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Abstract. We study the hydrodynamic limit for the isothermal dynamics of an
anharmonic chain under hyperbolic space-time scaling and with nonvanishing vis-
cosity. The temperature is kept constant by a contact with a heat bath, realised
via a stochastic momentum-preserving noise added to the dynamics. The noise is
designed so it contributes to the macroscopic limit. Dirichlet boundary conditions
are also considered: one end of the chain is kept fixed, while a time-varying tension
is applied to the other end. Moreover, Neumann boundary conditions are added
in such a way that the system produces the correct thermodynamic entropy in the
macroscopic limit. We show that the volume stretch and momentum converge (in
an appropriate sense) to a smooth solution of a system of parabolic conservation
laws (isothermal Navier-Stokes equations in Lagrangian coordinates) with bound-
ary conditions.

Finally, changing the external tension allows us to define thermodynamic isother-
mal transformations between equilibrium states. We use this to deduce the first
and the second law of Thermodynamics for our model.

1. Introduction

We consider a Hamiltonian system of anharmonic elastic springs. As it is well-
known, Hamiltonian systems have poor ergodic properties. This means that, in
general, there are conserved quantities other than total mass (or, in the case of a
chain, length), momentum and energy, that “survive” as the number of particles
goes to infinity. While it is expected that a suitable choice of the interaction among
the particles might be able to provide ergodicity, this is still an important open
problem. The typical solution is then to add a stochastic perturbation to the
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Hamiltonian dynamics that “destroys” all the extra conserved quantities and makes
the dynamics ergodic.

Therefore, we put our system in contact with a heat bath which fixes the tem-
perature along the chain. The heat bath is realised via a stochastic perturbation
which acts both on the momenta (physical noise) and the positions (artificial noise).
Although fixing the temperature violates the conservation of energy, the noise is de-
signed in such a way that it conserves the total length and momentum of the chain,
at least away from the boundaries. Dirichlet boundary conditions are considered:
one end of the chain is kept fixed, while the other end is pulled by a time-dependent
external force. Finally, extra boundary conditions of the Neumann type are added:
this is required so that the system produces the correct Clausius inequality in the
macroscopic limit.

This same system has been considered in Marchesani and Olla (2018, 2020a)
(without the extra Neumann conditions) and Fritz (2011) (for an infinite chain).
A main feature is that the noise on the positions is nonlinear and has the same
nonlinearity as the Hamiltonian interaction (see equation (2.5) below). This kind
of noise grants an easy bound on the Dirichlet form on the positions, which is
heavily used in Marchesani and Olla (2018); Fritz (2011), as it leads to a crucial
two-block estimate.

In the present paper we do not make use of a two-block estimate, as only the
one-block estimate is enough to prove the hydrodynamic limit. In fact, the noise on
the momenta alone is expected to provide such an estimate, as in Braxmeier-Even
and Olla (2014).

Nevertheless, a nonlinear noise translates into a nonlinear viscosity in the macro-
scopic limit. This gives rise to an interesting parabolic p-system with nonlinear
viscosity and boundary conditions of mixed Dirichet-Neumann type.

We obtain the hydrodynamic limit as a result of the relative entropy method.
This requires the existence of regular enough solutions to the macroscopic equations.
However, although the macroscopic system is parabolic, it is also nonlinear. Thus,
we may not assume existence of global classical solutions, and such an existence
needs to be proven. This is done in Alasio and Marchesani (2019), where more
general systems and boundary conditions are considered.

The relative entropy method for the full 3× 3 Euler system has been employed
in both Olla et al. (1993); Braxmeier-Even and Olla (2014).

In Olla et al. (1993) a tridimensional dynamics is studied in a bounded domain
with periodic boundary conditions. Eulerian coordinates are used and because
of that the classical (quadratic) kinetic energy yields a cubic term in the energy
current. Such a term fails to be controlled by the relative entropy, and thus the
kinetic energy is modified so it grows linearly at infinity (as an example one may
think of the relativistic kinetic energy). In this way the energy current grows also
linearly and thus can be controlled by the relative entropy.

In order to avoid modifying the kinetic energy, in Braxmeier-Even and Olla
(2014) they work in Lagrangian coordinates, as no cubic current appears, in this
setting. The paper also employs the same Dirichlet boundary conditions we are
imposing, although a different noise is considered and no Neumann condition are
added, as the macroscopic system in Braxmeier-Even and Olla (2014) is hyperbolic.

This article is structured as follows: Section 2 describes the dynamics and defines
its invariant measures. In Section 3 we describe the macroscopic equations both in
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the variables (r, p) and their conjugate (τ, p). Section 4 is devoted to the statement
and proof of the hydrodynamic limit. Finally, in Section 5 we derive the first and
the second law of Thermodynamics.

2. Dynamics and Gibbs measures

We study a system of N + 1 particles coupled via anharmonic springs. The
position of the i-th particle is qi ∈ R, and its momentum is pi ∈ R. The 0-th
particle is kept fixed at the origin, i.e. (q0, p0) ≡ (0, 0), while to the N -th particle is
applied a time-dependent tension τ̄(t). Particles i and i− 1 interact via a potential
V (qi − qi−1) depending only on the relative position of nearest neighbours. The
function V : R→ R+ is assumed to be smooth and strongly convex, meaning there
exist strictly constants C− and C+ such that

0 < C− ≤ V ′′(r) ≤ C+, ∀r ∈ R. (2.1)

For q := (q0, . . . , qN ) and p := (p0, . . . pN ), the energy for the system is defined
through the Hamiltonian

HN (q,p, t) :=
p2

0

2
+

N∑
i=1

(
p2
i

2
+ V (qi − qi−1)

)
− τ̄(t)qN . (2.2)

Since the interaction depends on the distances of nearest neighbours, we define the
interparticle distances

ri := qi − qi−1, 1 ≤ i ≤ N. (2.3)

Consequently, since we also have p0 = 0, the phase space is given by (RN )2 and the
Hamiltonian takes the form HN (r,p, t) =

∑N
i=1ei, where

ei :=
p2
i

2
+ V (ri)− τ̄(t)ri, 1 ≤ i ≤ N (2.4)

is the one-particle energy. The system is then put in contact with a heat bath that
acts as a microscopic stochastic viscosity.

