε

∫ t�+1

t�
‖� j Z(ϕN )(x, s)‖

H
1
4+ε

(T)
ds , (3.20)

for all ε > 0. More precisely, in the first bound we used Hölder inequality to dominate
the L1([t�, t�+1]) normwith the L4([t�, t�+1]) norm, the second bound is an immediate
consequence of (3.16)–(3.19) and the last one is the Bernstein inequality, since we are
localising the frequencies over the annulus 2� < |n| � 2�+1. Thus, summing over
� = 0, . . . , 2 j − 1, we obtain

∫ T

0
‖� jϕ

′
N (x, t)‖L∞(T)dt � T

3
4 sup
t∈[0,T ]

‖� jϕ
′
N (x, t)‖

H
1
4 +ε

(T)

2 j−1∑
�=0

2− j(1+ε)

+ |β|T 3
4 2− jε

2 j−1∑
�=0

∫ t�+1

t�
‖� j Z(ϕN )(x, s)‖

H
1
4 +ε

(T)
ds

� |β|T 3
4 2− jε

(
sup

t∈[0,T ]
‖� jϕ

′
N (x, t)‖

H
1
4 +ε

(T)
+ |β|

∫ T

0
‖� j Z(ϕN )(x, s)‖

H
1
4 +ε

(T)
ds

)
.

(3.21)

Since ϕ′
N =∑ j∈Z+ � jϕ

′
N , the (3.15) follows, for any r = 5

4 +ε, by (3.21) and (3.17),
via triangle inequality. �
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Next we show that the Sobolev norms stay bounded for short time under the evolu-
tion of theGDNLSflow.We remark that this is interesting for solutions of the truncated
GDNLS Eq. (3.1), for which no further integrals of motion are available.

Lemma 3.6 Let N ∈ N ∪ {∞}, r > 5/4, R > 1 and ϕ(x, 0) ∈ Br (R). There exists
tR > 0 such that

sup
|t | � tR

‖�N
t,α(ϕ(x, 0))‖Hr � 5R , (3.22)

where �∞
t,α := �t,α is the flow associated to (2.8) and �N

t,α is the flow associated
to (3.1). The threshold tR depends on R and on |α|, |β| and r but is independent on
N.

Proof Let N ∈ N ∪ {∞}. Recall that, when α = 0, we have denoted by ϕN =
�N

t (ϕ(x, 0)) a solution to the truncated DNLS Eq. (3.3) with initial datum PNϕ(x, 0),
while ϕ∞ is a solution to the DNLS Eq. (1.1) with initial datum P∞ϕ(x, 0) = ϕ(x, 0).
We will show that

sup

|t | � cR− 32
3

sup
ϕ(x,0)∈Br (R)

‖ϕN‖Hr � 5R, (3.23)

for a sufficiently small constant c > 0 which depends on |α|, |β| and r . First we prove
this for t ∈ [0, cR− 32

3 ]. We apply the Bessel kernel Jr , namely the operator with
symbol (1 + n2)r/2, to the truncated or non truncated GDNLS equation. Since Jr

commutes with ∂x and PN and since ∂x J r = Jr+1, we get

∂t J
rϕN − i J r+2ϕN = c1PN Jr (|ϕN |2ϕ′

N ) + c2PN Jr (ϕ2
N ϕ̄′

N ) + 2αμ[ϕN ]Jr+1ϕN

− ic3PN Jr (|ϕN |4ϕN ) − ic4μ[ϕN ]PN Jr (|ϕN |2ϕN )

− i�[ϕN ]PN JrϕN .

We take the L2 inner product of this equation against JrϕN = PN JrϕN , and then the
real part, so that, using integration by parts and recalling that ‖ f ‖Hr � ‖Jr f ‖L2 , we
obtain

∂t‖ϕN‖2Hr � Re (Z1(ϕN ) + Z2(ϕN ) + Z3(ϕN )) , (3.24)

where

Z1(ϕN ) := c1

∫
(Jr (|ϕN |2ϕ′

N ))Jr ϕ̄N , Z2(ϕN ) := c2

∫
(Jr (ϕ2

N ϕ̄′
N ))Jr ϕ̄N .

Z3(ϕN ) := −ic3PN Jr (|ϕN |4ϕN ) − ic4μ[ϕN ]PN Jr (|ϕN |2ϕN ) − i�[ϕN ]PN JrϕN ,

and we have used that Re
∫
(Jr+1ϕN )Jr ϕ̄N = 0. Integrating by parts we get

Z1(ϕN ) = c1 Z̃1(ϕN ) + c1

∫
([Jr , |ϕN |2]ϕ′

N )Jr ϕ̄N ,

where

Z̃1(ϕN ) :=
∫

|ϕN |2(Jrϕ′
N )Jr ϕ̄N .
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But, integrating by parts, we notice

Z̃1(ϕN ) = −Z̃1(ϕN ) −
∫

(|ϕN |2)′|JrϕN |2 , (3.25)

so that,

Re Z̃1(ϕN ) = −1

2

∫
(|ϕN |2)′|JrϕN |2 .

Thus

Re Z1(ϕN ) = −c1
2

∫
(|ϕN |2)′|JrϕN |2 + c1

∫
([Jr , |ϕN |2]ϕ′

N )Jr ϕ̄N

Using the Kato–Ponce commutator estimate [12]:

‖[Jr , f ]g‖L2 � ‖ f ′‖L∞‖g‖Hr−1 + ‖ f ‖Hr ‖g‖L∞ ,

with f = |ϕN |2 and g = ϕ′
N , the Sobolev embedding Hr ↪→ L∞, and the algebra

property of Hr , we can bound

|Re Z1(ϕN )| � C
(
‖(|ϕN |2)′‖L∞‖JrϕN‖L2 + ‖(|ϕN |2)′‖L∞‖ϕ′

N‖Hr−1

+‖|ϕN |2‖Hr ‖ϕ′
N‖L∞

)
‖Jr ϕ̄N‖L2

� C‖ϕ′
N‖L∞‖ϕN‖L∞‖ϕN‖2Hr + ‖ϕ′

N‖L∞‖ϕN‖3Hr

� ‖ϕ′
N‖L∞‖ϕN‖3Hr , (3.26)

were C are possibly increasing constants which only depend on r , |α|, |β|. Similarly

Z2(ϕN ) = c2 Z̃2(ϕN ) + c2

∫
([Jr , ϕ2

N ]ϕ̄′
N )Jr ϕ̄N

where

Z̃2(ϕN ) :=
∫

ϕ2
N (Jr ϕ̄′

N )Jr ϕ̄N

and, integrating by parts, we notice

Z̃2(ϕN ) = −Z̃2(ϕN ) −
∫

(ϕ2
N )′|JrϕN |2 , (3.27)

namely

Z̃2(ϕN ) = −1

2

∫
(ϕ2

N )′|JrϕN |2
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so that

Z2(ϕN ) = −c2
2

∫
(ϕ2

N )′|JrϕN |2 + c2

∫
([Jr , ϕ2

N ]ϕ̄′
N )Jr ϕ̄N ,

and (here we let f = ϕ2
N and g = ϕ̄′

N )

|Z2(ϕN )| �
(
‖(ϕ2

N )′‖L∞‖JrϕN‖L2 + ‖(ϕ2
N )′‖L∞‖ϕ̄′

N‖Hr−1 + ‖ϕ2
N‖Hr ‖ϕ̄′

N‖L∞
)
‖Jr ϕ̄N‖L2

� ‖ϕ′
N‖L∞‖ϕN‖L∞‖ϕN‖2Hr + ‖ϕ′

N‖L∞‖ϕN‖3Hr � ‖ϕ′
N‖L∞‖ϕN‖3Hr . (3.28)

On the other hand, using the algebra property of Hr , we easily get

‖Z3(ϕN )‖Hr � C(1 + ‖ϕN‖5Hr ) , (3.29)

for some C that only depends on s, |α|, |β|. Plugging (3.26), (3.28) and (3.29) into
(3.24), we arrive to

∂t‖ϕN‖2Hr � C∗(1 + ‖ϕ′
N‖L∞)

(
1 + ‖ϕN‖5Hr

)
, (3.30)

for some larger C∗ that only depends on s, |α|, |β|. We take C∗ > 2. Now we use
that ∂tη = 2

3aη5/2 for η = (1 − a)−2/3 with the choice η(t) = ‖ϕN (x, t)‖2Hr .
Distinguishing the time regimes where 0 � η(t) � 1 and where η(t) > 1, the
estimate (3.30) implies, via comparison principle, the following a priori bound

‖ϕN (x, t)‖2Hr � ‖ϕN (x, 0)‖2Hr

(
2C∗
∫ t

0
(1 + ‖ϕ′

N (x, s)‖L∞)ds

+
(
1 − 3C∗‖ϕN (x, 0)‖3Hr

∫ t

0

(
1 + ‖ϕ′

N (x, s)‖L∞
)
ds

)− 2
3
)

< 1 + 4‖ϕN (x, 0)‖Hr � 5R , (3.31)

as long as

3C∗ (‖ϕN (x, 0)‖2Hr + ‖ϕN (x, 0)‖3Hr

) ∫ t

0
(1 + ‖ϕ′

N (x, s)‖L∞ds) <
1

2
. (3.32)

Now we set

X(t, ϕN (x, 0)) := sup
s∈[0,t]

‖ϕN (x, t)‖Hr

and we assume that {t > 0 : X(t) > 5R} is not empty, otherwise the statement follows
in the larger time regime t ∈ [0,∞]. Then we set

T (ϕN (x, 0)) = inf {t > 0 : X(t) > 5R} .
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Ourgoal is to show thatT (ϕN (x, 0)) > cR− 32
3 for any PNϕ(x, 0) ∈ Br (R), thatwould

imply the statement in the case t ∈ [0, cR− 32
3 ]. By the continuity of t → ‖ϕN (x, t)‖Hr

it is clear that
X(T (ϕN (x, 0)), ϕN (x, 0)) = 5R . (3.33)

With a little abuse of notation we will simply denote these quantities by T and X(T ),

namely we will omit the dependence on ϕN (x, 0). Let now assume that T � cR− 32
3 .

We deduce a contradiction by (3.31), using the dispersive estimate (3.15), proven in
Lemma 3.5. Since ϕN (x, 0) ∈ Br (R) and R > 1, the (3.32) would be true once

6C∗R3
∫ t

0
(1 + ‖ϕ′

N (x, s)‖L∞ds) <
1

2
(3.34)

Since T ∈ [0, cR− 32
3 ], X(T ) = 5R, the (3.15) gives (assume c < 1 so that T < 1)

6C∗R3
∫ T

0
(1 + ‖ϕ′

N (x, s)‖L∞)ds � 6C∗R3(T + CT
3
4 (X(T ) + |β|T X5))

� 6C∗25R8T
3
4 (1 + C(1 + |β|)) = 6C∗25c

3
4 (1 + C(1 + |β|)) <

1

2
,

where in the last inequality we have chosen c sufficiently small. Thus (3.34) and
so (3.32) are satisfied, so that we can apply the (3.31) with t ∈ [0, T ] and we get
X(T ) < 5R in contradiction with (3.33).

This completes the proof of (3.23) in the case t ∈ [0, cR− 32
3 ]. As for t ∈

[−cR− 32
3 , 0], one can consider the equations (3.1), (2.8) with ϕN replaced by ϕ̄N ,

that is satisfied by ϕN (−x,−t), for which the argument above applies with obvious
modifications, to show that (3.23) holds also when we restrict to negative times thus
concluding the proof. �

Now we can prove Proposition 3.4.

