
����������
�������

Citation: Gaeta, A.; Leone, G.; Di

Menno di Bucchianico, A.; Cusano,

M.; Gaddi, R.; Pelliccioni, A.; Reatini,

M.A.; Di Bernardino, A.; Cattani, G.

Spatio-Temporal Modeling of

Small-Scale Ultrafine Particle

Variability Using Generalized

Additive Models. Sustainability 2022,

14, 313. https://doi.org/10.3390/

su14010313

Academic Editor:

Giouli Mihalakakou

Received: 17 November 2021

Accepted: 22 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Spatio-Temporal Modeling of Small-Scale Ultrafine Particle
Variability Using Generalized Additive Models
Alessandra Gaeta 1,*, Gianluca Leone 1, Alessandro Di Menno di Bucchianico 1 , Mariacarmela Cusano 1,
Raffaela Gaddi 1, Armando Pelliccioni 2, Maria Antonietta Reatini 1, Annalisa Di Bernardino 3

and Giorgio Cattani 1

1 Department for Environmental Evaluation, Control and Sustainability, Italian National Institute for
Environmental Protection and Research, 00144 Rome, Italy; gianluca.leone@isprambiente.it (G.L.);
alessandro.dimenno@isprambiente.it (A.D.M.d.B.); mariacarmela.cusano@isprambiente.it (M.C.);
raffaela.gaddi@isprambiente.it (R.G.); maria.reatini@isprambiente.it (M.A.R.);
giorgio.cattani@isprambiente.it (G.C.)

2 Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’
Compensation Authority (INAIL), Monte Porzio Catone, 00078 Rome, Italy; a.pelliccioni@inail.it

3 Physics Department, Sapienza University, 00185 Rome, Italy; Annalisa.DiBernardino@uniroma1.it
* Correspondence: alessandra.gaeta@isprambiente.it

Abstract: High-resolution measurements of ultrafine particle concentrations in ambient air are needed
for the study of health human effects of long-term exposure. This work, carried out in the framework
of the VIEPI project (Integrated Evaluation of Indoor Particulate Exposure), aims to extend current
knowledge on small-scale spatio-temporal variability of Particle Number Concentration (PNC, con-
sidered a proxy of the ultrafine particles) at a local scale domain (1 km × 1 km). PNC measurements
were made in the university district of San Lorenzo in Rome using portable condensation particle
counters for 7 consecutive days at 21 sites in November 2017 and June 2018. Generalized Additive
Models (GAMs) were performed in the area for winter, summer and the overall period. The log-
transformed two-hour PNC averages constitute the response variable, and covariates were grouped
by urban morphology, land use, traffic and meteorology. Winter PNC values were about twice the
summer ones. PNC recorded in the university area were significantly lower than those observed
in the external routes. GAMs showed a rather satisfactory result in order to capture the spatial
variability, in accordance with those of other previous studies: variances were equal to 71.1, 79.7 and
84%, respectively, for winter, summer and the overall period.

Keywords: ultrafine particles; Generalized Additive Model; air pollution

1. Introduction

Several studies have assessed the health effects of particles in the ultrafine mode
(PM0.1). The main concern is related to their capability to go deeper into the lung, where
they are retained longer than the coarser particles, leading to pulmonary inflammation
and endothelial dysfunction [1]. Moreover, it has been shown that ultrafine particles
(UFP) exposure led to coagulation change that can be a risk factor for hypertension and
cardiovascular disease. Among others, they have been linked to diabetes and cancer as
well as cerebral dysfunctions due to direct translocation to the brain through the olfactory
nerve [1,2].

Since ultrafine particles contribute largely to the airborne total particle number con-
centration (PNC), it was often used as a proxy for PM0.1 exposure studies [3–5].

The outdoor PNCs spatial and temporal variability assessment and related population
exposure gradients are key topics in order to evaluate the related health effects.

