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Abstract. Decarbonization scenarios advocate the transformation of 
energy systems to a decentralized grid of prosumers. However, in 
heterogeneous energy systems, profiling of end-users is still to be 
investigated. As a matter of fact, the knowledge of electrical load dynamics 
is instrumental to the system efficiency and the optimization of energy 
dispatch strategies. Recently, a number of clustering algorithms have been 
proposed to group load diagrams with similar shapes, generating typical 
profiles. To this end, conventional clustering algorithms are unable to 
capture the temporal dynamics and sequential relationships among data. 
This circumstance is of paramount importance in the service and industrial 
sectors where energy consumption trends over time are possibly non-
stationary. In this paper, we aim to reconstruct the annual user energy 
profile identified through a non-conventional method which combines a 
time series clustering algorithm, namely K-Means with Dynamic Time 
Warping, with Complex Network Analysis. For the purpose of the present 
research, we have used an open database containing the data of 100 
commercial and industrial consumers, collected every 5 minutes over a 
year. From the results, it is possible to identify different patterns of 
consumer behaviour and similar corporate profiles without any prior 
knowledge of the raw data. 

 

1 Introduction 
More than 80% of World's energy consumption is still powered by fossil fuels (oil, coal, 
gas) [1]. This circumstance, responsible for climate change acceleration, is driving a 
revolution in the energy market on both sides, production and demand. 
On demand side, applicable strategies entail the use of energy efficiency solutions 
(management and technologies) irrespective from the specific sector, e.g. residential and 
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industrial sectors are respectively responsible for 17% and 13% of total CO2 emissions in 
Europe in 2020 [2]. On production side, decarbonisation strategies foster the increase of 
renewable energy capacity (hydro, wind and solar) along with the improvements of electric 
grids to properly balance electricity supply and demand.  
Instrumental to such an energy scenario evolution, is the profiling of end-users based on 
data available from so called Internet of Energy [3] to allow grid operators to cope with 
renewable energy generation capacity and distribution. An adequate characterization of the 
electrical consumers assumes an important supporting role for stakeholders, in 
understanding and anticipating the behaviour of electric energy (and in general energy) 
users or for setting up dedicated services. It enables a more efficient management of 
resources, creating more accurate forecast models, which allow to adjust the production of 
energy to the actual demand, manage the load peaks, and identify outliers and losses. 
Typically, energy companies assign a load curve to the consumer that is used for the 
management of energy distribution and billing. This curve is estimated on the base of 
available energy consumption model for the reference economic sector (agricultural, 
manufacturing, transport, etc.) [4, 5]. Such energy profiling approaches are not able to take 
into account any changes in the consumer's habit and electricity usage. In addition, the load 
curve assigned to a consumer may be wrong at the beginning due to different electricity 
usage behaviour than the proposed typical consumer group [5]. In fact, load profiles 
belonging to the same business type often reveal different electricity consumption habits. 
Therefore, using business sector to categorize consumers can in general result into an 
inefficient representation [4].  
To solve this problem, different energy profiling techniques have been proposed over time, 
taking into account the energy consumption for a consumer over a period of time, allowing 
the production, planning and delivery of personalized energy services based on knowledge 
of consumer profiles [6]. The advent of Industry 4.0 (aka Internet of Energy in the ambit of 
interest [3]) has introduced a number of solutions which offer a completely new vision for 
the development of electricity distribution systems. In these contexts, a series of sensor 
devices (smart meters) monitor and collect electricity consumption data, with a much 
higher resolution than was possible in the past. Smart meters can be read remotely and are 
capable of measuring energy consumption multiple times per day, a huge amount of 
detailed data on building energy consumption is generated at different granularities, 
allowing more accurate identification of consumer habits [7]. However, in a heterogeneous 
network, for example in an industrial park where different types of industries with very 
different electricity consumption habits normally coexist, identifying the energy profile of 
consumers for the provision of high-value energy services is not easy [8]. The availability 
of smart data, collected by sensors, allows the use of non-static approaches based on a data 
driven methodology.  
In this scenario, artificial intelligence (AI) algorithms used for data mining play a 
fundamental role to extract useful information from smart monitoring data by generating a 
deeper understanding of consumer habits and dynamics. 
To this end, unsupervised learning techniques and among others clustering methods, offer 
one of the most attractive approach to data mining and machine learning. Clustering 
involves partitioning objects with similar patterns under observation into different groups 
[9]. In recent years, several clustering algorithms have been proposed to group load 
diagrams with similar shapes and generate typical load profiles. To mention but a few, 
models proposed in energy profiling are mainly based on partitional approaches based on 
techniques as K-means [4, 6, 10, 11], hierarchical approches [5, 12] , and shape-based 
models as K-shape [7]. Often those models are used in combination with deep learning 
models, e.g. Autoencoder and SOM (Self-Organizing Map) [8, 9]. However, the literature 
reveals several limitations peculiar of conventional clustering algorithms which are unable 
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to capture temporal dynamics and sequential relationships among data [13, 14]. In 
particular, the weakness of conventional clustering techniques resides in the use of distance 
functions to find clusters of a predefined shape. In addition, they only identify local 
relationships between neighbouring data samples, being indifferent to long-distance global 
relationships [15]. 
In this article we propose a clustering approach, to identify typical behaviours and find 
similarities in the energy load profiles, which combines a specific algorithm based on 
Dynamic Time Warping (DTW) clustering with Complex Network Analysis (CNA). The 
rationale is to combine DTW proven valid in capturing similarities among time series [16], 
to CNA which is excellent in unveiling correlations or similarities among individuals part  
of a network [17–19]. 
The rest of the paper is organized as follows. In Section 2, an accurate description of the 
proposed method is given. In Section 3, we describe the case study. In Section 4, we 
summarize the present work and draw some conclusions. 

