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Abstract

The paper deals with the job shop scheduling problem with complex blocking

constraints (BJSS) under uncertainties. It proposes a method for the evalua-

tion of the risk that the makespan of a deterministic feasible schedule assumes

worse extreme values, considering uncertain activity durations represented by

intervals. An interval-valued network approach is proposed to model the fea-

sible solutions characterized by uncertain values for jobs’ releases, processing

and setup times. The study assumes the Value-at-Risk (VaR) and the Condi-

tional Value-at-Risk (CVaR) as risk measures for the makespan of the feasible

solutions, and addresses both modeling and computational issues. They include

the implementation and test of a network-based model used with an innovative

algorithm for the first time applied to complex BJSS problems to provide an

accurate, rapid and viable computation of both risk indices. The impact of dif-
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ferent sources of uncertainty (including setups, releases and processing times) on

the overall performance of the proposed approach are analyzed. The results of a

wide experimental campaign show that the method, for both the computational

time and the quality of the evaluations, has broad applicability. It can support

the decision-makers for a wide range of practical scheduling cases taking into

account their risk sensibility.

Keywords: VaR, CVaR, Scheduling, Risk, Job Shop, Uncertainty

1. Introduction

The job shop scheduling problem (JSS) is one of the most studied problems in

combinatorial optimization [9, 12, 21]. This interest is keeping momentum due

to the technological developments of recent years [60]. With the appearance and

diffusion of the Cyber-Physical Systems (CPS) and Industry 4.0 frameworks,

new models and methods can be considered to solve industrial problems, such

as JSS [61]. In this sense, incorporating shop-floor data and forecasting models

in scheduling methodologies is seen as a very promising approach for dealing

with real JSSs and their complexity [51, 52].

In JSS the operations of a set of jobs must be processed on a set of machines

with an assigned sequence without interruptions or preemptions. Machines can

only host one job at a time, and if multiple jobs require the same machine,

a system of precedence is prescribed between all conflicting operations. The

problem requires the sequencing and scheduling of all operations on the ma-

chines so that the overall completion time (makespan) is minimized [55, 56]. In

its classic version, the JSS includes a buffer of infinite capacity between two

consecutive machines. However, in many practical contexts a limitation of this

buffer must be introduced for economic or technical reasons. In real-world ap-

plications, these situations often occur in addition to other constraints such as

release times and setup operations [9, 12, 21].

The blocking or zero-buffer constraints represent total absence of storage

possibilities between a pair of consecutive machines. In this model, a job frees a
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machine only when the next machine is available for its operation. Otherwise,

the job remains on the current machine blocking it even after its processing

is completed. Two versions of blocking constrained job shop problem (BJSS)

can be distinguished depending on whether the swap between conflicting jobs

is allowed or not [23, 38]. This study deals with the no-swap BJSS version,

considering only conflict (or deadlock) free schedules.

Most of the papers in the literature propose deterministic job shop models.

However, in some applications the time attributes of the problems may be un-

certain. When there are not enough information to fully describe the uncertain

time attributes, upper and lower bounds on their values are often available or

easier to obtain [9, 28].

Scheduling problems which take uncertainties into account are in general

computationally complex and the literature on stochastic and uncertain schedul-

ing is relatively limited compared to the research on deterministic scheduling.

These are among the reasons why analysts often use deterministic models that

incorporate simplified representations of the most relevant stochastic aspects in

order to determine or select the schedule to implement.

However, it is generally difficult to compute a risk measure for a schedule,

even when it is given, i.e., the sequencing and allocation of jobs are fixed in

advance [53, 59]. Nevertheless, even when optimizing is not the goal of the

analysis, providing a risk measure for a schedule computed with deterministic

or simplified parameters is very relevant in the operations management prac-

tice [25, 39]. In fact, a decision maker may need a quick and reliable support

system, capable of adequately measuring the risk of a possible schedule under

consideration [26, 53, 59].

The assessment of the risk can be obtained taking advantage of forecasting

of time attributes, under the assumption that they are described by means of

prediction intervals [2, 37, 62]. To this aim, risk measures often employed are

the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR) [11, 24, 54,

59]. We deal with the evaluation of both VaR and CVaR for the makespan

of BJSS schedules when the actual time attributes of jobs are uncertain at
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the scheduling or optimization stage and belong to a given interval provided

by an available information/prediction system. The evaluation of these risk

measures for a schedule is obtained through a dedicated algorithm on a temporal

network model representing the activities of the problem extending the method

proposed in [41] to include also the VaR. This method allows the adoption

of the considered risk indices as evaluation criteria or outcome functions for

different scheduling environments. This study takes into consideration realistic

combinations of different sources of uncertainty that can influence the makespan

of a given feasible solution for the BJSS. Furthermore, it extends and validates

an algorithmic approach enabling the decision-maker to quantify the risk of its

deterioration.

The article offers different contributions which can mainly be summarized

as follows:

– it proposes an interval-valued network model representing the solutions

of complex BJSSs, considering uncertain values of times for jobs’ release,

processing and setups;

– it introduces and applies an innovative evaluation method for the risk that

the makespan of a BJSS schedule deteriorates assuming worse extreme

values when time attributes are represented as integer intervals;

– it takes into account realistic combinations of sources of uncertainty af-

fecting a BJSS solution often arising in practice;

– it validates the proposed methodology through an extensive experimen-

tal campaign, showing its applicability and its effectiveness in terms of:

i) accuracy in the evaluation of both VaR and CVaR of the makespan;

ii) the required computational cost and its suitability for applications;

iii) the effects of the type and severity of the uncertainties;

– it spurs and motivates to use risk measures such as VaR and CVaR in

scheduling applications.
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The rest of the paper is structured as follows. Section 2 offers a review of

the related literature. In Section 3, the formal description of the considered

BJSS model is provided, including different real constraints, the representation

of data uncertainties, and an illustrative example. The adopted risk measures

on the makespan of BJSS are illustrated in Section 4, where the algorithm for

their evaluation is also presented. The description and the discussion of the

experimental validation of the proposed method is the theme of Section 5 while

Section 6 presents the conclusions and possible directions for further research.

2. Literature review

The job shop scheduling problem shows a wide range of applications char-

acterized by the presence of blocking constraints [12, 21]. They include produc-

tion [33, 45], logistics [13, 29] and services [35, 46] planning and scheduling. The

problem is NP-Hard and its modeling and theoretical basis have been outlined in

the literature [23, 38]. The relevance of the BJSS from both an application and

an academic point of view has motivated numerous algorithmic contributions

in recent decades (e.g., see [3, 30, 40, 43, 47, 48]). In general, these algorithmic

approaches are designed for environments in which the timing attributes (i.e.,

setups, release and processing times) of the problem are assumed to be deter-

ministic. However, in some applications these attributes may be uncertain due

to possible changes or due to imprecise information [28, 32, 57]. With the evolu-

tion of information technologies and their increasing availability in logistics and

production environments nowadays it is often possible to have accurate infor-

mation for uncertain time values in the form of prediction intervals [60, 61, 62].