Some studies have attempted to evaluate the PNC spatial variability at an urban
scale using Land Use Regression models (LURs). The LURs have been applied to large
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urban areas such as Amsterdam [6], Vancouver [7], New Delhi [8], Boston [9], Toronto [10],
Rome [11], Berlin [12], London [13] and El Paso [14] including, at times, also the surround-
ing municipalities. In other cases, the method has been extended to wider territories of
Girona (Spain, [15]) to include the entire national territory (Switzerland, [16]; the Nether-
lands [17]). These studies were based on multiple regression between the concentrations
measured in different points (usually ranging between 20 and 80) and spatial explanatory
variables extracted within zones of influence around each monitoring site, mainly starting
from the assumption that the functional link between the regressors and the response
variable was linear.

Although LUR models can be effective tools for evaluating the spatial distribution
of PNC, leading to the identification of high-resolution concentration domains, actually
the hypothesis that the functional link between the regressors and the response variable is
linear seems weak, also after the PNCs log transformation.

In particular, in urban areas it has been observed that the PNC shows much more
pronounced variations than that of the mass concentration of PM10 as the distance from
the road increases [18–20], and that the nanometric fraction of UFP is predominant in
the measurement sites close to road traffic or hot spots [21,22]. Indeed, several studies
have identified an exponential decrease in PNC as the distance from the road increases,
for the unobstructed topographic settings [23,24]. It was also found a relative maximum
in the PNC for distances around 90 m from heavy traffic roads such as motorways and
expressways [18,25]. Moreover, if not only long-term exposure must be taken into account,
the temporal variability also has to be contemporarily assessed.

PNC, in the field of ultrafine particles, varies over time both due to the processes
of formation and growth of particles [26–28] and as a function of meteorological and
micrometeorological physical-chemical parameters [25,29–33]. The formation mechanism
(nucleation) leads to the generation of new UFP in the atmosphere starting from gaseous
compounds; the volumetric growth of UFP is linked both to the condensation of gases on
the UFP surface or to their dissolution in the liquid film that covers the particles. The main
removal processes reside in dry and wet deposition [27,28].

The relationship between PNC and the main meteorological variables has been gener-
ally described by complex, non-linear functions [25,34,35].

The Generalized Additive Models (GAMs), using smoothing functions, allow the
evaluation of non-linear interactions between the covariates and the response variable even
in the very frequent case in which there is no prior knowledge of the kind of functional
bond [36,37].

The use of smoothing functions in place of deterministic functions based, in linear
models, on the estimation of regression parameters, has produced excellent results in the
analysis of complex ecological systems [38,39].

The use of splines as smoothing functions allows both for reproducing the global
trend of the contribution that the covariate provides to the response variable and to better
approximate any local trends in particular intervals of the domain of existence of the
explanatory variable [34,40].

GAMs have been used to assess the temporal relationships between PNC measured at
fixed sites and meteorological parameters, allowing for positive results in terms of statistical
performance [34,35,41].

However, both LUR models and GAMs have been applied to local (representative of a
neighborhood or suburb) or microscales (representative of individual roads) only in a few
studies. At such small spatial scale, spatio-temporal assessment is particularly challenging
due to highly heterogeneous conditions [42–44]. Actually, concentrations in small urban
domain are strongly dependent on short-term traffic variability [45,46]. The configurations
of building and streets can play a relevant role by modifying local airflow patterns [47–49].

To the best of the authors’ knowledge, only a few studies [12,50] have addressed the
goal to capture and effectively represent UFP urban hotspots spatial variability at a local or
microscale through statistical models.
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The aim of our work, carried out in the framework of the VIEPI project (Integrated
Evaluation of Indoor Particulate Exposure) [51], was to further extend the current knowl-
edge on small-scale spatio-temporal variability of PNC at local scale domain (1 km × 1 km).

To this purpose, we developed empirical regression models, GAMs, accounting for
seasonal and diurnal variability. We demonstrate quantitatively the modeling approach
effectiveness, while the PNC variability main descriptors and their contribution to the
PNC-explained variance were assessed. The complexity of local urban design features was
also explored using GIS derived urban morphology explanatory variables.

2. Materials and Methods
2.1. Study Domain and Monitoring Campaigns

The study domain has an area of 1 km2 centered on the E. Fermi Physics building of
Sapienza University, one of the largest and oldest universities in Europe, accounting for
more than 100,000 students and about 8000 workers, in the district of San Lorenzo in Rome
(Italy). The university campus extends over an area of 0.22 km2 where parking is allowed
to a limited number of cars.

