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We analyze the Bianchi I cosmology in the presence of a massless scalar field and describe its dynamics
via a semiclassical and quantum polymer approach by adopting three different sets of configurational
variables: the natural Ashtekar connections, a set of anisotropic volumelike coordinates and the Universe
volume plus two anisotropy coordinates (the latter two sets of variables would coincide in the case of an
isotropic Universe). In the semiclassical analysis we demonstrate that the big bounce clearly emerges in all
the sets of variables. Moreover, when adopting the proper volume variables (i.e. when defining the
Universe volume itself on the polymer lattice) we also derive the exact polymer-modified Friedmann
equation for the Bianchi I model. This way, the expression of the critical energy density that includes the
anisotropic energylike contribution is obtained, demonstrating that in this set of variables the big bounce
has a universal nature (i.e. its critical energy density has a maximum value fixed by fundamental constants
and the Immirzi parameter). Finally, a proposal is made to recover the equivalence between the dynamics in
the Ashtekar set and in the anisotropic volumelike one, showing that this request is satisfied when a
polymer parameter depending on the configurational coordinates is considered. Then, we apply the
Arnowitt-Deser-Misner reduction of the variational principle and we quantize the system. We study the
resulting Schrödinger-like dynamics only in the Ashtekar variables and in the proper volume ones,
stressing that the behavior of the Universe wave packet over time singles out common features with the
semiclassical trajectories. However, we show that the standard deviation for the Universe volume operator
grows with time. This is a signal of the spreading of the Bianchi I wave packet and hence of the importance
of the quantum fluctuations in order to properly study the big bounce picture.
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I. INTRODUCTION

One of the most relevant phenomenological implications
of loop quantum gravity (LQG) [1,2] is certainly the
emergence of a big bounce in the quantum dynamics of
the isotropic Universe [3–13]. Despite the cosmological
implementation of the formalism of the full theory present-
ing some limitations, especially concerning the proper
assessment of the SUð2Þ symmetry (see [14–16]), the
discreteness of the geometrical operator (area and volume)
spectra is at the ground of a deep revision in the concept of
the early Universe.
Actually, the emergence of a big bounce and the

corresponding existence of a cutoff for the matter energy
density take place in their own evidence mostly on a
semiclassical level, where the mean value of localized wave
packets follows a revised dynamics in which the singularity
is removed (for completeness, see [7] where for the

Friedmann-Lemaître-Robertson-Walker (FLRW) Universe
an analytically solvable model is obtained named sLQC
and a full quantum analysis is performed). On this level, the
most intriguing open question concerns the specific mor-
phology of this semiclassical turning point in the past of the
present Universe. In fact, two possible representations are
possible: one imposing a kinematical cutoff on the minimal
area element [5] and the other one assigning the same cutoff
on a dynamical level, i.e. involving the cosmic scale factor
in the discrete spectrum [6,7]. In the first approach, the
turning point in the past depends on the wave packet profile
as fixed at a given instant of time and also the critical
energy density can approach very large values [2,17]. In
the dynamical reformulation, both the big bounce and the
critical energy density become intrinsic features of the
Universe, namely fixed by the fundamental constants and
parameters only [6]. From the point of view of the adopted
configurational variables, the difference can be summarized
in the use of the pure Ashtekar connection in the kin-
ematical spectrum case or the Universe volume when an
intrinsic cutoff comes out. With respect to this dualism of
possible representations, see the discussion in [13] where
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the same question is addressed in polymer quantum
mechanics (PQM) by tracing a close parallelism with loop
quantum cosmology (LQC). Indeed, the polymer approach
[18,19] is the most simple treatment able to provide insights
on the emergence of a bouncing cosmology without
entering the subtleties of LQG and LQC but reliably
retaining the same information of the latter.
Here, we apply PQM to the Bianchi I model in the

presence of a massless scalar field and we explore the
dynamics in different sets of configurational variables by
applying both the so-called semiclassical approach and the
purely quantum one [19]. We compare the use of the natural
Ashtekar connections to the implementation of two differ-
ent sets of volumelike variables (here dubbed the aniso-
tropic volumelike coordinates as well as the Universe
volume plus two anisotropies), following the LQC formu-
lation in [20,21]. On a semiclassical level we show that,
when PQM is applied to the anisotropic Universe dynam-
ics, the big bounce as an intrinsic feature is reached only in
the pure volume formulation, whereas both in the aniso-
tropic volumelike coordinates and in the Ashtekar con-
nections the resulting bouncing cosmology depends on the
initial conditions on the system. This result suggests that it
is strictly the use of the Universe volume coordinate that
ensures an intrinsic cutoff, whereas the geometrical dimen-
sions of the variables described as discrete on the polymer
lattice are only linked to the determination of whether or
not the big bounce exists (see [22] where it is shown that
the Bianchi I and IX models in the Misner variables are still
singular in the polymer formulation). This analysis is
supported by the derivation of the polymer-modified
Friedmann-like equation in the pure volume formulation,
from which we can analyze the expression of the total
energy density at the bounce, including the anisotropic
contribution to the standard matter energy density term.
Moreover, we investigate the dynamical equivalence of the
three different formulations in the semiclassical polymer
approach, by generalizing the analysis performed in [13].
However, from our study comes out that only the dynamics
in the Ashtekar variables and that in the anisotropic
volumelike ones can be mapped, by considering the
polymer parameter depending on the configurational coor-
dinates (rather than constant) when performing the canoni-
cal change of variables.
Regarding the proper application of PQM, we analyze

the evolution of the Bianchi I cosmology only limiting
our attention to the choice of the Ashtekar variables (i.e.
the privileged set in LQG) and the proper volume ones (i.e.
the Universe volume plus two anisotropies). We choose the
matter scalar field as a clock before quantizing by means of
an Arnowitt-Deser-Misner (ADM) reduction of the varia-
tional principle [23]. Actually, the use of this Schrödinger-
like approach is justified by the need to avoid all the issues
regarding the well definition of a conserved probability
density constructed using the Wheeler-DeWitt equation (in

this respect, see [24,25]). In the Ashtekar variables the
evolution of a localized quantum wave packet is studied by
following the peaks of the probability density (i.e. the
square modulus) and allows one to show that there is a good
coincidence between the semiclassical trajectories and the
behavior of the Universe wave packet. Therefore, we can
infer that the results obtained in the semiclassical sector in
terms of the Ashtekar variables remain valid in the full
quantum picture. In other words, the feature of a nonuni-
versal big bounce depending on the initial conditions on the
wave packets seems to be well grounded on a quantum
level too. Then, in the pure volume representation the
quantum mean value of the volume operator is studied,
showing a good consistency with the volume semiclassical
trajectory. Since the Bianchi I wave packet outlines a clear
spreading over time, we also compute the standard
deviation of the volume operator, highlighting its nonlinear
behavior over time. This result points out the need of
going beyond the pure semiclassical description of the
big bounce, in view of its intrinsic quantum nature [26].
Nonetheless, this numerical study allows us to claim the
existence of the quasiclassical limit, since the relative error
does not exceed unity for a significant time interval.
The paper is structured as follows. In Sec. II the theory of

PQM is introduced, in order to clarify the formalism at the
ground of the following cosmological analysis. In Sec. III
the main results obtained by describing the FLRW model
in the polymer picture are presented, providing the analyses
in the Ashtekar variables and in the volume ones into two
subsections. In Sec. IV the Hamiltonian formulation of the
Bianchi I model in the Ashtekar variables is described, in
order to introduce the original part of the paper developed
in Secs. V–VIII. In particular, in Secs. V and VI the
semiclassical polymer dynamics of the Bianchi I model is
solved in the Ashtekar variables and in the two sets of
volumelike variables, respectively, whereas in Sec. VII a
proposal about the possibility to recover the equivalence
between the dynamics in the three sets of variables is
investigated. Furthermore, in the Ashtekar set and in the
proper volume one a full quantum treatment is introduced
in Sec. VIII using a Schrödinger-like formalism. Finally, in
Sec. IX some concluding remarks are commented.