If we perform a hyperbolic space-time scaling, choose a non-vanishing viscosity
and define the discrete gradient and Laplacian by

∇ai := ai+1 − ai, ∆ai := ai+1 + ai−1 − 2ai

the evolution equations are given by the following system of stochastic differential
equations:

dr1 = Np1dt+ δ1N
2∇V ′(r1)dt−

√
2β−1δ1N dw̃1

dri = N∇pi−1dt+ δ1N
2∆V ′(ri)dt−

√
2β−1δ1N ∇dw̃i−1

drN = N∇pN−1dt+ δ1N
2 (τ̄(t) + V ′(rN−1)− 2V ′(rN ))−

√
2β−1δ1N∇dw̃N−1,

dp1 = N∇V ′(r1)dt+ δ2N
2 (p2 − 2p1) dt−

√
2β−1δ2N ∇dw0,

dpj = N∇V ′(rj)dt+ δ2N
2∆pjdt−

√
2β−1δ2N ∇dwj−1

dpN = N(τ̄(t)− V ′(rN ))dt− δ2N2∇pN−1dt+
√

2β−1δ2N dwN−1

(2.5)
for i, j = 2, . . . , N − 1. Here t ≥ 0 is the macroscopic time, β−1 > 0 is the tem-
perature and {w̃i}Ni=1, {wi}

N−1
i=0 are independent families of independent Brownian

motions. Note that we added Neumann boundary conditions for r1 and pN , as no
Laplacian in the viscosity term appears there.
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The boundary tension τ̄ : R+ → R is smooth and such that there exist a time T?
after which τ̄ is constant. Note that the boundary tension changes at a macroscopic
time scale.

The dynamics is generated by

G τ̄(t)
N := NL

τ̄(t)
N +N2

(
δ1S̃

τ̄(t)
N + δ2SN

)
. (2.6)

The Liouville operator Lτ̄(t)
N is given by

L
τ̄(t)
N =p1

∂

∂r1
+

N∑
i=2

(pi−pi−1)
∂

∂ri
+

N−1∑
i=1

(V ′(ri+1)−V ′(ri))
∂

∂pi
+(τ̄(t)−V ′(rN ))

∂

∂pN
.

(2.7)
The operators SN and S̃N generate the stochastic part of the dynamics and are

defined by

SN := −β−1
N−1∑
i=0

D∗iDi, S̃
τ̄(t)
N := −β−1

N∑
i=1

D̃∗i D̃i, (2.8)

where, for 1 ≤ i ≤ N − 1,

Di :=
∂

∂pi+1
− ∂

∂pi
, D∗i := β(pi+1 − pi)−Di (2.9)

D̃i :=
∂

∂ri+1
− ∂

∂ri
, D̃∗i := β (V ′(ri+1)− V ′(ri))− D̃i. (2.10)

The extra boundary operators are

D0 :=
∂

∂p1
, D∗0 := βp1 −D0, (2.11)

D̃N := − ∂

∂rN
, D̃∗N := β(τ̄(t)− V ′(rN ))− D̃N . (2.12)

For p̄, τ ∈ R and β > 0 we define the following family of Gibbs measures as

νNτ,p̄,β(dr, dp) :=

N∏
i=1

e
βτri + βp̄pi − β

(
p2
i

2
+ V (ri)

)
−G(τ, p̄, β)

dridpi, (2.13)

where G is the Gibbs potential

G(τ, p̄, β) : = log

∫ +∞

−∞
dr

∫ +∞

−∞
dp e

βτr + βp̄p− β
(
p2

2
+ V (r)

)

=

√
2π

β
+ β

p̄2

2
+ log

∫ +∞

−∞
dr eβτr − βV (r). (2.14)

We observe that, for constant τ̄ , the Gibbs-measure νN¯̄τ,0,β is invariant for the dy-
namics generated by G ¯̄τ

N .
Setting, ντ,p̄,β := ν1

τ,p̄,β we define the average elongation by

`(τ, β) := 〈r1〉ντ,p̄,β =
1

β

∂G

∂τ
. (2.15)

It is standard to check (cf Appendix A of Marchesani and Olla, 2018) that the func-
tion `(·, β) is strictly increasing and hence invertible. Its inverse shall be denoted
by τ(·, β).
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Finally, we note that we have

〈p1〉ντ,p̄,β =
1

β

∂G

∂p̄
= p̄ 〈V ′(r1)〉ντ,p̄,β = τ, 〈p2

1〉ντ,p̄,β − p̄2 = β−1, (2.16)

which identify p̄ with the mean velocity, τ with the mean force (tension) and β−1

with the temperature.

3. The macroscopic equations

Since the dynamics described in the previous section fixes the temperature to
the constant value β−1, we shall omit to write the dependencies on β. For example,
we will simply write τ(r) instead of τ(r, β) and `(τ) instead of `(τ, β).

We expect that the empirical measures

rN (t, dx) :=
1

N

N∑
i=1

δ

(
x− i

N

)
ri(t)dx, (3.1)

pN (t, dx) :=
1

N

N∑
i=1

δ

(
x− i

N

)
pi(t)dx (3.2)

converge, in a suitable sense, to absolutely continuous measures

r(t, x)dx, p(t, x)dx (3.3)

whose densities r and p solve the parabolic system{
∂tr − ∂xp = δ1∂xxτ(r)

∂tp− ∂xτ(r) = δ2∂xxp
(3.4)

with boundary conditions

p(t, 0) = 0, r(t, 1) = ` (τ̄(t)) , ∂xp(t, 1) = 0, ∂xr(t, 0) = 0, ∀t ≥ 0 (3.5)

and initial data

p(0, x) = 0, r(0, x) = `(τ̄(0)), ∀x ∈ [0, 1]. (3.6)

Given our assumptions on V , the tension τ : R → R is smooth, increasing and
strictly convex. Furthermore, τ ′ is bounded away from zero (cf Appendix A of
Marchesani and Olla, 2018). In order to use the relative entropy method, we shall
need equations for the Legendre conjugates (with respect to the Gibbs potential)
of the variables r(t, x) and p(t, x). The conjugate of r(t, x) is τ̂(t, x) := τ(r(t, x)),
while the conjugate of p(t, x) is itself.