Proof of Proposition 3.4 Let N ∈ N ∪ {∞}. Assume that we have shown

sup
|t | � tR

sup
ϕ(x,0)∈Br (R)

‖�t,α(ϕ(x, 0)) − �N
t,α(ϕ(x, 0))‖L2 → 0 as N → ∞ , (3.35)

for some tR ∈ (0, 1) that we conveniently choose to be the threshold quantity in
Lemma (3.6). This allows us to use the (N -uniform) bound (3.22) to get, for 0 �
s < r , the following

‖�t,α(ϕ(x, 0)) − �N
t,α(ϕ(x, 0))‖Hs

� ‖�t,α(ϕ(x, 0)) − �N
t,α(ϕ(x, 0))‖(r−s)/r

L2 ‖�t,α(ϕ(x, 0)) − �N
t,α(ϕ(x, 0))‖s/rHr

� (10R)s/r‖�t,α(ϕ(x, 0)) − �N
t,α(ϕ(x, 0))‖(r−s)/r

L2 ,
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for all ϕ(x, 0) ∈ Br (R). Thus, using (3.35), we would get

sup
|t | � tR

sup
ϕ(x,0)∈Br (R)

‖�t,α(ϕ(x, 0))−�N
t,α(ϕ(x, 0))‖Hs → 0 as N → ∞ , (3.36)

which implies (3.14). It remains to prove the (3.35). We consider the difference

δN (x, t) := ϕ(x, t) − ϕN (x, t) := �t (ϕ(x, 0)) − �N
t (ϕ(x, 0)) (3.37)

that, recalling (2.8) and (3.1), solves the equation

⎧⎨
⎩

∂tδN − iδ′′
N + 2αμδ′

N = −2α(μ[ϕ] − μ[ϕN ])ϕ′
N +∑7

�=1 Z�[ϕ, ϕN ]
+P>N

∑4
�=1 R�[ϕN ] ,

δN (x, 0) = P>Nϕ(x, 0) ,

(3.38)

where, with c5 := 3αβ
4π + α2

π
, c6 := −α2 and c7 := iα

π
, we have denoted

Z1[ϕ, ϕN ] := c1(|ϕ|2ϕ′ − |ϕN |2ϕ′
N ), Z2[ϕ, ϕN ] := c2(ϕ

2ϕ̄′ − ϕ2
N ϕ̄′

N ) ,

Z3[ϕ, ϕN ] := −ic3(|ϕ|4ϕ − |ϕN |4ϕN ), Z4[ϕ, ϕN ] := −ic4(μ[ϕ]|ϕ|2ϕ − μ[ϕN ]|ϕN |2ϕN ) ,

Z5[ϕ, ϕN ] := −ic5(‖ϕ‖4L4 − ‖ϕN‖4L4 ), Z6[ϕ, ϕN ] := −ic6(μ[ϕ]2 − μ[ϕN ]2),
Z7[ϕ, ϕN ] := −ic7

(∫
T

ϕ′ϕ̄ −
∫
T

ϕ′
N ϕ̄N

)
,

and

R1[ϕN ] := (|ϕN |2ϕN )′, R2[ϕN ] := c2ϕ
2
N ϕ̄′

N ,

R3[ϕN ] := −ic3|ϕN |4ϕN , R4[ϕN ] := −ic4μ[ϕN ]|ϕN |2ϕN ,

Now we take the L2 inner product of equation (3.38) with δN , and then the real part,
so that, after integration by parts, we arrive to

∂t

∫
|δN |2 = −2αRe

∫
(μ[ϕ] − μ[ϕN ])ϕ′

N δ̄N

+
7∑

�=1

Re
∫

Z�[ϕ, ϕN ]δ̄N + P>NRe
∫ 4∑

�=1

R�[ϕN ]δ̄N .

(3.39)

Now we need to bound the terms on the right hand side of (3.39). Notice that, since
A ⊂ Br (R), by Lemma 3.6 we have that ϕ(x, t), ϕN (x, t) ⊂ Br (5R) for |t | � tR .
Thus
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∣∣∣∣Re
∫

(μ[ϕ] − μ[ϕN ])ϕ′
N δ̄N

∣∣∣∣ =
∣∣∣∣Re
(∫

(|ϕ| − |ϕN |)(|ϕ| + |ϕN |))
)(∫

ϕ′
N δ̄N

)∣∣∣∣
� ‖δN‖2L2(‖ϕ‖L2 + ‖ϕN‖L2)‖ϕ′

N‖L2 � R2‖δN‖2L2 .

(3.40)

Then

∣∣∣∣Re
∫

Z1[ϕ, ϕN ]δ̄N
∣∣∣∣ = |c1|

∣∣∣∣Re
∫

(|ϕ|2ϕ′ − |ϕN |2ϕ′
N )δ̄N

∣∣∣∣
= |c1|

∣∣∣∣Re
∫

|ϕ|2δ′
N δ̄N + (|ϕ| + |ϕN |)(|ϕ| − |ϕN |)ϕ′

N δ̄N

∣∣∣∣
and since

Re
∫

|ϕ|2δ′
N δ̄N = 1

2

∫
(|δN |2)′|ϕ|2 = −1

2

∫
|δN |2(|ϕ|2)′,

we arrive to

∣∣∣∣Re
∫

Z1[ϕ, ϕN ]δ̄N
∣∣∣∣ � |c1|‖δN‖2L2‖ϕ‖L∞‖ϕ′‖L∞

+ |c1|‖δN‖2L2(‖ϕ‖L∞ + ‖ϕN‖L∞)‖ϕ′
N‖L∞

� CR(‖ϕ′‖L∞ + ‖ϕ′
N‖L∞)‖δN‖2L2 , (3.41)

where hereafterC denotes several constants, possibly increasing from line to line, that
only depend on |α|, |β|, r . Similarly

∣∣∣∣Re
∫

Z2[ϕ, ϕN ]δ̄N
∣∣∣∣ = |c2|

∣∣∣∣Re
∫

(ϕ2ϕ̄′ − ϕ2
N ϕ̄′

N )δ̄N

∣∣∣∣
= |c2|

∣∣∣∣Re
∫

ϕ2δ̄′
N δ̄N + (ϕ + ϕN )ϕ̄′

N |δN |2
∣∣∣∣

and since

∫
ϕ2δ̄′

N δ̄N = 1

2

∫
ϕ2(δ̄2N )′ = −1

2

∫
(ϕ2)′δ̄2N ,

we arrive to

∣∣∣∣Re
∫

Z2[ϕ, ϕN ]δ̄N
∣∣∣∣ � |c2|‖δN‖2L2‖ϕ‖L∞‖ϕ′‖L∞

+ |c2|‖δN‖2L2(‖ϕ‖L∞ + ‖ϕN‖L∞)‖ϕ′
N‖L∞

� CR(‖ϕ′‖L∞ + ‖ϕ′
N‖L∞)‖δN‖2L2 . (3.42)
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Moreover

∣∣∣∣Re
∫

Z3[ϕ, ϕN ]δ̄N
∣∣∣∣ = |c3|

∣∣∣∣Re
∫

|ϕ|4|δN |2 + |ϕN |(|ϕ|4 − |ϕN |4)δ̄N
∣∣∣∣

= |c3|
∣∣∣∣Re
∫

|ϕ|4|δN |2 + |ϕN |(|ϕ| − |ϕN |)(|ϕ| + |ϕN |)(|ϕ|2 + |ϕN |2)δ̄N
∣∣∣∣

� |c3|‖δN‖2L2 (‖ϕ‖4L∞ + ‖ϕN‖4L∞ ) � R4‖δN‖2L2 , (3.43)

and similarly

∣∣∣∣Re
∫

Z4[ϕ, ϕN ]δ̄N
∣∣∣∣ = |c4|

∣∣∣∣Re
∫

(μ[ϕ]|ϕ|2ϕ − μ[ϕN ]|ϕN |2ϕN )δ̄N

∣∣∣∣
= |c4|

∣∣∣∣Re
∫

μ[ϕ]|ϕ|2|δN |2 + μ[ϕ](|ϕ| − |ϕN |)(|ϕ| + |ϕN |)ϕN δ̄N

+
(∫

(|ϕ| − |ϕN |)(|ϕ| + |ϕN |)
)(

Re
∫

|ϕN |2ϕN δ̄N

)∣∣∣∣
� |c4|‖δN‖2L2

(
‖ϕN‖2L2‖ϕN‖2L∞ + ‖ϕN‖2L2 (‖ϕ‖2L∞ + ‖ϕN‖2L∞ ) + ‖ϕ‖4L∞ + ‖ϕN‖4L∞

)

� R4‖δN‖2L2 . (3.44)

We finally estimate

∣∣∣∣Re
∫

Z5[ϕ, ϕN ]δ̄N
∣∣∣∣

= |c5|
∣∣∣∣
(∫

|ϕ|4
)(∫

|δN |2
)

+
(∫

|ϕ|4 − |ϕN |4
)(∫

ϕ̄N δ̄N

)∣∣∣∣
� |c5|‖ϕ‖4L4‖δ‖2L2 + |c5|‖ϕN‖L2‖δN‖L2

∫
(|ϕ| − |ϕN |)(|ϕ| + |ϕN |)(|ϕ|2 + |ϕN |2)

� CR4‖δN‖2L2 + (‖ϕ‖4L2 + ‖ϕN‖4L2 )‖δN‖2L2 � CR4‖δN‖2L2 , (3.45)

and

∣∣∣∣Re
∫

Z6[ϕ, ϕN ]δ̄N
∣∣∣∣ = |c6|

∣∣∣∣∣
(∫

|ϕ|2
)2 (∫

|δN |2
)

+
(∫

|ϕ|2 − |ϕN |2
)2 (∫

ϕ̄N δ̄N

)∣∣∣∣∣
� |c6|R4‖δN‖2L2 + R

(∫
(|ϕ| − |ϕN |)(|ϕ| + |ϕN |)

)(∫
ϕ̄N δ̄N

)

� |c6|R4‖δN‖2L2 + R2(‖ϕ‖L2 + ‖ϕN‖L2 )‖ϕN‖L2‖δN‖2L2 � CR4‖δN‖2L2 , (3.46)
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and

∣∣∣∣Re
∫

Z7[ϕ, ϕN ]δ̄N
∣∣∣∣ = |c7|

∣∣∣∣
(∫

ϕ′ϕ̄
)(∫

|δN |2
)

+
(∫

ϕ′ϕ̄ − ϕ′
N ϕ̄N

)(∫
ϕ̄N δ̄N

)∣∣∣∣
� |c7|‖ϕ′‖L2‖ϕ‖L2‖δN‖2L2 +

(∫
ϕ′δ̄N − δ′

N ϕ̄N

)(∫
ϕ̄N δ̄N

)

= |c7|‖ϕ′‖L2‖ϕ‖L2‖δN‖2L2 +
(∫

ϕ′δ̄N + δN ϕ̄′
N

)(∫
ϕ̄N δ̄N

)

� CR2‖δN‖2L2 + (‖ϕ′‖L2 + ‖ϕ′
N‖L2 )‖ϕN‖L2‖δN‖2L2 � CR2‖δN‖2L2 . (3.47)

Letting

η(t) = sup
x∈T

(|ϕ′(x, t)|2 + |ϕ′
N (x, t)|2),

and plugging (3.40), (3.41), (3.42). (3.43), (3.44), (3.45), (3.46), (3.47) into (3.39) we
arrive to

∂t

∫
|δ(x, t)|2 � C(R4 + Rη(t))

∫
|δ(x, t)|2

+P>NRe
∫ 4∑

�=1

R�[ϕN ]δ̄N |t | � tR . (3.48)

Using the algebra property of Hr−1 and Lemma 3.6 it is immediate to show that
R�[ϕN (x, t)]δ̄N (x, t) belong to Br−1(CR5) for all � = 1, . . . , 4 and for |t | � tR , so
that

∣∣∣∣∣P>NRe
∫ 4∑

�=1

R�[ϕN ]δ̄N
∣∣∣∣∣ � CR6N−2(r−1) |t | � tR .

so that, using the Grönwall inequality, the estimate (3.48) gives

∫
|δ(x, t)|2 � eCR5t+CR

∫ t
0 η(τ)dτ

∫
|δ(x, 0)|2

+ CR6N−2(r−1)
∫ t

0
eCR5(t−s)+CR

∫ t
s η(τ)dτds

� CeCR6t R2N−2r + CR6N−2(r−1)teCR6
, |t | � tR ,

that implies the (3.35), so that the proof is concluded. �
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4 Asymptotic stationarity of the integrals of motion

Let k � 2. In this section we only work with the truncated GDNLS under the choice

α = αk := −2k + 1

2k + 2
β , (4.1)

namely

i∂tϕN +ϕ′′
N −iβμ

2k + 1

k + 1
ϕ′
N = ic1PN (|ϕN |2ϕ′

N ) + ic2PN ((ϕN )2ϕ̄′
N )

+ c3PN (|ϕN |4ϕN ) + c4μPN (|ϕN |2ϕN ) + �[ϕN ]ϕN ,

(4.2)

with initial datum
ϕN (x, 0) := PNϕ(x, 0) , (4.3)

where

c1 = β

k + 1
, c2 = − k

k + 1
β, c3 = −k(2k + 1)

4(k + 1)2
β2, c4 = β

2

2k + 1

k + 1
, (4.4)

and

�[ϕN ] = (2k + 1)(k − 1)

8π(k + 1)2
β2‖ϕN‖4L4 − (2k + 1)2

4(k + 1)2
μ2 − i(2k + 1)

2(k + 1)

∫
T

ϕ′
N ϕ̄N . (4.5)

We have denoted the associated flow by �N
t,αk . We write �t,αk = �∞

t,αk for the flow
associated to the non truncated equation.

