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Abstract
In this paper we present a novel mechanism to
get explanations that allow to better understand
network predictions when dealing with sequential
data. Specifically, we adopt memory-based net-
works — Differential Neural Computers — to ex-
ploit their capability of storing data in memory and
reusing it for inference. By tracking both the mem-
ory access at prediction time, and the information
stored by the network at each step of the input
sequence, we can retrieve the most relevant input
steps associated to each prediction. We validate
our approach (1) on a modified T-maze, which is a
non-Markovian discrete control task evaluating an
algorithm’s ability to correlate events far apart in
history, and (2) on the Story Cloze Test, which is
a commonsense reasoning framework for evaluat-
ing story understanding that requires a system to
choose the correct ending to a four-sentence story.
Our results show that we are able to explain agent’s
decisions in (1) and to reconstruct the most relevant
sentences used by the network to select the story
ending in (2). Additionally, we show not only that
by removing those sentences the network predic-
tion changes, but also that the same are sufficient to
reproduce the inference.

1 Introduction
Over the last decade, artificial intelligence has reached a great
success due to advancements in the areas of deep learning and
neural networks. While such networks achieve high perfor-
mances, they are typically adopted as black box computation
units, i.e. no explanation is provided on the motivation be-
hind each decision. Due to the lack of transparent inference
and decision making, deep learning cannot be easily applied
in mission-critical or safety-critical domains like healthcare,
where the availability of explanations is a pre-requisite for the
human experts to validate predictions. Not only improving
model explainability is useful to extend the applicability of
current models, but also to debug and understand weaknesses
of machine learning systems [Samek et al., 2018].
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The lack of model transparency, however, is typically ex-
acerbated in recurrent (RNNs) or memory-augmented archi-
tectures (MANNs), since they store and elaborate multiple
inputs/steps before emitting an output. Nevertheless, these
architectures consistently achieve better results than standard
feed-forward networks when dealing with sequential data.

In our work, we exploit the structure of MANNs to get ex-
planations about model predictions on sequential data. They
use an external memory to store and collect information for
long periods, mimicking the RAM role in standard comput-
ing systems. While they have been successfully applied in
multiple domains, such as visual question answering [Ma et
al., 2018], image classification [Cai et al., 2018] and meta-
learning [Santoro et al., 2016], there is no work — to the best
of our knowledge — focusing on methodologies to generate
explanations of MANN’s predictions.

Specifically, by tracking both the memory access at pre-
diction time, and the information stored by the network at
each step of the input sequence, we retrieve the most rele-
vant parts of the input associated to each prediction. In this
way, we achieve several benefits, such as: incrementality —
the full sequence is not required, and the explanations can be
obtained for each prediction; low computational costs — the
only added costs of our method is memory tracking and pro-
cessing; flexibility — different types of explanations can be
obtained, based on how the memory is tracked and processed.

We evaluate our approach both on a modified T-
maze [Bakker, 2002; Wierstra et al., 2007] and on the Story
Cloze Test [Mostafazadeh et al., 2016]. In the former, our
results show that we are able to explain agent’s decisions. In
the latter, instead, we are able to reconstruct the most relevant
premises that are used by the network to select the story end-
ing. Additionally, we show not only that by removing those
premises the network prediction changes, but also that these
are sufficient for the network to reproduce the inference —
i.e., they are prime implicants [Shih et al., 2018].

The remainder of this paper is organized as follows. First,
we review existing literature (Section 2) and discuss the state-
of-the-art in network explainability; then, we introduce our
approach in Section 3 and present its experimental evaluation
(Section 4). Finally, we discuss conclusions and future work.
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2 Related Work

Approaches to explainability can be categorized [Guidotti et
al., 2018] in two groups: black box explanation methods, that
focus on providing a transparent model that approximates the
behavior of a black box; and black box outcome explanation
methods, that attempt to provide an outcome that locally ex-
plains the current prediction, by exploiting features of the in-
put — i.e., without looking at how the inner model works.
Our method falls in the last category, integrating the MANN
architecture with a module responsible to track input portions
that are used to compute the output. Hence, this section sum-
marizes the most relevant work focusing on black box out-
come explanations.

Saliency maps are especially used in computer vision, and
highlight image regions that are used by the model to dis-
criminate among classes. These can be built by using gra-
dients [Baehrens et al., 2010], by omitting subset of fea-
tures [Zeiler and Fergus, 2014] or by analyzing the activation
of the network units [Zhou et al., 2016].