2 Methodology 

The workflow, illustrated in Figure 1, consists of several activities with a macroscopic 
division in the following two consecutive steps.  
Step 1 includes all the analyses focused on single users in order to generate groups of days 
similar in shape and size. It consists of a first preprocessing for data cleaning and 
preparation (which includes segmentation and normalization of the daily data), and a final 
cluster analysis of the time series. To make the results comparable to each other in the 
multi-user analyses planned in Step 2, the cluster analysis must include all the daily profiles 
of the different users, and then the results must be broken down by individual IDs. 
Step 2, then, implements CNA by combining information from multiple sources (resulting 
from DTW approach) and create groups of users similar in energy consumption habits. In 
this phase, the profiles of the time series obtained by the clustering algorithm are mapped in 
the complex network domain, through the definition of a matrix able to return a synthetic 
information of the daily consumption of a given user during a year. The matrices of 
individual users are then represented in the form of a graph and stacked on a multi-level 
structure where each layer represents a single user. Then a graph similarity algorithm is 
applied to the multi-user network with the aim of detecting communities of users with 
similar energy consumption behaviors. 
Each part of the proposed approach has been developed in Python 3.7. In particular, the 
Pandas and Numpy libraries are used for the pre-processing and data preparation phases 
while the Tslearn library, containing specific algorithms that exploit the DTW distance, is 
used for the model realization and its evaluation. All the modules related to the complex 
network analysis have been managed with the NetworkX library [20]. 
 

3

E3S Web of Conferences 312, 10001 (2021) https://doi.org/10.1051/e3sconf/202131210001
76° Italian National Congress ATI



 
 

Fig. 1. Building blocks of the proposed method. 

2.1 Data Pre-processing  

Data pre-processing has been applied in order to deal with the inconsistencies in measured 
dataset, and to detect and correct eventual corrupt or inaccurate records from the database 
[21]. Missing values are treated using a linear interpolation [22], while duplicate data, and 
outliers using are processed using 3-sigma rule [23, 24] and removing time series noise 
through a low-pass filter.  

2.2 Data Preparation 

Raw data have been manipulated and transformed by changing the shape or structure of the 
data make it more suitable for learning algorithms, and using a normalization process [21]. 