The function τ̂(t, x) solves the equation

∂tτ̂(t, x) = τ ′(r(t, x))∂xp(t, x) + δ1τ
′(r(t, x))∂xxτ̂(t, x). (3.7)

with boundary conditions τ̂(t, 1) = τ̄(t) and ∂xτ̂(t, 0) = 0. The latter follows from

∂xr(t, x) = ∂x`(τ̂(t, x)) = `′(τ̂(t, x))∂xτ̂(t, x), (3.8)

∂xr(t, 0) = 0 and the fact that `′ never vanishes (this is a consequence of the fact
that τ ′ is bounded).

Thus, provided identifying r(t, x) = `(τ̂(t, x)), the couple (τ̂(t, x), p(t, x)) solves
the system {

∂tτ̂ − τ ′(r)∂xp = τ ′(r)δ1∂xxτ̂

∂tp− ∂xτ̂ = δ2∂xxp,
, (3.9)
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with boundary conditions

p(t, 0) = 0, τ̂(t, 1) = τ̄(t), ∂xp(t, 1) = 0, ∂xτ̂(t, 0) = 0 (3.10)

and initial data
p(0, x) = 0, τ̂(0, x) = τ̄(0). (3.11)

Existence and uniqueness of global solutions of class C1 in time and C2 in space
for systems (3.4) and (3.9) with our initial-boundary conditions have been proven
in Alasio and Marchesani (2019). More precisely, we have

r, p ∈ C1(R+;C0([0, 1])) ∩ C0(R+;C2([0, 1])). (3.12)

Therefore, in the following we shall assume r(t, x) (or equivalently τ̂(t, x)) and
p(t, x) to be such regular solutions.

4. Main theorem and relative entropy

We define the local Gibbs measures as

gNt (r,p)drdp :=

N∏
i=1

e
βτ̂

(
t,
i

N

)
ri + βp

(
t,
i

N

)
pi − β

(
p2
i

2
+ V (ri)

)
−G

(
τ̂

(
t,
i

N

)
, p

(
t,
i

N

))
dridpi

(4.1)
and let fNt (r,p) be the solution of the Fokker-Plank equation

∂fNt
∂t

= G τ̄(t),†
N fNt , fN0 (r,p) = gN0 (r,p), (4.2)

where † denotes the adjoint with respect to the Lebesgue measure on R2N . If define
the relative entropy as

HN (t) :=

∫
fNt log

fNt
gNt

drdp (4.3)

our aim is to prove the following

Theorem 4.1 (Main theorem). Denote by dµNt = fNt (r,p)dr, dp the probability
distribution of the system at time t ≥ 0, starting from the local Gibbs measure
dνN0 := gN0 (r,p)drdp corresponding the the initial profiles r(0, x) and p(0, x). Let
ui := (ri, pi) and u(t, x) := (r(t, x), p(t, x)). Then, for any continuous function
J : [0, 1]→ R and any ε > 0,

lim
N→∞

µNt

(∣∣∣∣∣ 1

N

N∑
i=1

J

(
i

N

)
ui −

∫ 1

0

J(x)u(t, x)dx

∣∣∣∣∣ > ε

)
= 0, (4.4)

where u ∈ C1(R+;C0([0, 1])) ∩ C0(R+;C2([0, 1])) is a solution of the system (3.4)
with boundary conditions (3.5) and initial conditions (3.6).

We shall prove the main theorem as a consequence of the following

Theorem 4.2.

lim
N→∞

HN (t)

N
= 0 (4.5)

for all t ≥ 0.
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Proof of Theorem 4.1: For any two probability measures α, β, such that α is abso-
lutely continuous with respect to β, define the relative entropy

H(α|β) :=

∫
log

dα

dβ
dα, (4.6)

where dα/dβ is the Radon-Nikodym derivative of α with respect to β. Then, for
any measurable h and any σ > 0, the following entropy inequality holds:∫

hdα ≤ 1

σ
log

∫
eσhdβ +

1

σ
H(α|β). (4.7)

In particular, if h = 1A is the indicator function of the set A, we obtain

α(A) =

∫
hdα ≤ 1

σ
log

∫
eσ1Adβ +

1

σ
H(α|β)

=
1

σ
log (β(A)(eσ − 1) + 1) +

1

σ
H(α|β).

(4.8)

Choosing σ = log

(
1 +

1

β(A)

)
then gives

α(A) ≤ log 2 +H(α|β)

log

(
1 +

1

β(A)

) . (4.9)

Thus, if we define

Aε :=

{∣∣∣∣∣ 1

N

N∑
i=1

J

(
i

N

)
ui −

∫ 1

0

J(x)u(t, x)dx

∣∣∣∣∣ > ε

}
, (4.10)

for any continuous J : [0, 1] → R, then thanks to Theorem 4.2 and (4.9), to prove
µNt (Aε)→ 0 as N →∞, it is enough to show that, for each ε > 0,

log

(
1 +

1

νNt (Aε)

)
≥ C(ε)N, (4.11)

for some constant C(ε) independent of N . However, this is satisfied if

νNt (Aε) ≤ e−C(ε)N , (4.12)

which is a standard result of the large deviation theory (Kipnis and Landim, 1999;
Varadhan, 1988). �

The following Lemma follows from Lemma 1.4 of Chapter 6 of Kipnis and Landim
(1999) after a time integration and using the fact that HN (0) = 0.

Lemma 4.3.

HN (t) ≤
∫ t

0

ds

∫
fNs
gNs

[(
G τ̄(s)
N

)†
− ∂s

]
gNs drdp. (4.13)

Remark 4.4. Recalling that † denotes the adjoint with respect to the Lebesgue

measure, it is clear that
(
L
τ̄(t)
N

)†
= −Lτ̄(t)

N . Moreover, for 1 ≤ i ≤ N − 1(
−β−1D∗iDi

)†
=
[
−(pi+1 − pi)Di + β−1D2

i

]† (4.14)

=
(
pi+1 − pi + β−1Di

)
Di + 2 (4.15)
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and

(−β−1D∗0D0)† =
[
−p1D0 + β−1D2

0

]†
= (p1 + β−1D0)D0 + 1. (4.16)

Therefore, we obtain

S†N = 2N − 1 +

N−1∑
i=0

D[
iDi, (4.17)

where
D[
i := pi+1 − pi + β−1Di, 1 ≤ i ≤ N − 1 (4.18)

and
D[

0 := p1 + β−1D0. (4.19)
Similarly, we obtain(

S̃
τ̄(t)
N

)†
=

N∑
i=1

[
D̃[
iD̃i + V ′′(ri+1) + V ′′(ri)

]
, V ′′(rN+1) ≡ 0, (4.20)

where
D[
i := V ′(ri+1)− V ′(ri) + β−1D̃i, 1 ≤ i ≤ N − 1 (4.21)

and
D̃[
N := τ̄(t)− V ′(rN ) + β−1D̃N . (4.22)

We will now evaluate the right-hand side of (4.13). In the following we shall
denote by aN (t) a generic function such that

lim
N→+∞

1

N

∫ t

0

∫
aN (s)fNs dpdrds = 0. (4.23)

Lemma 4.5 (Liouville generator).