II. POLYMER QUANTUM MECHANICS

As a first step, we introduce the polymer quantization of
a system, which is a nonequivalent representation of the
quantum mechanics with respect to the standard
Schrödinger one (see [19]). This formulation is based on
the assumption that one or more variables of the phase
space are discretized. Hence, in this approach it is not
possible to define q̂ and p̂ as operators at the same time.
However, the power of this alternative quantum approach is
the possibility to describe cutoff physics effects through a
simple formalism and this is particularly useful in the
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cosmological setting, where the generalized coordinates are
identified with the cosmic scale factors.
First of all, we introduce a set of abstract kets jμi with

μ ∈ IR and fix the inner product as

hμjνi ¼ δμν; ð1Þ

δμν being a Kronecker delta. This procedure defines the
nonseparable Hilbert space Hpoly where we can define two
fundamental operators: the label operator ϵ̂, whose action
on the kets is given by ϵ̂jμi ¼ μjμi, and the shift operator
ŝðλÞ (λ ∈ IR), where ŝðλÞ ¼ jμþ λi. The action of ŝðλÞ
is discontinuous since the kets are orthonormal ∀ λ.
Therefore, no Hermitian operator could generate it by
exponentiation.
Now, we suppose that the configurational coordinate q

has a discrete character; i.e. the position is defined on a
lattice having a given spacing. The projection of the states
in the p polarization is (ℏ ¼ 1)

ψμðpÞ ¼ hpjμi ¼ eipμ: ð2Þ

By applying the shift operator on these states as

ŝðλÞψμðpÞ ¼ eiλpeiμp ¼ ψ ðμþλÞðpÞ; ð3Þ

we can conclude that the operator p̂ cannot be defined in a
rigorous fashion, whereas the action of q̂ reads as

q̂ψμðpÞ ¼ −i∂peiμp ¼ μψμðpÞ; ð4Þ

representing exactly that one of the label operator ϵ̂.
On a dynamical level we have to face the problem of

defining an approximated version of the p̂ operator, since
the Hamiltonian H is a function of both ðq; pÞ as

Hðq; pÞ ¼ p2

2m
þ VðqÞ; ð5Þ

where we have considered the case of a nonrelativistic
particle of massm in a potential VðqÞ. In order to overcome
this problem, we introduce a regular graph

γμ0 ¼ fq ∈ IRjq ¼ nμ0; ∀ n ∈ Zg; ð6Þ

i.e. a numerable set of equidistant points whose spacing is
given by the scale μ0. In this way, we can restrict the action
of the shift operator eiλp by imposing λ ¼ nμ0 in order to
remain in the lattice. Then, we can use it to approximate
any function of p since

p ≈
1

μ0
sin ðμ0pÞ ¼

1

2iμ0
ðeiμ0p − e−iμ0pÞ: ð7Þ

We notice that this approximation is good for μ0p ≪ 1.

Under this hypothesis one derives

p̂μ0 jμni ¼ −
i

2μ0
ðjμnþ1i − jμn−1iÞ: ð8Þ

Thus, it is possible to define a regularized operator p̂μ0 that
depends on the scale μ0 and a modified version of the
Hamiltonian as

Ĥμ0 ≔
p̂2
μ0

2m
þ Vðq̂Þ: ð9Þ

In what follows we will apply this same picture to
configurational variables describing the Bianchi I cos-
mology. Each independent variable will be associated to
the representation traced above for the polymer framework.

III. THE ISOTROPIC UNIVERSE

In this section we provide a brief analysis of the
homogeneous and isotropic Universe as described by the
FLRW model. The ADM line element of the FLRW
Universe is given by

ds2¼−NðtÞ2dt2þa2ðtÞ
�

dr2

1−Kr2
þr2dθ2þr2 sin2θdϕ2

�
;

ð10Þ

where NðtÞ is the lapse function, aðtÞ the cosmic
scale factor and K ¼ 0;�1 the signature of the spatial
curvature. The factor aðtÞ is the only degree of freedom
available to define the dynamical properties of the
Universe. Substituting the metric (10) in the Einstein-
Hilbert action we obtain

SRW¼
Z

t2

t1

dtðpa _a−NHRWÞ

¼
Z

t2

t1

dt

�
pa _a−N

�
−

κ

24π2
p2
a

a
−
6π2K
κ

aþ2π2ρa3
��

;

ð11Þ

where ρ ¼ ρðaÞ is the matter energy density and κ ¼ 8πG
is the Einstein constant (we have set the speed of light equal
to one).
To achieve a complete canonical description of the

dynamics for the isotropic Universe, we consider the
variations of the action above with respect to the lapse
function N and the conjugate variables ða; paÞ. In particu-
lar, the variation of (11) with respect to N provides the
Hamiltonian constraint for the FLRW model

HRW ¼ p2
a

a4
þ 144π4

κ2a2
K −

48π4

κ
ρ ¼ 0; ð12Þ
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which coincides with the Friedmann equation

H2 ¼
�
_a
a

�
2

¼ κρ

3
−
K
a2

: ð13Þ

Finally, we notice that the dynamics of the isotropic
Universe in the Hamiltonian formulation resembles that
one of a one-dimensional pinpoint particle, with genera-
lized coordinate a and momentum pa.

A. Semiclassical polymer dynamics of the FLRWmodel

In order to elucidate the different features characterizing
the bouncing dynamics when adopting different sets of
variables in the polymer framework, we start by analyzing
the semiclassical behavior of the isotropic Universe using
the standard Ashtekar connection or the Universe volume.
This material will provide a clear trace for the subsequent
analysis on the Bianchi I cosmology.

1. Analysis in the Ashtekar variables

Firstly, we focus on the implementation of the polymer
scheme to the FLRW space time for the flat Universe
(K ¼ 0) in the Ashtekar variables (see [13]). In the
semiclassical approach the canonical variables are restated
according to the polymer formulation and the Hamiltonian
dynamics is retained, providing a significant insight about
the behavior of the mean values characterizing PQM and,
actually, also LQC [18].
We choose the couple ðc; pÞ as the conjugate variables of

the phase space, which can be expressed as functions of the
scale factor as

jpj ¼ a2; c ¼ γ _a: ð14Þ

The scalar constraint (12) in these variables reduces to

H ¼ −
3

κγ2
c2

ffiffiffiffiffiffi
jpj

p
þ p2

ϕ

2jpj32 ¼ 0; ð15Þ

when a massless scalar field is included in the dynamics.
Now, in order to implement the polymer paradigmwe apply
the substitution [see (7)]

c →
1

μ
sinðμcÞ; ð16Þ

where the term μ represents the characteristic spacing of the
polymer lattice on which the variable p it is defined, i.e. the
configurational variable that has the dimensions of an area.
So, it is possible to express the Hamiltonian for the FLRW
model in the polymer approach as

Hpoly ¼ −
3

κγ2
ffiffiffiffi
p

p sin2ðμcÞ
μ2

þ p2
ϕ

2jpj32 ¼ 0 ð17Þ

and to write the Hamilton equations of motion for the
system:

_p ¼ Nkγ
3

∂Hpoly

∂c ¼ −
2N
γμ

ffiffiffiffi
p

p
sinðμcÞ cosðμcÞ;

_c ¼ −
Nkγ
3

∂Hpoly

∂p ¼ Nκγ

2
ffiffiffiffi
p

p
�
sin2ðμcÞ
κγ2μ2

þ p2
ϕ

jpj32
�
; ð18Þ

recalling that the commutation relations for the configura-
tional variables are

fc; pg ¼ κγ

3
; ð19Þ

where γ is the Immirzi parameter. Here, we fix the time

gauge imposing _ϕ ≔ N ∂Hpoly

∂pϕ
¼ 1 ⇒ N ¼ jpj32

2pϕ
, that corre-

sponds to the choice of ϕ as a relational time. We notice
that with the dotted variables we denote their respective t
derivative.
As we can see from Fig. 1, the polymer trajectory of the

FLRW volume V ¼ jpj32 follows the classical one (char-
acterized by the presence of a singularity also in the
Ashtekar variables) until the Universe reaches a quantum
era. Here, the effects of quantum geometry due to the
polymer lattice become dominant and the classical big bang
is replaced by a quantum big bounce.
Using the equations (18) and the scalar constraint (17)

we can write the analytic expression of the Friedmann
equation as

H2 ¼
�

_p
2p

�
2

¼ κ

3
ρ

�
1 −

ρ

ρcrit

�
; ð20Þ

where the critical energy density of the Universe (i.e. the
maximum energy density which is taken at the bounce)
corresponds to

FIG. 1. The polymer trajectory pðϕÞ (continuous line) shows
that a big bounce regularizes the singular behavior of the classical
trajectories (dotted lines) at a Planckian scale for the flat FLRW
model.
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ρcrit ¼
3

μ2jpj ¼
�

3

κγ2μ2

�3
2 1

pϕ
: ð21Þ

In this representation, ρcrit tends to 0 when pϕ increases,
whereas the big bounce approaches the big bang singularity
when pϕ ≪ 1. This result resembles that one obtained in
the LQC theory in its original formulation [5].