LIME [Ribeiro et al., 2016] and SHAP [Lundberg and Lee,
2017], conversely, attempt to approximate models with sur-
rogate functions that are locally faithful to the original black-
box predictor, by perturbing the current input. Their approach
is model-agnostic and can be used with any type of network,
but suffers from high computational and time costs [Samek
and Müller, 2019], as well as from strong assumptions on
feature independence. Hence, these methods are not able to
highlight correlation among features, which is essential when
dealing with sequential data. [Ribeiro et al., 2018] overcome
this weakness using anchors, that are computed by perturbing
the input and producing if-then rules that combine different
features. While this is a step forward, realistic perturbations
have to be found, worsening the time complexity problem.
In all the aforementioned approaches, the whole input is re-
quired and, differently from our method, the online setting is
not considered.

Another set of approaches propose to integrate the inter-
nal model structure with elements that are useful for the
explanation process, therefore avoiding the time complex-
ity and perturbation issues [Springenberg et al., 2014]. For
example, [Bach et al., 2015; Montavon et al., 2019] use a
propagation-based explanation framework called “layer-wise
relevance propagation” that pushes-back predictions using
specific rules. Likewise, our approach integrates the MANN
architecture with a module responsible to track the input por-
tions used for computing the output.

Compared to the cited approximators that use random per-
turbations or rely on the tuning of several parameters that can
change the provided explanations, our method is determinis-
tic, does not involve input perturbations and does not require
additional computational and time resources needed to train
a new classifier or fit an external function. More importantly,
our work explicitly uses the temporal dependence between
features. As a result, our approach is not suited to score the
relevance of a single feature of a data point, but reports on the
importance of feature sequences and their correlation.

P1 P2 ... PN

Input Data Sequence

LSTM

Memory

OutputStates

Read Vector

DNC

Prediction

< C3, w1 >

< C10, w2 >

...

< C2, wn >

C3

C10

...

C2

Explanation Module
Read History Write History

P3 P1 ... P2Explanation Order

Figure 1: Sketch of the system architecture. From the memory, the
read and write history are fed to the explanation module. Specifi-
cally, < Ci, wj > indicates that word wj is stored in cell Ci. The
output of the explanation module is a vector (at the bottom of the
figure), containing a list of explanations sorted by their relevance.

3 Methodology
This section describes the method to achieve explainability in
the context of memory-augmented networks. While we fo-
cus on Differential Neural Computers (DNCs) as a specific
type of MANN, the approach could be easily extended to al-
ternative MANNs.1 More in detail, we first present a simpli-
fied DNC architecture, and then we introduce the explanation
module composed by the memory tracking process and the
explanation collection mechanism.

3.1 Simplified DNC
Differential Neural Computers (DNCs) [Graves et al., 2016]
have been recently introduced as a memory-augmented ma-
chine learning model based on the usage of a controller net-
work. A controller is a neural network — typically recurrent
with LSTM units — that (1) has read and write access to an
external memory through multiple read and write heads, and
(2) learns both how to perform these operations and on which
data to run them.

Specifically, each read and write head is associated to some
non-negative weightings that sum to one and represent a dis-
tribution over the involvement of each memory-cell in the
current network operation. Both read and write weightings
are the result of a combination of three attention mecha-
nisms: content-based addressing, allocation addressing and
temporal linkage addressing. Content-based addressing as-
signs high weightings to memory-cells with high cosine sim-
ilarities computed against a key; allocation addressing is used
during write operations to determine which cells can be writ-
ten or erased; finally, temporal linkage addressing keeps track
of the order of read/write operations.

In the original implementation, the controller can use
content-based addressing to decrease memory usage, (par-
tially) overwriting previously stored information. While this

1The only requirement is the ability to store all the states of pre-
vious steps and use all of them to produce the final outcome.
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mechanism allows to reduce the required memory-size and to
store new information about old facts, in our case it gener-
ates instability on the explanations. For example, in data se-
quences containing closely related information (e.g., multiple
facts about the same subject in a story) the same memory-cell
could be repeatedly used, due to the content-based address-
ing. This would make hard to both establish which part of the
sequence added more information and to provide an explana-
tion of the prediction. As a result, we disable content-based
addressing during write operations and remove the possibil-
ity for the network to overwrite cells, obtaining a more stable
behavior.