NL
τ̄(t)
N gNt
gNt

= β

N∑
j=1

{
∂xτ̂

(
t,
j

N

)[
p

(
t,
j

N

)
− pj−1

]
+

+ ∂xp

(
t,
j

N

)[
τ̂

(
t,
j

N

)
− V ′(rj)

]}
+ aN (t). (4.24)

Proof : By Lemma 2 of Braxmeier-Even and Olla (2014), with λ1 = βτ̂ , λ2 = βp
and λ3 = −β we obtain

NL
τ̄(t)
N gNt
gNt

=− β
N∑
j=1

[
∂xτ̂

(
t,
j

N

)
pj−1 + ∂xp

(
t,
j

N

)
V ′(rj)

]
+

+ βNp(1, t)τ̄(t) + aN (t). (4.25)

Then note that we can write

p(1, t)τ̄(t) =

∫ 1

0

∂

∂x
[τ̂(t, x)p(t, x)] dx (4.26)

=

∫ 1

0

[∂xτ̂(t, x)p(t, x) + ∂xp(t, x)τ̂(t, x)] dx. (4.27)

Thus we have

βNτ̄(t)p(1, t) = β

N∑
j=1

[
∂xτ̂

(
t,
j

N

)
p

(
t,
j

N

)
+ ∂xp

(
t,
j

N

)
τ̂

(
t,
j

N

)]
+ aN (t),

(4.28)
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which completes the proof. �

In the same way, we obtain

Lemma 4.6 (Explicit time derivative).

∂tg
N
t

gNt
=β

N∑
j=1

{
τ ′
(
r

(
t,
j

N

))
∂xp

(
t,
j

N

)
+ (4.29)

+ δ1τ
′
(
r

(
t,
j

N

))
∂xxτ̂

(
t,
j

N

)}[
rj − r

(
t,
j

N

)]
+

+ β

N∑
j=1

[
∂xτ̂

(
t,
j

N

)
+ δ2∂xxp

(
t,
j

N

)][
pj − p

(
t,
j

N

)]
.

Lemma 4.7 (Physical viscosity).

N2S†Ng
N
t

gNt
= β

N−1∑
j=1

∂xxp

(
t,
j

N

)[
pj − p

(
t,
j

N

)]
+ aN (t). (4.30)

Proof :

S†Ng
N
t =

N−1∑
j=0

D[
j

{
gNt Dj

N∑
i=1

[
βp

(
t,
i

N

)
pi − β

p2
i

2

]}
+ (2N − 1)gNt (4.31)

=β

N−1∑
j=1

D[
j

{
gNt

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)
− (pj+1 − pj)

]}
+ (4.32)

+ βD[
0

{
gNt

[
p

(
t,

1

N

)
− p1

]}
+ (2N − 1)gNt

=βgNt

N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)]
(pj+1 − pj)− βgNt

N−1∑
j=1

(pj+1 − pj)2+ (4.33)

+ βgNt

N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)
− (pj+1 − pj)

]2

− (2N − 1)gNt +

+ βgNt p

(
t,

1

N

)[
p

(
t,

1

N

)
− p1

]
+ (2N − 1)gNt .

=− βgNt
N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)]
(pj+1 − pj)+ (4.34)

+ βgNt

N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)]2

+ βgNt p

(
t,

1

N

)[
p

(
t,

1

N

)
− p1

]
.
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After a summation by parts and using ∂xp(1, t) = 0, we obtain

− βgNt
N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)]
(pj+1 − pj)

=βgNt

N−1∑
j=1

[
p

(
t,
j + 1

N

)
+ p

(
t,
j − 1

N

)
− 2p

(
t,
j

N

)]
pj+ (4.35)

− βgNt
[
p(1, t)− p

(
t,
N − 1

N

)]
pN + βgNt

[
p

(
t,

1

N

)
− p(0, t)

]
p1

=
β

N2
gNt

N−1∑
j=1

∂xxp

(
t,
j

N

)
pj + βgNt

[
p

(
t,

1

N

)
− p(0, t)

]
p1 +

aN (t)

N2
gNt . (4.36)

Since p(0, t) = 0, combining the boundary terms of (4.33) and (4.36) gives

βgNt p

(
t,

1

N

)[
p

(
t,

1

N

)
− p1

]
+ βgNt

[
p

(
t,

1

N

)
− p(0, t)

]
p1 = gNt

[
p

(
t,

1

N

)]2

= O
(

1

N2

)
(4.37)

and are thus negligible.
Finally, we write

0 =
β

N
∂xp(0, t)p(0, t)

=− β

N

∫ 1

0

∂

∂x
[∂xp(x, t)p(x, t)] dx

=− β

N

∫ 1

0

∂xxp(x, t)p(x, t)dx−
β

N

∫ 1

0

[∂xp(x, t)]
2
dx

=− β

N2

N−1∑
j=1

∂xxp

(
t,
j

N

)
p

(
t,
j

N

)

− β
N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)]2

+
aN (t)

N2
, (4.38)

which yelds

βgNt

N−1∑
j=1

[
p

(
t,
j + 1

N

)
− p

(
t,
j

N

)]2

= −βg
N
t

N2

N−1∑
j=1

∂xxp

(
t,
j

N

)
p

(
t,
j

N

)
+
aN (t)

N2

(4.39)

Thus, combining (4.35), (4.36) and (4.39) and using the fact that the boundary
terms are negligible lead to the conclusion. �

Lemma 4.8 (Artificial viscosity).