The sampling points were chosen with the aim of obtaining the maximum spatial
gradient. It was assumed from a previous study [11] that spatial variability mainly depends
on the traffic on the main roads and on the building shape and density.

Moreover, the sampling points within the university were chosen considering the
effects of buildings on the wind. For this reason, a series of preliminary simulations with
high spatial resolution were carried out using the three-dimensional, non-hydrostatic
ENVIMET numerical model, able to reproduce the fluid dynamic field in correspondence
with groups of obstacles [52]. Four scenarios were simulated, corresponding to the four
prevailing wind directions in the area under consideration [53], i.e., North (0◦), Northeast
(45◦), South (180◦), and Southwest (225◦), with a constant wind intensity of 1.5 m/s
(Supplementary Materials Figure S1). The reproduction of the prevailing anemological
conditions allows the drawing of general conclusions not related to single events and,
therefore, is particularly useful for the choice of sampling points.

In addition, the proximity to the surrounding nearest roads was taking into account.
PNC was measured using handheld condensation particle counters (CPC3007, TSI

inc., Shoreview, MN) which operated at a flow of 100 mL/min measuring particles within
the range of 10–1000 nm with a time resolution of 1 s. Due to the large amount of sampling
points along with the limited number of available devices, a rounding measurement strat-
egy was adopted. We selected three paths (Figure 1: A, blue line—inside the university,
B, red line -all around the university fence, and C, green line—within the surrounding
San Lorenzo district) with seven sampling points each; three operators carried out mea-
surements contemporarily on each path. Each of the 21 selected measurement points was
visited three times during the day at pre-established times, representing three specific time
bands at local times 8:00–10:00; 12:00–14:00 and 16:00–18:00.

For each point, 10-min measurements were made. The CPCs were carried from an
operator alongside the chosen path. Each sampling point was previously geolocated.
Measurements were carried out by placing the CPC on top of a wood base mounted on a
tripod (see Supplementary Materials Figure S2a–c).

Two monitoring campaigns were conducted on 8–17 November 2017 (cold season)
and on 17–23 June 2018 (warm season) with the aim to capture the weekly and seasonal
variability. Details on site-by-site descriptive statistics are reported in the Supplementary
material (Tables S1 and S2).
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Figure 1. Measurement points and paths selected in the study area.

The concentration data measured in 10 min in the November and June campaigns were
reconstructed for an average time of two hours: two hours and ten minutes was in fact the
time needed to visit the 7 sites of each path with measurements lasting 10 min, so the two-
hour average was considered the average temporal unit of the models. The averaged values
over the 2 h were reconstructed using continuous and parallel measurements carried out on
the roof of the Physics building for the duration of the campaigns in June and November.

The two-hour mean PNC determined at the various points was used as the response
variable of the model. In order to follow a normal distribution of the response variable
(Figure 2), a logarithmic transformation was applied [34,54].
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2.2. Potential Spatial Explanatory Variables

The calculated spatial variables were the following:
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1. Urban morphology: the volumes and heights of the buildings were obtained from the
Urban Atlas 2012 section of the Copernicus Land Monitoring Service (https://land.
copernicus.eu/local/urban-atlas/urban-atlas-2012; accessed on 16 November 2021),
while the width and the length of the roads and the distance to them distinguishing
among main, secondary and local ones, were evaluated starting from the Open
Street Map layers (https://www.openstreetmap.org; accessed on 16 November 2021).
Moreover, the urban morphology variables were used to calculate some parameters
characterizing the urban canyon (see Supplementary Materials Figure S3).

2. Land use: Urban green area, Continuous Urban Fabric representative of continuous
areas with high population density, Discontinuity Density representative of discontin-
uous areas with medium-low population density and Industrial Commercial Public
representative of public areas, were calculated in the domain of interest, starting from
the data available in the Urban Atlas 2012 section of the Copernicus Monitoring Land
Service, at spatial resolution of 10 m. Imperviousness, which was representative of
impermeable surfaces, was calculated at a spatial resolution of 100 m.