2. Analysis in the volume variable

Let us now change the variables we adopted above
by introducing a new canonical set in which the generalized
coordinate corresponds to theUniverse volume (see [13]), i.e.

v ¼ jpj32 ¼ _a; η ¼ 2c

3
ffiffiffiffiffiffijpjp ∼

_a
jaj : ð22Þ

Due to the canonicity of the transformation, the introduction
of these variables conserves the algebra of the Poisson
brackets. In the new set the semiclassical polymer
Hamiltonian constraint rewrites as

Hpoly ¼ −
27

4κγ2μ2
v sin2ðμηÞ þ p2

ϕ

2v
¼ 0; ð23Þ

where the polymer substitution has been implemented on the
momentumconjugate to theUniverse volumev that is chosen
as the discrete variable. In correspondence to this restated
problem, the Hamilton equations take the form

_v ¼ Nkγ
3

∂Hpoly

∂η ¼ −
18N
4γμ

v sinðμηÞ cosðμηÞ;

_η ¼ −
Nkγ
3

∂Hpoly

∂v ¼ Nκγ

3

�
27 sin2ðμηÞ
4κγ2μ2

þ p2
ϕ

2v2

�
ð24Þ

and can be easily solved after fixing again the time gauge
_ϕ ¼ 1, in order to provide the behavior of the Universe
volume.
As depicted in Fig. 2 we see that the Universe has again a

bouncing point in correspondence to the minimum of its
volume.
To elucidate the nature of the big bounce, we restate the

associated Friedmann equation as

H2 ¼
�

_v
3v

�
2

¼ κ

3
ρ

�
1 −

ρ

ρcrit

�
; ð25Þ

where the critical energy density is explicitly expressed by

ρcrit ¼
27

4κγ2μ2
: ð26Þ

This result shows that the energy density at which the
bounce occurs does not depend on the value assumed by the
constant of motion pϕ in this representation, in contrast

with the scenario obtained in the previous subsection. This
analysis establishes a clear correspondence between the
LQC μ̄ scheme [6] and the polymer approach when the
volume variable is adopted.

IV. HAMILTONIAN FORMULATION OF THE
BIANCHI I MODEL IN THE ASHTEKAR

VARIABLES

The aim of this section is to introduce some general
features of the classical dynamics of the Bianchi I cosmo-
logical model as expressed in terms of the Ashtekar
variables (see [20]), before introducing the original analysis
performed in the paper in the next section. The importance
of studying this model resides in the legitimacy of con-
sidering more general cosmological models near the
singularity with respect to the highly symmetric isotropic
Universe.
In particular, the Bianchi I model represents the simplest

homogeneous but anisotropic geometry that reduces to the
flat FLRW model in the isotropic limit. Its line element
reads as

ds2 ¼ −NðtÞ2dt2 þ a21dx
2
1 þ a22dx

2
2 þ a23dx

2
3; ð27Þ

where a1, a2, and a3 are the three independent scale factors,
one for each direction. The phase space of the Bianchi I
model in the Ashtekar variables is six-dimensional and it is
expressed through the canonical couple ðci; pjÞ defined as

pi ¼ jϵijkajakjsgnðaiÞ; ci ¼ γ _ai; ð28Þ

with i ¼ 1, 2, 3 and fci; pjg ¼ κγδij. Starting from the
metric (27), we find the structure of the Bianchi I
Hamiltonian constraint in the Ashtekar variables when a
massless scalar field is considered, i.e.

FIG. 2. The polymer trajectory of the Universe volume v for the
FLRW model clearly shows a minimum in correspondence of the
big bounce.
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H¼−
1

κγ2V
ðc1p1c2p2þc1p1c3p3þc2p2c3p3Þþ

p2
ϕ

2V
¼0;

ð29Þ

with V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
. This constraint reduces to that one of

the isotropic model (15) if the isotropy condition is
imposed.
The classical dynamics of the system is clearly com-

pleted by the following Hamiltonian equations:

_pi ¼ Nkγ
∂H
∂ci ¼ −

pi

γpϕ
ðcjpj þ ckpkÞ;

_ci ¼ −Nkγ
∂H
∂pi

¼ ci
γpϕ

ðcjpj þ ckpkÞ ð30Þ

for i, j, k ¼ 1, 2, 3, i ≠ j ≠ k. After imposing the time
gauge _ϕ ¼ 1≕N ∂H

∂pϕ
⇒ N ¼ V

pϕ
, we can solve Eqs. (30)

and the scalar constraint (29) by assigning proper initial
conditions. In particular, the initial value problem must
satisfy the Hamiltonian constraint, so that the solution can
be numerically provided.
Actually, once the constants of motion

cipi ¼ Ki; pϕ ¼ Kϕ ð31Þ

have been identified (i ¼ 1, 2, 3), the six-equations system
(36) decouples as follows:

dpi

dϕ
¼ −

pi

γpϕ
ðKj þKkÞ;

dci
dϕ

¼ ci
γpϕ

ðKj þKkÞ ð32Þ

for i ≠ j ≠ k and (32) is made analytically solvable. In
particular, Fig. 3 shows that the Universe volume V ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
follows the classical singular behavior also in the

Ashtekar variables.

V. SEMICLASSICAL POLYMER DYNAMICS
OF THE BIANCHI I MODEL IN THE

ASHTEKAR VARIABLES

In this section we present the original part of this paper
by investigating the dynamics of the Bianchi I model in
terms of the Ashtekar variables when the polymer paradigm
is implemented. We recall that this analysis is expected to
provide significant insight on the behavior of the quantum
expectation values in PQM as well in LQC dynamics.
As seen for the FLRW case in Sec. III, we proceed by

imposing the polymer substitution for the configurational
variables in (29):

ci →
1

μi
sinðμiciÞ; ð33Þ

so the polymer Hamiltonian takes the form

Hpoly ¼ −
1

κγ2V

X
i≠j

sinðμiciÞpi sinðμjcjÞpj

μiμj
þ p2

ϕ

2V
¼ 0;

ð34Þ

where i, j ¼ 1, 2, 3 and V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
. Similarly, ϕ

represents our internal time, so N is fixed by the gauge

_ϕ ≔ N
∂Hpoly

∂pϕ
¼ 1 ⇒ N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
pϕ

; ð35Þ

in a way that the equations of motion in the polymer
representation are the following:

dpi

dϕ
¼ −

pi cosðμiciÞ
γpϕ

�
pj

μj
sinðμjcjÞ þ

pk

μk
sinðμkckÞ

�
;

dci
dϕ

¼ sinðμiciÞ
γμipϕ

�
pj

μj
sinðμjcjÞ þ

pk

μk
sinðμkckÞ

�
ð36Þ

for i, j, k ¼ 1, 2, 3, i ≠ j ≠ k. It is possible to solve this
system by establishing the initial conditions on the vari-
ables ðci; piÞ that must satisfy the Hamiltonian constraint
(34). In this respect, we make the choice1

Big Crunch

Big Bang

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

20

40

60

80

100
V( )

FIG. 3. Trajectories of the Universe volume V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
in function of time ϕ in the Ashtekar variables for the
Bianchi I model.