This choice of α simplifies the (higher order) integrals of motion E�[ϕN ], � ∈ N0,
which take the following form for � = k (see (2.33)):

Ek[ϕN ] = 1

2
‖ϕN‖2

Ḣ k + i
2k + 1

2k + 2
kβμ

∫
ϕ

(k)
N ϕ̄

(k−1)
N +

∫
Rk .

The main goal of this section is to prove the following estimate.

Proposition 4.1 Let k � 2, 0 � � � k and (4.1). We have

lim
N→∞

∥∥∥∥ ddt E�[�N
t,αk (ϕ(x, 0))]

∣∣∣
t=0

∥∥∥∥
L2(γk )

= 0 . (4.6)

For � = 0, equation (4.6) is a consequence of the (stronger) result provided by
Proposition 3.2.
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Proof Following [35] we define the linear operator DN which acts on the multilinear
form

∫
u(α1) · · · u(αm ) according to the Leibniz rule

DN

∫
u(α1) · · · u(αm )

:= i
m∑
j=1

∫
u(α1)· · · P>N

(
ic1|u|2u′ + ic2u

2ū′ + c3|u|4u + c4|u|2u
)(α j )· · · u(αm ) .

(4.7)

Notice that equation (4.2) can be rewritten as

∂tϕN = iϕ′′
N + βμ

2k + 1

k + 1
ϕ′
N + c1|ϕN |2ϕ′

N + c2(ϕN )2ϕ̄′
N − ic3|ϕN |4ϕN

− ic4μ|ϕN |2ϕN − i�[ϕN ]ϕN − c1P>N (|ϕN |2ϕ′
N )− c2P>N ((ϕN )2ϕ̄′

N )

+ ic3P>N (|ϕN |4ϕN ) + ic4μP>N (|ϕN |2ϕN ) ,

where the first line is the GDNLS equation (2.8) for α = − 2k+1
2k+2β, whose flow

preserves the integrals of motion E�. More precisely

d

dt
E�[�t,αk (PNϕ(x, 0))] = 0 .

Using this, the fact that E� are linear combinations of multilinear forms, and the fact
that �N

0,αk
= PN = �0,αk PN , one can easily check that

d

dt
E�[�N

t,αk (ϕ(x, 0))]
∣∣∣
t=0

= DNE�[PNϕ(x, 0)] , (4.8)

Actually, the (4.8) holds at any time t ∈ R. However, we will only use this identity in
the case t = 0. �

In order to simplify the notation, until the end of the section we will write ϕ in place
of ϕ(x, 0). Nevertheless, all the functions we will consider are always calculated at
time t = 0. Notice that, by orthogonality

DN‖PNϕ‖2
Ḣ� = 0, for all � ∈ N0, DN

∫
(PNϕ)(�)(PN ϕ̄)(�−1) = 0, for all � ∈ N .

(4.9)
We will show that

lim
N→∞ ‖DNE�[PNϕ]‖L2(γk )

= 0 , (4.10)

for all 0 � � � k, that imples (4.6) by (4.8).

123



1108 G. Genovese et al.

Case 0 � � � k − 1

In this case the gauged integrals of motion have the form (see (2.33)):

E�[PNϕ] = 1

2
‖PNϕ‖2

Ḣ� + i
2k + 1

2k + 2
�βμ

∫
(PNϕ)(�)(PN ϕ̄)(�−1)

+ i

4

� − k

k + 1
β

∫
|PNϕ|2

(
(PNϕ)(�)(PN ϕ̄)(�−1) − (PNϕ)(�−1)(PN ϕ̄N )(�)

)
+
∫

R�.

When we apply the operator DN , we are left to consider only its action on the last two
terms in the RHS, since the first two terms give no contribution by (4.9). Recalling
that R� ∈ V�−1 and using the fact that � − 1 � k − 2, we have that R� is a a linear
combination of monomials of the form

DN

∫
u(α1)
N · · · u(α j )

N · · · u(αm )
N , α j � k − 2, j = 1, . . . ,m , (4.11)

where uN is either PNϕ or PN ϕ̄. Thus, using (4.7) and reordering the indexes, we
have that (4.11) is a linear combination of terms of the form

∫
u(β1)
N · · · u(βm−1)

N P>N (u(βm )
N . . . u(βm+r )

N ), r = 2 or 4 , (4.12)

with β j � k − 2, j = 1, . . . ,m + r − 1 and βm+r � k − 1. Hence the contribution
of these terms to (4.10) is

∫
u(β1)
N · · · u(βm−1)

N P>N

(
u(βm )
N . . . u(βm+r )

N

)
,

which goes to zero, as N → ∞, due to the forthcoming Lemma 4.3.
Finally, we apply DN to the term

∫ |(PNϕ)|2((PNϕ)(�)(PN ϕ̄)(�−1) − (PNϕ)(�−1)

(PN ϕ̄)(�)). By a simple integration by parts argument, we obtain a linear combination
of terms like (4.12) (for m = 3), whose contribution to (4.10) vanishes as N → ∞,
and of terms of the form

∫
u(β1)
N u(β2)

N P>N (u(β3)
N . . . u(β3+r )

N ), r = 2 or 4 , (4.13)

with β j � k−2 for all j = 2, . . . , r +2 and β1, β3+r � k−1, whose contribution
to (4.10) again vanishes by Lemma 4.3.

Case � = k

The gauged integral of motion has the form (see (2.33)):

Ek[PNϕ] = 1

2
‖PNϕ‖2

Ḣ k + i
2k + 1

2k + 2
kβμ

∫
(PNϕ)(k)(PN ϕ̄)(k−1) +

∫
Rk , (4.14)

123



Invariant measures for the periodic derivative nonlinear Schrödinger equation 1109

and again, because of (4.8) and (4.9), we only need to evaluate DN
∫
Rk . Let us split

the terms appearing in Rk into two classes according to Corollary 2.12 . The first class
Rk,P contains terms of the form

u(α1)
N · · · u(αm )

N , α j � k − 2, for j = 1, . . . ,m − 1, αm � k − 1 , (4.15)

where again uN is either PNϕN or PN ϕ̄. The second class Rk,W contains the terms
of the form (2.34). The contribution of the terms of Rk,P to (4.10) is zero in the limit
N → ∞, as shown in the forthcoming Lemma 4.4. The harder terms of class Rk,W

are treated in the following way. First of all, recalling (4.9), we do not need to consider
the terms of the kind (3) in (2.34). Then we notice that DN maps a generic element of
Rk,W into a linear combination of monomials that, after integation overT, are, modulo
conjugation, of the following two types:

∫
P>N

(
(PNϕ)(β1)(PN ϕ̄)(β5)(PNϕ)(β2)

)

P>N

(
(PN ϕ̄)(β6)(PNϕ)(β3)(PN ϕ̄)(β7)(PNϕ)(β4)(PN ϕ̄)(β8)

)
, (4.16)

with β1 + · · · + β8 = 2k − 1, β1 � k and β j � k − 1, j = 1, . . . , 8, or

∫
P>N

(
(PNϕ)(β1)(PN ϕ̄)(β4)(PNϕ)(β2)

)
P>N

(
(PN ϕ̄)(β5)(PNϕ)(β3)(PN ϕ̄)(β6)

)
,

(4.17)
with β1 + . . . + β6 ∈ {2k, 2k − 1}, β1 � k and β j � k − 1, j = 1, . . . , 6.
These terms give a null contribution to (4.10), in the limit N → ∞, as consequence
of Lemmas 4.5 and 4.6. Thus the proof is concluded. �

Remark 4.2 Since each integral of motion E�[ϕ] is a linear combination of multilin-
ear forms, using the hypercontractivity of the measure γk , the estimate (4.6) can be
promoted to any L p(γk) norm, for p < ∞.

We again recall that in the rest of the section all functions will be evaluated at time
t = 0, even though not explicitly indicated.

Lemma 4.3 Let k � 2, m, r ∈ N0 with m � 2 and β j � k − 2 for all
j = 1, . . .m − 2, j = m, . . . ,m + r − 1 and βm−1, βm+r � k − 1. Then, letting uN

denote either PNϕ or PN ϕ̄, we have

∫
u(β1)
N · · · u(βm−1)

N P>N

(
u(βm )
N . . . u(βm+r )

N

)
→ 0 as N → ∞ , (4.18)

γk-a.s. and in L2(γk) mean. The same is true if we rather assume β j � k − 2 for all
j = 1, . . .m + r − 2 and βm+r−1, βm+r � k − 1.
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Proof In both cases Hölder inequality and of Sobolev embedding yield

∣∣∫ u(β1)
N · · · u(βm−1)

N P>N (u(βm )
N . . . u(βm+r )

N )
∣∣

� ‖ϕ‖m−1
Hk−1‖P>N (u(βm )

N · · · u(βm+r )

N )‖L2 . (4.19)

We decompose

‖P>Nu
(βm )
N · · · u(βm+r )

N ‖L2

� ‖P>N (u(βm ) · · · u(βm+r ))‖L2 + ‖(u(βm )
N · · · u(βm+r )

N − u(βm ) · · · u(βm+r ))‖L2 .

(4.20)

where u is either ϕ or ϕ̄, in such a way that uN → u in the Hr−1 topology. Since

‖u(βm ) · · · u(βm+r )‖L2 � ‖ϕ‖r+1
Hk−1 ,

recalling that ‖ϕ‖Hk−1 � C for γk-almost any ϕ, we see that ‖P>N (u(βm ) · · ·
u(βm+r ))‖L2 converges to zero γk-a.s. as N → ∞. Then, taking advantage of the
multilinearity of the monomials involved, also the second term on the right hand side
of (4.20) similarly vanishes. Indeed, this is clear when r = 0 and, assuming this true
for any integer smaller than r , we can show it decomposing

‖P>N (u(βm )
N · · · u(βm+r )

N − u(βm ) · · · u(βm+r ))‖L2 � ‖u(βm )
N · · · u(βm+r−1)

N (uβm+r
N − uβm+r )‖L2

+ ‖(u(βm )
N · · · u(βm+r−1)

N − u(βm ) · · · u(βm+r−1))uβm+r ‖L2

� ‖ϕ‖rHk−1‖uβm+r
N −uβm+r ‖L2 + ‖u(βm )

N · · · u(βm+r−1)

N −u(βm ) · · · u(βm+r−1)‖L2‖ϕ‖Hk−1 ,

that, as a consequence of the induction assumption, clearly goes to zero γk-a.s., as
N → ∞.

In conclusion, we have shown that ‖P>N (u(βm )
N · · · u(βm+r )

N )‖L2 converges to zero
γk-a.s., as N → ∞. Looking at the (4.19) and recalling that ‖ϕ‖Hk−1 is γk-a.s. finite,

we have shown that
∫
u(β1)
N · · · u(βm−1)

N P>N (u(βm )
N . . . u(βm+r )

N ) converges to zero γk-
almost surely. Since

∣∣∫ u(β1)
N · · · u(βm−1)

N P>N

(
u(βm )
N . . . u(βm+r )

N

) ∣∣2 � ‖ϕ‖2(m+r)
Hk−1 ,

and ‖ϕ‖2(m+r)
Hk−1 is integrable with respect to γk , also the L2(γk) convergence follows

and the proof is concluded. The integrability of ‖ϕ‖2(m+r)
Hk−1 is a consequence of the

Fernique Theorem; see [14] Chapter 3 Theorem 3.1. �
Lemma 4.4 Let k � 2, 2 � m ∈ N and α1 � · · · � α j . . . � αm, with
αm � k − 1 and αm−1 � k − 2. Then, letting uN denote either PNϕ or PN ϕ̄, we
have

DN

∫
u(α1)
N · · · u(αm )

N −→ 0 as N → ∞ , (4.21)
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1111

γk-a.s. and in L2(γk) mean.

Proof Recalling (4.7), after reordering the indexes, the expression (4.21) is a linear
combination of terms of the form

∫
u(β1)
N · · · u(βm−1)

N P>N

(
u(βm )
N . . . u(βm+r )

N

)
, (4.22)

where 3 � r ∈ N and either

β j � k − 2 for j = 1, . . . ,m + r − 1, βm+r � k , (4.23)

or

β j � k−2 for j = 1, . . .m−2, j = m, . . . ,m+r−1, βm−1, βm+r � k−1 .