3. Population: the number of inhabitants was considered in the corresponding census
sections, with reference to the last ISTAT census of 2011 (https://www.istat.it/it/
archivio/104317; accessed on 16 November 2021).

Each spatial variable was calculated at the measurement points in buffers with a radius
of 12.5 m and 25 m. GIS analyses and mapping were performed using ArcGIS (v.10.3; ESRI).

2.3. Potential Temporal Explanatory Variables—Meteorological Parameters

The time variables used as potential predictors were wind intensity and direction, air
temperature, relative humidity, atmospheric pressure, height and intensity of rainfall and
global solar radiation. Moreover, the standard deviation of wind intensity and turbulent ki-
netic energy (TKE) were taken into account since they are representative of the atmospheric
turbulence [55].

The meteorological parameters were provided by the Regional Protection Agency of
the Lazio (ARPA LAZIO). Measurements were carried out using a sonic anemometer placed
on the roof of the ARPA LAZIO building located 2 km NW from the study domain center.

With the aim of providing information on the air dispersion volume, the planetary
boundary layer height (PBLH) was estimated based on remote sensing measurements car-
ried out using a Light Detection And Ranging (LiDAR) sensor belonging to the BAQUNIN
supersite [56] and installed on the rooftop of the E. Fermi building, in the center of the
domain. The measurements were carried out continuously during the summer measure-
ment campaign, and the 10-min temporal resolution PBLH was retrieved following the
procedure described in [57].

All time parameters were averaged over 2 h to be used in the empirical models.

2.4. Potential Spatial and Temporal Explanatory Variables—Traffic Flows

Traffic flows vary significantly both spatially and temporally.
Traffic data were based on traffic count taken during the measurement campaigns at

each point (10-min cumulative counts); the average hourly traffic measured (vehicles/hour)
was compared with the modelled traffic flows provided by the Mobility Agency of the
Municipality of Rome, referring to an average year, in the main roads around the campus.
Linear regression between the traffic measurements and estimations, for the monitoring
campaigns in the three time bands in the cold season (8–12 November 2017) and the warm
season (17–23 June 2018), were performed. The regression coefficients ranging between
0.62–0.79 in the cold season and 0.59–0.84 in the warm season. We then calculated, based
on the regression equations, the traffic in the hours in which the traffic measurements were
not carried out.

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://www.openstreetmap.org
https://www.istat.it/it/archivio/104317
https://www.istat.it/it/archivio/104317
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2.5. Models Development

The explanatory variables described were considered as potential predictors in the
development of Generalized Additive Model (GAM, [34]). The GAM equation is defined
as follows [40]:

g(µi) = Aiγ+ ∑j fj
(
xji
)

, yi ∼ EF(µi, ϕ)

where:
yi = response variable
µi ≡ E(yi) = expected value of yi
yi ~ EF(µi, ϕ) = exponential distribution of yi
Aiγ = ith row of the model parameter matrix with its corresponding vector
fj
(
xji
)

= smoothing function for the covariates j
All the independent temporal variables in input to the model described above were

attributed to the time average of two hours.
Three GAMs were fitted for the cold and warm week and for the overall period, using

the log-transformed two-hour PNC averages as the response variable.
Among potential predictors only those with at least 90% non-zero data were selected.

Correlation matrices for each group of variables (temporal, spatial and spatio-temporal)
were presented in Table S3 and Figures S7–S9 of the Supplementary Materials; starting from
the best correlation between these variables and the natural logarithm of PNC, a stepwise
forward procedure was followed.

In the variable stepwise selection, each variable was added if: it gave an incremental
R2 adjusted higher than 1%; the a priori direction of the effect was respected and it did not
change the direction of effect of previously added variables.