2.2.1 Daily Segmentation 

The approach requires using a resample function in the Python pandas library [25]. The raw 
values with a frequency of 5 minutes were added together in order to obtain the 
corresponding hourly value. Subsequently the yearlong load profile is separated in a 
continuous sequence of n daily load profiles. Specifically, for each consumer we generated 
a dataset containing in each line the hourly consumption of the day. 
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2.2.2 Data Normalization 

For data normalization we tested two different methodologies, eventually choosing the 
most effective one during the clustering process. 
The first method is the min-max normalization [26]. It is performed to scale the values so 
that they fall within a predetermined range. The main advantage of min-max normalization 
lies in its ability to reserve the relationships among the initial data since it carries out a 
linear normalization [26].  
Concerning the second method we used an approach proposed by Richard et al. [11]. Daily 
load profiles (Dn) are built from hourly load data (Hn,x) 

Y = [D1 D2 … Dn]       (1) 

Feature vectors are generated for each consumer with 25 dimensions for each day of the 
year. The first 24 dimensions are the normalized components of the daily load profiles. The 
last dimension represents the ratio of the norm of the actual daily load profile vector to the 
greatest norm of all the daily load vectors of the year. This formulation of the feature 
vectors allows the grouping of similar daily profiles in terms of both shape and average 
load [11]. 

Fn = [(Dn / ||Dn||) (||Dn|| - max||Dn||)]     (2)  

2.3 Cluster Analysis  

Clustering is one of the most common tasks in data mining. The goal is to divide data items 
into groups according to pre-defined similarity or distance measure. More specifically, 
clusters should maximize the intra-cluster similarity and minimize the inter-cluster 
similarity. In the context of time series data mining, the same idea applies. Considering a 
set of time series, the goal is to find groups of time series that are similar inside the cluster, 
but are relatively different from times series of other clusters [15]. 
The K-means algorithm is one of the simplest and most widely used unsupervised learning 
algorithms to classify a given data set through a certain number of clusters fixed a priori 
[8]. The K-means algorithm proceeds by combining adjacent data in a specific area and 
dividing them into several groups. It searches for minimum degree of dispersion by 
clustering the data entry (every user) in group using iteratively a distance-driven criterion, 
i.e. minimizing the distance to the K-centroid of the belonging group compared to the one 
to the other groups [12]. In K-means algorithm, the number of clusters depends on the 
initial setting of a K-value, here derived following the customary elbow method with the 
sum of squared errors (SSE) is used as a performance indicator [7, 27].  
The choice of distance measure is the other criterion that has a direct impact on the 
clustering performance [16]. To this end, the most common distance metric is the Euclidean 
one [16]. However, this metric is unable to capture temporal dynamics and sequential 
relationships among data, for this reason, we use a different distance, the so-called DTW 
(Dynamic Time Warping based one [16]. DTW is recognized as one of the most accurate 
similarity measures for time series data [16], and it aligns two time series using the shortest 
warping path in a distance matrix. A warping path defines a mapping consisting of a 
sequence of adjacent matrix. There is a high number of path combinations and the optimal 
path is the one that minimizes the global warping cost [15]. 
The evaluation of clustering performance makes use of a Silhouette index, to compare 
quantitatively the compactness and separation of clusters [28].  
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2.5 Complex Network Analysis 

Starting from the output of the K-means clustering algorithm applied on daily consumption 
profiles, we mapped every user in the complex network domain, thus defining a multi-user 
network. In this way, by means of graph similarity algorithms, we were able to compare 
different users, measure their degree of similarity and, finally, group similar users together 
using community detection algorithms 

2.4.1 Mapping Daily Energy Consumption Clusters into Complex Network Domain 

In order to map the output of the daily energy consumption clustering into the complex 
network domain, we defined a graph G for each user Y with 365 nodes. In particular, each 
node represents a day of the year, and the weight of non-directed edges is set to unity in 
case node i and node j refer to energy profiles Di and Dj of user Y clustered together by the 
K-means algorithm. Otherwise, the edge weight is set to zero. In this way, by computing a 
graph for each user, we define a multi-user network composed by N layers (being N the 
number of end-users). 