More in detail, considering anN ×W memory matrixMt,
we compute the write weighting vector ww

t at time t as:

ww
t = gwt at (1)

where gwt ∈ [0, 1] is the write gate that controls whether to
write or not in memory, and at is the allocation weighting
that controls the writing location. at is defined, like in the
original paper, as

at[φt[j]] = (1− ut[φt[j]])

j−1∏
i=1

ut[φt[i]] (2)

with φt being a sorted list of memory-cell indices in ascend-
ing order of usage. ut represents the usage vector, modified
only at each write, using the update rule:

ut = ut−1 +ww
t−1 (3)

The final output of the DNC is a linear combination of the
controller output oc

t and the concatenation of the R read vec-
tors rt generated by the memory as a weighted mean of its
content. This is computed as

rit =M>t wr,i
t (4)

yt = oc
t +Wr[r1t ; ...; rRt ] (5)

where wr,i
t are the read weighting for each head.

For efficiency reasons, we further simplify the DNC archi-
tecture by removing temporal linkage. This, in fact, has a
huge impact on the training time and reduces the overall net-
work performance in our tests — probably due to long se-
quences with sparsely related information. The remaining
parts are left unchanged from the original implementation.
Note that the recurrent state of the network is both used to
calculate the parameters needed to control the memory and to
store the state itself.

Finally, based on the analysis from [Franke et al., 2018],
we apply the bypass dropout to the output of the LSTM to
force an earlier memory usage during training, and a layer
normalization to the input of memory to stabilize the training
process.

3.2 Explanation Module
The explanation module is based on the idea of exploiting
MANN architectures and tracking memory usage at predic-
tion time. In the previous section, we mentioned that their
memory contains information extracted from the states of the

controller at each step, and the write and read weightings de-
scribe memory usage. More in detail, a high write weighting
for a cell indicates that the same cell will contain most of the
information of the current LSTM state after the write opera-
tion, while a high read weight indicates that the cell contains
information similar or related to the current state — due to
content-based addressing.

In this context, we can easily collect inference explanations
by noticing that the encoding of a prediction should produce
similar states to the ones (stored in memory) that are obtained
during relevant parts of the input sequence. For example, in
the Story Cloze Test — whose goal is to choose between two
alternative endings given some premises — the prediction en-
coding should generate states that are more similar to premise
states than the other alternative, which is poorly related to the
premises.

In summary, our approach (Figure 1) records the content
of a subset of memory-cells at each step, selecting them on
the basis of the strength of the weightings. Each cell written
during the input sequence and each cell read during inference
is collected and linked to its recording time-step and to the
input that generated the stored state. For write operations, we
only track written cells whose weighting is above the mean
weighting value. Tighter thresholds would not be more in-
formative, since most of the times only one or few cells are
written and most of the cells have write weightings close to
zero. Conversely, for read operations we use content-based
addressing and store the top-Nc read cells, i.e. the Nc cells
with highest read weights.

Based on this, we can compute a history of memory usage
and build a ranking of prediction explanations depending on
the kind of information that we want to extract. Clearly, when
using small Nc values, few cells are available in the history.
Conversely, by settingNc to the maximum possible value, the
whole memory is included in the history. The history can be
kept in memory or stored offline for later usage.

Since the state of the controller at any time t depends on
(almost) all the sequence until that time-step, the explanation
ranking cannot depend on a single sequence element – that
does not provide sufficient information about the current pre-
diction. Conversely, we consider longer chunks of the input
sequence, and provide explanations on those. In the Story
Cloze Test we build the ranking by means of the frequency
of prediction readings, from which we can extract the best
and worst explanation, as the sub-sequence that contains —
at prediction time — respectively the most read steps and zero
(or minimum) read steps.

The time complexity increase on the inference process is
negligible, as it is only due to the elaboration of the mem-
ory history and depends on the information that we want to
extract. In its simplest form, as shown in this paper, this elab-
oration only requires a summation and an access to a data
structure.

While we focus mainly on prime implicants, different types
of explanation can be obtained by changing how and where
the information is collected from the memory. For example,
in a classification problem with fixed features, information
can be collected about what are the main features learned and
used at training.
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Figure 2: Example of a 5-step modified T-maze: the starting posi-
tion (white) indicates the relevant cell (yellow). This cell contains
the symbol N, indicating that the agent gets a positive reward going
North in the T-junction, and a negative one going South.