Moreover, test checks were performed to select the best spline for each variable.
The smoothing parameter was chosen controlling the balance between likelihood function
and the overfitting, founding the convergence of the iteration algorithm (gam check routine
of the R mgcv package). The K (or K’ used in gam check routine) parameter represents
the number of basis functions that determines how wiggly a smooth can be. Where not
expressly indicated, it is assumed that the value of parameter K is equal to 10. The Effective
Degrees of Freedom (EDF) represents the complexity of the smooth in terms of curve
sinuosity (the higher the EDF value, the greater the spline non-linearity). If there are
not enough basis functions, it may not be wiggly enough to capture the relationships in
data (EDF is close to K’). The F parameter is used in an ANOVA test to confirm overall
significance of the smooth.

Interactions between variables were also assessed using specific functions in the R
mgcv package (e.g., “Tensor smooths”) [58].

Standardized data adaptation criteria, Akaike Information Criterion (AIC), General-
ized Cross Validation (GCV) and Bayesian Information Criterion (BIC) were calculated for
the developed models to control the phenomena of improper adaptation due to overfitting.
Finally, residual normality was graphically checked in order to confirm the basic assumption.

Graphical tools and statistical indicators (k-fold Root Mean Square Error, k-fold CV,
Adjusted R-Squared) were used to evaluate the performance of the GAMs fitted. The R soft-
ware ([59,60] R Development Core Team) and in particular the gam function implemented
in the mgcv library was used.

3. Results and Discussion
3.1. Particle Number Concentration Measurements

Figures 3 and 4 show the point-by-point PNC weekly averages calculated during the
first campaign (8–17 November 2017—cold season) and the second campaign (17–23 June
2018—warm season), respectively.
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Two-hour averages PNC at measurement sites ranged between 3846 and 32,483
particles/cm3 in the warm season; the observed range was 5722–101,594 particles/cm3 dur-
ing the cold season. The temporal variation, assessed by means of coefficient of variation
calculated in each site, ranged between 27% and 71%. The within-area contrast (expressed
as the estimated average concentration range by median ratios) was 91.7% and 86.4% in
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the cold and warm season, respectively. This addresses for the existence of a high spatial
contrast in the PNC despite the small study domain, with implications on population
exposure [5].

The cold season average values were approximately double that of the warm period
(see Figure S4, for detailed site-by-site comparisons). Moreover, the PNC median was larger
during working days than on Sundays (when traffic flows were reduced, see Figure S6).
Saturday has intermediate concentration values between Sunday and the typical values
of weekdays. These results confirmed that our monitoring strategy allows for sufficiently
capturing the typical diurnal PNC variability (two rush hours maximum in the 8–10 and
16–18 time bands and the typical daily minimum in the 12–14 time band).

The seasonal and temporal variability observed were nicely in agreement with long-
term PNC observations carried out within the same study domain at a traffic influenced
site (located a few meters from the curbside [61,62], as well as with other studies across
Europe e.g., [63]).

At the measurement points inside the university area (path A away from the roads),
significantly lower values (p < 0.01) compared to those observed at the measurement spots
along the two external paths, close to major roads with high traffic intensity (see B1, B2, B3,
B4, B5, C1, C3 and C7) were observed. Conversely, the average concentrations at points
B6, C2 and C6, relatively far from the high traffic roads, were comparable, in both seasons,
with those within the university area.

These finding were consistent with the sampling point characterization showed in
Figure S5, where the ratio between traffic flows on the nearest road and distance from the
road traffic for each site was reported. With this regard, it should be noted that total traffic
flows (calculated in directions AB + BA averaged over 2 h) were linearly correlated with
PNC both in June (r = 0.48, p < 0.01) and in November (r = 0.39, p < 0.01).

The spatial contrast in measured PNC was represented by the ratio of the minimum
and maximum value of the average two seasonal campaigns in the overall measurement
points. The calculated parameter in overall 21 measurement points was 0.53 and was
comparable with that estimated within the city of Rome (0.6) [11].

3.2. Model Evaluation

GAMs were performed to predict PNC in the study area for the cold and warm seasons
(November 2017 and June 2018) and for the overall period (Overall model).