1The considered initial conditions on ci restrict the solutions to
those which are synchronized, due to the need of having a
simultaneous bounce in all three directional scale factors.
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cið0Þ ¼
π

2μi
; p1ð0Þ ¼ p̄1; p2ð0Þ ¼ p̄2;

p3ð0Þ ¼ p̄3 ¼
ðp2

ϕκγ
2μ1μ2 − 2p̄1p̄2Þμ3

2ðμ2p̄1 þ μ1p̄2Þ
: ð37Þ

Moreover, it can be easily seen that the momentum
conjugate to the scalar field is a first integral, since the
variable ϕ is cyclic in (34), and other constants of motion
can be obtained by combining the Hamilton equations (36).
So, in analogy with (31) we get

pi sinðμiciÞ
μi

¼ Ki; pϕ ¼ Kϕ; ð38Þ

where the considered values of Ki and Kϕ depend on the
initial conditions (37). As already mentioned, identifying
these first integrals makes possible to transform the six-
equations system shown in (36) in the three closed systems

dpi

dϕ
¼ −

pi cosðμiciÞ
γpϕ

½Kj þKk�;

dci
dϕ

¼ sinðμiciÞ
γμipϕ

½Kj þKk�: ð39Þ

Thanks to this procedure, the equations of motion can be
solved analytically, leading to the following solutions
(i ≠ j; i; j ¼ 1, 2):

ciðϕÞ ¼
2

μi
arccot

�
exp

�
−
p̄3=μ3 þ p̄j=μj

γpϕ
ϕ

��
;

piðϕÞ ¼ p̄i cosh

�
p̄3=μ3 þ p̄j=μj

γpϕ
ϕ

�
;

c3ðϕÞ ¼
2

μ3
arccot

�
exp

�
−
p̄1=μ1 þ p̄2=μ2

γpϕ
ϕ

��
;

p3ðϕÞ ¼ p̄3 cosh

�ðp̄1=μ1 þ p̄2=μ2Þ
γpϕ

ϕ

�
: ð40Þ

Using (40), we can obtain the Universe volume behavior
VðϕÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1ðϕÞp2ðϕÞp3ðϕÞj

p
that is shown in Fig. 4. The

resulting trajectory highlights that a semiclassical big
bounce replaces the classical big bang thanks to the
regularizing polymer effects, which are expected to become
dominant near the Planckian region.

VI. SEMICLASSICAL POLYMER DYNAMICS
OF THE BIANCHI I MODEL IN THE

VOLUMELIKE VARIABLES

In this section we study the dynamics of the Bianchi I
Universe for a new choice of variables, in complete analogy
with the analysis performed for the FLRW model in
Sec. III A 2. More specifically, the anisotropic character
of the Bianchi I model leads to the possibility of taking into

account two different sets of volumelike variables, that
coincide in the case of the isotropic model. Then, we will
compare the obtained results.

A. Analysis in the anisotropic
volumelike variables: ðV1;V2;V3Þ

Firstly, we consider as a set of volumelike variables three
equivalent generalized coordinates which coalesce to the
proper volume in the isotropic limit only (see [21]):

Vi ¼ sgnðpiÞjpij32; βi ¼
2ci

3
ffiffiffiffiffiffiffijpij

p ; ð41Þ

where βi for i ¼ 1, 2, 3 are the conjugate momenta and the
new symplectic structure for the system is characterized by
the conserved Poisson brackets fβi; Vjg ¼ κγδij. In this
case we are not promoting one of the configurational
variables to represent the Universe volume. On the con-
trary, we are imposing that the three independent coor-
dinates are isomorphic to the isotropic volume for each
direction, so that V ¼ jV1V2V3j13.
The Hamiltonian constraint for this framework in the

semiclassical polymer representation is obtained by using
the polymer substitution for the momenta βi after that the
canonical transformation on (29) has been performed, and
it reads as

Hpoly ¼ −
9

4κγ2V

X
i≠j

Vi sinðμiβiÞVj sinðμjβjÞ
μiμj

þ p2
ϕ

2V
¼ 0;

ð42Þ
where i, j ¼ 1, 2, 3. We imposeN ¼ V

pϕ
due to the choice of

ϕ as relational time, so the Hamilton equations describing
the dynamics are
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FIG. 4. Polymer trajectory of the Universe volume V ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j
p

in function of time ϕ: the big bounce replaces the
classical singularity of the Bianchi I model. In this graph we have
set κ ¼ γ ¼ 1, μ1 ¼ 1=2, μ2 ¼ 1=3, μ3 ¼ 1=4, pϕ ¼ 1=

ffiffiffi
2

p
,

p̄1 ¼ 1, and p̄2 ¼ 2.
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dVi

dϕ
¼ −

9Vi cosðμiβiÞ
4γpϕ

�
Vj

μj
sinðμjβjÞ þ

Vk

μk
sinðμkβkÞ

�
;

dβi
dϕ

¼ 9 sinðμiβiÞ
4γμipϕ

�
Vj

μj
sinðμjβjÞ þ

Vk

μk
sinðμkβkÞ

�
ð43Þ

for i ≠ j ≠ k. In analogy with the previous treatment, we
can identity the following constants of motion:

Vi sinðμiβiÞ
μi

¼ Ki; pϕ ¼ Kϕ; ð44Þ

that decouple the system (43) along the three directions. By
taking general initial conditions according to (42), the
analytical solutions for the anisotropic volume coordinates
read as

V1ðϕÞ ¼ V̄1 cosh

�
9ðV̄3=μ3 þ V̄2=μ2Þ

4γpϕ
ϕ

�
;

V2ðϕÞ ¼ V̄2 cosh

�
9ðV̄3=μ3 þ V̄2=μ2Þ

4γpϕ
ϕ

�
;

V3ðϕÞ ¼ V̄3 cosh

�
9ðV̄1=μ1 þ V̄2=μ2Þ

4γpϕ
ϕ

�
; ð45Þ

where

βið0Þ ¼
π

2μi
; V1ð0Þ ¼ V̄1; V2ð0Þ ¼ V̄2;

V3ð0Þ ¼ V̄3 ¼
ð2p2

ϕκγ
2μ1μ2 − 9V̄1V̄2Þμ3

9ðμ2V̄1 þ μ1V̄2Þ
: ð46Þ

By combining the solutions (45) we can find the
Universe volume behavior in function of ϕ as
VðϕÞ ¼ jV1ðϕÞV2ðϕÞV3ðϕÞj1=3, that is characterized by
the emergence of a big bounce as shown in Fig. 5.

B. Analysis in the volume variables: ðv;λ1;λ2Þ
The proper set of volume variables is defined as

λ1;2 ¼ sgnðp1;2Þ
ffiffiffiffiffiffiffiffiffiffiffi
jp1;2j

q
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp1p2p3j

p
;

η1;2 ¼
2p1;2c1;2 − 2p3c3ffiffiffiffiffiffiffiffiffiffiffijp1;2j

p ; η3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� p3

p1p2

����
s

c3: ð47Þ

The Poisson brackets are conserved ðfηi; λjg ¼ κγδij and
fηi; ηjg ¼ fλi; λjg ¼ 0, with λ3 ¼ v and i, j ¼ 1, 2, 3) and
the semiclassical polymer Hamiltonian takes the form

Hpoly ¼ −
1

4κγ2v

�X
i¼1;2

2
λi sinðμiηiÞv sinðμ3η3Þ

μiμ3

þ λ1 sinðμ1η1Þλ2 sinðμ2η2Þ
μ1μ2

þ 3v2
sin2ðμ3η3Þ

μ23

�

þ p2
ϕ

2v
¼ 0; ð48Þ

where the canonical transformation has been performed
before the implementation of the semiclassical polymer
paradigm, as in the previous subsection. We note that the
Hamiltonian constraint (48) has not the same expression of
the one proposed in [20], since the same variables as
ðv; λ1; λ2Þ are used but different ones are polymerized
(namely η1 and η2 have not the same meaning).
Analogously, we derive the Hamilton equations for the

couple of variables (v; η3):

dv
dϕ

¼−
vcosðμ3η3Þ

4γpϕ

�
2
X
i¼1;2

λi
μi
sinðμiηiÞþ 6

v
μ3

sinðμ3η3Þ
�
;

dη3
dϕ

¼ sinðμ3η3Þ
4γμ3pϕ

�
2
X
i¼1;2

λi
μi
sinðμiηiÞþ 6

v
μ3

sinðμ3η3Þ
�

ð49Þ

and also for the conjugate variables ðλ1; η1Þ and ðλ2; η2Þ:

dλi
dϕ

¼ −
λi cosðμiηiÞ

4γpϕ

�
2
v
μ3

sinðμ3η3Þ þ
λj
μj

sinðμjηjÞ
�
;

dηi
dϕ

¼ sinðμiηiÞ
4γμipϕ

�
2
v
μ3

sinðμ3η3Þ þ
λj
μj

sinðμjηjÞ
�
; ð50Þ

where we have used N ¼ v
pϕ

in order to derive the dynamics

of the model in function of the relational time ϕ.
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FIG. 5. Semiclassical polymer trajectory of the Universe
volume V ¼ jV1V2V3j1=3 as a function of ϕ. In this graph we
have set κ ¼ γ ¼ 1, μ1 ¼ 1=2, μ2 ¼ 1=3, μ3 ¼ 1=4, pϕ ¼ 1=

ffiffiffi
2

p
,

V̄1 ¼ 1, and V̄2 ¼ 2.
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Once fixed the initial conditions on the variables ðλ1; η1Þ,
ðλ2; η2Þ, and ðv; η3Þ according to (48), we can solve this
system analytically since the three-dimensional motion is
decoupled in three one-dimensional trajectories thanks to
the use of analogous constants of motion:

λ1;2 sinðμ1;2η1;2Þ
μ1;2

¼K1;2;
vsinðμ3η3Þ

μ3
¼K3; pϕ¼Kϕ:

ð51Þ

In this case, we fix the constants of motion as follows:

K1 ¼ K̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κγ2p2

ϕ þK2

ðK̄þ 1ÞðK̄þ 3Þ

s
þK;

K2 ¼ K̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κγ2p2

ϕ þK2

ðK̄þ 1ÞðK̄þ 3Þ

s
−K;

K3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κγ2p2

ϕ þK2

ðK̄þ 1ÞðK̄þ 3Þ

s
; ð52Þ

where K̄ and K are two free parameters. As we will see
below, a convenient form for the polymer-modified
Friedmann equation can be obtained thanks to this par-
ticular choice for the constants of motion; however, the
physical properties that will be derived still have a general
meaning, since they are valid for all the values assigned to
the constants K̄ and K (with K̄ ≠ −1;−3). In particular, in
the following will be highlighted the existence of a non-
trivial solution to the equation H2 ¼ 0, that identifies the
expression of the critical energy density for which the scale
factor velocity becomes null. More precisely, this informa-
tion allows pne to identify also the anisotropy contribution
to the total critical energy density added to the standard one
associated to the matter fields. This way, it is possible to
rigorously analyze the physical properties of the critical
point, whose presence is due to the polymer cutoff effects.
Regarding the Bianchi I model, the standard Friedmann

equation reads as (see [27])

H2 ¼ κ

3
ðρþ ρanisoÞ; ð53Þ

where the additional term ρaniso accounts for the contribu-
tion of the anisotropic gravitational degrees of freedom to
the total energy density. In what follows, we want to verify
how the semiclassical polymer approach modifies Eq. (53)
and, in addition, if the total critical energy density derived
from the modified Friedmann equation has universal
properties when the Universe volume itself is considered
as a configurational variable.
In this set of volume variables, the Hubble parameter can

be written as

H2 ¼
�
1

3v
dv
dt

�
2

¼ ðK1 þK2 þ 3K3Þ2
36γ2v2

cos2ðμ3η3Þ

¼ ðK1 þK2 þ 3K3Þ2
36γ2v2

½1 − sin2ðμ3η3Þ�

¼ ðK1 þK2 þ 3K3Þ2
36γ2v2

�
1 −

μ23
v2

K2
3

�
; ð54Þ

where we restored the synchronous time gauge N ¼ 1 in
the equation for the volume written in (49). Now, if we
substitute the conditions expressed above in (52), we obtain

H2¼ κ

18

f1ðK̄Þ2
f2ðK̄Þ

p2
ϕþp2

aniso

v2

�
1−

4κγ2μ23
f2ðK̄Þ

�
p2
ϕþp2

aniso

2v2

��
;

paniso¼
Kffiffiffiffiffiffiffiffiffi
2κγ2

p ; ð55Þ

where f1ðK̄Þ ¼ 2K̄þ 3 and f2ðK̄Þ ¼ ðK̄þ 1ÞðK̄þ 3Þ.
This expression represents the polymer-modified
Friedmann equation for the Bianchi I model in the
proper volume variables. In particular, the additional term
p2
aniso=2v

2 reasonably mimics the anisotropic contribution
ρaniso, so that we can compute ρtotcrit as

ρtotcrit ¼ ρϕcrit þ ρanisocrit ; ð56Þ

where the term regarding the matter scalar field takes the
usual expression p2

ϕ=ð2v2Þ. Moreover, from (55) the total
critical energy density results to be

ρtotcrit ¼
f2ðK̄Þ
4κγ2μ23

: ð57Þ

When the initial conditions on the motion satisfy (52), the
solution for the Universe volume vðϕÞ is

vðϕÞ ¼ μ3jK3j cosh
�
f1ðK̄ÞK3

2γpϕ
ϕ

�
ð58Þ

and it clearly resembles a bouncing behavior as shown
in Fig. 6.
Now we can take the expression of the total energy

density from (55) and use the law of motion for the
Universe volume to compute its critical value:

ρtotcrit ¼
p2
ϕ

2vðϕÞj2ϕ¼0

þ p2
aniso

2vðϕÞj2ϕ¼0

¼ f2ðK̄Þp2
ϕ

2μ23ð2κγ2p2
ϕ þK2Þ þ

f2ðK̄ÞK2

4κγ2μ23ð2κγ2p2
ϕ þK2Þ

¼ f2ðK̄Þ
4κγ2μ23

; ð59Þ
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that is equal to (57) as expected. Therefore, this analysis
shows that taking the Universe volume itself as a configu-
rational variable makes the big bounce acquire universal
physical properties, in agreement with the behavior
obtained for the set ðv; ηÞ in the FLRW model (see
Sec. III A 2).

VII. EQUIVALENCE FEATURE OF DIFFERENT
SETS OF VARIABLES

In Secs. VandVIwe performed the semiclassical polymer
analysis of theBianchi Imodelwith amassless scalar field in
three sets of variables, i.e. theAshtekar one and twodifferent
volumelike ones. The bouncing behavior over timeϕ for the
Universe volume has been outlined for all the three phase
space configurations, but the universal properties of the
critical point have been shown only in the proper set of
volumevariables (i.e. when theUniverse volume itself is one
of the three configurational variables), thanks to the deri-
vation of the polymer-modified Friedmann equation (55).
Obviously, the three sets of conjugate variables are canoni-
cally related at a classical level, but this is a necessary but not
sufficient condition for obtaining equivalent dynamics in the
polymer formulation (see [11,22,28,29] for not equivalent
polymer cosmologies). In other words, performing the
canonical transformation and doing the polymer substitution
do not commute, as shown in [13]. Indeed, it can be verified
that both the Hamiltonian constraint and the Hamilton’s
equations written in the three sets of variables cannot be
mapped in the semiclassical polymer framework (see
Secs. V and VI).
The aim of this section is to check whether it is possible

to recover the equivalence between the polymer semi-
classical dynamics analyzed in Secs. V and VI by general-
izing the approach used in [13]. We start by considering the
relation between the Ashtekar variables and the anisotropic
volumelike ones (for i ¼ 1, 2, 3), i.e.

jpij ¼ V2=3
i ; ci ¼

3

2
V1=3
i βi ð60Þ

that ensures the canonical equivalence of the two frame-
works at a classical level. In order to preserve the formal
invariance of the Poisson brackets also in the polymer
formulation [βi → 1

μi
sinðμiβiÞ and ci → 1

μ0i
sinðμ0icÞ], i.e.

fβi; Vig ¼ κγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðμiβiÞ2

q
¼ κγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðμ0iciÞ2

q
¼ fci; pig;

ð61Þ

we impose the conditions μiβi ¼ μ0ici. So, we obtain that
the polymer parameters related to the Ashtekar connections
depend on the configurational variables as