(4.24)
If we are in the case of (4.24), we can simply apply Lemma 4.3 to deduce the statement.
In the case (4.23), after integration by parts we reduce to a linear combination of terms
of the form (4.22), but with β j which satisfies (4.24) or such that

β j � k − 2 for all j = 1, . . .m + r − 2, βm+r−1, βm+r � k − 1 .

Since we are still under the assumptions of Lemma 4.3, we can use it to control these
terms too, so that the proof is concluded. �

To evaluate the contribution of (4.16), (4.17) to (4.10) we need a different approach,
based on the Wick theorem, that we shall use in the following form. Let � ∈ N and S�

be the symmetric group on {1, . . . , �}, whose elements are denoted by σ . Then

E

⎡
⎣ �∏

j=1

ϕ(n j )ϕ̄(m j )

⎤
⎦ =

∑
σ∈S�

�∏
j=1

δm j ,nσ( j)

1 + n2kσ( j)

, (4.25)

where we recall that E is the expectation with respect to the Gaussian measure γk , so
that

E
[
f f̄
] = ‖ f ‖2L2(γk )

. (4.26)

We say that σ contracts the pairs of indexes (m j , nσ( j)).

Lemma 4.5 Let N ∈ N, 0 � β1 � k and 0 � β j � k − 1 for j = 2, . . . , 8. We
have that
∥∥∥∥
∫

P>N

(
(PNϕ)(β1)(PN ϕ̄)(β5)(PNϕ)(β2)

)

P>N

(
(PN ϕ̄)(β6)(PNϕ)(β3)(PN ϕ̄)(β7)(PNϕ)(β4)(PN ϕ̄)(β8)

) ∥∥∥∥
L2(γk )

� ln N√
N

.

(4.27)
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1112 G. Genovese et al.

Proof Writing

P>N

(
(PNϕ)(β1)(PN ϕ̄)(β5)(PNϕ)(β2)

)

P>N

(
(PN ϕ̄)(β6)(PNϕ)(β3)(PN ϕ̄)(β7)(PNϕ)(β4)(PN ϕ̄)(β8)

)

=
∑

|n1−m1+n2|>N
|m2−n3+m3−n4+m4|>N
|n j |,|m j | � N , j=1,...,4

⎛
⎝ 4∏

j=1

(in j )
β j (−im j )

β j+4ϕ(n j )ϕ̄(m j )

⎞
⎠ei(n1−m1+n2−m2+n3−m3+n4−m4)x

and its conjugate as

P>N ((PN ϕ̄)(β1)(PNϕ)(β5)(PN ϕ̄)(β2))

P>N ((PNϕ)(β6)(PN ϕ̄)(β3)(PNϕ)(β7)(PN ϕ̄)(β4)(PNϕ)(β8))

=
∑

|m5−n5+m6|>N
|n6−m7+n7−m8+n8|>N
|n j |,|m j | � N , j=5,...,8

⎛
⎝ 8∏

j=5

(in j )
β j (−im j )

β j−4ϕ(n j )ϕ̄(m j )

⎞
⎠e−i(m5−n5+m6−n6+m7−n7+m8−n8)x ,

using (4.26), we see that the square of the l.h.s. of (4.27) can be written in the compact
form

∑
AN

8∏
j=1

[
n

β j
j m

β[ j+4]8
j

]
E

⎡
⎣ 8∏

j=1

ϕ(n j )ϕ̄(m j )

⎤
⎦ ,

where, letting n = (n1, . . . , n8), m = (m1, . . . ,m8) we have defined

AN :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n,m) :

∑4
j=1 n j =∑4

j=1m j ,
∑8

j=5 n j =∑8
j=5m j

|n j | � N , |m j | � N , j = 1, . . . , 8,
|n1 − m1 + n2| > N , |m5 − n5 + m6| > N ,

|m2 − n3 + m3 − n4 + m4| > N ,

|n6 − m7 + n7 − m8 + n8| > N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Since n1 = ∑4
j=1m j −∑4

j=2 n j and m5 = ∑8
j=5 n j −∑8

j=6m1, the condition
|n1−m1+n2| > N reduces to |m2−n3+m3−n4+m4| > N and |m5−n5+m6| > N
reduces to |n6 − m7 + n7 − m8 + n8| > N . Thus we can rewrite AN as

AN =
⎧⎨
⎩(n,m) :

∑4
j=1 n j =∑4

j=1 m j ,
∑8

j=5 n j =∑8
j=5 m j

|n j | � N , |m j | � N , j = 1, . . . , 8,
|m2 − n3 + m3 − n4 + m4| > N , |n6 − m7 + n7 − m8 + n8| > N

⎫⎬
⎭ .
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1113

Now we use the Wick formula (4.25), with � = 8, and obtain

∑
AN

8∏
j=1

[
n

β j
j m

β[ j+4]8
j

]
E

⎡
⎣ 8∏

j=1

ϕ(n j )ϕ̄(m j )

⎤
⎦ =
∑
AN

8∏
j=1

[
n

β j
j m

β[ j+4]8
j

] ∑
σ∈S8

8∏
j=1

δm j ,nσ( j)

1 + n2kσ( j)

=
∑
σ∈S8

∑
Aσ
N

8∏
j=1

[
n

β j
j n

β[ j+4]8
σ( j)

] 8∏
j=1

1

1 + n2kσ( j)

=
∑
σ∈S8

∑
Aσ
N

8∏
j=1

n
β j+β[σ−1( j)+4]8
j

1 + n2kj
(4.28)

where

Aσ
N :=

⎧⎪⎪⎨
⎪⎪⎩
n :

∑4
j=1 n j =∑4

j=1 nσ( j),
∑8

j=5 n j =∑8
j=5 nσ( j),

|n j | � N , j = 1, . . . , 8,
|nσ(2) − n3 + nσ(3) − n4 + nσ(4)| > N ,

|n6 − nσ(7) + n7 − nσ(8) + n8| > N

⎫⎪⎪⎬
⎪⎪⎭

.

Wewill bound the sum over σ in (4.28), term by term, distinguishing the permutations
which satisfies σ(5) = 1 and the ones such that σ(5) �= 1. �

Case�(5) = 1

Noting that β[σ−1(1)+4]8 = β[5+4]8 = β1, we see that β j + β[σ−1( j)+4]8 � 2k − 2 for
all j = 2, . . . , 8. Using this, we can estimate

∑
Aσ
N

8∏
j=1

|n j |β j+β[σ−1( j)+4]8

1 + n2kj
�
∑
Aσ

N

8∏
j=2

1

1 + n2j
, (4.29)

where

Aσ
N :={(n2, . . . , n8) : |nσ(2) − n3 + nσ(3) − n4 + nσ(4)|

> N , |n6 − nσ(7) + n7 − nσ(8) + n8| > N
}

and we have removed n1 by the summation thanks to the relation n1 =∑4
j=1 nσ( j) −∑4

j=2 n j and to the fact thatAσ
N is independent on n1. Since σ(5) = 1, it is clear that

we can cover Aσ
N with the following sets

Aσ,�
N := {(n2, . . . , n8) : |n�| > N/5} ,

where � ∈ {3, 4, σ (2), σ (3), σ (4)}, and that the sum overAσ
N in (4.29) is bounded by

the total contribution of the sums over these sets. We will show that

∑
Aσ,σ (2)

N

8∏
j=2

1

1 + n2j
� 1

N
, (4.30)
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1114 G. Genovese et al.

all the other sums can be treated in the same way. We have

∑
Aσ,σ (2)

N

8∏
j=2

1

1 + n2j
�

∑
|nσ(2)|>N/5

1

n2σ(2)

∏
j=2,...,8
j �=σ(2)

∑
n j∈Z

1

1 + n2j
� 1

N
.

Case �(5) �= 1

We can write

∑
Aσ
N

8∏
j=1

|n j |β j+β[σ−1( j)+4]8

1 + n2kj

=
∑
Aσ
N

⎛
⎜⎜⎝ |n1|β1+β[σ−1(1)+4]8

1 + n2k1

|nσ(5)|β1+βσ(5)

1 + n2kσ(5)

∏
j=2,...8,
j �=σ(5)

|n j |β j+β[σ−1( j)+4]8

1 + n2kj

⎞
⎟⎟⎠ ,

(4.31)

and we notice, j = �, . . . , 8:

β1 + β[σ−1(1)+4]8 � 2k − 1, β1 + βσ(5) � 2k − 1, β� + β[σ−1(�)+4]8
� 2k − 2, � /∈ {1, σ (5)} . (4.32)

Then we cover Aσ
N with the following sets, � = 1, . . . , 4 :

Aσ,�
N :=

⎧⎨
⎩n : |n�| > N/5, |n1|, |nσ(5)| � N ,

4∑
j=1

n j =
4∑
j=1

nσ( j)

⎫⎬
⎭ ,

and � = 5, . . . , 8:

Aσ,�
N :=

⎧⎨
⎩n : |n�| > N/5, |n1|, |nσ(5)| � N ,

8∑
j=5

n j =
8∑
j=5

nσ( j)

⎫⎬
⎭ .

It is clear that the sum over Aσ
N in (4.31) is bounded by the total contribution of the

sums over these sets. Looking at (4.31) and using the first condition in (4.32) and
n1 =∑4

j=1 nσ( j) −∑4
j=2 n j we can bound

∑
Aσ,1
N

8∏
j=2

|n j |β j+β[σ−1( j)+4]8

1 + n2kj
� 1

N

∑
|nσ(5)| � N

1

1 + |nσ(5)|
∏

j=2,...8,
j �=σ(5)

∑
n j∈Z

1

1 + n2j
� ln N

N
,
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1115

Similarly, using the second condition in (4.32) and nσ(5) =∑8
j=5 n j −∑8

j=6 nσ( j),
we get

∑
Aσ,σ (5)
N

8∏
j=2

|n j |β j+β[σ−1( j)+4]8

1 + n2kj
� 1

N

∑
|n1| � N

1

1 + |n1|
∏

j=2,...8,
j �=σ(5)

∑
n j∈Z

1

1 + n2j
� ln N

N
.

If j /∈ {1, σ (5)}, we can use the last condition in (4.32) to bound

∑
Aσ,�
N

8∏
j=1

|n j |β j+β[σ−1( j)+4]8

1 + n2kj

�
∑

|n1| � N

1

1 + |n1|
∑

|nσ(5)| � N

1

1 + |nσ(5)|
∑

|n�|>N/5

1

n2�

∏
j=1,...8,
j /∈1,�,σ (5)

∑
n j∈Z

1

1 + n2j

� (ln N )2

N
,

that concludes the proof. �

Lemma 4.6 Let N ∈ N, 0 � β1 � k and 0 � β j � k − 1 for j = 2, . . . , 6. We
have that

∥∥∥∥
∫

P>N

(
(PNϕ)(β1)(PN ϕ̄)(β4)(PNϕ)(β2)

)
P>N

(
(PN ϕ̄)(β5)(PNϕ)(β3)(PN ϕ̄)(β6)

)∥∥∥∥
L2(γk )

� ln N√
N

.

Proof Adapted directly from the proof of Lemma 4.5. �

Remark 4.7 Here we gave explicit rates of convergence only for those terms in the
integrals of motion that we have to treat by the Wick theorem, where we have only
L2 convergence, but not on all the other ones, where convergence is a.s. and in L2.
Indeed we aimed more to emphasise the different nature of the terms than to provide
explicit rates of convergence for all of them. Of course one could use theWick theorem
to obtain an explicit rate of convergence for all the terms. It should be clear that the
slowest possible decay is given by the terms dealt by the last two lemmas.

5 Invariant measures

Let k � 2 and α ∈ R. We define a sequence of measures which approximate the
weighted Gaussian measure relative to γk , with weight (we omit the dependance on α

which is irrelevant at this stage)
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1116 G. Genovese et al.

k−1∏
m=0

χRm (Em[ f ]) exp(−Q̃k[ f ]) ,

where

Q̃k[ f ] := Ek[ f ] − 1

2
‖ f ‖2

Ḣ k . (5.1)

To do so we set

ρ̃k,N (A) :=
∫
MN (A)

(
k−1∏
m=0

χRm (Em[PNψ])
)
e−Q̃k [PNψ]γk(dψ), .

where χRm are smooth non negative cut-off functions like in definition (1.7) and
MN (A) is defined in (1.9).

