Structural Control

Passive Control Strategy for Wind-induced Parametric Instabilities in Suspension

Bridges

A. Arena', W. Lacarbonara'

1 Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy.

E-mail:{andrea.arena,walter.lacarbonaray@uniromal.it

ABSTRACT

A nonlinear reduced-order model of suspension bridges (SB) is presented to study the
dynamical response and to investigate aerodynamic stability control strategies coping
with vortex-induced vibrations (VIV) leading to principal parametric resonances scenar-
ios. A passive control system consisting of a vibration absorber is incorporated in the
model by coupling the dynamics of the bridge with those of an eccentric mass visco-
elastically connected to the deck. A direct asymptotic approach is used to investigate the
dynamic instabilities induced by the parametric-type forces in the case of a 2:1 ratio be-
tween the frequency of the aerodynamic loads and the fundamental torsional frequency
of the bridge. It is shown how an optimized passive control system can increase the
range of wind speeds for which the bridge does not undergo large-amplitude parametric

oscillations signaling the loss of stability of the fundamental equilibrium configuration.
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INTRODUCTION

Suspension bridges (SB) are structures characterized by a relatively low flexural-torsional
stiffness which implies remarkably low natural frequencies in the fundamental torsional
and vertical bending modes. Moreover, their mechanical behavior is mainly governed by
the suspension cables which are structural elements whose geometric nonlinearities play
a fundamental role in their static and dynamic response of SB. When subject to severe
wind excitations, suspension bridges may be affected by dynamic instability phenom-
ena, such as flutter, arising from the self-excited nature of the aerodynamic loads [1, 2]
or parametric instabilities due to vortex-induced vibrations (VIV) [3, 4, 5] in which the
aerodynamic loads generated by the airflow separation across the bridge deck section
act as a multiplicative forcing term that can induce flexural-torsional parametric insta-
bilities in the bridge at wind speeds lower than those that can induce flutter. In the

present work, a nonlinear reduced-order model of SB is coupled with the time-varying

179



ANCR1ISST 2019

aerodynamic loads to obtain the equations of motion for the study of principal parametric
resonances. The equations of motion are reduced by the Faedo-Galerkin approach adopt-
ing the bridge deck eigenfunctions as trial functions. Nonlinear aerodynamic effects due
to flow separation are accounted for by using a quasi-steady aerodynamic theory. The
method of multiple scales [6] is adopted to investigate the dynamic instabilities induced
by the parametric-type forces in the case of a 2:1 ratio between the frequency of the VIV
and the fundamental SB torsional frequency. A passive control system is then studied
and optimized so as to increase the range of wind speeds for which the bridge stability

with respect to parametric resonance is ensured.

MODEL FORMULATION

The here proposed structural model of suspension bridges is parameterized by one sin-
gle space coordinate along the bridge span-wise direction and the equations governing
the dynamic aeroelastic response are obtained via a total Lagrangian formulation. The
cables equilibrium is described by the dimensionless catenary y.(z) while the kinematic
variables are defined as the vertical (in-plane) displacement v(z, t) and the torsional rota-
tion ¢(z,t). All parameters of the mechanical system are cast in nondimensional form. In
particular, let 7). = fol sec 03dz, 5. and & represent the nondimensional catenary character-
istic length, with 6, = arctan y/, cables horizontal distance and deck width, respectively;
let k., k¢ and . be the nondimensional cables stiffness, deck torsional stiffness and hor-
izontal component of the cables prestress tension, respectively, and, finally, let 1., Jpa,
c; and ¢; represent the nondimensional mass, mass moment, and damping flexural and
torsional coefficients, respectively. Then, the second-order (in time) aeroelastic governing

equations can be cast in nondimensional form as

(14 2pucseche) v+ cpv + V" —28.0"

1
< (yr + ") / [2y:;u' + cos? 0, <v’2 + 53¢'2>} dr
0

C

252 . 1
— i (Zsll (.Ué(b/ + 0082 90 o ¢/) dr — L,
‘ Lo e (1)
(Jpa + 202 pesecte) ¢ + crp — (re + 2025:) ¢
52 1
- (;7—/% ¢" : [21/21/ + cos? 6, (’U/Q + 63¢’2>} dz
C
B 262k

1
(yr + ") / (yod + cos® 0.0/ @) do = M
0

C

where the dot and the prime indicate differentiation with respect to the nondimensional
time ¢ and space z, respectively, while L and M are the nondimensional aerodynamic lift
and moment per reference length, respectively. In the context of a quasi-steady aerody-

namic formulation, the dimensionless aerodynamic loads are directly expressed as func-
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tions of the static coefficients in terms of the effective dynamic angle of attack a, = ¢ —
<1’1 + g ¢) /U, where U is the nondimensional wind speed, as L = p§ Cy (o) sin Qt, M =
p 6% Oy (az) sin Qt, being p the nondimensional aerodynamic pressure. Further details
of the aerodynamic formulation and the expressions of the static coefficients C\ and Cy,
can be found in [7]. Structural and geometrical parameters of the Runyang Suspension

Bridge [2] are considering to analyze the case-study here investigated.

ASYMPTOTIC ANALYSIS

The method of multiple scales[6] is here employed to perform the perturbation analy-
sis of the equations of motion governing the dynamics of the suspension bridge. The
perturbation analysis will be carried out studying the effects of cubic nonlinearities thus
including the terms of the perturbation problems up to order ¢*. Thus the parametric
forcing term and the damping term are rescaled to appear at third order. Moreover, to
make use of complex algebra, let sin Ot = Ji(e 0 — /7o) where Ty = ¢ is the nondi-
mensional fast time scale and 75> = €2t is the nondimensional slow time scale in terms
of which the nondimensional time derivative is d/dt = Jy + €20». The system exhibits
secular terms due to the parametric resonance caused by the 2:1 frequency ratio of the
vortex-induced wind excitation with the lowest bridge mode expressed as () = 2w + eo.
Hence, substituting the external resonance condition into the solvability equation, the

following modulation equations for the complex amplitudes A and A* are obtained:

iw(0eA + aA) — (iwBi U + BoU%)e "2 A* + yA?A* = 0 2
iw(OyA* + aA*) — (iwBU — BoU?)e 24 — yA*2 A =0

By introducing the polar form of the complex-valued modal amplitudes (i.e.,, A = La(T3)e?(15))
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Figure 1: (left) Stability regions showing the sensitivity to structural damping ¢ (right)

stability regions for the parametric response controlled via VA.
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and the relative phase I' = 0I5 — 2¢ it is possible to obtain the normal form of the mod-
ulation equations that governs the dynamics of the real modal amplitude a(7%). In Fig.
1 (left) (where f is the dimensional frequency of the VIV and U is the dimensional wind
speed) are shown the instability regions obtained for the uncontrolled system and their
sensitivity with respect to structural damping. Fig. 1 (right) shows the response for the
controlled case where the presence of the vibration absorber (VA) lowers the system fre-
quency because of its added mass and increases the critical wind speed (i.e., the speed

which leads to the onset of the parametric resonance) by increasing its damping.

CONCLUSIONS

A parametric nonlinear model of SB, including geometric nonlinearities and nonlinear
aerodynamics, was proposed to study wind-induced parametric instability and to pro-
vide the control of such instability through a passive VA. Investigations via perturbation
approach and optimization of the VA mechanical characteristics were carried out to show
the effectiveness of the VA system in controlling instability arising from wind-induced

parametric aerodynamic loads.
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