2.4.2 Graph Similarity applied to multi-user network 

The final step compares different users Y by quantifying their similarity in terms of graph 
topology. For this purpose, we employ a graph similarity algorithm based on the extraction 
of eigenvalues from the Laplacian of each graph. Specifically, for each user Y we compute 
the eigenvalues of the Laplacian extracted from the associated graph G and find the 
smallest  eigenvalues such that their sum is grater or equal to 90% of the sum of all the 
eigenvalues.  
Then, in order to evaluate the similarity between two users, we compute the sum of the 
squared differences of their respective  smallest eigenvalues. The closer this measure is to 
zero, the more the users are similar.  
By computing the similarity between all pairs of users, we defined an NxN similarity 
matrix S where each entry (i, j) measures the similarity between user Yi and user Yj. As a 
consequence, the NxN connectivity matrix P reads as 
 

P = 1 - [(S - Smin / Sma x- Smin)(S’max -  S’min) + S’min ]               (5)  

Accordingly, we define a connectivity graph C by taking P as the adjacency matrix. This 
graph contains a node for each user and edges quantify the degree of similarity between 
pairs of users. 
The community detection is, finally, performed by means of the Louvain algorithm [29]. In 
order to evaluate the quality of the output, we consider graph modularity as a metric and 
perform pruning of low similarity edges in C to achieve the best possible score. 

3 Case Study 

In order to test the energy profiling approach, we have used an open database containing 
energy consumption data collected from 100 different consumers [30]. Data was sampled 
every 5 minutes during the year 2012. Table 1 summarizes the list of consumers, final, used 
for the analysis after removal of any duplicated data entry. As shown in Table 1, energy 
consumption data refers to four different class of consumers (commercial property, 
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education, food sales & storage and light industrial) which operate in 10 different sub-
industries class. 
 

Table 1. Summary of consumer types. 
 

SECTOR SUB_SECTOR Number of 
consumers 

Total 
number of 
consumers 

SITE_ID 

Commercial 
Property 

Bank/Financial Services 2 14 22, 30 

Business Services 3 12, 14, 36 

Commercial Real Estate 2 31,  65 

Corporate Office 1 9 

Shopping 
Center/Shopping Mall 

6 6, 8, 10, 29, 32, 44 

Education Primary/Secondary 
School 

20 20 88, 92, 99, 100, 101, 103, 
116, 137, 144, 153, 186, 
197, 213, 214, 218, 224, 

228, 236, 259, 275 

Food Sales & 
Storage 

Grocer/Market 21 21 281, 285, 304, 339, 341, 
363, 366, 384, 386, 391, 
401, 404, 427, 454, 455, 
474, 475, 478, 484, 496, 

512 

Light Industrial Food Processing 9 11 648, 654, 674, 718, 737, 
742, 745, 766, 786 

Manufacturing 1 761 

Other Light Industrial 1 765 

 
After interpolating missing values and removing outliers, the data, were resampled with an 
hourly frequency. Figure 2 shows, as an example, the annual time series of daily energy 
demand for two different consumers. It is clear from the plots that the two consumers, the 
first Education (Primary/Secondary School) and the second Light Industrial (Food 
Processing), have significantly different types of energy consumption. 
 

 
Fig. 2. Daily load curves of the sites ID 103 (left) and ID 737 (right). 
 
Each client's daily series was normalized using two different methods, as explained in 
Section 2.  

7

E3S Web of Conferences 312, 10001 (2021) https://doi.org/10.1051/e3sconf/202131210001
76° Italian National Congress ATI



In order to select the best method of data pre-processing, after identifying the optimal 
number k of clusters by elbow method and performing clustering we evaluated the different 
silhouette indices obtained from the two different procedures. In Table 2, we report the 
average silhouette index value for each end-user subsector obtained by applying the two 
different normalization approaches. 
As can be seen from Table 2, the Richard et al. [11] method of pre-processing the data 
provided the best silhouette index values, so we chose these results as input for the next 
stages of analysis. Specifically, we obtained 14 representative groups from the clustering 
performed on the daily consumption of all consumers, which were allocated to individual 
users based on specific IDs. Table 2 also reports the number of daily patterns identifying 
the typical consumption of each consumer during a year (e.g. the daily consumptions of site 
ID 31 and ID 65 were grouped, respectively, by 5 and 6 representative clusters). 
 