This has renewed interest in scheduling problems characterized by interval val-

ued (or bounded) time attributes [4, 7, 8] as cases with incomplete information

or imperfect knowledge [14, 15, 18]. Considering that the actual duration of the

activities is known only when the activities are performed, the uncertainty on

these parameters means that the value of the objective function represented by

the makespan is also uncertain [28, 32]. Despite the relevance of the theme, the
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literature on interval valued scheduling problems is still relatively limited, and

to the best of our knowledge no specific studies on BJSS have been proposed so

far.

Defining and studying the effects of uncertainties on the makespan of a given

feasible schedule of the BJSS and the determination of a schedule with the

best performance taking into account the uncertainties are two issues that have

considerable practical relevance [25, 36, 52, 53, 60]. For both cases, the study can

be approached quantifying the risk that the makespan assumes worse extreme

values considering the time intervals of each activity [17, 18, 54]. Calculating a

risk measure for a feasible solution is a mean of analysis both for its validation

and for an informed decision in case of possible alternative solutions [16, 25,

54, 61]. Furthermore, it may allow to evaluate the effects on the makespan

of different sources of uncertainty helping to consider appropriate contrasting

actions [26, 39, 58, 59, 60]. Different scalar indicators have been used in the

scheduling literature to quantify the risk associated with uncertain performance

in terms of Cmax (hereinafter, the uncertain quantities are shown in bold type)

of a given schedule [6, 17, 36, 53], and often the use of a specific indicator also

depends on the personal choices of the decision maker. Having to minimize the

Cmax, two quantile-based measures ordinarily applied in finance and engineering

as upside risk indices are receiving increasing attention in scheduling where

uncertainty is often associated with some time attributes: VaR and CVaR [32,

34, 54]. These two indicators can also be used in scheduling problems modeled

as stochastic activity networks [41, 42, 54]. Although the use of these quantile-

based measures to take into account the uncertainty in scheduling seems quite

promising, only a few relevant articles appear in the literature. They mainly deal

with some specific application [22, 42, 49], or they are limited to some scheduling

environment [6, 16, 34, 54]. Compared to other domains, where both VaR and

CVaR are used more frequently, their limited diffusion in the scheduling field

could be ascribed to the complexity of the adopted methods which often rely

in simulation and sampling techniques [10, 20, 34, 53, 54]. The computation

of the CVaR of Cmax in project scheduling problems modeled through activity
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networks has been recently addressed in [41], with activity durations considered

as integers belonging to known intervals.

3. Blocking Job Shop with Interval-Valued Uncertainties

In BJSS the operations of a set of jobs J must be executed on a set of

resources or machines M . Each machine can process only one job at a time.

Let operation oji be the processing of a job j on a machine i, which cannot be

interrupted or preempted, with pji indicating its processing time. The sequence

of operations for each job is given, while the timed sequence of operations for

each machine must be determined so that the makespan Cmax is minimized.

In BJSS there is no intermediate storage possibility between two successive

machines. Thus, when a job j terminates on machine i its operation oji, if

machine h is available, it moves to h to perform its subsequent operation ojh

or, if h is not available, keeps occupying i, thus blocking it. Moreover, no swaps

between jobs are allowed.

With respect to the classical BJSS, in this study two sets of realistic addi-

tional constraints are considered:

1. each job j has a release time rj ≥ 0, indicating the earliest time at which

job j can start to be processed;

2. given two operations oji and oki to be performed on machine i by jobs j

and k, the sequence-dependent setup time (SDST) sjki > 0 (skji > 0)

must be spent between the end of operation oji (oki) and the start of

operation oki (oji). The strict positivity of the SDSTs derives from the

no-swap hypothesis, while non-negativity is required in the case of blocking

with swaps allowed.

An instance of BJSS is said to be deterministic when all its parameters and

quantities are considered to be known with certainty. Finding a feasible solution

for BJSS translates into assigning to each operation oji a starting time, such
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that all these constraints are satisfied and no deadlock between jobs exists. Such

a solution is a deterministic optimum when the makespan Cmax is minimized.

This paper investigates the uncertanty influence in terms of the risk of wors-

ening the makespan on a given BJSS deterministic feasible solution. The ratio-

nale is to provide, in view of the actual solution implementation, the decision-

makers accurate information about the makespan uncertainty which have been

neglected or overlooked during the schedule deterministic computation. More

specifically, we consider the case in which some attribute a (i.e., processing

times, release times and SDST) has an uncertain duration represented as an

independent interval of integers time units Ta = [ta, ta]. The values ta and ta

are integers, with ta ≥ 0, and ta ≤ ta. This assumption also allows to model

problems in which the temporal values are not represented by integers by ap-

propriately choosing the time unit.

The width of the intervals depends on the available data and the accuracy

of the information/prediction system in use. When a time attribute Ta has a

certain value, we have the deterministic case modeled with an interval having

coincident extremes ta = ta. For sake of simplicity, in the latter case we indicate

Ta = ta = ta.

To take into account the uncertainty of these time attributes for a feasible

solution of BJSS under makespan performance measure, we represent the BJSS

solution as a temporal activity network with integer interval-valued durations

(IIN), extending the method proposed in [41]. A IIN is a discrete network

defined by the pair (G,T), where G = (N,A) is a directed graph consisting of

a set of nodes N and a set of arcs A. Each node in N = {0, 1, . . . , n − 1, n}

represents an event. More specifically, each node m = 1, . . . , n − 1 models the

starting of an activity, while nodes 0 and n are added in N to model the starting

and the ending activities of the overall network. A variable vm is assigned to each

node m to model the starting time of the related activity. An arc a = (m, q) ∈ A

represents a time attribute a related to an activity with its associated interval

temporal duration Ta.

When modeling a given feasible BJSS solution using a IIN, each node in
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m ∈ N represents an operation oji, with vm its starting time, while the arcs

in A can be partitioned in four subsets representing the processing (P ), SDST

(S), job releases (R), and logic constraints (LC):

P : given a node m associated to operation oji and a node q associated

to its subsequent job operation ojh, an arc a = (m, q) ∈ A represents the

processing time pji of operation oji starting at time vm and having an

interval duration Ta;

S: for a node m associated to the end of oji (i.e., the start of its subsequent

job operation) and a node q associated to operation oki scheduled after it

on machine i, an arc a = (m, q) ∈ A having duration Ta represents the

SDST sjki from the ending of the operation oji to the beginning of the

operation oki;

R: given a node m assigned to the first operation of job j, an arc a =

(0,m) ∈ A having duration Ta is associated to the release time rj of job

j;

LC: for a node m associated to the end of the last operation of job j, an

arc a = (m,n) ∈ A models a makespan logic constraint linking the end of

job j with the objective function Cmax, computed as vn.

Given a deterministic feasible solution of BJSS, the corresponding IIN model

can be easily constructed assuming the availability of prediction intervals for the

time attributes. The resulting directed network is connected and contains single

starting and ending nodes. Furthermore, due to the considered no-swap BJSS

version, the network represents only conflict or deadlock free schedules, and

therefore is acyclic.