In Proposition 5.2 we prove the existence of the weak limit of {ρ̃k,N }N∈N for any
k � 2 along with its integrability properties. We first need the following

Lemma 5.1 The sequence {∫ PN f (k−1)PN f̄ (k)}N∈N is Cauchy in L2(γk), with

∥∥∥∥
∫

PN f (k−1)PN f̄ (k) −
∫

f (k−1) f̄ (k)
∥∥∥∥
L2(γk )

� 1

N
.

Proof Let N , M ∈ N with N < M . We will show that

∥∥∥∥
∫

PM f (k−1)PM f̄ (k) − PN f (k−1)PN f̄ (k)
∥∥∥∥
L2(γk )

� 1

N
, (5.2)

that is enough to deduce the statement. We write

PM f (k−1)PM f̄ (k) =
∑

|n1|,|m1| � M

(in1)
k−1(−im1)

k f (n1) f̄ (m1)e
i(n1−m1)x ,

and its conjugate as

PM f̄ (k−1)PM f (k) =
∑

|m2|,|n2| � M

(−im2)
k−1(in2)

k f̄ (m2) f (n2)e
−i(m2−n2)x ,

so that

∥∥∥∥
∫

PM f (k−1)PM f̄ (k) − PN f (k−1)PN f̄ (k)
∥∥∥∥
2

L2(γk )

=
∑
AN ,M

nk−1
1 mk

1n
k
2m

k−1
2 E

⎡
⎣ 2∏

j=1

f (n j ) f̄ (m j )

⎤
⎦ ,
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Invariant measures for the periodic derivative nonlinear Schrödinger equation 1117

where letting where, letting n = (n1, n2), m = (m1,m2), we have defined

AN ,M := {(n,m) : n1 = m1, n2 = m2, |n j | � M, |m j | � M,

j = 1, 2, max(|n1|, |n2| > N )} .

Thus, using the Wick formula (4.25) with � = 2, we get

∑
AN ,M

nk−1
1 mk

1n
k
2m

k−1
2 E

⎡
⎣ 2∏

j=1

f (n j ) f̄ (m j )

⎤
⎦ =

∑
A1
N ,M

n2k−1
1 n2k−1

2

(1 + n2k1 )(1 + n2k2 )

+
∑
A2
N ,M

n4k−4
1

(1 + n2k1 )2

where

A1
N ,M := {n : |n1|, |n2| � M, max(|n1|, |n2| > N )} ,

A2
N ,M := {n1 : N < |n1| � M} .

Since, using the symmetry (n1, n2) ↔ (−n1, n2), the sum over A1
N ,M is zero and the

sum over A1
N ,M is bounded by a multiple of N−2, we have proved the (5.2). �

We are now ready to analyse the convergence of the sequence {ρ̃k,N }N∈N.

Proposition 5.2 Given β ∈ R, k � 2 and R1, . . . , Rk−1 > 0, there exists a suffi-
ciently small R0, which depends on |α|, |β|, k, R1, . . . , Rk−1, so that ρk,N⇀ρ̃k , with

ρ̃k(A) =
∫
A

k−1∏
m=0

χRm (Em[ f ]) exp(−Q̃k[ f ])γk(d f ), for every A ∈ B(L2(T)) ,

(5.3)
Moreover the Radon–Nykodim derivative dρ̃k

dγk
belongs to L2(γk).

The proof goes along the same lines of themain theorem in [9], with some additional
considerations. We will skip some details, just referring to our previous work when
the arguments are close enough.

Proof By Eq. (5.1) and Corollary 2.11 we have

Q̃k[ f ] = −ikαμ

∫
f (k) f̄ (k−1) + i

4
((2k + 2)α + (2k + 1)β)

×
∫

| f |2( f (k) f̄ (k−1) − f̄ (k) f (k−1)) +
∫

Rk[ f ], (5.4)

where Rk[ f ] ∈ Vk−1. The difference with the integrals of motion for DNLS is given
by the first addendum on the r.h.s. of (5.4). Indeed the second term and the remainders
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1118 G. Genovese et al.

Rk have the same structure as in [9]. Thus it is straightforward to adapt that argument
to show that one can choose R0 small enough in such a way that as N → ∞

k−1∏
m=0

χ
1/2
Rm

(Em[PN f ]) exp
(

−Q̃k[PN f ] − ikαμ

∫
PN f (k)PN f̄ (k−1)

)

→
k−1∏
m=0

χ
1/2
Rm

(Em[ f ]) exp
(

−Q̃k[ f ] − ikαμ

∫
f (k) f̄ (k−1)

)
γk − a.s. , (5.5)

and the limit lies in L4(γk). Thus it remains to show the same for the remaining term
in the exponential, namely that for R0 sufficiently small

k−1∏
m=0

χ
1/2
Rm

(Em[PN f ]) exp
(
ikαμ

∫
PN f (k)PN f̄ (k−1)

)

→
k−1∏
m=0

χ
1/2
Rm

(Em[ f ]) exp
(
ikαμ

∫
f (k) f̄ (k−1)

)
γk − a.s. (5.6)

and the limit lies in L4(γk).
Combining Lemma 5.1, Chebyshev’s inequality and Borel–Cantelli lemma we

prove that the sequence
∫
PN f (k−1)PN f̄ (k) converges γk-a.s. This also implies the

convergence in measure of exp
(
p0
∫
PN f (k−1)PN f̄ (k)

)
for any p0 ∈ R. Arguing

as in [9, Lemma 5.3] and using the Borel–Cantelli lemma, we can show that indeed
exp
(∫

PN f (k−1)PN f̄ (k)
) → exp

(∫
f (k−1) f̄ (k)

)
γk-a.s. We want to prove this limit

to be in L4(γk) for sufficiently small R0. From that, recalling (5.5), we deduce that
the measures ρ̃k,N converges weakly to a limit a.c. w.r.t. γk , whose density is the
L2(γk)-limit of the densities w.r.t. the finite dimensional Gaussian measures of ρ̃k,N
(we refer to the proof of Theorem 1.1 in [9] for more details).

We write for N ∈ N

‖ exp(ikαμ

∫
PN f (k−1)PN f̄ (k))‖4L4(γk )

=
∫

γk(d f ) exp(4ikαμ

∫
PN f (k−1)PN f̄ (k)).

We then pass to the Fourier coefficients and change variables

∫
γk(d f ) exp

(
4ikαμ

∫
PN f (k−1)PN f̄ (k)

)
= E

[
e4kαμ

∑
|n| � N |gn |2qn

]

=
∏

|n| � N

E

[
e4kαμ|gn |2qn

]
,
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where {ḡn, gn}|n| � N are i.i.d. standard complex random variables and we shortened

qn := n2k−1

1 + n2k
.

Let now assume α > 0 (the case α < 0 is analogous). Squared Gaussian random
variables are exponentially distributed, thus E[e4kαμ|gn |2qn ] � 1 for n � 0 and for
n � 1 and 4kαμ < 1 there is an absolute constant c > 0 such that

E[e4kαμ|gn |2qn ] � ec(4kαμqn)2

(see for instance [33, Lemma 5.15]). We conclude that for 4kαμ < 1

∥∥∥∥exp
(
ikαμ

∫
PN f (k−1)PN f̄ (k)

)∥∥∥∥
4

L4(γk )

� e2(4kαμ)2
∑N

n=1 q
2
n ,

which is bounded uniformly in N . �
Remark 5.3 The convergence in (5.5), (5.6) and so that of

k−1∏
m=0

χRm (Em[PN f ]) exp(−Q̃k[PN f ])γk(d f )

can be promoted to convergence in L p0 for any p0 ∈ [1,∞), as long as we choose R0
sufficiently small. For details we refer to the proof of Theorem 1.1 in [9].

Remark 5.4 Even though we preferred to give here a direct proof, the last statement
can be also proven just invoking the Girsanov–Ramer theorem [25]. The pull-back of
γk under the anticipative Hilbert–Schimdt map

ϕ �→ ϕ + a

(∫ x

0
ϕ − 1

2π

∫ 2π

0
ϕ

)
, a ∈ R,

is absolutely continuous w.r.t. γk and the density is given by the standard Gaussian
change of variables under a shift.

Remark 5.5 With a glance to the proof of [9, Proposition 5.4], we realise that Propo-
sition (5.2) remains valid if one considers the modified densities

(
k−1∏
m=0

(χm)Rm (Em[ϕ])
)
e−Q̃k (ϕ)γk(dϕ)

where the cut-off functions χm are not necessarily all the same. Notice that we have
already used this fact in the proof of Proposition, when we have replaced χm by χ

1/2
m .
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Until the end of the Section we work with the choice

α = αk := −2k + 1

2k + 2
β , (5.7)

except in Lemma 5.8, that holds for all α ∈ R. The main goal will be to prove that ρ̃k
is invariant under �t,αk , that is the flow associated to the GDNLS Eq. (2.8) under the
choice (5.7).

Proposition 5.6 Let k � 2. For any t ∈ R we have that

ρ̃k(A) = ρ̃k(�t,αk (A)) ,

for every A ∈ B(L2(T)) such that A ⊆ Hr (T) with 5/4 < r < k − 1/2.

Then if we set for every A ∈ B(L2(T))

ρ̂k(A) := ρ̃k(Gαk (A)) , (5.8)

where Gαk (A) := {Gαk f : f ∈ A}, we have

ρ̂k(�t (A)) = ρ̃k(Gαk (�t (A))) = ρ̃k(Gαk (�t (G−αk (Gαk (A)))))

= ρ̃k(�t,αk (Gαk (A))) = ρ̃k(Gαk (A)) = ρ̂k(A),

that is ρ̂k is invariant along the DNLS flow. In the first equality we used (5.8), in
the second equality we used (2.3), in the third equality we used the definition of the
gauged flow given in (2.14), in the fourth equality we used Proposition 5.6, and finally
we used (5.8) again. This establishes the existence of the invariant measures ρ̂k stated
in our main Theorem 1.2.

The proof of Proposition 5.6 needs two intermediate lemmas.

Lemma 5.7 Let k � 2. Then we have

lim
N→∞ sup

t∈R
sup

A∈B(L2(T))

∣∣∣∣ ddt ρ̃k,N (�N
t,αk (A))

∣∣∣∣ = 0 . (5.9)

Since an explicit representation of the measure ρ̃k,N is available only at t = 0, the
following observation by Tzvetkov and Visciglia is crucial to prove Lemma 5.7.

Lemma 5.8 Let k � 2. Then for all α, t ∈ R we have

sup
A∈B(L2(T))

∣∣∣∣ ddt ρ̃k,N (�N
t,α(A))

∣∣∣∣ � sup
A∈B(L2(T))

∣∣∣∣ ddt ρ̃k,N (�N
t,α(A))

∣∣∣
t=0

∣∣∣∣ . (5.10)

We omit the proof, that can be done directly following [31] (Proposition 5.4, step 2).
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Proof of Lemma 5.7 Let A ∈ B(L2(T)). The proof is based on the identity

ρ̃k,N (�N
t,αk (A)) =

∫
MN (�N

t,αk
(A))

(
k−1∏
m=0

χRm (Em [PN f ])
)
exp(−Q̃k [PN f ])γk(d f )

= 1

ZN

∫
PN (A)

(
k−1∏
m=0

χRm

(
Em [�N

t,αk g]
))

· exp
(

−Q̃k [�N
t,αk g] − 1

2
(‖�N

t,αk g‖2Ḣ k

)
exp

(
− 1

2
‖�N

t,αk g‖2L2

)( ∏
|n| � N

d�N
t,αk f d�N

t,αk f

)

= 1

ZN

∫
PN (A)

(
k−1∏
m=0

χRm

(
Em [�N

t,αk g]
))

· exp
(
−Ek [�N

t,αk g]
)
exp

(
− 1

2
‖�N

t,αk g‖2L2

)( ∏
|n| � N

d�N
t,αk f d�N

t,αk f

)

where in the first identity, using that (�N
t,αk )

−1 = �N
t,−αk

, we have changed variables
f = �N

t,αk g and used the explicit representation (1.6) and the product structure of
the Gaussian measure. Notice that we are identifying with a little abuse of notation
the set PN (A) := {PN f : f ∈ A} with the set of the relative Fourier coefficients
{( f (−N ), . . . , f (N )) : PN f ∈ A}. The second identity just follows by the defini-
tion (5.1) of Q̃k[·]. Using

d

dt
exp

(
−1

2
‖�N

t,αk g‖2L2

)( ∏
|n| � N

d�N
t,αk f d�N

t,αk f

)
= 0

that is a direct consequence of Propositions 3.2 and 3.3 we can compute

d

dt
ρ̃k,N (�N

t,αk (A))