Table 2. Summary of the number of clusters obtained for each site, comparison of the Silhouette 
index results for the different sites. 

 
SITE_ID Silhouette Indexes for different Normalization 

Methods 
Number of 

clusters 
Min-Max 
normalization 

Richard et al. [11] 

22, 30 0.48 0.52 5, 5 

12, 14, 36 0.28 0.36 6, 6, 4 

31,  65 0.34 0.42 5, 6 

9 0.28 0.41 4 

6, 8, 10, 29, 32, 44 0.37 0.50 6, 5, 6, 5, 5, 7 

88, 92, 99, 100, 101, 
103, 116, 137, 144, 
153, 186, 197, 213, 
214, 218, 224, 228, 
236, 259, 275 

0.30 0.43 7, 4, 3, 4, 4, 4, 7, 
7, 4, 5, 6, 5, 4, 5, 
5, 3, 4, 4, 5, 6 

281, 285, 304, 339, 
341, 363, 366, 384, 
386, 391, 401, 404, 
427, 454, 455, 474, 
475, 478, 484, 496, 
512 

0.14 0.33 4, 3, 4, 3, 3, 3, 6, 
2, 4, 4, 4, 5, 3, 3, 
3, 3, 2, 5, 5, 4, 3  

648, 654, 674, 718, 
737, 742, 745, 766, 
786 

0.37 0.47 4, 7,  5, 7, 4, 4, 4, 
6, 6 

761 0.29 0.49 5 

765 0.35 0.37 5 

 
Fig. 3 shows an example of the daily clustering results in terms of the time series of typical 
profiles obtained for a primary and secondary school (i.e., site ID 103). The results were 
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sorted by the absolute value of energy demand. Within each cluster, the daily profiles 
clustered together, and the representative average profile (dotted line) are represented. 
 

 
Fig. 3. Daily profiles clusters of site ID 103. 
 
Analysing the results obtained for site ID 103, we can observe 4 main clusters representing 
the annual consumption patterns of the user. In particular, Cluster ID 0 counts 108 daily 
curves characterized by an almost constant energy consumption throughout the day. The 
other Clusters, respectively counting 60, 147 and 51 days each, present a similar pattern, 
even if shifted or scaled differently, with a low consumption of energy during the morning, 
followed by a peak during the afternoon. This daily variation is increasingly evident 
ranging from Cluster ID 4 to Cluster ID 12. 
Fig. 4, on the other hand, reports the main statistics of the individual clusters through 
boxplots, representative of the two different consumers already analysed in overall terms. 
The two different graphs show that the consumer ID 737 has a higher average consumption, 
but also a smaller Inter-Quartile Range for each cluster with respect to Consumer ID 103. 

 
Fig. 4. Energy consumption level of each cluster of sites ID 103 (left) and ID 737 (right). 
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After obtaining the typical daily profiles, they were used to define a functional graph of 
each individual user (365 nodes), including key information about annual energy 
consumption patterns, as described in Section 2.4.1. The functional graphs were then 
stacked within an N-level structure (multi-user network), where N=66 represents the total 
number of users. Finally, graph similarity algorithms were applied to the multi-user 
network, as described in Section 2.4.2, in order to group consumers into communities with 
similar energy consumption habits. 
Fig. 5. presents the Frushterman–Reingold layout applied to the connectivity graph C after 
edge pruning, where nodes are colored based on the output of the Louvain’s algorithm. In 
particular, this representation highlights how similar users are grouped together spatially, 
but also in terms of cluster membership. Table 3 contains the major communities identified, 
detailing the consumers included in each of them.  As can be seen from the results, graph 
similarity analysis applied to the multi-user network identified 7 major communities. In 
addition, 13 users (such as site IDs 14, 65, 88, 259, 366, 391, 427, 454, 478, 718, 742, 761, 
and 786) were recognized as singular consumers, so they were not associated with any 
community. 
 