Clearly, a single deterministic feasible solution has associated many possible

realizations of the values of the uncertain durations. Let the configuration T

of the activity durations in a given IIN network Q be the realization for each

activity a of a specific integer value ta from the time interval Ta = [ta, ta]. For

each IIN’s configuration the corresponding value of Cmax equals the length of
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the critical path in the corresponding network [9, 12] keeping the same structure

as that of the deterministic feasible solution. The dependence of Cmax of the

network from the specific configuration T is expressed by Cmax(T ). As an

extension we denote with UT (Q) the set of all the configurations of a network

Q. Its cardinality gives the total number of possible configurations |UT (Q)|,

and can be determined as:

|UT (Q)| =
|A|∏
a=1

∆a.

where ∆a = ta − ta + 1 indicates the number of integers from ta to ta in Ta.

Activities with certain durations contribute with a unit value factor to the

overall product, and the IIN Q of a BJSS solution without uncertainties has

only one configuration, resulting |UT (Q)| = 1.

The objective function Cmax in a specific IIN network Q associated a de-

terministic feasible solution of BJSS belongs to the range [Cmax, Cmax], with

Cmax obtained when all time attributes in the network assume their optimistic

minimum duration, while for Cmax they take the pessimistic maximum value.

3.1. Illustrative Example

Let us consider a small example for a BJSS problem to better illustrate the

concepts just discussed. In this example we have three jobs (J = {A,B,C}) and

three machines (M = {1, 2, 3}). To complete each job, three blocking operations

have to be performed. More specifically, job A has to be processed on machines

1, 2 and 3, in that order, job B on machines 3, 2, 1 and job C on 1, 3, 2.

Table 1: Processing and release times for the illustrative example

j M1 M2 M3 rj

A 6 4 6 2

B 7 5 3 1

C 4 2 5 3

Tables 1 and 2 show the input data of this illustrative example. Specifically,

Table 1 reports the processing and release times used in the example. Column 1

indicates the job j ∈ J the row refers to, Columns 2-4 report the processing of
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Table 2: SDST sjki for the illustrative example

M1 M2 M3

j

k
A B C A B C A B C

A - 1 1 - 2 1 - 3 4

B 2 - 5 3 - 1 1 - 2

C 2 3 - 3 1 - 1 1 -

job j on, respectively, machines 1, 2 and 3 while Column 5 reports its release

time. Table 2 instead presents the SDST sjki. The rows of the table refer to

job j, while the columns to job k and machine i the setup relates to.
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Figure 1: Optimal deterministic solution for the illustrative example

Figure 1 shows graph G of the optimal solution for the given BJSS example.

Each node m ∈ N has a label with a letter indicating the job and a number

indicating the machine for the associated operation or the string “out” to signal

the end of the job. Colored arcs (red for job A, blue for B, and green for C)

are associated with release and processing time constraints, while black arcs are

associated with the sequencing decisions taken in the chosen solution. Each arc

has the indication of its weight.

However, the given solution could be affected by uncertainty. Graph G of

the BJSS solution is used to build the related IIN Q, shown in Figure 2, by

including the uncertain arc durations Ta. Specifically, in Figure 2, bold arcs

represent uncertain time attributes. All others arcs are deterministic, thus with
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Figure 2: The IIN for the BJSS solution of Figure 1

a duration Ta where ta = ta. For example:

• arc (C3, C2) is associated to the processing time of operation C3, repre-

sented as the interval [5, 12];

• arc (C3, B1) is associated to the SDST between the end of operation C1,

which correspond to the subsequent beginning on C3, and the start of

operation B1, represented as the interval [3, 8];

• arc (0, A1) is associated to the deterministic release time of job A whose

duration is 2;

• arc (Cout, n) links the end of job C to the makespan, i.e., the ending node

of the IIN. Since this arc is a purely logical constraint, it is not affected

by uncertainty, thus its duration is 0.

The IIN Q in this example, considering the uncertainties on the arcs (0, B3),

(C3, B1), and (C3, C2), admits |UT (Q)| = ∆(0,B3) ∗∆(C3,B1) ∗∆(C3,C2) = 384

configurations.

Figure 3 reports a graph showing the number of configurations for each

possible value of the makespan in the illustrative example.

The makespan has an optimistic value Cmax = 35 obtained calculating the

longest path from node 0 to node n when all the uncertain durations assume
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Figure 3: Number of configuration related to each Cmax value

their minimum integer value. Similarly, at the other extreme, we obtain the

pessimistic value Cmax = 46.

Figure 4 shows the Gantt charts for the deterministic solution for the (a) op-

timistic and (b) pessimistic cases, respectively. In the figure, filled blocks rep-

resent the processing of a job on a machine, each in its reference color, sketched

ones the time a job blocks a machine after its processing is finished while waiting

for the next one to be available, and changing colored blocks the SDST between

two subsequent jobs on the same machine. Furthermore, dotted lines between

Figures 4(a) and 4(b) show the increased time due to the uncertain durations,

specifically in blue the release time of job B, in green the increasing processing

time of job C on machine 3 and in black the SDST between jobs C and B.

From Figure 4(a) we can see how, in the optimistic case, the longest path

between nodes 0 and n involves only operations on M1 plus the ones of job A

on the other machines. Instead, in the pessimistic case, the increase on job B

release time and on the setup time between jobs C and B on M1 changes not

just the length of the longest path, but also the operations it passes through.

In this case, operation B3 blocks job C on M1. As a consequence, job B has to
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Figure 4: Gantt chart for the (a) optimistic and (b) pessimistic makespan

wait until time unit 21 before it can start its operation on M1 and only after it

is done job A can begin to be processed.

Computing the longest path can be useful to compute the makespan in the

extreme cases, while for the assessment of the risk associated with a feasible

solution, specific indicators and algorithms for their calculation are introduced

and discussed in the next section.
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4. VaR and CVaR for the Makespan of BJSS

Considering the Cmax to be minimized, we focus our analysis on the following

upwards quantile-based risk measures at probability level α:

• Value-at-Risk of Cmax (VaRα(Cmax)):

VaRα(Cmax) = inf{c : prob(Cmax ≤ c) ≥ α} (1)

It can be defined as the maximum possible loss excluding all (1−α)100%

worse cases. Thus, it does not assess the magnitude of possible losses, but

individuates a value exceeded by (1− α)100% of all possible cases.

• Conditional Value-at-Risk of Cmax (CVaRα(Cmax)):

CVaRα(Cmax) = E(Cmax|Cmax ≥ VaRα(Cmax)) (2)

It is the expected value of all cases above the threshold represented by

VaRα(Cmax) [11, 50], and can be obtained as:

CVaRα(Cmax) =
1

1− α

∫ 1

α

VaRβ(Cmax) dβ (3)

If the decision maker is interested both by frequency and severity of adverse

cases, it is preferable to use CVaRα instead of VaRα [11, 54]. The risk neutral

choice is represented by a probability level α = 0, while higher values of α are

chosen by the most risk averse decision maker. As the level α tends to its upper

extremum (i.e., α = 1), both VaRα(Cmax) and CVaRα(Cmax) tend to their

worst or pessimistic case of value Cmax. On the other extremum, as α tends to

0, VaRα(Cmax) tends to the best or optimistic completion time Cmax, whereas

CVaRα(Cmax) tends to the expected value of the makespan E(Cmax).