N2
(
S̃
τ̄(t)
N

)†
gNt

gNt
=β

N−1∑
j=1

∂xxτ̂

(
t,
j

N

)[
V ′(rj)− τ̂

(
t,
j

N

)]
+

+βN∂xτ̂(1, t) [τ̄(t)− V ′(rN )] + aN (t) (4.40)
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Proof : By a calculation analogous to the one of the previous lemma, we have(
S̃
τ̄(t)
N

)†
gNt =− βgNt

N−1∑
j=1

[
τ̂

(
t,
j + 1

N

)
− τ̂

(
t,
j

N

)]
[V ′(rj+1)− V ′(rj)] +

+ βgNt

N−1∑
j=1

[
τ̂

(
t,
j + 1

N

)
− τ̂

(
t,
j

N

)]2

+ (4.41)

+ βD̃[
N

{
gNt D̃N [τ̂(1, t)rN − V (rN )]

}
+ gNt V

′′(rN )

By a direct computation, and recalling that τ̂(1, t) = τ̄(t),

βD̃[
N

{
gNt D̃N [τ̂(1, t)rN − V (rN )]

}
+ gNt V

′′(rN ) = 0. (4.42)

After a summation by parts, we obtain

− β
N−1∑
j=1

[
τ̂

(
t,
j + 1

N

)
− τ̂

(
t,
j

N

)]
[V ′(rj+1)− V ′(rj)]

=
β

N2

N−1∑
j=1

∂xxτ̂

(
t,
j

N

)
V ′(rj)−

β

N
∂xτ̂(1, t)V ′(rN ) +

aN (t)

N2
. (4.43)

The conclusion then follows after remembering that ∂xτ̂(0, t) = 0, adding and
subtracting

β

N
∂xτ̂(1, t)τ̄(t) =

β

N

∫ 1

0

∂

∂x
[∂xτ̂(x, t)τ̂(x, t)] dx

=
β

N

∫ 1

0

∂xxτ̂(t, x)τ̂(t, x)dx+
β

N

∫ 1

0

[∂xτ̂(x, t)]
2
dx (4.44)

and replacing integrals by summations. �

We show that the error we make when replacing τ̄(t) by V ′(rN ) is controlled by
the relative entropy.

Lemma 4.9.∫ t

0

∫
|τ̄(s)− V ′(rN )| fNs drdpds ≤

C

N

(
1 + t+

∫ t

0

HN (s)ds

)
+

1

2

HN (t)

N
(4.45)

for some C > 0 independent of N .

Proof : We can write

τ̄(t)− V ′(rN ) = S̃
τ̄(t)
N

N∑
i=1

ri =
1

δ1N2
G τ̄(t)
N

N∑
i=1

ri −
1

δ1N
Lτ̄(t)
N

N∑
i=1

ri

=
1

δ1N2
G τ̄(t)
N qN −

1

δ1N
pN . (4.46)

This yields∫ t

0

∫
[τ̄(s)− V ′(rN )] fNs drdpds =

1

δ1N2

∫
qNf

N
t drdp−

1

δ1N2

∫
qNf

N
0 drdp+

+
1

δ1N

∫ t

0

∫
pNf

N
s drdpds, (4.47)
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The conclusion then follows as a standard application of the entropy inequality. In
fact,

1

N

∫
|pN |fNs drdp ≤

1

N
log

∫
e|pN |gNs drdp +

HN (s)

N

≤ C

N
+
HN (s)

N
(4.48)

Furthermore,

1

N2

∫
|qN |fNt drdp ≤

1

N2

N∑
i=1

∫
|ri|fNs drdp

≤ 1

4N2

N∑
i=1

log

∫
e4|ri|gNs drdp +

1

4

HN (t)

N

≤ C

N
+

1

4

HN (t)

N
. (4.49)

�

So far we have obtained

1

2

HN (t)

N
≤ 1

N

N−1∑
i=1

∫ t

0

∫
∂xτ̂

(
t,
i

N

)
(pi−1 − pi)fNs drdpds+ (4.50)

+
1

N

N−1∑
i=1

∫ t

0

∫ [
∂xp

(
t,
i

N

)
+ δ1∂xxτ̂

(
t,
i

N

)]
×

×
{
V ′(ri)− τ̂

(
t,
i

N

)
− τ ′

(
r

(
t,
i

N

))[
ri − r

(
t,
i

N

)]}
fNs drdpds

+
C

N

∫ t

0

HN (s)ds+

∫ t

0

∫
aN (s)fNs drdpds.

By a summation by parts, it is easy to see that the term

1

N

N−1∑
i=1

∫ t

0

∫
∂xτ̂

(
t,
i

N

)
(pi−1 − pi)fNs drdpds (4.51)

vanishes as N → ∞, up to terms proportional to
∫ t

0
HN (s)/Nds. Thus, we shall

discard it from now on.
The next step is to pass to averages on blocks of size k � N . This will allow us

to replace V ′ by τ in the sense of Theorem 4.10. In order to introduce such blocks,
we cut away the boundaries by restricting to configurations {[Nl], . . . , N − [Nl]},
for some small l > 0 such that l→ 0 after N →∞ and lN � k. This is done using
the inequality (cf Proposition 4.5 of Marchesani and Olla, 2020a),∣∣∣∣∣∣ 1

N

N∑
i=1

J

(
i

N

)
ψ(ri, pi)−

1

N

N−[Nl]∑
i=[Nl]

J

(
i

N

)
1

2k + 1

∑
|j−i|≤k

ψ(rj , pj)

∣∣∣∣∣∣
≤ C

(
l +

k

N

)1/2
(

1

N

N∑
i=1

(r2
i + p2

i )

)1/2

(4.52)
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which holds for any smooth J : [0, 1] → R and any linearly growing ψ : R2 →
R. Since a standard application of the entropy inequality (cf Proposition 3.2 of
Marchesani and Olla, 2020a) yields the energy estimate∫

1

N

N∑
i=1

(r2
i + p2

i )f
N
t drdp ≤ C, (4.53)

we obtain

HN (t)

N
≤ 1

N

N−[Nl]∑
i=[Nl]

∫ t

0

∫ [
∂xp

(
t,
i

N

)
+ δ1∂xxτ̂

(
t,
i

N

)]
× (4.54)

×
{
V̄ ′k,i − τ̂

(
t,
i

N

)
− τ ′

(
r

(
t,
i

N

))[
r̄k,i − r

(
t,
i

N

)]}
fNs drdpds

+
C

N

∫ t

0

HN (s)ds+

∫ t

0

∫
aN,k,l(s)f

N
s drdpds,

where we have set

V̄ ′k,i :=
1

2k + 1

∑
|j−i|≤k

V ′(rj), r̄k,i :=
1

2k + 1

∑
|j−i|≤k

rj , (4.55)

and where

lim
l→0

lim
k→∞

lim
N→∞

∫ t

0

∫
aN,k,l(s)f

N
s drdpds = 0. (4.56)

We replace V̄ ′k,i by τ(r̄k,i) via the one block estimate, which proof can be found in
Proposition A.2 of Marchesani and Olla (2020a).