∣∣∣
t=0

= 1

ZN

k−1∑
�=0

∫
PN (A)

(
d

dt
E�[�N

t,αk f ]
)

χ ′
R�

(E�[�N
t,αk f ])

⎛
⎜⎜⎝

k−1∏
m=0
m �=�

χRm (Em[�N
t,αk f ])

⎞
⎟⎟⎠

· exp
(
−Ek[�N

t,αk g]
)
exp

(
−1

2
‖�N

t,αk g‖2L2

)( ∏
|n| � N

d�N
t,αk f d�N

t,αk f

)∣∣∣
t=0

− 1

2ZN

∫
PN (A)

(
d

dt
Ek[�N

t,αk f ]
)( k−1∏

m=0

χRm (Em[�N
t,αk f ])

)

· exp
(
−Ek[�N

t,αk g]
)
exp

(
−1

2
‖�N

t,αk g‖2L2

)( ∏
|n| � N

d�N
t,αk f d�N

t,αk f

)∣∣∣
t=0

=
k−1∑
�=0

∫
MN (A)

(
d

dt
E�[�N

t,αk f ]
∣∣∣
t=0

)
χ ′
R�

(E�[PN f ])

⎛
⎜⎜⎝

k−1∏
m=0
m �=�

χRm (Em[PN f ])

⎞
⎟⎟⎠
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· exp(Q̃k[PN f ])γk(d f )

−
∫
MN (A)

(
d

dt
Ek[�N

t,αk f ]
∣∣∣
t=0

)( k−1∏
m=0

χRm (Em[PN f ])
)
exp(Q̃k[PN f ])γk(d f ).

Since suppχ ′
R ⊆ suppχR , Remark 5.5 entails that the functionals (� = 1, . . . , k − 1)

χ ′
R�

(E�[PN f ])
( k−1∏

m=0
m �=�

χRm (Em[PN f ])
)
exp(Q̃k[PN f ]) ,

(
k−1∏
m=0

χRm (Em[PN f ])
)
exp(Q̃k[PN f ])

are bounded in L2(γk) uniformly in N (namely their L2(γk) norm is bounded by a
constant independent on N ∈ N). Thus the Cauchy–Schwarz inequality yields

∣∣∣∣ ddt ρ̃k,N (�N
t,αk (A))

∣∣∣
t=0

∣∣∣∣ �
k∑

m=1

∥∥∥∥ ddt Em[�N
t,αk f ]

∣∣∣
t=0

∥∥∥∥
L2(γk )

, (5.11)

and the r.h.s. vanishes as N → ∞ thanks to Proposition 4.1. Using Lemma 5.8, this
concludes the proof. �

We are finally ready to prove Proposition 5.6.

Proof of Proposition 5.6 We fix R > 1, 5/4 < r < k − 1/2 and 0 � s < r (recall
k � 2). We consider C ⊂ Br (R) that is compact in the Hs(T) topology. Given
T > 0 we integrate (5.9) over the interval [0, T ], so that, letting N → ∞, we obtain

ρ̃k(C) = lim
N→∞ ρ̃k,N (C) = lim

N→∞ ρ̃k,N (�N
t,αk (C)), (5.12)

where we used Proposition 5.2 in the first identity. Now we take T = tR given by
Proposition 3.4, so that, given any ε > 0 we have

�N
t,αk (C) ⊆ �t,αk (C) + Bs(ε), |t | � tR . (5.13)

for all sufficiently large N = N (ε). Thus

ρ̃k,N (�N
t,αk (C)) � ρ̃k,N (�t,αk (C) + Bs(ε)), |t | � tR ,

for all N = N (ε) sufficiently large. Recalling Proposition 5.2 we can pass to the limit
N → ∞ so that, for all ε > 0, we find

lim
N→∞ ρ̃k,N (�N

t,αk (C)) � ρ̃k(�t,αk (C) + Bs(ε)), |t | � tR .

123



Invariant measures for the periodic derivative nonlinear Schrödinger equation 1123

By (5.12) and the arbitrarity of ε we have arrived to

ρ̃k(C) � inf
ε>0

ρ̃k(�t,αk (C) + Bs(ε)), |t | � tR . (5.14)

Since C is compact in Hs and the flow map is continuous in the Hs topology when
we restrict the data to Br (R) (see [11, Theorem 1.1, Corollary 1.2]), we have that
�t,αk (C) is compact too. Thus

⋂
ε>0

(�t,αk (C) + Bs(ε)) = �t,αk (C) ,

and

inf
ε>0

ρ̃k(�t,αk (C) + Bs(ε)) = ρ̃k

(⋂
ε>0

(�t,αk (C) + Bs(ε))

)

= ρ̃k(�t,αk (C)), |t | � tR .

Recalling (5.14) we arrive to

ρ̃k(C) � ρ̃k(�t,αk (C)), |t | � tR .

Now, since C ∈ Br (R), by [11, Theorem 1.1, Corollary 1.2] and inequality (2.5), we
notice that �t,αk (C) belongs to a (eventually larger R < R′) ball Br (R′), so that a
well-known continuation argument allows to take tR = ∞, namely

ρ̃k(C) � ρ̃k(�t,αk (C)), t ∈ R . (5.15)

Letting R → ∞, this bound can be promoted to any compact set in Hr (T) an then to
to an identity

ρ̃k(C) = ρ̃k(�t,αk (C)), C compact in Hs(T) and C ⊂ Hr (T), t ∈ R . (5.16)

exploiting the time reversibility of the flow. Indeed, still as consequence of [11,
Theorem 1.1, Corollary 1.2] and inequality (2.5) we have that �t,αk is an Hs-
diffeomorphism once we restrict the data to a ball of Hr (T). Thus, for anyC ′ compact
in Hs(T) and contained in a ball of Hr the set �t,αk (C

′) has the same property, and,
letting C ′ = �−t,αk (C), we get

ρ̃k(�−t,αk (C)) � ρ̃k(�t,αk (�−t,k(C)) = ρ̃k(C), t ∈ R ,

that, along with the (5.15), leads to (5.16). Finally, using the regularity of the gaussian
measure, we get that (5.16) holds for any Borel set of Hs(T) that are subsets of Hr (T)

too. This completes the proof. �
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6 Finite dimensional approximations of the Gaugemap

In this Section we show that the Gauge map Gα can be approximated by a family of
bijective maps G N

α acting on EN . For any N ∈ N these maps are still a one-parameter
group with respect to (R,+).

Given f ∈ EN we define G N
a f , α ∈ R as the (unique) solution of the differential

equation
d

dα
G N

α f = i PN (I[G N
α f ]G N

α f ), G N
0 f = f . (6.1)

The (6.1) is globally well posed for data in L2(T) by the same argument explained in
Sect. 3 for the truncated GDNLS equation 3.1, taking advantage of the fact that the
L2 norm is a conserved quantity, as shown in Lemma 6.1. In the rest of the section
we will prove some properties of the solutions of (6.1) and of the associated flow map
f → G N

α f . Hereafter we will use the notation G∞
α f := Gα f and E∞ := L2(T). Let

us recall that Bs(R) := { f : ‖ f ‖Hs � R}.
Lemma 6.1 Let N ∈ N ∪ {∞}. For all f ∈ EN we have

‖G N
α f ‖L2 = ‖ f ‖L2

Proof Using equation (6.1) and its conjugate we can compute

d

dα
‖G N

α f ‖2L2 = 2Re i
∫

G N
α f PN (I[G N

α f ]G N
α f )

Since P>NG N
α f = 0, we get, by orthogonality,

d

dα
‖G N

α f ‖2L2 = 2Re i
∫

I[G N
α f ]|G N

α f |2 = 0 , (6.2)

where the last identity is immediate since I[G N
α f ] is real.

Then we control the growth of the Ḣ1 norm of Gα f . A similar statement can be
proved for general Hs , s � 0 norms, but will be not necessary for our purposes. As
usual we use the simplified notation μ = μ[ f ] := 1

2π ‖ f ‖2
L2 .

Lemma 6.2 Let N ∈ N ∪ {∞}. For all f ∈ EN we have

‖G N
α f ‖2

Ḣ1 � eαμ(‖ f ‖2
Ḣ1 + μ) (6.3)

Proof Proceeding as in the proof of Lemma 6.1, and using the fact that I[G N
α f ] is a

real function, we obtain

d

dα
‖G N

α f ‖2
Ḣ1 = 2Re i

∫
I[G N

α f ]′G N
α f G N

α f
′ = −2Im

∫
I[G N

α f ]′G N
α f G N

α f
′
.

123



Invariant measures for the periodic derivative nonlinear Schrödinger equation 1125

Then, recalling the definition (2.2) of I[·] and using Lemma 6.1, we have

I[G N
α f ]′ = |G N

α f |2 − 1

2π
‖G N

α f ‖2L2 = |G N
α f |2 − 1

2π
‖ f ‖2L2 =: |G N

α f |2 − μ ,

so that

d

dα
‖G N

α f ‖2
Ḣ1 = −2Im

∫
|G N

α f |2G N
α f G N

α f
′ + 2μIm

∫
G N

α f G N
α f

′
.

Now using the Hölder, Cauchy–Scwartz and the following Gagliardo–Nirenberg
inequality

‖h‖L6 � ‖h‖
1
3

Ḣ1‖h‖
2
3
L2 ,

and again recalling Lemma 6.1, we arrive to

d

dα
‖G N

α f ‖2
Ḣ1 � ‖|G N

α f |3‖L2‖G N
α f ‖Ḣ1 + μ‖G N

α f ‖L2‖G N
α f ‖Ḣ1

� ‖G N
α f ‖3L6‖G N

α f ‖Ḣ1 + μ3/2‖G N
α f ‖Ḣ1

� ‖G N
α f ‖2L2‖G N

α f ‖2
Ḣ1 + μ2 + μ‖G N

α f ‖2
Ḣ1 � μ2 + μ‖G N

α f ‖2
Ḣ1 .

(6.4)

Thus Grönwall’s inequality yields

‖G N
α f ‖2

Ḣ1 � ‖ f ‖2
Ḣ1e

αμ + μeαμ − μ ,

which implies (6.3). �
In the following Lemma we show that the flow G N

α approximates G∞
α := Gα for

large N in the L2 topology. The approximation is uniform for initial data in a ball of
H1. By the proof it will be clear that one can obtain a similar approximation property
w.r.t the Hs topology and data in a ball of Hr , for all 0 � s < r as long as r > 1/2.
However we do not need this stronger statement.

Lemma 6.3 Let N ∈ N, R > 1 and ᾱ ∈ R We have

lim
N→∞ sup

f ∈EN∩B1(R), |α| � |ᾱ|
‖Gα f − G N

α f ‖L2 = 0 . (6.5)

Proof We will need the immediate inequalities

‖I(G N
α f )‖L∞ � ‖G N

α f ‖2L2 � μ, (6.6)

‖I(Gα f ) − I(G N
α f )‖L∞ � ‖Gα f + G N

α f ‖L2‖Gα f − G N
α f ‖L2

� √
μ‖Gα f − G N

α f ‖L2 , (6.7)
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valid for N ∈ N ∪ {∞} and f ∈ EN , (recall μ = μ[ f ] := 1
2π ‖ f ‖2

L2 ). These follow
immediately recalling the form (2.2) of I[·] and Lemma 6.1. Let

δNα f := Gα f − G N
α f

Hereafter we restrict to f ∈ EN . Notice that δNα f solves

d

dα
δNα f = i P>N (I[Gα f ]Gα f ) + i PN (I[Gα f ]δNα f + (I[Gα f ] − I[G N

α f ])G N
α f ) .

Pairing this in L2 with δNα f we arrive to

d

dα
‖δNα f ‖L2

= 2Re i

(
−
∫ (

P>N

(
I[G N

α f ]G N
α f
))

δNα f +
∫

I[Gα f ]|δNα f |2

+
∫ (

I[Gα f ] − I[G N
α f ]
)
G N

α f δNα f

)
.