The finite number of integers Γ contained in the interval [Cmax, Cmax] rep-

resents a measure of the amount of uncertainty for a given IIN, and can be

obtained as Γ = Cmax − Cmax + 1. It is useful to note that the two risk mea-

sures CVaRα(Cmax) and VaRα(Cmax), both have bounded values:

Cmax ≤ VaRα(Cmax) ≤ CVaRα(Cmax) ≤ Cmax,∀α ∈ [0, 1] (4)
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Furthermore, considering the deterministic counterpart of the expected value

of the makespan Cmax(E(T)), i.e., the completion time that occurs when the

duration of each activity Ta is assigned its expected value E(Ta), we have (e.g.,

see [11]):

Cmax(E(T)) ≤ E(Cmax) ≤ CVaRα(Cmax),∀α ∈ [0, 1] (5)

The definitions of VaRα and CVaRα suggest a simple and exact method

to determine the VaRα(Cmax) and CVaRα(Cmax) in IINs [11, 54]. In fact,

considering a IIN Q, the configurations in UT (Q) can be sorted in decreasing

Cmax order to find the corresponding values of VaRα and CVaRα of Cmax

individuating the CTα worst (i.e., highest) configurations in UT (Q), where CTα

denotes the counting target for the given value of the probability level α:

CTα = d(1− α)|UT (Q)|e (6)

Proceeding in this way for the case of the illustrative example presented

in Section 3.1, and using a probability value α = 0.90, we obtain the results

summarized in Table 3.

Table 3: Analysis of the illustrative example

|UT (Q)| α CTα Cmax Cmax Cmax(E(T)) VaRα(Cmax) CVaRα(Cmax)

384 0.90 10 35 46 39 44 44.820

Unfortunately, this straightforward procedure can only be used for very small

instances and is therefore not of practical interest. In the literature, techniques

based on sampling or the generation and analysis of scenarios are widely used

to obtain estimates of VaRα(Cmax) and CVaRα(Cmax) [34, 54]. However, in

general these techniques require considerable computational time.

This paper adopts the counting method introduced in [41] to evaluate the

CVaRα for the makespan of a IIN, and extend it to compute VaRα(Cmax) and

calculate some useful performance indices as illustrated in the following section.
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Figure 5: Conceptual scheme of the procedure for VaRα(Cmax) and CVaRα(Cmax).

4.1. Algorithmic scheme

This section illustrates the computational method adopted to evaluate both

the VaRα and CVaRα of the uncertain Cmax in the IIN representing a BJSS

solution. To carry out this issue we consider the method proposed in [41]. This

method is mainly based on a very fast and accurate procedure which starts at

Cmax for the given IIN and counts back all configurations leading to each pos-

sible successive Cmax value. This counting procedure is designed as an iterative

process consisting of three phases, as schematically depicted in Figure 5, which

continues until enough data is obtained to calculate both CVaRα and VaRα.

The first phase of the algorithm, starting from a BJSS solution given as

input, constructs the IIN Q and conducts a preliminary analysis calculating

|UT (Q)|, the value of CTα corresponding to the prescribed probability level α,

and the initial value L = Cmax to start the evaluation.

In the second phase the iterative counting process takes place and it refers,

at each step, to a specific level L corresponding to a possible value of Cmax. In
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the single step at level L the counting is obtained exploiting all possible series-

parallel reductions applicable on the Critical Subgraph related to the level L

[41].

When all the critical subgraphs used in the counting procedure completely re-

duce to a single arc by series-parallel simplifications, then the proposed method

guarantees the exact computation of VaRα and CVaRα, differently an heuristic

evaluation provides the lower and upper bounds, denoted as LBVaRα(Cmax),

UBVaRα(Cmax) and LBCVaRα(Cmax), UBCVaRα(Cmax), respectively.

The third phase of the procedure calculates the results and some additional

performance indicators. For both risk measures the results are either exact or

computed averaging the related upper and lower bounds. Two indicators are

computed to evaluate the quality of the results achieved for CVaRα. The first

of these indicators is the quality index ICVaRα :

ICVaRα =

0 when Cmax = Cmax(E(D))

UBCVaRα−LBCVaRα

Cmax−Cmax(E(D))
otherwise

(7)

ICVaRα offers a measure of the progress on the knowledge of CVaRα achieved

applying the algorithm. In fact, ICVaRα compares the gap between the bounds

(UBCVaRα and LBCVaRα) on CVaRα and the distance between the worst case

and the deterministic counterpart of the makespan, assumed as known.

The second of the considered indicators is the estimated maximum rela-

tive error MRECVaRα , determined considering that the approximation adopted

when the algorithm has an heuristic behavior can lead at most to an absolute

error of
UBCVaRα (Cmax)−LBCVaRα (Cmax)

2 , and therefore it assures a maximum rel-

ative error MRECVaRα :

MRECVaRα =
UBCVaRα(Cmax)− LBCVaRα(Cmax)

UBCVaRα(Cmax) + LBCVaRα(Cmax)
(8)

Analogously, the procedure calculates two indicators to assess the quality

of the results for VaRα, namely IVaRα and MREVaRα . These indicators are

conceptually similar to those previously described but are adapted to the VaRα,
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considering the related bounds and a different reference interval.

IVaRα =


0 when Cmax = Cmax

UBVaRα−LBVaRα

Cmax−Cmax
otherwise

(9)

MREVaRα =
UBVaRα(Cmax)− LBVaRα(Cmax)

UBVaRα(Cmax) + LBVaRα(Cmax)
(10)

Considering the experimental results reported in [41], we use the counting

procedure ES MinS which due to its rapidity and accuracy is suitable for the

application in the validation and final selection phase of the BJSS. The com-

putational complexity of this procedure is shown to be O(Γ2|A|2), where A is

the set of arcs in the IIN, and Γ = Cmax − Cmax + 1 represents the amount of

uncertainty in the network.

5. Experimental Study

This section is dedicated to the description of our experimental campaign

which consists of a set of computational tests aimed at investigating the following

research aspects:

i) effectiveness of the proposed method in accurately calculating VaRα and

CVaRα of Cmax for the BJSS problem;

ii) computational cost of the risk assessment and its suitability for applica-

tions;

iii) effects of the type and severity of the uncertainty in the BJSS instances

on both the system performance and the behavior of the risk assessment

method;

iv) usefulness of the proposed methodology for decision makers.

Concerning the computational environment, it consists of a machine with a

Quad-Core Intel Xeon E5 processor working at 3.7 GHz clock speed, equipped

with 32 GB of RAM, and operating under OS X 10.14.6. The risk measures

procedure is implemented in plain Python language and run on a single thread.
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Section 5.1 illustrates the design of the computational tests. Computational

results are presented and discussed in Section 5.2, whereas Section 5.3 offers a

discussion on the managerial implications.