Theorem 4.10 (One-block estimate).

lim
l→0

lim
k→∞

lim
N→∞

1

N

N−[Nl]∑
i=[Nl]

∫ t

0

∫ (
V̄ ′k,i − τ(r̄k,i)

)2
fNs drdpds = 0. (4.57)

Remark 4.11. Note that we did not need to cut unbounded variables, as in Olla
et al. (1993); Olla (2014), but we perform, in the fashion of Fritz (2011); Marchesani
and Olla (2018, 2020a) , an explicit estimate which makes use of the fact that τ is
linearly bounded.

Thus we have obtained

HN (t)

N
≤ 1

N

N−[Nl]∑
i=[Nl]

∫ t

0

∫ [
∂xp

(
t,
i

N

)
+ δ1∂xxτ̂

(
t,
i

N

)]
× (4.58)

×
{
τ(r̄k,i)− τ̂

(
t,
i

N

)
− τ ′

(
r

(
t,
i

N

))[
r̄k,i − r

(
t,
i

N

)]}
fNs drdpds

+
C

N

∫ t

0

HN (s)ds+

∫ t

0

∫
aN,k,l(s)f

N
s drdpds.
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Next, we write

HN (t)

N
≤ 1

N

N−[Nl]∑
i=[Nl]

∫ t

0

∫
Ω

(
t,
i

N
, r̄k,i

)
fNs drdpds+ (4.59)

+
C

N

∫ t

0

HN (s)ds+

∫ t

0

∫
aN,l,k(s)fNs drdpds,

where we have set

Ω(t, x, ξ) := [∂xp(t, x) + δ1∂xxτ̂(t, x)] {τ(ξ)− τ̂(t, x)− τ ′(r(t, x))[ξ − r(t, x)]}
(4.60)

Note that Ω(t, x, r(t, x)) = ∂ξΩ(t, x, r(t, x)) = 0.
Consequently, Varadhan’s lemma Kipnis and Landim (1999); Varadhan (1988)

applies as in Theorem 4 of Olla (2014), and we obtain

HN (t)

N
≤ C

∫ t

0

HN (s)

N
ds+

∫ t

0

RN,k,l(s)ds, (4.61)

for some uniform constant C, where

lim
l→0

lim
k→∞

lim
N→∞

∫ t

0

RN,k,l(s)ds = 0. (4.62)

It then follows by Gronwall inequality that

HN (t)

N
≤ HN (0)

N
eCt +

∫ t

0

RN,k,l(s)e
C(t−s)ds (4.63)

≤ HN (0)

N
+ eCt

∫ t

0

RN,k,l(s)ds. (4.64)

This gives

lim
N→∞

HN (t)

N
= 0, (4.65)

since HN (0) = 0 and the fact that RN,k,l → 0 in the sense of (4.62).

5. Thermodynamic consequences

This final section is devoted to the study of the Thermodynamics for the macro-
scopic system obtained as result of the hydrodynamic limit. Recall that the tem-
perature is fixed from the dynamics to the constant value β−1. Therefore, we shall
consider isothermal transformations between equilibria given by different values of
the external tension τ̄ .

We shall rigorously derive the second law of Thermodynamics in the form of the
Clausius inequality. Moreover, upon assuming that the energy converges (which
the hydrodynamic limit does not allow us to do), we will obtain the first law, too.

Such a procedure can be found in Olla (2014) for an isothermal transformation in
a case where the macroscopic equation is a single diffusive equation. The underlying
hydrodynamic limit was obtained there with a diffusive space-time scaling.

An early result about the Clausius inequality for a diffusive system can be found
in Appendix B of Marchesani and Olla (2018). However, such a result is purely
macroscopic and does not follow from the hydrodynamic limit.

In Marchesani and Olla (2020b) the Clausius inequality has been proven for
vanishing viscosity solutions to the hyperbolic system obtained from our system by
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taking δ1 = δ2 = 0. This is done entirely at the macroscopic level and takes into
account the fact that shocks might arise as the viscosity vanishes.

Finally, in Marchesani and Olla (2020a) the Clausius inequality is derived directly
from the microscopic system we consider in this article with the same space-time
scaling but with vanishing viscosity. The macroscopic system is then hyperbolic
and we allow the presence of shocks.

5.1. The Clausius inequality. In order to highlight the fact that we are performing
an isothermal transformation, we shall restore the dependencies on β throughout
this section. Define the total free energy at time t as

F(t) :=

∫ 1

0

[
p(x, t)2

2
+ F (r(x, t), β)

]
dx, (5.1)

where

F (r, β) =

∫ r

0

τ(ξ, β)dξ (5.2)

is the equilibrium free energy.

Proposition 5.1. For any t ≥ 0 and δ1, δ2 > 0,

F(t)−F(0) =

∫ t

0

τ̄(s)L′(s)ds−
∫ t

0

∫ 1

0

δ2 (∂xp)
2

+ δ1 (∂xτ(r, β))
2
dsdx, (5.3)

where

L(t) :=

∫ 1

0

r(t, x)dx (5.4)

is the total length of the chain at time t.