Figure 3: (Top) mean and std of the cumulative reward obtained over
10 different training runs. (Bottom) matching accuracy between the
relevant corridor step and the 2 most-read memory cells.

At the current stage, our explainability module is partic-
ularly well suited for tasks where background knowledge is
first fed to the network, and the model is subsequently re-
quired to answer specific queries — e.g., question-answering
tasks. However, in different domains — such as vision and
robotics — our approach could be easily adapted by modify-
ing the addressing mechanism from content-based addressing
to temporal linkage.

4 Experiments and Results
This section first describes the experimental setups, and then
it presents and analyzes the obtained results.

4.1 Experimental Setup
As previously mentioned, we validate our approach both on a
modified version of the T-maze task [Bakker, 2002; Wierstra
et al., 2007] and on the Story Cloze Test [Mostafazadeh et al.,
2016]. While we use the former as a toy-problem to validate
our idea, we run a broader range of experiments on the latter
to collect further insights on the proposed approach. Here,
we individually describe both tasks together with their exper-
imental setup, the training details and the obtained results.

Modified T-maze
Task. T-maze is a non-Markovian discrete control task that
evaluates an algorithm’s ability to learn to remember obser-
vations and correlate events far apart in history. An agent has
four possible actions (move North, East, South, or West) and
must learn to move from the starting position (at the begin-
ning of the corridor) to the T-junction, where it must move
either North or South to a changing goal position, which de-
pends on the symbol that the agent has seen at the starting
position. If the agent takes the correct action, it receives a

reward of 4, otherwise −0.1. In both cases, the episode ter-
minates and a new episode is started. In our tests, we modify
this task to also evaluate the agent’s capability of explaining
his decision, adding a symbol observable by the agent at ev-
ery step of the corridor, only one of which is relevant, and by
specifying the relevant corridor step in the starting position.
Figure 2 shows a simplified example of the modified version:
the relevant step is at position 2, which contains the symbol
N and tells the agent that the right decision at the T-junction
is to move North. In this way, not only the agent can learn
to remember previously seen observations for a long num-
ber of steps, but it also can justify its decisions by indicating
the read symbol and the corridor cell. The main questions
that we aim at answering in this domain are whether we can
successfully solve the partially observable Markov Decision
Process with our simplified DNC architecture, and whether
our explanation module works as expected.

Training details. In our experiments, we choose a fixed
corridor length of N = 25 steps, and we compute the rel-
evant cell indicator I ∈ [0, 1] as n/N , i.e., by normalizing
the observed number n by the corridor length. The symbol
observed by the agent in each cell is finally represented as a
discrete value in the set {0, 1}, while actions are represented
as a one-hot vector. The controller of the DNC is a single
LSTM layer composed by 128 units, a memory of size 50,
1 read head, 1 write head, and a rate of 0.2 for the bypass
dropout. We train our network running the Deep Recurrent Q-
Learning algorithm [Hausknecht and Stone, 2015] with Ten-
sorflow 2.0 on 1500 episodes using RMSProp with a learning
rate of 1e−3 and a gradient clipping of 20. Finally, we test the
learned model on 500 episodes.

Results. Figure 3 (top) presents the average cumulative re-
ward of the agent over 10 different training runs. Our re-
sults show that the model gradually converges to a solution in
which the agent can consistently achieve the highest reward.
Hence, we can conclude that our architecture can successfully
solve the problem. Additionally, Figure 3 (bottom) shows
the accuracy of the explanation system (matching accuracy),
obtained by checking whether the information from the rele-
vant corridor step is contained in the two memory cells that
are the most-read when the agent reaches the T-junction. We
consider two cells instead of one to also account for the first
corridor step, that could be used equally often. The plot indi-
cates that, most of the times, the agent justifies its decisions
with the observation contained in the relevant corridor step,
confirming the expected behavior for the explanation module.
Finally, we observe that the cumulative reward and the match-
ing accuracy curves follow the same behavior. This suggests
that the agent improves its performance when it learns to
exploit the relevant step information stored in the memory.
Note that the matching accuracy is influenced both by the
high variability of the learning process in MANNs [Franke
et al., 2018] and by the fact that the memory output can be
sometimes ignored, in favor of the LSTM output. This is
highlighted by the variance — although it remains reliable
(accuracy ≥ 0.6) also in the worst-case scenarios.
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Story Cloze Test
Task. The Story Cloze Test, is a commonsense reasoning
framework for evaluating story understanding. In this task,
an agent has to choose between two possible endings for a
set of stories composed by four premises each. Due to its
particular input structure, it has been proven that it is possible
to reach good performances on this task by just using one of
the story premises [Srinivasan et al., 2018].