5.1. Design of Computational Tests

This study takes into account realistic combinations of sources of uncertainty

affecting a BJSS solution often arising in practice, and investigates the validity

and applicability of the proposed methodological approach through an extensive

experimental campaign. The computational analysis is based on a wide set of

instances composed of different sets of complex and realistic cases derived from

classical benchmark deterministic job-shop problems. To this aim, we consider

58 instances well established in the literature for the job shop scheduling with

blocking constraints. Namely, we consider the blocking versions of the ABZ [1],

FT [19], LA [31] and OBZ [5] instance sets, each made up of respectively 5, 3, 40

and 10 instances. Then, we enrich these basic BJSS instances with additional

structural constraints and sources of uncertainty, as described in the following

to ensure the reproducibility of the analysis.

Regarding the constraints introduced in Section 3, following [30], we intro-

duce for each job j ∈ J a release time rj randomly extracted from a uniform

distribution as in Equation (11), where pji is the processing time of operation oji

of job j on the required machine i.

rj = U

[
0, 2 ·min

j∈J

{∑
i

pji

}]
(11)

Moreover, we add SDST constraints by generating for each pair of operations

oji and oki on a machine i a couple of SDST sjki and skji from the uniform dis-

tribution U [1, 0.25 · pmaxji ], where pmaxji is the maximum processing time among

all operations of jobs j on machine i in the specific instance under considera-

tion [44].

For the resulting complex scheduling problem there are no viable exact solu-

tion methods available. Therefore, each instance has been solved using a state-

of-the-art iterated greedy metaheuristic algorithm for BJSS with the makespan
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objective proposed in [48]. For each of the so built instances we have collected

the best 20 feasible solutions (often including the deterministic optimal solu-

tions) obtained by the algorithm for a total of 1160 feasible schedules.

The deterministic solutions so obtained give rise to networks with a structure

having on average 161.1 nodes (ranging from 44 to 332) and 1392.1 arcs (ranging

form 139 to 4711). As regards the makespan, its coefficient of variation CV

(i.e., the ratio of the standard deviation to the mean) is always very low, and on

average is equal to 0.01, showing that the solutions collected for each instance

have a comparable quality. Table 4 reports in details for each BJSS instance

the number of jobs |J | and machines |M |, the number of nodes (|N |) and arcs

(|A|) of the corresponding IIN, and the statistics (i.e., average value, standard

deviation and CV ) of the Cmax for the sets of collected deterministic solutions.

Regarding the possible sources of uncertainty affecting the considered in-

stances, we consider seven cases focusing on a specific subset of uncertain at-

tributes Θ = {P, S,R, PS, PR,RS, PRS}, keeping all the others deterministic.

These are all the possible cases with the categories of time attributes consid-

ered in the BJSS model. However, each case also has a practical relevance as it

represents situations of possible variability in the time attributes [9, 21, 27, 42].

The latter may depend on the degree of automation and standardization of the

activities and processes which are not always under the complete control of the

decision maker, e.g., in the BJSS there may be manual procedures in the se-

tups or in the operations, while some activities may be carried out by external

personnel or service suppliers.

To better assess the impact of the severity of uncertainties we introduce

two different scenarios indicated as Sc10 and Sc25 and characterized as follows.

For each case in Θ, the η% of uncertain attributes a are considered. Each of

these attributes a is associated to an interval of time values Ta = [ta, ta], where

ta is the basic deterministic value, and ta =
⌊
δta
⌋
. Scenario Sc10 adopts the

parameters η = 10 and δ = 0.10, whereas in Sc25 the values are η = 25 and δ =

0.25, representing considerably more severe situations in terms of uncertainty.

Combining the considered feasible solutions and all cases and scenarios, the
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Table 4: Characteristics of the 58 instances and the set of their 20 deterministic solutions
Instance |J| |M| |N| |A| Avg Cmax St Dev Cmax CV Cmax

ABZ5 10 10 112 571 2066.6 24.7 0.01

ABZ6 10 10 112 571 1632.6 24.3 0.01

ABZ7 20 15 322 3191 1591.8 11.5 0.01

ABZ8 20 15 322 3191 1603.9 9.3 0.01

ABZ9 20 15 322 3191 1600.3 22.4 0.01

FT06 6 6 44 139 92.1 4.5 0.05

FT10 10 10 112 571 1473.0 22.8 0.02

FT20 20 5 122 1091 1959.8 35.0 0.02

LA01 10 5 62 296 1105.4 28.7 0.03

LA02 10 5 62 296 1103.3 22.2 0.02

LA03 10 5 62 296 995.8 26.0 0.03

LA04 10 5 62 296 1036.9 36.2 0.03

LA05 10 5 62 296 915.6 18.8 0.02

LA06 15 5 92 631 1529.1 22.5 0.01

LA07 15 5 92 631 1416.0 22.6 0.02

LA08 15 5 92 631 1491.4 19.6 0.01

LA09 15 5 92 631 1567.4 28.1 0.02

LA10 15 5 92 631 1555.5 19.3 0.01

LA11 20 5 122 1091 1970.6 34.6 0.02

LA12 20 5 122 1091 1829.7 23.5 0.01

LA13 20 5 122 1091 1949.7 33.4 0.02

LA14 20 5 122 1091 2049.3 19.5 0.01

LA15 20 5 122 1091 2004.9 25.4 0.01

LA16 10 10 112 571 1520.3 21.8 0.01

LA17 10 10 112 571 1328.9 13.0 0.01

LA18 10 10 112 571 1384.1 18.4 0.01

LA19 10 10 112 571 1424.1 18.7 0.01

LA20 10 10 112 571 1530.6 16.2 0.01

LA21 15 10 167 1231 2094.8 39.8 0.02

LA22 15 10 167 1231 1884.0 12.8 0.01

LA23 15 10 167 1231 2101.2 29.8 0.01

LA24 15 10 167 1231 1943.4 16.8 0.01

LA25 15 10 167 1231 1975.4 38.2 0.02

LA26 20 10 222 2141 2710.5 44.5 0.02

LA27 20 10 222 2141 2709.7 27.5 0.01

LA28 20 10 222 2141 2802.6 27.0 0.01

LA29 20 10 222 2141 2492.9 22.2 0.01

LA30 20 10 222 2141 2707.6 14.8 0.01

LA31 30 10 332 4711 3987.1 44.2 0.01

LA32 30 10 332 4711 4215.1 37.7 0.01

LA33 30 10 332 4711 3892.4 40.3 0.01

LA34 30 10 332 4711 4044.7 43.6 0.01

LA35 30 10 332 4711 4183.4 20.5 0.00

LA36 15 15 242 1831 2404.1 24.3 0.01

LA37 15 15 242 1831 2576.3 18.0 0.01

LA38 15 15 242 1831 2326.0 16.9 0.01

LA39 15 15 242 1831 2404.7 15.9 0.01

LA40 15 15 242 1831 2477.4 25.9 0.01

ORB01 10 10 112 571 1643.1 15.1 0.01

ORB02 10 10 112 571 1566.2 16.1 0.01

ORB03 10 10 112 571 1570.3 31.1 0.02

ORB04 10 10 112 571 1554.0 16.4 0.01

ORB05 10 10 112 571 1492.3 33.1 0.02

ORB06 10 10 112 571 1742.7 25.4 0.01

ORB07 10 10 112 571 753.0 17.0 0.02

ORB08 10 10 112 571 1370.2 16.4 0.01

ORB09 10 10 112 571 1450.4 26.0 0.02

ORB10 10 10 112 571 1660.3 21.0 0.01

AVG. 15.4 9.2 161.1 1392.1 1939.0 24.2 0.01
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Figure 6: Boxplot for Γ over all the solutions for the cases in Θ under scenarios Sc10 and Sc25

number of schedules for which to calculate the risk measures reaches 16240. This

large set of solutions to be evaluated contains IINs which have different spread

and extent of uncertainty conducting to different values of Γ = Cmax−Cmax+1.