Proof : Whenever there is an integral in both space and time, we shall omit to write
the dependence of r and p on x and t. Write

F(t)−F(0) =

∫ t

0

d

ds
F(s)ds =

∫ t

0

∫ 1

0

p∂sp+ τ(r, β)∂sr dsdx (5.5)

=

∫ t

0

∫ 1

0

p∂xτ(r, β) + τ(r, β)∂xp dsdx+ (5.6)

+

∫ t

0

∫ 1

0

δ2p∂xxp+ δ1τ(r, β)∂xxτ(r, β) dsdx
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After an integration by parts in space, we have∫ t

0

∫ 1

0

p∂xτ(r, β) + τ(r, β)∂xp dsdx

=

∫ t

0

p(1, s)τ(r(1, s), β)− p(0, s)τ(r(0, s), β)ds

=

∫ t

0

τ̄(s)p(1, s)ds

=

∫ t

0

τ̄(s)

∫ 1

0

∂xp dxds

=

∫ t

0

τ̄(s)

∫ 1

0

[∂srdx− δ1∂xxτ(r, β)] dxds,

=

∫ t

0

τ̄(s)L′(s)ds− δ1
∫ t

0

τ̄(s)∂xτ(r(1, s), β)ds. (5.7)

where

L(s) :=

∫ 1

0

r(x, s)dx. (5.8)

Finally, using the Neumann boundary conditions ∂xp(1, t) = ∂xr(0, t) = 0 we obtain∫ t

0

∫ 1

0

pδ2∂xxp+ δ1τ(r, β)∂xxτ(r, β)dsdx

=−
∫ t

0

∫ 1

0

δ2 (∂xp)
2

+ δ1 (∂xτ(r, β))
2
dsdx+ δ1

∫ t

0

τ̄(s)∂xτ (r(1, s), β) ds. (5.9)

When we use (5.7) and (5.9) in (5.6), the boundary terms cancel exactly, and we
get the conclusion. �

In order to obtain the Clausius inequality from the previous lemma we shall
define an isothermal thermodynamic transformation as follows. Recall that the
system at time zero is at equilibrium with tension τ̄(0) := τ0 ∈ R and temperature
β−1 namely

p(0, x) = 0 τ(r(0, x), β) = τ0 ∀x ∈ [0, 1]. (5.10)

In particular, we have

F(0) = F (`(τ0), β). (5.11)

Now we take τ̄ to vary smoothly from τ0 to τ1 ∈ R in a finite time T? and to stay at
the value τ1 for all subsequent times. Then, after waiting a long time, the system
reaches a new equilibrium at tension τ1 and temperature β−1, in the sense of the
following

Proposition 5.2.
lim
t→∞

F(t) = F (`(τ1), β). (5.12)

Proof : Define Fτ̄(t)(t) = F(t)− τ̄(t)L(t) + Ĝ(τ̄(t)), where Ĝ is the Legendre trans-
form of F (·, β). Thanks to Proposition 5.1, recalling that Ĝ′ = ` and that τ ′ is
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positive and bounded away from zero we compute

d

dt
Fτ̄(t)(t) = −τ̄ ′(t)L(t) + `(τ̄(t))τ̄ ′(t)−

∫ 1

0

δ2(∂xp(t, x))2 + δ1(∂xτ(r(t, x), β))2dx

≤ −τ̄ ′(t) [L(t)− `(τ̄(t))]− C
∫ 1

0

(∂xp(t, x))2 + (∂xr(t, x))2dx (5.13)

= −τ̄ ′(t) [L(t)− `(τ̄(t))]− C
∫ 1

0

(∂xp(t, x))2 + {∂x[r(t, x)− `(τ̄(t))]}2 dx.

Since p(t, x) vanishes at x = 0 and r(t, x)− `(τ̄(t)) vanishes at x = 1, we can apply
Poincaré inequality in order to obtain

d

dt
Fτ̄(t)(t) ≤ −τ̄ ′(t) [L(t)− `(τ̄(t))]− C

∫ 1

0

p(t, x)2 + [r(t, x)− `(τ̄(t))]
2
dx.

(5.14)

Observe that F (r, β) − τ̄(t)r + Ĝ(τ̄(t)) is a uniformly convex function of r and
vanishes, together with its first derivative, if r = `(τ̄(t)). Hence, we may find some
constants C2 > C1 > 0 such that

C1[r − `(τ̄(t))]2 ≤ F (r, β)− τ̄(t)r + Ĝ(τ̄(t)) ≤ C2[r − `(τ̄(t))]2 (5.15)

and we may estimate the integral at the right hand side of 5.14 by −CFτ̄(t)(t).
Furthermore, take t > T?, where T? is such that τ̄(t) = τ1 on [T?,+∞). Then

τ̄ ′(t) = 0 and we obtain

d

dt
Fτ1(t) ≤ −CFτ1(t), ∀t > T?. (5.16)

Thus, Gronwall’s inequality yields

Fτ1(t) ≤ Fτ1(T?)e
−C(t−T?), ∀t > T? (5.17)

so that

0 = lim
t→∞

Fτ1(t) = lim
t→∞

[
F(t)− τ1

∫ 1

0

r(t, x)dx+ Ĝ(τ1)

]
(5.18)

≥ lim sup
t→∞

∫ 1

0

F (r(t, x), β)− τ1r(t, x) + Ĝ(τ1)dx.

Since F (r, β) − τ1r + Ĝ(τ1) is convex and non-negative, by Jensen’s inequality we
obtain

lim
t→∞

[
F

(∫ 1

0

r(t, x)dx, β

)
− τ1

∫ 1

0

r(t, x)dx+ Ĝ(τ1)

]
= 0. (5.19)

This in turn implies

lim
t→∞

∫ 1

0

r(t, x)dx = `(τ1). (5.20)

Finally, plugging this last relation into the first line of (5.18) leads to the conclusion.
�

Combining Propositions 5.1 and 5.2 gives the following
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Theorem 5.3 (Clausius inequality).

F (τ1, β)− F (τ0, β) ≤W, (5.21)

where
F (τi, β) := F (`(τi), β) , i = 0, 1 (5.22)

is the equilibrium free energy as function of tension and temperature, and

W :=

∫ ∞
0

τ̄(s)L′(s)ds (5.23)

is the total work done by the external force τ̄ during the transformation.

5.2. The first law of Thermodynamics. The internal energy U is defined as

U(τ, β) :=

〈
p2

1

2
+ V (r1)

〉
τ,0,β

. (5.24)

Define the microscopic average energy at time t as

EN (t) :=
1

N

N∑
i=1

(
p2
i (t)

2
+ V (ri(t))

)
. (5.25)

The law of large numbers for the initial distribution gives

lim
N→∞

EN (0) = U(τ0, β) (5.26)

in probability. By the hydrodynamic limit and the convergence to equilibrium we
expect that

lim
t→∞

lim
N→∞

EN (t) = U(τ1, β), (5.27)

but at the present time we do not have the tools to prove it. This would require
some knowledge about the finiteness of expectations of powers of p higher than the
second, and the relative entropy (to date the main tool used in order to obtain
microscopic estimates) does not allow to control functions which grow more than
the energy itself. Thus, we shall assume that (5.27) holds.