Training details. In our tests, we tokenize each sen-
tence with Stanford CoreNLP [Manning et al., 2014] and
we encode each word in a 300-dimensional space using
word2vec [Mikolov et al., 2013]. A zero-vector of the same
dimension is appended to the end of each input to mark the
end of the sequence and to request an answer from the net-
work. Moreover, we add three boolean flags to each word,
indicating whether the current word is taken from the story,
the ending, or the query respectively. The model is trained
and tested on the official development and test dataset of the
challenge, while we randomly split the former into a training
and development set containing respectively 90% and 10% of
the original dataset. We encode the premises using the DNC
and the final story state is used as the initial state for the en-
coding of both endings [Mihaylov and Frank, 2017], which
are concatenated and passed to the last network layer with a
softmax activation. The controller of the DNC consists of a
single LSTM layer with 128 units, a memory of size 512, 4
read heads, 1 write head, and a bypass dropout rate of 0.2. We
finally train the network with Tensorflow 2.0 using the Adam
optimizer with a learning rate of 1e−4 and a gradient clipping
of 20.

Task baseline comparison. As a first test, we evaluate the
accuracy of our architecture on the ending prediction task (
Table 1). The goal of this test is to show that the proposed
architecture does not under-generalize with respect to exist-
ing baselines. Specifically, while [Mihaylov and Frank, 2017]
is not the highest-scoring algorithm in the challenge leader-
board2, it represents a good baseline because (1) it is among
the top-performing published works, (2) it does not use task-
dependent features, and (3) it can be easily adapted to other
sequencing tasks. Our results show that our method and [Mi-
haylov and Frank, 2017] obtain the same score on the test set
and, consequently, they achieve the same generalization ca-
pabilities. To confirm that these results mostly depend on the
DNC usage of the memory content, we set the LSTM output
to zero and check that the overall accuracy does not drop too
much (68.8%). This confirms the importance of the memory
content, and its relevance for our explainability purposes.

LIME. We compare our method against explanations ob-
tained using LIME [Ribeiro et al., 2016]3, when applied on
the same network architecture. LIME is an additive feature
attribution method that assigns to each input feature an im-
portance score. While this is effective in several problems, it
does not explicitly support sequences, which have to be pro-
vided all at once. Moreover, a basic assumption of LIME

2https://competitions.codalab.org/competitions/15333\#results
3Note that SHAP and LIME feature similar issues.

Figure 4: Example output of LIME, where each word in the sen-
tence is weighted based on its relevance. Blue words, if removed,
decrease the probability of choosing the first ending; orange words,
if removed, decrease the probability of choosing the second ending.

Earl woke up early to make some coffee. (48.3%) He wanted to be alert for work
that day. (47.4%) The aroma woke up all his roommates. (0%) They wanted to
make coffee too. (4.2%)

E1. All of his roommates made coffee (CORRECT) – E2. All of his roommates
were sick of coffee.

Samantha had recently purchased a used car. (15.6%) She loved everything about
the car except for the color. (30.3%) She took her car to her local paint shop. (31%)
She got it painted a bright pink color. (23%)

E1. Samantha likes the color of her car now. (CORRECT) – E2. Samantha thinks
her bus looks pretty now.

Tim didn’t like school very much. (23.6%) His teacher told him he had a test
on Friday. (15%) If he didn’t pass this test, he could not go on the class trip. (4.5%)
Tim decided to play with his kites instead of study for the test. (56.8%)

E1. Tim was unprepared and failed the test. – E2. Tim aced the test and passed with
flying colors. (WRONG)

Neil took a ferry to the island of Sicily. (87.2%) The wind blew his hair as he
watched the waves. (0%) Soon it docked, and he stepped onto the island. (0%)
It was so breathtakingly beautiful. (12.7%)

E1. Neil enjoyed Sicily (CORRECT) – E2. Sicily was the worst place neil had
ever been.