 
Fig. 5. Community Detection results. 
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Table 3. Summary of community members. 
 

Comunity ID SITE_ID Total number 
of consumers 

0 6, 10, 44 3 

1 654, 766 2 

2 12, 22, 29, 30, 31, 144, 153, 186, 404 9 

3 304, 341, 401, 475 4 

4 8, 9, 32, 36, 92, 99, 100, 101, 103, 
197, 213, 214, 218, 224, 228, 236, 
275, 648, 674, 745, 765 

21 

5 116, 137, 737 3 

6 281, 285, 339, 363, 384, 386, 455, 
474, 484, 496, 512 

11 

 
It is interesting to note that, while some communities include users belonging to the same 
subsector (e.g., three shopping centers are grouped together into the Community ID 0, two 
food industries into the Community ID 1, four food markets into the Community ID 3 and 
twenty-one primary and secondary schools into the Community ID 4), other communities 
(e.g., ID 2, ID 4 and ID 6) include mixed users belonging to different subsectors. 
The following are examples of some detailed analyses of the results for some of the 
communities. For each of them, we initially show a representative energy consumption 
calendar based on a heatmap where cells represent days of the year and colours vary 
according to the reference daily cluster. Specifically, we first sorted by average energy 
consumption the 14 clusters obtained from the Step 1 of the proposed methodology (see 
Fig. 1), and then we classified them with a colour scale ranging from green (low 
consumption: Cluster ID 0, 1), light blue (medium-low consumption: Cluster ID 2, 3, 4), 
blue (average consumption: Cluster ID 5, 6 ,7), orange (medium-high consumption: Cluster 
ID 8, 9, 10) and red (hight consumption: Cluster ID 11, 12, 13). 
For each community we also show a comparison of the daily profile clusters of two 
consumers belonging to different sub-sectors. 
 
Figures 6 and 7 show the results of Community ID 2 in terms of the representative heatmap 
and daily cluster plot of two different users, respectively.  
 

 
Fig. 6. Daily electricity energy consumption patterns identified in community ID 2. 
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Site ID 30 

 

 

 
Site ID 31 

 

 
 

 
Fig. 7. Daily profiles clusters of site ID 30 (left) and ID 31 (right) belonging to the Community ID 2. 
 
The energy consumption calendar shown in Fig. 6, highlights a higher energy consumption 
for all users grouped in the Community ID 2 during January and February, while it remains 
constantly medium-hight during the rest of the year. In addition, an average energy 
consumption is observed during Monday and a marked reduction during the weekend, with 
a minimum reached on Sunday. 
Fig. 7 compares the hourly energy consumption for a Bank/Financial Services (User ID 30) 
and a Commercial Property (User ID 31), grouped together in the Community ID 2. Both 
consumers are characterized by the same five daily representative patterns (i.e., Cluster ID 
0, 3, 5, 8 and 11 respectively) each of which includes a similar number of total days. 
Moreover, it is possible to see how the low average consumption of the weekend (Cluster 
0) typically remains constant throughout the day, while in the winter months with high and 
medium-high consumption (Cluster 8 and Cluster 11), the daily trend is characterized by a 
minimum demand around 06:00 and a maximum peak at 18:00. 
 
Figures 8 and 9 show the results of Community ID 4 in terms of the representative heatmap 
and daily cluster plot of two different users, respectively.  
 

 
Fig. 8. Daily electricity energy consumption patterns identified in Community ID 4. 
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Fig. 8. Daily electricity energy consumption patterns identified in Community ID 4. 
 
 

 
Site ID 36 

 

 

 
Site ID 103 

 

 
 
Fig. 9. Daily profiles clusters of site ID 36 (left) and ID 103 (right) belonging to the Community ID 4. 
 