Using the microscopic dynamics and omitting to write the dependences of ri and
pi on time gives

EN (t)− EN (0) =

∫ t

0

N−1∑
i=1

pi(V
′(ri+1)− V ′(ri))ds+

∫ t

0

pN (τ̄(s)− V ′(rN ))ds+

+

∫ t

0

N−1∑
i=1

V ′(ri)(pi − pi−1)ds+

∫ t

0

V ′(rN )(pN − pN−1)ds+ (5.28)

+N

∫ t

0

(
δ1S̃N

N∑
i=1

V (ri) + δ2SN

N∑
i=1

p2
i

2

)
ds+

+
√

2β−1δ2

∫ t

0

(
p1(dw0 − dw1) +

N−1∑
i=2

pi(dwi−1 − dwi) + pNdwN−1

)
+

+
√

2β−1δ1

∫ t

0

(
−V ′(r1)dw̃1 +

N−1∑
i=2

V ′(ri)(dw̃i−1−dw̃i) + V ′(rN )(dw̃N−1−dw̃N )

)
.
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=

∫ t

0

[τ̄(s)pN +Nδ1V
′(rN )(τ̄(s)− V ′(rN ))] ds+ (5.29)

+Nδ2

∫ t

0

[
β−1(2N − 1)− p2

1 −
N−1∑
i=1

(pj+1 − pj)2ds

]
ds+

+Nδ1

∫ t

0

{
β−1V ′′(rN ) + β−1

N−1∑
i=1

[V ′′(ri+1) + V ′′(ri)] (5.30)

−
N−1∑
i=1

[V ′(ri+1)− V ′(ri)]2ds
}

+

+
√

2β−1δ2

∫ t

0

p1dw0 +
√

2β−1δ2

∫ t

0

N−1∑
i=1

(pi+1 − pi)dwi+

+
√

2β−1δ1

∫ t

0

N−1∑
i=1

(V ′(ri+1)− V ′(ri))dw̃i −
√

2β−1δ1

∫ t

0

V ′(rN )dw̃N .

We write

τ̄(s)pN +Nδ1V
′(rN )(τ̄(s)− V ′(rN )) (5.31)

= τ̄(s)[pN +Nδ1(τ̄(s)− V ′(rN ))]−Nδ1[τ̄(s)− V ′(rN )]2

= τ̄(s)

[
d

(
1

N

N∑
i=1

ri

)
+
√

2β−1δ1dw̃N

]
−Nδ1[τ̄(s)− V ′(rN )]2

= τ̄(s)dLN (s) + τ̄(s)
√

2β−1δ1dw̃N −Nδ1[τ̄(s)− V ′(rN )]2,

where

LN (s) :=
1

N

N∑
i=1

ri(s). (5.32)

If we define the microscopic heat

QN (t) :=δ2β
−1N(2N − 1)t−Nδ2

∫ t

0

[
p2

1 +

N−1∑
i=1

(pj+1 − pj)2

]
ds+ (5.33)

+Nδ1β
−1

∫ t

0

[
V ′′(rN ) +

N−1∑
i=1

(V ′′(ri+1) + V ′′(ri))

]
ds

−Nδ1
∫ 1

0

[
(τ̄(s)− V ′(rN ))2 +

N−1∑
i=1

(V ′(ri+1)− V ′(ri))2

]
ds+

+
√

2β−1δ2

∫ t

0

p1dw0 +
√

2β−1δ2

∫ t

0

N−1∑
i=1

(pi+1 − pi)dwi+

+
√

2β−1δ1

∫ t

0

N−1∑
i=1

(V ′(ri+1)− V ′(ri))dw̃i+ (5.34)

+
√

2β−1δ1

∫ t

0

[τ̄(s)− V ′(rN )] dw̃N
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and the microscopic work

WN (t) : =

∫ t

0

τ̄(s)dLN (s) (5.35)

we obtain the microscopic version of the first law of thermodynamics:

EN (t)− EN (0) = QN (t) +WN (t). (5.36)

Thanks to the hydrodynamic limit we can prove the following

Proposition 5.4.

lim
N→∞

WN (t) =

∫ t

0

τ̄(s)L′(s)ds (5.37)

in probability.

Proof : Since τ̄ is deterministic, an integration by parts in time gives

WN (t) = −
∫ t

0

τ̄ ′(s)LN (s)ds+ τ̄(t)LN (t)− τ̄(0)LN (0) (5.38)

Then, we apply Theorem 4.1 with J = 1 in order we obtain

LN (s) =
1

N

N∑
i=1

ri(s)→
∫ 1

0

r(s, x)dx =: L(s) ∀s ≥ 0 (5.39)

in probability. Therefore, taking the limit N → ∞ in (5.38) and integrating by
parts yields

lim
N→∞

WN (t) = −
∫ t

0

τ̄ ′(s)L(s)ds+ τ̄(t)L(t)− τ̄(0)L(0) (5.40)

=

∫ t

0

τ̄(s)L′(s)ds.

�

Applying (5.26), (5.27) and Proposition 5.4 to (5.36), we obtain that QN (t)
converges, as N →∞ and t→∞, to the deterministic

Q := U(τ1, β)− U(τ0, β)−W, (5.41)

where

W :=

∫ ∞
0

τ̄(s)L′(s)ds (5.42)

is the total work done by the external tension. Thus, we have obtained the following

Theorem 5.5 (First law of thermodynamics).

U(τ1, β)− U(τ0, β) = Q+W, (5.43)

where

Q = lim
t→∞

lim
N→∞

QN (t) (5.44)

is the total heat exchanged with the thermostats and

W = lim
t→∞

lim
N→∞

WN (t) (5.45)

is the total work done by the external tension.
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The Clausius inequality, together with the first law of thermodynamics, allow us
to obtain the following

Corollary 5.6 (Second law of thermodynamics). Let the thermodynamic entropy
S be defined as

S(τ, β) := β[U(τ, β)− F (τ, β)]. (5.46)

Then,

S(τ1, β)− S(τ0, β) ≥ βQ. (5.47)
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