Using the Hölder and Cauchy–Schwartz inequalities and (6.6), (6.7) we arrive to

d

dα
‖δNα f ‖L2 � ‖P>N (I[G N

α f ]G N
α f )‖2L2 + ‖δNα ( f )‖2L2

+ ‖I[Gα f ]‖L∞‖δNα f ‖2L2 + ‖I[Gα f ]
− I[G N

α f ]‖L∞‖G N
α f ‖L2‖δNα f ‖L2

� ‖P>N (I[G N
α f ]G N

α f )‖2L2 + (1 + μ)‖δNα f ‖2L2 . (6.8)

Then using the algebra property of H1, the fact that ∂xI[Gα f ] = Gα f and (6.6)
and Lemma 6.2, we can estimate

sup
f ∈EN∩B1(R), |α| � |ᾱ|

‖I[Gα f ]Gα f ‖H1 � sup
f ∈EN∩B1(R), |α| � |ᾱ|

μ‖Gα f ‖H1 + ‖Gα f ‖2H1 � μ2 ,

� μe
|ᾱ|μ
2 (R + √

μ) + e|ᾱ|μ(R2 + μ) � R2e|ᾱ|R ,

so that

sup
f ∈EN∩B1(R), |α| � |ᾱ|

‖P>N (I[Gα f ]Gα f )‖2L2 � 1

N 2 R
2e|ᾱ|R

and (6.8) becomes

d

dα
‖δNα f ‖L2 � 1

N 2 R
2e|ᾱ|R + (1 + μ)‖δNα f ‖2L2 ,
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for |α| � |ᾱ| and f ∈ B1(R). Thus using Grönwall’s lemma and the fact that
δNα f |α=0 = 0 we arrive to

sup
f ∈EN∩B1(R), |α| � |ᾱ|

‖δNα f ‖2L2 � 1

N 2 R
2e|ᾱ|Re(1+μ)|ᾱ| ,

that implies (6.5). �

The next result is a direct corollary of Lemmas 6.2 and 6.3. For the proof we refer
to [28, Proposition 2.10]

Corollary 6.4 Let ε > 0, R > 1, ᾱ ∈ R. Given A ⊂ B1(R) a compact set, there exists
N∗ such that

Gα(A) ⊂ G N
α (A + Bs(R)) .

for all |α| � |ᾱ| and for all N > N∗.

The next technical lemma will be used to prove Proposition 6.6 and then to show
the absolute continuity of γk under the gaugemap. Let us recall that we have defined in
(3.12) the operator div applied to an n−th dimensional vectorial function of f , f̄ ∈ EN

as

div F( f , f̄ ) =
∑

|n| � N

(
∂Fn

∂ f (n)
+ ∂ F̄n

∂ f̄ (n)

)
.

Lemma 6.5 We have

|div i PN (I[PN f ]PN f ))| � ‖ f ‖2H1

log N√
N

. (6.9)

Proof A direct computation from (2.2) yields

(I[PN f ])(0) = 0, (I[PN f ])(m) = − i

m

∑
|�|,|�−m| � N

f (�) f̄ (�−m) if m �= 0,

(6.10)
thus

i (I[PN f ]PN f ) (n) =
∑

m :m �=0,|n−m| � N

1

m

∑
� : |�|,|�−m|, � N

f (n − m) f (�) f̄ (� − m) ,

(6.11)
and

div i PN (I[PN f ]PN f )) = 2
∑

n : |n| � N

∑
m :m �=0,|n−m| � N

1

m
| f (n − m)|2 .
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Since

∑
n : |n| � N

∑
m :m �=0,|n−m| � N

1

m
| f (n − m)|2 =

N∑
n=1

(| f (−n)|2 − | f (n)|2)
N+n∑

m=N−n+1

1

m
,

and we clearly have | f (n)|2 � 1
n2

‖ f ‖2
H1 , we can estimate

N∑
n=1

(
| f (−n)|2 − | f (n)|2

) N+n∑
m=N−n+1

1

m

� ‖ f ‖2H1

N∑
n=1

1

n2
ln

(
N + n

N − n + 1

)
= ‖ f ‖2H1

N∑
n=1

1

n2
ln

(
1 + 2n − 1

N − n + 1

)
.

Then, for N sufficiently large, we have

N∑
n=1

1

n2
ln

(
1 + 2n − 1

N − n + 1

)
�

�√N�∑
n=1

1

n2
ln

(
1 + 2√

N

)
+

N∑
n=�√N�

1

n2
ln (2N )

� ln

(
1 + 2√

N

)
+ ln (2N )√

N
, (6.12)

whence (6.9). �

Now we will prove that the flow maps f → G N
α f are injective and that they

preserve the Lebesgue measure in the limit N → ∞, if we restrict to bounded subsets
of H1.We recall that we have defined the Lebesguemeasure (see (1.5)) as proportional
to

∏
|n| � N

dϕN (n)dϕ̄N (n) .

When we transform this volume form under G N
α we have to take into account the

Jacobian matrix DG N
α ( f ), where the differential operator D acts on a map

T : f ∈ EN → T f ∈ EN

in the following way

(DT )( f ) =
⎛
⎝
(

∂(T f )(m)
∂ f (n)

)
|m|,|n| � N

(
∂(T f )(m)

∂ f (n)

)
|m|,|n| � N(

∂(T f )(m)

∂ f (n)

)
|m|,|n| � N

(
∂(T f )(m)

∂ f (n)

)
|m|,|n| � N

⎞
⎠ . (6.13)
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Proposition 6.6 For all f ∈ ENwe have

det[(DG N
α )( f )] = exp

(∫ α

0
dα′ div i PN

(
I[G N

α′ ( f )]G N
α′ ( f )

))
. (6.14)

In particular, the flowmap f → Gα f is injective. Moreover for all α ∈ R and f ∈ H1

we have det[(DG N
α )( f )] → 1 as N → ∞. In fact the convergence is uniform for f

in bounded subsets of H1 and α in bounded intervals.

Proof Since G N
α is a one parameter group of transformations the chain rule gives

(DG N
α+ε)( f ) = (DG N

ε )(G N
α ( f )) · (DG N

α )( f ). (6.15)

Then

d

dα
det[(DG N

α )( f )] = lim
ε→0

det[(DG N
ε )(G N

α ( f )] det[(DG N
α )( f )] − det[(DG N

α )( f )]
ε

= lim
ε→0

det[(DG N
ε )(G N

α ( f ))] − 1

ε
· det[(DG N

α )( f )]

= d

dε
det[(DG N

ε )(G N
α ( f ))]

∣∣∣∣
ε=0

det[(DG N
α )( f )]. (6.16)

Thereby, since det[(DG N
0 )( f )] = 1, we arrive to

det[(DG N
α )( f )] = e

∫ α
0 dα′�α′ ( f ) with �α′( f ) := d

dε
det[(DG N

ε )(G N
α′ ( f ))]

∣∣∣∣
ε=0

.

(6.17)
Thus the (6.14) will be a consequence of the following identity

[
d

dε
det[(DG N

ε )(g)]
]

ε=0
= div i PN (I[g]g) , (6.18)

valid for all g ∈ EN . To prove (6.18) we apply D to equation (6.1) which becomes

d

dε
(DG N

ε )(g) = D i PN
(
I[G N

ε g]G N
ε g
)

.

thus, since (DG N
0 )(g) = I, we get

(DG N
ε )(g) = I + ε

(
D i PN

(
I[G N

ε g]G N
ε g
) ∣∣∣

ε=0

)
+ O(ε)

= I + εD i PN (I[g]g) + O(ε),

from which we obtain

det[(DG N
ε )(g)] = 1 + ε Tr D i PN (I[g]g) + O(ε).
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This immediately implies the identity (6.18), recalling the definition of D given
in (6.13) and that of divergence in (3.12). The second part of the statement is a con-
sequence of (6.14) and of the inequality (6.9). �

7 Quasi-invariance of �k under the gaugemap

The goal of this section is to prove Theorem 1.4. We recall the definition of the
restricted measure

γ̃k(A) = γk(A ∩ { f ∈ L2 : μ[ f ] � R0}), R0 > 0. (7.1)

Remark 7.1 The absolutely continuity of ρ̂k w.r.t. γk follows by Theorem 1.4, since
ρ̂k := ρ̃k ◦ Gαk and ρ̃k is absolutely continuous w.r.t. γ̃k by Proposition 5.2.

We need the following accessory lemma.

Lemma 7.2 Let k � 2 and R0 > 0 sufficiently small. There there is b > 0 such that

∫
exp

(
b

∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣
)

γ̃k(d f ) < C, (7.2)

for all N ∈ N and for all β2 � β3 � β4 � 0 with β2 + β3 + β4 = k − 1, where
uN may denote either PN f or PN f̄ . The constant C is independent on N.

The proof uses a slight modification of the argument for proving the same statement
for k = 1 and β3 = β4 = 0 we learned from Thomann and Tzvetkov (unpublished).
In the sequel we just underline the few differences given by the case k � 2 and for
more details we refer to [5, Theorem 3.3].

Proof We prove that for R0 > 0 sufficiently small there is c > 0 depending only on
k such that

γ̃k

(∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣ � t

)
� e−ct . (7.3)

This immediately implies the statement taking 0 < b < c. We treat separately the
regimes t �

√
N and t >

√
N .

For t >
√
N we will prove directly (as usual χ is the characteristic function)

γ̃k

(∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣ � t

)
χ{t>√

N } � e−ct , (7.4)

for small R0 > 0 and some c > 0. Hereafter c will denote several positive small
constants, possibly decreasing from line to line.
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For t �
√
N we use the decomposition

γ̃k

(∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣ � t

)
χ{t �

√
N }

� γ̃k

(∣∣∣∣
∫

u(k)
T u(β2)

T u(β3)
T u(β4)

T

∣∣∣∣ � t

2

)
χ{t �

√
N } (7.5)

+ γ̃k

(∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N −
∫

u(k)
T u(β2)

T u(β3)
T u(β4)

T

∣∣∣∣ � t

2

)
χ{t �

√
N },

(7.6)

with T := �t2�. The term (7.5) enjoys the tail estimate (7.4). For the term (7.6) [9,
Lemma 5.3] yields

γ̃k

(∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N −
∫

u(k)
T u(β2)

T u(β3)
T u(β4)

T

∣∣∣∣ � t

)
χ{t �

√
N } � e−ct .

(In fact [9, Lemma 5.3] is formulated only for β2 = k−1, β3 = β4 = 0. The extension
to our more general case is however straightforward).

It remains to prove (7.4). First we show

∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣ �
⎛
⎝∑

j � 0

2 j(k− 1
2 )‖� j uN‖L2

⎞
⎠ 4∏

�=2

⎛
⎝∑

j � 0

2 j(β�+ 1
2 )‖� j uN‖L2

⎞
⎠ ,

(7.7)
where we recall � j := P2 j − P2 j−1 are Paley–Littlewood projectors. Notice that,
since β� � k − 1 we have β� + 1

2 � k − 1
2 . This bound follows noting that by

orthogonality

∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣ �
∑

j� � 0, j1 � 3 j2

2 j1k2 j2β2

∫
|� j1uN ||� j2uN ||� j3uN ||� j4uN |

�
∑
j� � 0

2 j1(k− 1
2 )2 j2(β2+ 1

2 )

∫
|� j1uN ||� j2uN ||� j3uN ||� j4uN | ,

then Hölder’s and Bernstein’s inequalities lead to

∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣
�
∑
j� � 0

2 j1(k− 1
2 )2 j2(β2+ 1

2 )‖� j1uN‖L2‖� j2uN‖L2‖� j3uN‖L∞‖� j4uN‖L∞

�
∑
j� � 0

2 j1(k− 1
2 )2 j2(β2+ 1

2 )2 j3(β3+ 1
2 )2 j4(β4+ 1

2 )‖� j1uN‖L2‖� j2uN‖L2‖� j3uN‖L2‖� j4uN‖L2
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from which one deduces the (7.7). Since

1

2
− 1

4k
+

4∑
�=2

1

2k

(
β� + 1

2

)
= 1 ,

by (7.7) and the union bound (notice that the sums in (7.8), (7.9) are over a finite
number of terms) we arrive to

γ̃k

(∣∣∣∣
∫

u(k)
N u(β2)

N u(β3)
N u(β4)

N

∣∣∣∣ � t

)
� γk

⎛
⎝∑

j �
2 j(k− 1

2 )‖� j uN‖L2 � t
1
2− 1

4k

⎞
⎠ (7.8)

+
4∑

�=2

γk

⎛
⎝∑

j � 0

2 j(β�+ 1
2 )‖� j uN‖L2 � t

1
2k (β�+ 1

2 )

⎞
⎠ .