From the energy consumption calendar shown in Fig. 8, we can see a medium-low energy 
consumption for all users grouped in the Community ID 4 during June and July, a high 
energy consumption during May, August and September and a mean-high consumption in 
the other months. In addition, a low energy consumption is observed during the weekend. 
Fig. 9 compares the hourly energy consumption for a Business Service (User ID 36) and a 
Primary/Secondary School (User ID 103), grouped together in the Community ID 4. Both 
consumers present the same four representative patterns (i.e., Cluster ID 0, 4, 9, and 12 
respectively). 
These users present a low and constant consumption during the weekends (Cluster 0), but 
also months with high and medium-high consumption (Cluster 9 and Cluster 12), where 
daily trends are characterized by a progressive increase in consumption after 8:00, with 
peak load in the range between 12:00 and 19:00. 
 
Figures 10 and 11 show the results of Community ID 6 in terms of the representative 
heatmap and daily cluster plot of two different users, respectively.  
 

 
Fig. 10. Daily electricity energy consumption patterns identified in community ID 6. 
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Fig. 11. Daily profiles clusters of site ID 339 (left) and ID 512 (right) belonging to the community ID 
6. 
 
The energy consumption calendar in Fig. 10 for Community ID 6, reveals an average 
consumption strictly connected to the yearly seasonality. In fact, it presents a low 
consumption during the winter a medium-high consumption during spring and autumn and 
higher consumptions during the summer, with no specific variations during the weekend as 
for the previously analysed communities. 
Fig. 11 compares the hourly energy consumption for two Food Sales & Storage industrial 
users (ID 339 and 512) grouped together in this community, characterized by three typical 
daily consumption patterns (i.e., Cluster ID 7, 10 and 13 respectively). 
The daily trend highlights an increase in consumption from 12:00 to 23:00 and a decrease 
between 23:00 and 11:00. 

4 Conclusion 

The need to safeguard the environment has accelerated the energy transition towards 
decarbonisation, the exact profiling of consumers and the identification of their habits is 
certainly one of the processes that most can lead to a significant reduction in consumption, 
allowing the optimisation of resources, adapting energy production to actual demand. 
In this perspective, machine learning techniques have become a useful tool due to their 
ability to extract information from data, automatically and without any initial knowledge. 
The research presented in this paper developed a new data analysis methodology that 
combines a time series clustering algorithm, namely K-Means with Dynamic Time 
Warping (DTW), with Complex Network Analysis (CNA). 
The use of an algorithm that exploits a specific distance metric (DTW) for time series 
allows a better accuracy in the clustering of energy profiles, overcoming the main 
limitations of the models presented until now in the literature, which are hardly able to 
capture the temporal dynamics and sequential relationships between the data typical of time 
series. 
The methodology was used on a real dataset containing historical consumption data related 
to 100 commercial and industrial consumers, during an entire year. 
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certainly one of the processes that most can lead to a significant reduction in consumption, 
allowing the optimisation of resources, adapting energy production to actual demand. 
In this perspective, machine learning techniques have become a useful tool due to their 
ability to extract information from data, automatically and without any initial knowledge. 
The research presented in this paper developed a new data analysis methodology that 
combines a time series clustering algorithm, namely K-Means with Dynamic Time 
Warping (DTW), with Complex Network Analysis (CNA). 
The use of an algorithm that exploits a specific distance metric (DTW) for time series 
allows a better accuracy in the clustering of energy profiles, overcoming the main 
limitations of the models presented until now in the literature, which are hardly able to 
capture the temporal dynamics and sequential relationships between the data typical of time 
series. 
The methodology was used on a real dataset containing historical consumption data related 
to 100 commercial and industrial consumers, during an entire year. 

Thanks to the proposed technique we have been able to identify the main characteristics of 
consumers, tracing their behavior through the identification of the main patterns of daily 
energy consumption and the periods of the year with higher consumption. 
In addition, thanks to CNA we were able to group together consumers with similar 
behaviors regardless of their macro type of origin. 
By combining the proposed profile identification methodology with forecasting techniques, 
suppliers can predict the energy consumption of each consumer and produce that amount of 
energy needed for each consumer. 
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