Figure 5: Example outputs on the Story Cloze Test. A relevance
score is associated to each premise — ranked from best (blue) to
worst (orange). Predictions are highlighted in green if correct, or
red if wrong.

is the independence of features, which does not hold for se-
quential problems. In Figure 4, we report example results
produced by LIME, where we highlight in blue and orange
the words that shift the prediction towards the first or the sec-
ond ending respectively, if removed. Our results show that,
across all the examples in the dataset (processed at an avg.
speed of 15 minutes each), LIME focuses its attention on the
last part of the input (i.e., the concatenation of the premises
and the answers), reporting on which part of the answers is
more important. While it is true that changing the words of
the answers leads to a different prediction, we are interested
in knowing which premise or sequence of words in the story
leads the model to output its prediction. In theory, the weights
of the words in each premise could be summed. Our exper-
iments, however, show that most of the times their weight is
close to zero. Our method, conversely, exploits the sequen-
tial nature of the sentences, and checks which sub-sequence
is more important. Figure 5 shows few instances of expla-
nations obtained via our algorithm — including the ones in
Figure 4 for direct comparison. Note that our algorithm only
takes few seconds to produce an explanation.
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Avg. Accuracy

Architecture Dev Test

[Mihaylov and Frank, 2017] 77.12% 72.10%
DNC 71.30% 72.10%

Table 1: Avg. accuracy comparison against task baseline. For [Mi-
haylov and Frank, 2017], we report the scores from the original pa-
per, while we compute our average accuracy over 10 different runs.

Avg. Explanation Accuracy

Premise Train Dev Test

Random 57.5% 60.0% 55.6%
Best 66.0% 73.3% 63.8%

Worst 51.3% 53.3% 53.6%

Table 2: Avg. explanation accuracy over 10 runs on the Story Cloze
Test when feeding the model with only a random, the best and the
worst premise.

Explanation accuracy. In this test, we evaluate the expla-
nation accuracy for the Story Cloze Test4. As mentioned, our
method generates an output similar to Figure 5, allowing us
to identify the best and worst scoring explanations. Based
on this, and supposing that a good explanation is sufficient to
justify a certain prediction, we compute the accuracy of the
model in reproducing its predictions by only using the best
and worst premises — in place of the full story. Intuitively,
if the explanation for a certain prediction is good, feeding
that information alone to the network should result in the
same prediction (and a good accuracy). Conversely, by only
providing the worst explanation to the model, the prediction
could change due to the missing relevant information, leading
to a low explanation accuracy. The results presented in Ta-
ble 2, which contain the explanation accuracy obtained when
using the best, the worst and a random premise (acting as a
control variable), confirm our hypothesis. Hence, the expla-
nations produced by our algorithm can be considered prime
implicants [Shih et al., 2018] — extended to the sequential
setting. The reported results are obtained by building the read
history with the 10 most read cells at every step. Here, the
worst premise can achieve a lower explanation accuracy than
a random premise due to the structure of the dataset, that of-
ten contains a misleading or poorly relevant premise in the
story. Figure 6 shows the evolution of the explanation accu-
racy for the best and the worst premises over 10 runs, con-
firming the results of Table 2. These plots additionally indi-
cate that the explanations provided by our system are mean-
ingful from the very first training steps and, consequently, the
network quickly learns to use its memory (independently of
the final prediction).

4Evaluating explanations is an open problem [Samek and Müller,
2019], and there is no metric that can be used in all cases.

Dev Set Avg. Explanation Accuracy vs Thresholds

Threshold

Premise Top1 Top5 Top10 Top25 >Median

Best 75.6% 75.6% 73.3% 71.1% 40.0%
Worst 60.0% 60.0% 53.3% 40.0% 48.9%

Table 3: Avg. explanation accuracy on the dev set over 10 runs for
the best and worst premises using different Nc values. We highlight
in bold the best and worst accuracy respectively, for each premise
type among the different threshold values.

Figure 6: Explanation accuracy (mean and std) over training. Met-
rics are computed on the training set over 10 runs when using only
the best (red line) and the worst (blue line) premise as input. Ex-
planations are computed using a read history generated from the 10
(top) and 25 (bottom) most read cells.