(7.9)

First we note that the simple bound

∑
0 � j< 1

2k ln2 t

2 j(k− 1
2 )‖� j uN‖L2 � R0t

1
2− 1

4k

yields for R0 small enough

γk

⎛
⎜⎝ ∑

0 � j< 1
2k ln2 t

2 j(k− 1
2 )‖� j uN‖L2 � t

1
2− 1

4k

⎞
⎟⎠ = 0. (7.10)

Similarly

∑
0 � j< 1

2k ln2 t

2 j(β�+ 1
2 )‖� j uN‖L2 � R0t

1
2k (β�+ 1

2 )

gives

γk

⎛
⎜⎝ ∑

0 � j< 1
2k ln2 t

2 j(β�+ 1
2 )‖� j uN‖L2 � t

1
2k (β�+ 1

2 )

⎞
⎟⎠ = 0. (7.11)
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We introduce now a sequence σ j so that
∑

j � 0 σ j � 1
4 . Therefore

γk

⎛
⎜⎝ ∑

j � 1
2k ln2 t

2 j(k− 1
2 )‖� j uN‖L2 � t

1
2− 1

4k

⎞
⎟⎠

�
∑

j � 1
2k ln2 t

γk

(
22+ j(k− 1

2 )‖� j uN‖L2 � σ j t
1
2− 1

4k

)
, (7.12)

and

γk

⎛
⎜⎝ ∑

j � 1
2k ln2 t

2 j(β�+ 1
2 )‖� j uN‖L2 � t

1
2k (β�+ 1

2 )

⎞
⎟⎠

�
∑

j � 1
2k ln2 t

γk

(
22+ j(β�+ 1

2 )‖� j uN‖L2 � σ j t
1
2k (β�+ 1

2 )
)

. (7.13)

Now we use (recall t �
√
N )

γk

(
22+ j(k− 1

2 )‖� j uN‖L2 � σ j t
1
2− 1

4k

)

= P

⎛
⎜⎝
√√√√√ 2 j∑

n=2 j−1

|gn|2 � 2
j
2−k−2σ j t

1
2− 1

4k

⎞
⎟⎠ � e−c2 jσ 2

j t
1− 1

2k
(7.14)

where {gn, ḡn}n∈N are i.i.d. standard complex Gaussian random variables and P is the
associated probability. In an analog manner we have

γk

(
22+ j(β�+ 1

2 )‖� j uN‖L2 � σ j t
1
2k (β�+ 1

2 )
)

= P

⎛
⎜⎝
√√√√√ 2 j∑

n=2 j−1

|gn|2 � 2 j(k−β�− 1
2 )−k−2σ j t

1
2k (β�+ 1

2 )

⎞
⎟⎠�e−c2 j(2k−2β�−1)σ 2

j t
1
k (β�+ 1

2 )

.

(7.15)

Therefore (7.12) and (7.14) give

γk

⎛
⎜⎝ ∑

j � 1
2k ln2 t

2 j(k− 1
2 )‖� j uN‖L2 � t

1
2− 1

4k

⎞
⎟⎠ � e−ct , (7.16)

and likewise by (7.13) and (7.15) we obtain
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1134 G. Genovese et al.

γk

⎛
⎜⎝ ∑

j � 1
2k ln2 t

2 j(β�+ 1
2 )‖� j uN‖L2 � σ j t

1
2k (β�+ 1

2 )

⎞
⎟⎠ � e−ct . (7.17)

Summarising, by (7.10), (7.11), (7.16), (7.17) we obtain as t >
√
N

γk

⎛
⎝∑

j � 0

2 j(k− 1
2 )‖� j uN‖L2 � t

1
2− 1

4k

⎞
⎠

� e−ct , γk

⎛
⎝∑

j � 0

2 j(β�+ 1
2 )‖� j uN‖L2 � t

1
2k (β�+ 1

2 )

⎞
⎠ � e−ct ,

whence (7.4) follows. �
Proposition 7.3 Let k � 2 and R0 > 0 sufficiently small. Then there exists C > 0,
which only depends on k and R0, so that for any p > 1

∥∥∥∥ d

dα
‖(G N

α f )‖2Hk

∣∣∣
α=0

∥∥∥∥
L p(γ̃k )

� Cp. (7.18)

Proof Pairing in Ḣ k Eq. (6.1) with G N
α f , we get

d

dα
‖G N

α f ‖2
Ḣ k

∣∣∣
α=0

= 2Re
∫

G N
α f

(k)
(

d

dα
G N

α f

)(k) ∣∣∣
α=0

= 2Re
∫

G N
α f

(k)
PN (iI[G N

α f ]G N
α f )(k)

∣∣∣
α=0

= 2Re
∫

f
(k)

PN (iI[ f ] f )(k)

= d

dα
‖Gα f ‖2

Ḣ k

∣∣
α=0, (7.19)

where the last identity follows by orthogonality and using Eq. (6.1) again.
Note that, by Lemma 2.9 (used with ψ = G−α f ) and the representation of the

integrals of motion of the GDNLS given in (2.22), we have that

‖Gα f ‖2
Ḣ k = ‖ f ‖2

Ḣ k − 2ikαμ

∫
f (k−1) f̄ (k)

+ iα
∑

β2+β3+β4=k−1
β2 � β3 � β4

Cβ2,β3,β4

∫
(u(k)u(β2)u(β3)u(β4)) + O(α2), (7.20)

where as usual u denotes either f or f̄ . Therefore, in order to estimate the derivative
of ‖G N

α y‖Hk in α = 0, we need to estimate the terms in (7.20) which are linear in α.
More precisely, using (7.19) and (7.20), we arrive to
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∥∥∥∥ d

dα
‖G N

α f ‖Hk

∣∣
α=0

∥∥∥∥
L p(γ̃k )

=

∥∥∥∥∥∥∥∥
2kμ
∫

f (k−1) f̄ (k) +
∑

β2+β3+β4=k−1
β2 � β3 � β4

Cβ2,β3,β4

∫
(u(k)u(β2)u(β3)u(β4))

∥∥∥∥∥∥∥∥
L p(γ̃k )

� 2k

∥∥∥∥μ
∫

f (k−1) f̄ (k)
∥∥∥∥
L p(γ̃k )

+
∑

β2+β3+β4=k−1
β2 � β3 � β4

Cβ2,β3,β4

∥∥∥∥
∫

(u(k)u(β2)u(β3)u(β4))

∥∥∥∥
L p(γ̃k )

. (7.21)

The first term of (7.21) is easier to handle, as

∥∥∥∥μ
∫

f (k−1) f̄ (k)
∥∥∥∥
L p(γ̃k )

� R0

∥∥∥∥
∫

f (k−1) f̄ (k)
∥∥∥∥
L p(γ̃k )

� R0 p

∥∥∥∥
∫

f (k−1) f̄ (k)
∥∥∥∥
L2(γk )

by hyper-contractivity and the L2(γk) norm on the r.h.s. is bounded by an absolute
constant due to due to Lemma 5.1. To handle the remaining terms of (7.21) we use
Lemma 7.2 and the elementary inequality |x |p/pp � e|x |, which lead us to

∥∥∥∥
∫

(u(k)u(β2)u(β3)u(β4))

∥∥∥∥
L p(γ̃k )

� p ,

so that the proof is concluded. Notice that we have also used that u(k)
N u(β2)

N u(β3)
N u(β4)

N
converges γ̃k-a.e. to u(k)u(β2)u(β3)u(β4) (that has been proved in [9]) and Fatou’s
Lemma. �

Once we have that the norm in (7.18) grows at most linearly in p the almost
invariance of γk w.r.t. the gauge map follows taking advantage (again) of the group
property of the map. We follow the argument of [28] and [23]. Here we recall the key
statements omitting the proofs when they are easily adapted from these papers. As
usual, we approximate γ̃k by a family of weighted measures γ̃k,N with density

γ̃k,N (d f ) = χ{μ[PN f ] � R0}(PN f )γk(d f ). (7.22)

Lemma 7.4 Let k � 2. Then

d

dα
γ̃k,N (G N

α (A)) � p γ̃k,N (G N
α (A))

1− 1
p

(
1 + log N√

N

)
. (7.23)

for all A ∈ B(L2(T)).
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Proof Let A ∈ B(L2(T)). For all ᾱ ∈ R we have

d

dα
γ̃k,N (G N

α (A))

∣∣∣
α=ᾱ

= d

dα
γ̃k,N (G N

α (G N
ᾱ (A)))

∣∣∣
α=0

. (7.24)

This is a simple consequence of the fact that G N
α is a one parameter group of transfor-

mations. One can adapt directly the argument in [31] (Proposition 5.4, step 2). Using
Proposition 6.6, the identity (6.18) and the fact that ‖G N

α f ‖2
L2 = ‖PN f ‖L2 for all

α ∈ R (see Lemma 6.1), we can compute

d

dα
γ̃k,N (G N

α (G N
ᾱ ))

∣∣∣
α=0

= d

dα

∫
G N

ᾱ (A)

γ̃k,N (d(G N
α f ))

∣∣∣
α=0

= d

dα

∫
G N

ᾱ (A)

γ̃k,N (d f )| det DG N
α ( f )|e− 1

2 (‖G N
α f ‖2

Ḣk−‖ f ‖2
Ḣk )
∣∣∣
α=0

=
∫
G N

ᾱ (A)

γ̃k,N (d f )
d

dα
| det DG N

α ( f )|
∣∣∣
α=0

− 1

2

∫
G N

ᾱ (A)

γ̃k,n(d f )| det DG N
α ( f )| d

dα
‖G N

α f ‖2
Ḣ k

∣∣∣
α=0

= i
∫
G N

ᾱ (A)

γ̃k,N (d f ) div PN (I[ f ] f )
∣∣∣
α=0

− 1

2

∫
G N

ᾱ (A)

γ̃k,N (d f )
d

dα
‖G N

α f ‖2
Ḣ k

∣∣∣
α=0

.

Then by Hölder’s inequality we obtain

d

dα
γ̃k,N (G N

α (A))

∣∣∣
α=ᾱ

� γ̃k,N (G N
ᾱ (A))

1− 1
p ‖ div PN (I[ f ] f ) ‖L p(γk )

+ γ̃k,N (G N
ᾱ (A))

1− 1
p

∥∥∥ d

dα
‖(G N

α f )‖2Hk

∣∣∣
α=0

∥∥∥
L p(γ̃k )

(7.25)

The first term on the r.h.s. is bounded using Lemma 6.5, as ‖‖ f ‖2
H1‖L p(γk ) � p for

any p � 1, k � 2. The second one is bounded by Lemma 7.3 and we obtain (7.23).
�

Lemma 7.5 Let k � 2. There exists an absolute constant ᾱ > 0 so that the following
holds. For all ε > 0 there exists δ(ε) so that the following holds. If A ∈ B(L2(T)) is
such that with γk,N (A) < δ then γk,N (G N

α A) < ε for all |α| < ᾱ.

Proof It follows by Lemma 7.4, using exactly the same argument of [23, Proposition
5.3]. �

Now we want to pass to the limit N → ∞ to get an a priory bound of γk(G N
α A)

for small values of α and sets A of small measure.
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Proposition 7.6 Let k � 2. There exists an absolute constant ᾱ > 0 so that the
following holds. Let R > 1 and A ∈ B(L2(T)) with A ⊂ B1(R). Then for all ε > 0
there exists δ > 0 so that

γ̃k(A) < δ ⇒ sup
|α| � ᾱ

γ̃k(GαA) < ε.

Proof It follows by Lemma (7.5) and Corollary 6.4, using exactly the same argument
of [23, Lemma 5.5]. �

We are now ready to prove Theorem 1.4. Given A ∈ B(L2(T)) with A ⊂ B1(R)

we have

γ̃k(A ∩ B1(R)) < δ ⇒ sup
|α| � ᾱ

γ̃k(Gα(A ∩ B1(R))) < ε

As ε > 0 is arbitrary we get

γ̃k(A ∩ B1(R)) = 0 ⇒ sup
|α| � ᾱ

γ̃k(Gα(A ∩ B1(R))) = 0 .

Since α is independent on R we can take the limit R → ∞ to get

γ̃k(A) = 0 ⇒ sup
|α| � ᾱ

γ̃k(Gα(A)) = 0 ,

for all γ̃k-measurable subset A ⊆ H1(T). Then the statement follows iterating this
estimate, using again that ᾱ is an absolute constant, and recalling that H1 has full
γ̃k-measure for k � 2.
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