In the cold season model, the relative humidity (Urel), the traffic in the nearest street
(Traff), the inverse distance squared to the nearest main/busy road (Distinv2), the difference
between the maximum and minimum turbulent kinetic energy in two hours (DELTA_TKE)
were selected as explanatory variables.

ln(PNC) = s(Urel) + s(Distinv2, k = 15) + s(DELTA_TKE) + Traff (1)

where:
Urel = Relative humidity (%)
Distinv2 = Inverse distance squared to the nearest road (1/m2)
DELTA TKE = Difference maximum turbulent kinetic energy and minimum turbulent

kinetic energy (m2/s2)
Traff = Total traffic in directions AB + BA (vehicles/h)
The coefficient estimate and statistical significance are shown in Tables 1 and 2.

Table 1. Coefficients and significance of linear terms of the cold season model.

Variable [UM] Coefficient (SE) t Value Pr (>|t|)

Intercept 9.90 (0.355) 278.8 <0.001
Traff [vehicles/h] 1.20 × 10−4 (5.22 × 10−5) 2.3 0.022



Sustainability 2022, 14, 313 9 of 21

Table 2. Significance of smoothing terms of the cold season model.

Smoothing Terms
[UM] EDF F p Value K’ k

Index

s(Urel) [m−1] 8.342 33.705 <0.001 9.00 0.98
s(Distinv2, k = 15) [m−2] 12.293 7.379 <0.001 14.00 0.98
s(DELTA_TKE) [m2/s2] 8.975 19.283 <0.001 9.00 0.99

EDF (Effective Degrees of Freedom), F (parameter used in ANOVA test) and p-value were used to evaluate the
significance of the smooth; K’ represented the number of basis function and k-index (ratio of neighbor differencing
scale estimate to fitted model scale estimate) was used to evaluate the significance of the residuals.

In the summer model, the scalar wind speed (Vscal), the traffic in the nearest road
(Traff), the inverse distance squared to the nearest main/busy road (Distinv2) and the
height minimum of the PBL (Hmixmin) were selected as explanatory variables.

ln(PNC) = s(Vscal) + s(Distinv2, k = 12) + s(Hmixmin) + s(Traff)

where:
Vscal = average wind speed (m/s)
Distinv2 = Inverse distance squared to the nearest road (1/m2)
Hmixmin = minimum PBL height (m)
Traff = Total traffic in directions AB + BA (vehicles/h)
The coefficient estimate and statistical significance are shown in Tables 3 and 4.

Table 3. Coefficients and significance of linear terms of the warm season model.

Variable [UM] Coefficients (SE) t Value Pr (>|t|)

Intercept 9.21 (0.011) 835 <0.001

Table 4. Significance of smoothing terms of the warm season model.

Smoothing Terms [UM] EDF F p Value K’ k
Index

s(Vscal) [m/s] 9.000 10.087 <0.001 9.00 1.00
s(Distinv2, k = 12) [m−2] 9.728 15.370 <0.001 11.00 1.08

s(Hmixmin) [m] 6.504 21.105 <0.001 9.00 1.00
s(Traff) [vehicles/h] 3.561 2.577 0.029 9.00 1.08

EDF (Effective Degrees of Freedom), F (parameter used in ANOVA test) and p-value were used to evaluate the
significance of the smooth; K’ represented the number of basis function and k-index (ratio of neighbor differencing
scale estimate to fitted model scale estimate) was used to evaluate the significance of the residuals.

In the overall model, built using data for both periods together, the temperature (Tdry),
the scalar wind speed (Vscal), the traffic in the nearest road (Traff), the inverse distance
squared to the main/busy road (Distinv2), the difference between the maximum and mini-
mum turbulent kinetic energy in 2 h (DELTA_TKE), were selected as explanatory variables.

ln(PNC) = s(Tdry, k = 15) + s(Distinv2, k = 12) + s(Vscal, k = 15) + s(DELTA_TKE, k = 15) + Traff

where:
Tdry = Temperature (◦C)
Distinv2 = Inverse distance squared to the nearest road (1/m2)
Vscal = average wind speed (m/s)
DELTA_TKE = Difference maximum turbulent kinetic energy and minimum turbulent

kinetic energy (m2/s2)
Traff = Total traffic in directions AB + BA (vehicles/h)
The coefficient estimate and statistical significance are shown in Tables 5 and 6.
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Table 5. Coefficients and significance of linear terms of the overall model.