These values are summarized in Figure 6 for Sc10 and Sc25, respectively. More

precisely, for each scenario is reported a boxplot related to the statistics of Γ over

all the evaluations for the seven cases in Θ (reported in the x-axis). Note that,

the boxplots in Figure 6 have a different scale for Γ values due to the diverse

amount of uncertainty introduced in the IINs in the two scenarios. Each graph

in the figure shows the statistics of Γ for the corresponding scenario. Overall, it

can be observed that the designed experiments lead to the analysis of a large and

diversified case study. Figure 6 shows that, as expected, the cases in which the

processing times are uncertain have Γ values tending to be much higher in both

scenarios since the processing arcs are relatively more numerous in A. As regards

the probability level α of the risk measures CVaRα and VaRα, three different

values are used (α ∈ {0.99, 0.95, 0.90}) which represent different sensitivities of

the decision maker regarding the risk of worsening of the makespan and the

possibility of delays in the jobs completion. This triples the number of risk

assessments to be executed for each indicator reaching 48720.
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5.2. Results Analysis

This section reports analyzes the results of the experimental campaign pro-

viding answers to the research questions introduced in Section 5. To this aim,

Tables 5, 6 and 7 summarize the results obtained for the three probability levels

α = {0.99, 0.95, 0.90}, respectively. Each table contains two sections dedicated

to the two scenarios Sc10 and Sc25, and for each of them the results obtained

in the 7 cases in Θ = {P, S,R, PS, PR,RS, PRS}) are reported by columns.

Whereas the rows show the average and the standard deviation over the con-

ducted risk evaluations of the indicators adopted to assess the quality of the

results obtained for CVaRα (reported in the first part of the tables) and VaRα

(in the second part of the tables). The results are analyzed considering the in-

dicators including the relative gap between upper and lower bounds for the risk

measures (GapCVaR and GapVaR), the quality index (ICV aR and IVaR) and the

estimated maximum relative error (MRECVaR and MREVaR) which have been

introduced in Section 4.1. Furthermore, we report ExactCVaR and ExactVaR as

indicators of the exact or heuristic behavior of the algorithm. They account

for the percentages of cases solved exactly for CVaRα and VaRα, i.e., the cases

with LBCV aR = UBCV aR and LBV aR = UBV aR, respectively.

Overall, the three tables show that high quality results are always reached

for both risk measures. In general, as expected from the characteristics of the

algorithm used, the quality of the results improves as the α value increases.

As regards the impact of uncertainty, with the same α probability level, better

results are obtained in the scenario Sc10 characterized by lower levels of uncer-

tainty as shown in Figure 6. While within the same scenario, better results are

obtained in cases where the processing times are deterministic and, due to the

scenarios structure, the degree of uncertainty remains low.

Regarding the CVaRα we observe that the average MRECVaR never exceeds

the value 0.01, while both GapCVaR and the ICVaR are very low even if they are

affected by the uncertainty. In fact, their values tend to be higher in scenario

Sc25 and, more in general, when processing times are uncertain conducting to

more challenging IINs. This influence is also found for the percentage ExactCVaR
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of exact assessments which is greater when the uncertainty is more limited.

However, even in cases with greater uncertainty, the detected gap and error

remain low, indicating that the algorithm still obtains accurate estimates.

A similar dependence on uncertainties is shown by the algorithm behavior

for the VaRα. Compared to the CVaRα case, we observe an improvement in the

percentages of exact evaluations and a slight worsening of the relative gap, the

quality index and MREVaR. The latter is however always less than 0.02.

These observations show how the method adopted succeeds in effectively and

accurately calculating CVaRα and VaRα of Cmax for complex BJSS problems.

Finally, we analyze the efficiency of the proposed method in terms of the

computational effort required. To this aim, the last rows of Tables 5, 6 and 7

report the computation time (indicated as Time, and expressed in seconds) of

each risk measure, averaged on all the instances and the related standard de-

viation. The risk assessment algorithm, in general, is rapid and makes slightly

increasing computational effort as α values decrease as the algorithm’s count-

ing procedures have to process an increasing amount of network configurations.

However, this is not really a major flaw as there is usually a greater interest

in evaluating CVaRα and VaRα for high α values. As expected from the com-

putational complexity analysis discussed in Section 4.1, the computation time

is more sensitive to the value of Γ and |A|. This explains the longer times re-

quired in the more severe Scenario Sc25 and for cases with greater uncertainty

and instances with larger networks as analyzed in Table 4 and in Figure 6.

Tables 8 and 9 report for each scenario and for each case considered, the

percentage of approximated risk evaluations and the average computation times

with respect of the size of the instances. In Table 8 the rows refer to specific

values of |A|, already reported in Table 4, indicating the number of instances

(reported as #Inst.) having each size. The results reported in the table averages

120 evaluations for each instance (i.e., considering 3 α values, 20 feasible solu-

tions, and 2 risk measures). As the size of the solutions to be analyzed and the

amount of uncertainty increase, the algorithm tends to solve exactly a smaller

number of evaluations, however it still provides very accurate approximations.
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Moreover, this analysis highlights the impact of the possible sources of uncer-

tainty (i.e., the typology of uncertain arcs) within each scenario. Adopting a

similar structure, Table 9 shows the analysis of the averages of the computa-

tional times for each scenario and each case considered with respect to the size

of the instances, detailing what is shown in an aggregate way in the Tables 5,

6, and 7. The greatest computational effort is required for larger instances with

many uncertain arcs and a huge number o configurations. They are identified

in particular in the scenario Sc25 for networks with more than 3000 arcs, and

in cases with uncertainties on the processing times that are associated with the

largest set of arcs. For example, for these solutions in the PRS case (last column

in Table 9) the total number of configurations is between 10317 and 10605.

The proposed method provides support to the decision maker to quickly

calculate a risk measure as an outcome function for the set of feasible schedules

available. Therefore, the method can be used for the selection and validation

of the solution to be implemented or executed, quantifying the risk of possible

deterioration of the makespan to give adequate guarantees on the behavior of

the system with regard to extreme cases, according to a level of probability α.