Explanation accuracy vs history size. We compare the ex-
planation accuracy over multiple values ofNc, to evaluate the
relation between the explanation score, the obtained explana-
tion accuracy and the number of most-read cells considered
in the history. Results are reported in Table 3, where the no-
tation the topNc indicates the used Nc value. Specifically, we
consider Nc ∈ {1, 5, 10, 25} in addition to the above-median
case. Our results show that the explanation accuracy of both
the best and the worst premises follows the same behavior:
the smaller the value of Nc, the higher the explanation ac-
curacy; the larger the threshold, the lower the accuracy. This
behavior can be explained by analyzing the information in the
read history. For example, when Nc = 1 (top1 threshold) a
single cell for each step is available in the history, which con-
tains — at the end of the sequence — only T read cells, where
T is the number of steps (i.e., words). T is generally small,
and commonly stored cells only refer to one or two premises.
Moreover, since these cells are those with the highest weight,
they are highly represented in the read vector returned by the
memory, and they have a direct influence on the final predic-
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tion. This allows to conclude that these cells contain the best
explanation for the current prediction. The worst explanation
scenario is more tricky: as described above, when using small
Nc values, many premises do not have read cells in the his-
tory, and the explanation module has to (almost) randomly
choose the worst premise. This lack of history information
results in a large probability of picking a sufficiently good
explanation instead of the worst one. Conversely, when we
set Nc to a large value (e.g., Nc = 25), the generated his-
tory contains several cells. If no step of a certain sequence
is contained in the history, the sequence itself is not repre-
sented in the read vector and it cannot be used in the final
prediction. This allows us to identify the worst premise, and
to significantly reduce the matching accuracy when feeding it
to the network, as expected. The choice of the best explana-
tion, instead, is based on a larger number of cells, resulting
in an increased selection noise. In fact, while a small Nc

value rewards premises that are read more constantly during
inference, a larger threshold only rewards premises with the
most number of readings — independently of when the read
occurred. Hence, premises contained in cells that are read
multiple times only at the beginning are ranked higher than
premises read fewer times but more constantly, lowering the
accuracy. Starting from these observations, we conclude that
Nc must be set depending on whether we are interested to the
most useful explanation or to a more informative analysis.

Explanation adequacy. Despite the lack of universal met-
rics, we study the adequacy of explanations by adapting the
tests proposed in [Adebayo et al., 2018]. First, in the model
parameter randomization test we check the explanation ac-
curacy of the best and worst premises, when the model is
untrained and the weights are randomly initialized. As ex-
pected the test accuracy of the model (Table 4) is equivalent
to random guessing. Moreover, the explanation accuracy of
best and worst premise is almost the same, so the method
cannot differentiate between a good and a bad premise. This
confirms that the proposed method depends on the learned
parameters, and in particular on how the model learns to use
the memory. In the data randomization test, we shuffle the
labels in the training and dev set and train a model on the
modified dataset. As proposed in [Adebayo et al., 2018], we
stop the training when the training accuracy is above 95%,
and we check the explanation provided for the original test
set. Table 4 reports the obtained results, where accuracy is
higher then random guessing because the model can learn
useful information from several examples in dataset with the
right label. In this case, the role of best and worst premises
is flipped, and their accuracy is worse than before. The flip-
ping behavior can be explained as an attempt of the model to
exploit the changed label: in this case to predict the correct
answer it should choose the answer that has the minimum
similarity with the memory output. In fact, since the task is
overabundant, this behavior can be rewarded also by some of
the correctly labeled examples.

5 Conclusions
Nowadays, several researchers are focusing on explainable
AI and machine learning, with the purpose of increasing trust

Avg. Explanation Accuracy

Test Accuracy Best Worst

Parameter Randomization 50.8% 56.0% 55.4%
Data Randomization 58.6% 51.8% 62.8%

Table 4: Adequacy tests adapted from [Adebayo et al., 2018].

from the general public, and allowing a broader usage where
expert supervision is mandatory. This paper investigates how
memory-augmented neural networks can be used to produce
explanations at prediction time.

Our approach represents an unexplored and novel way to
collect information on the inference process. Yet, our re-
sults confirm that by keeping track of the memory usage
we can produce reliable explanations on two different tasks.
We analyze, for these tasks, the relation between the amount
of tracked memory and the explanation goodness, as well
as the gap between the best and the worst explanations.
These promising results make the proposed approach defi-
nitely worth additional investigation. In particular, we aim
at (1) further improving the quality of provided explanations,
(2) better understanding memory-based explanation mecha-
nisms, and (3) extending the applicability of our approach to
different domains in future work. In particular, the latter will
allow us to compare our approach with the current state of art
approaches on non-sequential data.
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