μ0i ¼
2μi

3
ffiffiffiffiffiffiffijpij

p ; ð62Þ

where μ1, μ2, and μ3 are constant. So, by using (62) the
Hamiltonian in the Ashtekar variables (34) and that one in
the anisotropic volumelike ones (42) are mapped also after
that the polymer substitution has been implemented, i.e.
supposing that the polymer parameters are not invariant
under the change of variables makes commutative to write
the Hamiltonian in the new set of variables and to imple-
ment the semiclassical polymer substitution. This way, we
have demonstrated the semiclassical equivalence between
the dynamics in the Ashtekar variables and that in the
anisotropic volumelike ones, once considered the polymer
parameters in the Ashtekar variables depending on the
configurational coordinates. Clearly, also the equations of
motion are mapped in the two frameworks and the same
dynamical properties are obtained by using the new or the
old Hamiltonian. Indeed, we have (for i, j, k ¼ 1, 2, 3,
i ≠ j ≠ k)

dpi

dϕ
¼ 2sgnðViÞ _Vi

3V1=3
i

¼ κγ
V
pϕ

∂Hpolyðci; piÞ
∂ci

¼ −
pi cosðμ0iciÞ

γpϕ

�
pj

μ0j
sinðμ0jcjÞ þ

pk

μ0k
sinðμ0kckÞ

�
;

dci
dϕ

¼ 3

2

�
V1=3
i

_βi þ βi
_Vi

V2=3
i

�
¼ −κγ

V
pϕ

∂Hpolyðci; piÞ
∂pi

¼ 3

2

�
sinðμ0iciÞ
γμ0ipϕ

−
ci cosðμ0iciÞ

γpϕ

�

×

�
pj

μ0j
sinðμ0jcjÞ þ

pk

μ0k
sinðμ0kckÞ

�
; ð63Þ

where we notice that the equation of motion for pi is
formally equivalent to that one in (36) [but the solutions will
be different due to the new definition (62) of μ0i], while the
equation of motion for ci is different from that one in (36)
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FIG. 6. Semiclassical polymer trajectory of the Universe
volume vðϕÞ. In this graph we have set γ ¼ 1, μ3 ¼ 1=4,
pϕ ¼ 1=

ffiffiffi
2

p
, K3 ¼ 3, and K̄ ¼ 1=2.
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because of the dependence of the polymer parameter on pi
[see (62)]. So, the evolution of the Universe volume is
equivalent in the two pictures and the bounce acquires the
same physical properties of that set in which the polymer
parameters are constant. We remark that this equivalence
remains valid only in the semiclassical formulation of the
polymer paradigm, since the promotion of the polymer
momentum to a quantum operator will be a subtle issue
when the polymer parameter depends explicitly on the
coordinate.
Now, we could proceed in an analogous way to show the

equivalence between the anisotropic volumelike variables
and the proper volume ones, so that also the Ashtekar
formulation and the volume one would be dynamically
related. Unfortunately, as we can see from (47) the
canonical transformation from the Ashtekar set to the
proper volume one combines the directions in the momenta
space, with the consequence that η1;2 is not simply propor-
tional to c1;2 by means of a function only of the coordinates.
This feature prevents the implementation of the formalism
traced above, since the polymer theory is based on one-
dimensional lattices by construction. So, at the level of
the polymer paradigm it is not possible to investigate the
equivalence between the proper volume set and the
Ashtekar one (or the anisotropic volumelike one), not even
in their semiclassical formulations.
In conclusion, this analysis demonstrates that imposing a

cutoff on configurational variables that have the geometrical
dimensions of areas and volumes is sufficient to reproduce a
bouncing behavior for the Bianchi I model, but the universal
bound on the total critical energy density is ensured only
when the proper Universe volume is defined on a polymer
lattice with constant spacing. Moreover, by admitting a
dependence of the polymer parameters on the configura-
tional coordinates the dynamical equivalence has been
demonstrated between the Ashtekar formulation and the
anisotropic volumelike one, due to the fact that the canonical
change of variables from the areas pi to the volumelike
variables Vi does not mix the momenta directions, as in the
case of the proper volume set. Nevertheless, the development
of a more general polymer formulation would be a good
instrument to investigate the equivalence between the proper
volume variables and the Ashtekar ones, i.e. the original
variables of the LQG theory. This way, differently from the
picture obtained when constant polymer parameters are
implemented, the presence of a universal bounce would
be guaranteed also in the Ashtekar set at least at a semi-
classical level and so inferred the equivalence between the
two LQC schemes, at least at an effective level.

VIII. QUANTUM ANALYSIS

In order to perform the polymer quantization of the
Bianchi I model in the Ashtekar variables, firstly we have
to face the question of defining a timevariable that is suitable
to the description of quantum dynamics (regarding the

problem of time in quantum gravity, see [30,31]). Despite
the Universe volume is often adopted as a good time
variable [17,27,32], we observe that it is not a suitable
clock for the cosmological dynamics when a bouncing
cosmology is analyzed. Indeed, across the bounce the
collapse of the Universe is followed by a reexpansion and
so the Universe volume violates the basic prescription of
being amonotonic variable [2,31]. Here, the problemof time
is addressed by selecting the scalar field (to be regarded as
the kinetic component of the primordial inflaton [33,34]) as
a relational time in the sense defined in [1]. This same
procedure is considered as themost natural in all the relevant
investigations of the big bounce in quantum cosmology
[8,29].On the other hand, in [35] the loop quantization of the
homogeneous cosmologies is implemented, but a diagonal
component of the triads is chosen as internal time when
studying the dynamics of the Bianchi I model. The argument
used is that the behavior of the triad components remains
monotonic in the classical regime and that the absence of the
initial singularity is only related to the possibility of
uniquely well defining the wave function throughout the
minisuperspace. It is worth noting that in [35] only the
expanding branch of the evolution is considered and
the analysis is limited to a full quantum approach, whereas
the semiclassical dynamics is not addressed. On the con-
trary, here a canonical quantization of the polymer semi-
classical constraints is performed and the semiclassical
dynamics (in which the inverse triad effects are neglected)
shows clearly that the only monotonic variable is the scalar
field, since a bouncing dynamics emerges.
Once the natural clock for the system is fixed, we have to

face a more subtle question that concerns the morphology
of the quantum equation we have to employ in describing
the quantum features of the Bianchi I model. In the spirit of
the Dirac prescription of quantizing a constrained system
[36], we are lead to write down the following Wheeler-
DeWitt equation for the Universe wave function:

�
−∂2

ϕ þ
2

κγ2
ð∂x1∂x2 þ ∂x1∂x3 þ ∂x2∂x3Þ

�
Ψ ¼ 0; ð64Þ

where p̂ϕ ¼ −i∂ϕ, p̂i ¼ −i∂ci and the substitution

xi ¼ ln

�
tan

�
μici
2

��
þ x̄i ð65Þ

has been used. The conserved probability density is

J 0 ¼ iðΨ�∂ϕΨ −Ψ∂ϕΨ�Þ ð66Þ

and it is not positive defined, as any Klein-Gordon-like
measure. To adopt it in a well-defined way, the frequency
separation procedure is required and also can be naturally
performed in the absence of a potential term associated to
the scalar field (that is reasonably negligible at sufficiently
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high temperature and/or energy densities of the Universe
[17,37–40]). However, by comparing the quantum dynam-
ics of quasiclassical localized state with the semiclassical
Friedmann dynamics, we are able to outline that the
singularity is removed and a cutoff in the collapse naturally
arises. So, in order to deal with a localized state, we need
to follow the evolution of a suitable wave packet and
this requires the superposition of different (infinite in a
Gaussian packet) frequencies. Now, the subtle question is
in the impossibility to ensure the positive nature of the
probability density [25] when more than one frequency
mode is considered, even if the frequencies have all the
same sign. This is a well-known result in relativistic
quantum mechanics [25] and it can be easily shown by
considering two frequencies only. Even if this unpleasant
effect is not evident when we deal with a Gaussian packet,
to solve the super-Hamiltonian constraint before quantizing
the system, i.e. to perform an ADM reduction of the
dynamics [2,17,23,27], seems a more suitable canonical
method of quantization in agreement with the Dirac
prescription. Before passing to the technical aspects of
this approach, which leads to a Schrödinger-like equation
for the Universe wave function, we observe that in such a
procedure we pay for the fixing of a specific temporal
gauge, which is often thought as a choice concerning the
classical metric morphology. In particular, we assume to
deal with a lapse function which depends on time according
to its dependence on the phase space variables and by virtue
of the classical Hamilton’s equations. However, when
quantizing the system also this fixed lapse function
becomes a quantum operator and it has to act on the wave
function of the Universe too. This ambiguity in the
interpretation of the time gauge fixing is beyond the scope
of the present analysis, but we underline it in order to stress
how the construction of a parabolic constraint for the
quantization, or equivalently the removal of an hyperbolic
one, is sometime a more viable approach but has nontrivial
interpretative consequences. Actually, from the point of
view of the original Wheeler-DeWitt constraint, we are
leaving a pure geometrical approach.
Now, we recall the semiclassical scalar constraint written

in the Ashtekar variables (34) with the aim of performing
an ADM reduction of the variational principle:

p2
ϕ − Θ ¼ 0; ð67Þ

where

Θ¼ 2

κγ2

�
sinðμ1c1Þp1 sinðμ2c2Þp2

μ1μ2

þ sinðμ1c1Þp1 sinðμ3c3Þp3

μ1μ3
þ sinðμ2c2Þp2 sinðμ3c3Þp3

μ2μ3

�
:

ð68Þ

After choosing the scalar field ϕ as the temporal parameter,
we derive the ADM-reduced Hamiltonian by solving the
scalar constraint (67) with respect to the momentum
associated to the scalar field:

pϕ ≡HADM ¼
ffiffiffiffi
Θ

p
; ð69Þ

where we choose the positive root in order to guarantee the
positive character of the lapse function [see (35)].
Exploiting this procedure, the Wheeler-DeWitt equation
can be rewritten in the form of a Schrödinger one by
promoting the ADM-reduced Hamiltonian to a quantum
operator:

−i∂ϕΨ ¼
ffiffiffiffi
Θ̂

p
Ψ; ð70Þ

where the operator
ffiffiffiffi
Θ̂

p
, that we assume well defined, can

be written as

ffiffiffiffi
Θ̂

p
¼

�
−

2

κγ2
ð∂x1∂x2 þ ∂x1∂x3 þ ∂x2∂x3Þ

�
1=2

; ð71Þ

thanks to the substitution (65). The associated probability
density is

Pðx⃗;ϕÞ ¼ Ψ�ðx⃗;ϕÞΨðx⃗;ϕÞ; ð72Þ

where

Ψðx⃗;ϕÞ ¼ A
ZZZ

∞

−∞
dk1dk2dk3

Y3
i¼1

exp

�
−
ðki − k̄iÞ2

2σ2ki

�

× e
iðk1x1þk2x2þk3x3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κγ2
jk1k2þk1k3þk2k3j

p
ϕÞ ð73Þ

and A is fixed by the normalization. Indeed, as demon-
strated in [41,42] the square root operator (71) possesses
plane wave solutions with only positive eigenvalues, so it is
always possible to deal with a localized solution and in this
sense the problem of nonlocality is avoided. Actually, the
nonlocality is reflected in the fact that the pseudodiffer-
ential operator (71) has an infinite order of derivatives and
this affects also the absence of a continuity equation for the
probability density (72) that is only globally but nonlocally
conserved. Hence, we have discarded the covariant formu-
lation of the Wheeler-DeWitt equation in favor of a
Schrödinger-like one in order to define the probability
density (72) that is positive everywhere by definition and
whose spatial integral remains constant through time. This
way, we can analyze the quantum dynamics of (73), in
order to verify the consistency between the information
carried by the quantum wave packet of the Bianchi I model
and the semiclassical solutions provided in Sec. V when the
Ashtekar variables are considered.
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In Fig. 7 some different sections of the probability
density P at different values of ϕ are shown in order to
analyze how its shape and its maximum changes over time.
In addition, the present sections have been obtained by
fixing two of the three coordinates through the values
that they assume in the semiclassical trajectories. More
specifically, by combining the analytical solutions for the
connections ci [see (40)] and the relation (65), we obtain
that xi verifies a pure linear behavior in function of ϕ. In
particular, we have that

xiðϕÞ ∼
p̄j=μj þ p̄k=μk

γpϕ
ϕ ¼ miϕ ð74Þ

for i, j, k ¼ 1, 2, 3, i ≠ j ≠ k. We want to remark that this
analysis based on the probability density sections is
justified by the semiclassical decoupling of the dynamics
along the three directions (see Sec. V).
As we can see from Fig. 7, the normalized quantum

distributions of x1, x2, and x3, respectively, are shown in
sequence and their spreading behavior over time is evident,
as well as their Gaussian-like shape. Also, in Fig. 8 the
positions of the peaks of P are represented by the red dots
that have also been fitted by means of a linear interpolation.
The resulting fitting functions are represented by the red
dashed straight lines, whereas the semiclassical trajectories
by the continuous straight ones. In particular, the slope of
the fitting straight lines is consistent with the semiclassical

one mi (i ¼ 1, 2, 3) with a confidence level of the order of
three standard deviations for all three coordinates.
Therefore, we can conclude that there is a good correspon-
dence between the quantum behavior of the Universe wave
function and the solutions of the semiclassical dynamics.
Furthermore, this feature of our analysis in the Ashtekar
variables suggests the presence of a bouncing dynamics
with nonuniversal properties also at a quantum level when
the polymer paradigm is fully implemented.
Now, let us consider the proper volume set and compute

the quantum mean value of the volume operator and its
standard deviation. The aim of this analysis is to investigate
the consequences of the spreading behavior of the Bianchi I
wave packet on the quantum fluctuations. Recalling the
Hamiltonian constraint (48), we write the Schrödinger-like
equation in the volume variables

−i∂ϕΨ ¼
ffiffiffiffî
Ξ

p
Ψ; ð75Þ

where λ̂1;2 ¼ −i∂η1;2 , v̂ ¼ −i∂η3 and the ADM-reduced
Hamiltonian can be written as

ffiffiffiffî
Ξ

p
¼

�
−

1

2κγ2
ð∂x1∂x2 þ 2∂x1∂x3 þ 2∂x2∂x3 þ 3∂2

x3Þ
�
1=2

ð76Þ

thanks to the substitution xi ¼ ln½tanðμiηi
2
Þ� þ x̄i. The mean

value of the volume operator can be computed as
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FIG. 7. The normalized sections Pðxi;ϕÞ (with xj ∼mjϕ and xk ∼mkϕ) are shown in sequence for i ¼ 1, 2, 3, respectively, at
different times (here k̄1 ¼ k̄2 ¼ k̄3 ¼ 0, σk1 ¼ σk2 ¼ σk3 ¼ 1=2). Their spreading behavior over time is evident together with the
Gaussian-like shape.
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FIG. 8. The three pictures show the position of the peaks of Pðxi;ϕÞ for i ¼ 1, 2, 3, respectively, in function of time ϕ (red dots). The
resulting fitting functions (red dashed straight lines) overlap the semiclassical trajectories (continuous lines) with a confidence level of
three standard deviations (we have set m1 ¼ 0.55, m2 ¼ 0.95, and m3 ¼ 1.20).
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Z þ∞

−∞
dx⃗Ψ�ðx⃗;ϕÞv̂Ψðx⃗;ϕÞ; ð77Þ

where

Ψðx⃗;ϕÞ ¼ A
Z

∞

−∞
dk3e

−ðk3−k̄3Þ2
2σ2 eiðk̄1x1þk̄2x2þk3x3Þ

× e
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2κγ2
jk̄1k̄2þ2k̄1k3þ2k̄2k3þ3k2

3
j

p
ϕ ð78Þ

is the Universe wave packet, that is constructed through the
superposition of the plane wave solutions of (75) by means
of a Gaussian coefficient on k3, and A is fixed by the
normalization. Moreover, in order to quantify the consis-
tency between the quantum behavior and the semiclassical
one, we have to consider the standard deviation, i.e.

Δv̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv̂2i − hv̂i2

q
: ð79Þ

In order to simplify the numerical calculation of the volume
mean value, fixed values have been chosen for k1 and k2. In
other words, we have considered Gaussian distributions for
k1 and k2 so narrow that they can be reasonably approxi-
mated with a Dirac delta. In (77) we remark that we have
used the substitution from η3 to x3 to write the v̂ operator in
the x representation.
In Fig. 9 the dots represent the mean value of hv̂i at fixed

times and the continuous line is the resulting interpolation
function, that well follows the semiclassical trajectory for the
Universe volume (58) (dashed line). On the other hand, the
spreadingphenomenon is evident in the error bars (see Fig. 9).
Indeed, as we can see from Fig. 10, Δv̂ grows with ϕ in a
nonlinear way. In order to derive the interpolation function,
the dots representing the value of Δv̂ at fixed times have
been fitted, obtaining a quadratic relation with time, i.e.