Concerning the BJSS instances, their deterministic solutions found by the

metaheuristic algorithm have a very low coefficient of variation, as reported

in Table 4. Moreover, the analysis of the experimental results shows that the

performances of deterministic solutions are often affected only to a limited extent

by uncertainty, confirming that the adopted deterministic approach is quite

robust. This aspect is illustrated in aggregate over all the evaluations in Figures

7 and 8 reporting, for each scenario and for each case in Θ, the boxplots of

the relative risk measures (indicated in percentage as Risk(%)) for CVaR and

VaR, respectively. They are computed for each solution with respect to its

deterministic makespan Cmax, i.e., considering Risk = CVaRα(Cmax)−Cmax
Cmax

for

the case of CVaR, and Risk = VaRα(Cmax)−Cmax
Cmax

for the VaR.
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Table 8: Percentage of approximated risk evaluations for size of instance
Scenario |A| # Inst. P S R PS PR RS PRS

Sc10

139 1 0 0 0 3.3 0 1.7 0

296 5 0.7 0 0 4.0 0.7 0 3.0

571 18 2.1 0 0 4.5 2.1 0 8.8

631 5 0.7 0.7 0 4.8 0.7 0 3.7

1091 6 8.1 0 0 17.6 8.1 0 17.5

1231 5 16.3 1.7 0 20.0 16.3 0.7 28.3

1831 5 12.5 0 0 29.0 12.5 0 30.7

2141 5 10.5 0.3 0 30.7 10.5 1.3 30.2

3191 3 29.7 4.4 0 63.1 29.7 16.7 58.6

4711 5 50.3 10.3 0 78.8 50.3 2.3 87.2

Sc25

139 1 1.7 3.3 0 11.7 1.7 0 18.3

296 5 32.8 0.3 0 52.2 32.8 3.2 57.0

571 18 65.5 2.8 0 81.8 65.5 5.5 88.2

631 5 79.0 8.7 0 95.2 79.0 16.5 95.2

1091 6 90.3 23.5 0 99.2 90.3 24.4 99.4

1231 5 97.0 20.8 0 99.3 97.0 21.3 99.7

1831 5 99.3 14.5 0 99.7 99.3 21.0 100

2141 5 100 29.7 0 100 100 53.3 100

3191 3 100 62.2 0 100 100 88.1 100

4711 5 100 88.7 0 100 100 86.8 100

Nevertheless, we observe two types of situations to be further analyzed. The

first situation is represented by instances for which the best deterministic solu-

tion in the set offers also the best risk profile. The second situation, instead,

presents some solution with a better risk profile than that of the best deter-

ministic solution, requiring the decision maker to solve a trade-off. Moreover,

as the degree of uncertainty increases (i.e., considering the scenarios and the

values of Γ reported in Figure 6), the solutions have a worse risk profile which

also tends to have a significant variability on the basis of the α levels and, in

these cases, it becomes determining the sensitivity of the decision maker to the

risk. When the deterministic solutions remain preferable our analysis provides

the scheduler with a certification of its risk related to the uncertainty. Indeed,

the proposed methodology provides the decision maker with a tool for easily

identifying the presence of schedules with the best risk profiles in the set of

available solutions, giving a positive answer to the research question about the

usefulness of this method for decision makers. To better highlight this aspect

of the results, combining the usefulness of the methodology with the effects of

the type and extent of uncertainties, in Tables 10 and 11 we report, for the two
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Table 9: Average computation time for size of instance
Scenario |A| # Inst. P S R PS PR RS PRS

Sc10

139 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02

296 5 0.01 0.01 0.01 0.01 0.01 0.01 0.01

571 18 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01

631 5 0.02 0.01 0.01 0.02 0.02 0.01 0.02

1091 6 0.03 0.01 0.01 0.05 0.03 0.01 0.05

1231 5 0.05 0.02 0.01 0.07 0.05 0.02 0.09

1831 5 0.07 0.02 0.02 0.11 0.06 0.02 0.20

2141 5 0.08 0.03 0.02 0.12 0.08 0.03 0.15

3191 3 0.25 0.07 0.06 0.72 0.24 0.14 0.68

4711 5 0.69 0.09 0.04 1.4 0.67 0.08 1.90

Sc25

139 1 0.02 0.02 0.02 0.03 0.02 0.03 0.04

296 5 0.09 0.01 0.01 0.18 0.09 0.01 0.19

571 18 0.19 <0.01 <0.01 0.34 0.19 0.01 0.50

631 5 0.77 0.03 0.01 1.7 0.77 0.03 2.0

1091 6 3.3 0.06 0.01 5.4 3.3 0.06 5.3

1231 5 5.8 0.05 0.01 9.1 5.8 0.05 9.5

1831 5 10.1 0.06 0.02 15.3 10.1 0.08 27.9

2141 5 20.4 0.15 0.02 28.7 20.4 0.24 30.3

3191 3 70.1 0.89 0.07 100.9 70.2 5.8 333.2

4711 5 144.5 2.5 0.05 223.8 144.4 3.4 296.3

scenarios and for each α value, the percentages of cases in which the preferable

risk profile is not associated with the best deterministic solution. The overall

percentages for CVaRα are 7.88% and 17.65% for scenarios Sc10 and Sc25, re-

spectively, whereas for VaRα are 7.47% in Sc10 and 16.50% in Sc25. The tables

report the detailed average results for each of the 7 cases belonging in the range

[0%, 27.59%] for CVaRα and [0%, 24.14%] for VaRα. We observe that only for

the R case and limited to the Sc10 scenario there are zero cases for all three α

values. Furthermore, in Sc10 the cases S and RS have relatively low percentages

for each α value. This is explained by the low level of uncertainty present in

those cases. In fact, in all other cases, percentages exceeding 10% are obtained.

These results confirm the impact of diffusion and the extent of uncertainties in

the BJSS model, and highlight it from a more practical point of view.

5.3. Discussion and Managerial Insights

This section discusses the obtained results from a managerial or practical

perspective. The latter is often the view that scheduling is a decision to be

made rather than a mathematical procedure, and it is the concern of the sched-

ulers. Schedulers face many challenges everyday, and need practical advice on
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Figure 7: Boxplot for the normalized CVaR risk over all the solutions for the cases in Θ under

scenarios Sc10 and Sc25

Table 10: Percentage of cases in which the best deterministic solution does not have the best

risk profile under CVaRα
Scenario α P S R PS PR RS PRS Avg

Sc10

0.99 10.34 3.45 0 13.79 10.34 1.72 12.07 7.39

0.95 10.34 3.45 0 17.24 10.34 3.45 12.07 8.13

0.90 12.07 3.45 0 15.51 12.07 3.45 10.34 8.13

Sc25

0.99 25.86 10.34 10.34 24.14 25.86 13.79 27.59 19.70

0.95 20.69 10.34 10.34 22.41 20.69 10.34 27.59 17.49

0.90 18.97 10.34 10.34 17.24 18.97 10.34 24.14 15.76

how to schedule the shop-floor or a whole factory [39]. In many cases, planners

and schedulers see their task as trying to satisfy requirements in an environ-

ment affected by variability in information, operations and outcomes. In daily

practice, schedulers generally solve one instance at a time with a given char-

acterization of uncertainty in terms of sources and relevance, and with a well

defined risk behavior (i.e. in terms of risk index and probability level α to use).

The latter is determined on the basis of the decision-makers knowledge, rules

and skill settings.