Δv̂ ∼ aþ bϕ2. This means that the Bianchi I wave packet
remains localized only in the neighborhood of ϕ ¼ 0, where
the consistency with the semiclassical solution is meaningful.
So, referring to Fig. 9 we can infer that near the critical point
there is a goodcorrespondencewith the semiclassical solution
vðϕÞ, but as ϕ grows the standard deviation becomes so
relevant that the comparison with the semiclassical behavior
is meaningless. We notice that the high localization at the big
bounce is a result of how the Bianchi I wave packet has been
constructed anddoesnot have aphysicalmeaning. Indeed, the
Universe wave function can be initially localized at any point
of the configurational space, actually also in correspondence
of thebounce. This arbitrariness corresponds to the possibility
of admitting the quasiclassical limit near thebounce, as shown
in Fig. 9. However, the unlimited growth of Δv̂, i.e. the
spreading of the wave packet, questions the possibility to
extrapolate the quasiclassical limit at any time. Actually, in
Fig. 11 the behavior of the relative error Δv̂=hv̂i shows that
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FIG. 9. The mean value of the volume operator hv̂i as a function
of ϕ (pink dots), the interpolation function (continuous blue line),
and the semiclassical trajectory (dashed gray line). The error bars
(pink dashed vertical lines) are centered in the mean values and
have a length of 2Δv̂. We have set κ ¼ γ ¼ 1, σ ¼ 4, k̄1 ¼ 11,
k̄2 ¼ 9, and k̄3 ¼ 10.
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FIG. 10. The standard deviation of the volume operator Δv̂ as a
function of ϕ (purple dots) and the parabolic interpolation
function (continuous purple line). We have set κ ¼ γ ¼ 1,
σ ¼ 4, k̄1 ¼ 11, k̄2 ¼ 9, and k̄3 ¼ 10.
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FIG. 11. The relative error Δv̂=hv̂i as a function of ϕ (orange
dots) and the interpolation function (continuous orange line).
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the Universe wave packet has a maximum localization at the
bounce, and then the quantum fluctuations grows until a
region of minimum localization is reached, after which the
relative error decreases. In conclusion, this analysis highlights
that, even if the validity of the quasiclassical limit is not
prevented in this picture, the semiclassical characterization of
the big bounce for an anisotropic model (in which the
spreading phenomenon is present) does not give a complete
pictureof theUniverse dynamics since the role of thequantum
fluctuations cannot be neglected.

IX. CONCLUDING REMARKS

In this paper we analyzed the semiclassical and quantum
dynamics of the Bianchi I cosmology in the presence of a
massless scalar field as viewed in the polymer paradigm,
which is able to introduce a discrete nature in the behavior
of the configurational variables. Our study is focused on the
comparison between the dynamical features emerging
when the natural Ashtekar connections or the volumelike
variables are implemented. More specifically, the aniso-
tropic character of the Bianchi I model has allowed us to
adopt two different sets of volumelike variables, one [20]
(see also [11,12]) that corresponds to adopting the Universe
volume itself (de facto the product of all three scale factors)
and the other [21] which consists of a set of three
anisotropic volumelike variables. It is important to stress
that in the case of an isotropic Universe it would reduce to a
unique choice, in particular that one at the ground of the so-
called improved LQC Hamiltonian [6].
On the semiclassical level, i.e. when we deal with a

modified dynamics due to a redefined conjugate momen-
tum, we provided a detailed study in all three sets of
variables. In LQC this analysis is justified by the consid-
erations developed in [43–45], so the present polymer
analysis is expected to confirm the possibility to have the
quasiclassical limit near the bounce. In the theoretical
framework traced above we clarified how the emergence
of a universal bounce in the past Universe evolution (i.e.
fixed by fundamental constants and parameters only) is
guaranteed only using the Universe volume itself as a
configurational coordinate defined on the polymer lattice.
This analysis is also supported by the derivation of the
exact polymer-modified Friedmann equation for the
Bianchi I model in a convenient form. This way, the proper
expression of the critical energy density for the anisotropic
Universe has been provided, giving a complete picture of
the big bounce features. In this respect, it is interesting to
highlight that choosing anisotropic volumelike variables
(i.e. coordinates with the geometrical dimensions of a
volume) does not ensure the presence of an intrinsic cutoff,
even if they reduce to the Universe volume in the isotropic
limit. This issue could have some impact in the attempt to
clarify which property of the configurational space is
associated to a bouncing cosmology when PQM is applied
(for a discussion of this question see [13,22]). Similarly,

when we adopted the Ashtekar connections (adapted to the
Bianchi I model) we demonstrated that the big bounce is
not a universal feature of the cosmological model, since it
depends on the initial conditions on the dynamics.
Therefore, if we regard as preferable the use of the
Ashtekar connections in accordance with the paradigm
of LQG, we can conclude that the polymer quantum
dynamics of a Bianchi I model is always associated to a
bounce, but the critical energy density does not take a fixed
cutoff value. Moreover, we have also shown that it is
possible to recover a dynamical equivalence between the
Ashtekar set and the anisotropic volumelike one. In
particular, by considering the polymer parameter as
depending on the configurational coordinates when per-
forming the canonical change of variables, in the two
formulations we obtain the same dynamics of that set in
which the polymer parameter is constant. Clearly, the
dynamical equivalence should be demonstrated also in
the full quantum picture, where it involves the nontrivial
implementation of a translational operator depending on
the coordinates. However, the intrinsic one-dimensional
character of the polymer representation prevents the gen-
eralization of the proposal made in the FLRW case [13] to a
six-dimensional phase space (as that of the Bianchi I
model) when the momenta directions are mixed. As a
consequence, it is not possible to demonstrate the equiv-
alence between the proper volume formulation and the
Ashtekar or the anisotropic volumelike one, not even at a
semiclassical level. In this sense, developing a three-
dimensional picture of the polymer formulation would
be useful to understand what assumptions make it possible
to reproduce a universal bouncing dynamics also in the
Ashtekar variables. This would also highlight the strong
parallelism between the μ0 and μ̄ schemes of LQC to the
polymerization of the Ashtekar and proper volume varia-
bles for the Bianchi I model, as demonstrated in the
isotropic case in [13].
Then, we performed the canonical quantization of the

polymer-modified model in the Ashtekar connections
paradigm and in the proper volume variables to study
the behavior of the Universe wave packet. Actually, by
performing an ADM reduction of the variational problem
we passed to a Schrödinger-like representation, in order to
avoid the issue regarding the sign of the Klein-Gordon
probability density that would emerge in the Wheeler-
DeWitt approach (in this respect, see [24,25]). Regarding
the Ashtekar representation, by following the dynamics of
the probability density peak we saw that it has common
features with the corresponding semiclassical trajectories
and this leads us to claim that also on a quantum level the
use of Ashtekar variables provides a bouncing cosmology
whose critical energy density depends on the distribution
of the quantum numbers characterizing the Universe wave
packet. Furthermore, in the proper volume representation
we have computed the quantum mean value of the volume

SEMICLASSICAL AND QUANTUM FEATURES OF THE BIANCHI … PHYS. REV. D 105, 064011 (2022)

064011-15



operator, showing the consistency with the semiclassical
Universe volume trajectory but also the nonlinear behav-
ior of the standard deviation. This result is due to the
spreading behavior of the Bianchi I wave packet over
time, as shown in the quantum analysis in the Ashtekar
variables, differently from what happens in the isotropic
case. So, even if the relative error is bounded and
the quasiclassical limit is not prevented, the relevance
of the quantum fluctuations makes the semiclassical
analysis near the bounce a qualitative but not completely

satisfactory approach in the case of anisotropic cosmo-
logical models.
In conclusion, thanks to the relevant role that the Bianchi I

model plays in constructing the behavior toward the singu-
larity of a Bianchi IX cosmological model (and hence of a
generic inhomogeneous Universe [17,46]), we claim that
also in more general cosmological models our results
suggest the presence of a big bounce with the same features
traced here, especially when the Ashtekar connections are
concerned [47].
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