Besides this, we observe that our computational tests contains also very

stressful cases for the proposed approach and the experimental results show

that the risk assessment methodology is suitable for real contexts. Further
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Figure 8: Boxplot for the normalized VaR over all the solutions for the cases in Θ under

scenarios Sc10 and Sc25

Table 11: Percentage of cases in which the best deterministic solution does not have the best

risk profile under VaRα

Scenario α P S R PS PR RS PRS Avg

Sc10

0.99 10.34 3.45 0 13.79 10.34 1.72 10.34 7.14

0.95 12.07 3.45 0 15.52 12.07 1.72 13.79 8.37

0.90 12.07 1.72 0 10.34 12.07 1.72 10.34 6.90

Sc25

0.99 22.41 10.34 10.34 18.97 22.41 13.79 24.14 17.49

0.95 22.41 10.34 8.62 24.14 22.41 10.34 20.69 17.00

0.90 18.97 8.62 5.17 18.97 18.97 12.07 22.41 15.02

managerial insights include both operational and tactical/strategical aspects.

From the operational point of view, the proposed approach allows to evalu-

ate VaR and CVaR as outcome functions for any given feasible solution of BJSS.

This allows to validate the solution to be implemented and to quantify the risk

giving guarantees on the behavior of the system in the most adverse cases with

reference to the prescribed level of α. In addition, in case several schedules are

available for implementation, the presented approach helps selecting the best

one. A rapid and precise risk assessment procedure can play a fundamental role

for the scheduler, even in cases where it is possible to receive updates of the

33



values and quantities affected by uncertainty. It is worth noting that even in

situations where the methodology seldom leads to the choice of alternative solu-

tions to the deterministic one, it generally favors the improvement of the quality

and safety of both the scheduling system and the decision maker’s work, pro-

viding valuable support. The experimental results underline that the proposed

methodology is very promising both in terms of accuracy of the evaluations and

in terms of the required computational times. Thus, this methodology can ben-

efit other types of applications, such as closed-loop scheduling algorithms and

monitoring schemes for possible re-scheduling activities. These can be seen as

possible future developments requiring further research work.

The characteristics and the behavior of the method make it a useful tactical

or strategical tool in the context of Industry 4.0 and Cyber-Physical-Systems

architectures. In fact, on the one hand, it can be considered as an alternative

or an integration of more complex factory simulation systems or digital twins.

On the other hand, this method can help to assess the relevance of the type

and extent of the uncertainties within the scheduling system. This supports the

management in identifying and evaluating appropriate actions to reduce these

uncertainties both from an information and operational point of view. They

can include improvements in the estimation of time attributes, the reduction

of the variability in the activities execution, and, more in general, the possible

sources of uncertainties. Referring to our experimental campaign, these actions

may correspond to passing from one scenario to another or, within the same

scenario, from one case in Θ to another characterized by a lower amount of

uncertainty.

6. Conclusions

This article deals with the BJSS problem and proposes a method for eval-

uating the VaR and the CVaR as risk measures for the makespan of a feasible

schedule when its temporal attributes are uncertain and known only as inter-

vals. More specifically, the paper proposes an interval-valued network approach
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to model the feasible solutions of complex BJSSs characterized by uncertain

values for jobs’ releases, processing and setup times. It also introduces an eval-

uation method for the risk that the makespan of a BJSS schedule assumes worse

extreme values, considering the known intervals for the activity durations. Both

modeling and computational issues are addressed, implementing and testing a

network-based model used with an innovative algorithm for the first time ap-

plied to complex job shop problems to provide an accurate, rapid and viable

computation of the risk indices considered for the feasible schedules.

The study takes into account realistic combinations of sources of uncertainty

affecting a BJSS solution often arising in practice, and highlights the validity

and applicability of the proposed methodological approach through an extensive

experimental campaign. The latter is based on a wide set of instances composed

of different sets of complex and realistic cases derived from classical benchmark

deterministic job-shop problems.

The obtained results show the effectiveness of the proposed method in ac-

curately calculating VaR and CVaR of the uncertain makespan for the BJSS

problem and the computational effort of the proposed risk assessment and its

suitability for real-world applications. Furthermore, the effects of the type and

severity of the uncertainty in the BJSS instances are addressed and the useful-

ness of the proposed methodology for decision makers is highlighted. Moreovoer,

the experimental results indicate that the proposed method is compatible with

the application in real contexts both for the type and size of the instances and

for the computational effort required, allowing an easy use of VaR and CVaR

to address cases of BJSS affected by uncertainty taking into account the sensi-

tivity of the scheduler to risk and/or the related industrial policies and possible

regulatory requirements.

Regarding a BJSS solution, the proposed approach allows adding important

information about the risk of delays or worsening of the makespan. Furthermore,

when there are alternative solutions to consider, this approach allows to make

an informed choice based on an adequate risk assessment. This contributes to

provide a decision support to schedulers leading to improve the overall levels of
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both quality and safety of the scheduling system.

Overall the framework is widely applicable because it is based on a model

that can be easily built for a BJSS solution. The study can be expanded by

introducing the use of the proposed method to provide decision support in ad-

vanced planning and scheduling systems for multi-stage environments. From an

operational point of view, the method can offer a contribution to introduce or

improve the risk evaluation functions for the schedule selection, and to imple-

ment a risk monitoring for the makespan of a chosen solution in order to adopt

specific actions in the cases of risk measures deterioration. At a tactical or

strategic decision level, this method can help to assess the relevance of the type

and extent of the uncertainties within the scheduling system. This supports

the management in identifying and evaluate appropriate ways to reduce rele-

vant uncertainties both from an information (e.g., by improving the estimates

of time attributes) and technical (e.g., by reducing the variability of the activity

durations) point of view.

Further research directions can include both operational and strategic studies

of cases with different or more specific types of uncertainty, and the application

of the proposed approach to other scheduling problems characterized by a similar

modeling structure. Possible applications could also consider the use of more

information and data on the involved uncertainties, and the use of VaR and

CVaR as criteria in closed loop scheduling optimization frameworks.
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[15] Chanas S, Dubois D, Zieliński P, (2002) On the Sure Criticality of Tasks in

Activity Networks with Imprecise Durations. IEEE Transactions on Systems,

Man, and Cybernetics-Part B: Cybernetics, 32, (4) 393-407.

[16] Chang Z, Song S, Zhang Y, Ding J-Y, Zhang R, Chiong R. (2017). Dis-

tributionally robust single machine scheduling with risk aversion. European

Journal of Operational Research 256, 261–274.

[17] De P, Ghosh JB, Wells CE, (1992) Expectation-variance analysis of job

sequences under processing time uncertainty. International Journal of Pro-

duction Economics, 28 (3) 289-297.

[18] Elmaghraby SE, (2005) On the fallacy of averages in project risk manage-

ment. European Journal of Operational Research, 165 (2) 307-313.

[19] Fisher H, Thompson G, (1963) Probabilistic learning combinations of local

job-shop scheduling rules. In: Muth JF, Thompson GL, Industrial scheduling.

Prentice-Hall, 225-251.

[20] Fowler JW, Mönch L, Rose O, (2006) Scheduling and Simulation. In Her-

rmann JW, (Ed.), Handbook of Production Scheduling, Springer, 109-134.

[21] Framinan JM, Leisten R, Ruiz Garćıa R, (2014) Manufacturing Scheduling
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