Variable [UM] Coefficients (SE) t Value Pr (>|t|)

Intercept 9.57 (0.022) 436 <0.001
Traff [vehicles/h] 6.86 × 10−5 (2.45 × 10−5) 2.80 0.005

Table 6. Significance of smoothing terms of the overall model.

Smoothing Terms [UM] EDF F p Value K’ k Index

s(Tdry, k = 15) [◦C] 12.29 79.04 <0.001 14.0 1.04
s(Distinv2, k = 12) [m−2] 10.74 23.24 <0.001 11.0 0.98

s(Vscal) [m/s] 13.89 17.81 <0.001 14.0 1.04
s(DELTA_TKE) [m2/s2] 13.45 15.00 <0.001 14.0 1.04

EDF (Effective Degrees of Freedom), F (parameter used in ANOVA test) and p-value were used to evaluate the
significance of the smooth; K’ represented the number of basis function, and k-index (ratio of neighbor differencing
scale estimate to fitted model scale estimate) was used to evaluate the significance of the residuals.

The smooth terms for the three models (Tables 1–6) are all significant (p-value < 0.001),
and the choices of the K parameter for each variable return satisfactory results (k index > 1).

As shown in Figures S11, S13 and S15, for the three models the basic assumptions
were respected: residuals were normally distributed and the constancy of variance, and
independence of the variables were respected in accordance with the random distribution
of the residuals versus estimated values.

3.3. Models Performance

The performance indices for the three models are shown in Table 7. In particular,
a very good space-time prediction index is represented by the Root Mean Square Error
(RMSE). K-fold cross-validation has been used to estimate the prediction error [64].

Table 7. Performance parameters of the three GAMs.

Model R2 adj R2 GCV AIC BIC RMSE
[part/cm3]

Cold season 0.690 71.1% 0.073 93.95 227,3 7743
Warm season 0.779 79.7% 0.047 −76.2 43.558 2832

Overall 0.835 84.5% 0.06 13.482 278.646 5562

The cold season model explains 71.1% of the deviance (adjusted R2 equal to 0.690).
The summer model explains 79.7% of the deviance (adjusted R2 equal to 0.779). The overall
model explains 84% of the deviance (adjusted R2 equal to 0.835). RMSE of the models
showed rather satisfactory values. All performance parameters were consistent with those
of other previous studies [34,35].

3.4. Influence of Explanatory Variables

To assess the influence of explanatory variables on estimated PNC levels, the percent
relative effect (P) of each variable was calculated through the following equation [65,66]:

P = (eα − 1) × 100%

where:
α = ln (variable effect)

P can be interpreted as PNC percentage change in relation to the baseline level.
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The frequency ratio of negative relative effect by meteorological covariate (NR) was cal-
culated to better understand the sign of relative contributions, regardless of the magnitude.
For each covariate NR parameter was calculated by the following equation:

NR = Nneg/Npos

where:
- Nneg = n. of occurrences with negative p value
- Npos = n. of occurrences with positive p value
NR and the P median values, also disaggregated by time bands, are shown in Tables 8 and 9.

Table 8. Influence of variables on estimated PNC levels in the three models.

Cold Season Model

s(Urel) s(DELTA_TKE) Traff s(Distnv2)

Median relative effect −15.3% 18.2% 6.65% 1.84%

NR 1.3 0.4 0.0 0.9

Warm season model

s(Vscal) s(Hmixmin) s(Traff) s(Distnv2)

Median relative effect −27.6% 45.8% 1.46% −7.69%

NR 2.4 0.4 0.8 1.1

Overall model

s(Tdry) s(DELTA_TKE) s(Vscal) Traff s(Distnv2)

Median relative effect −0.74% −3.35% −7.10% 3.38% −1.19%

NR 1.0 2.0 1.1 0.0 1.1

Table 9. Influence of variables (median relative effect) on estimated PNC levels in the three models
and in the three specific time bands.

Cold Season Model

Time bands s(Urel) s(DELTA_TKE) Traff s(Distnv2)

8 12.0% 22.9% 4.27% 1.84%

12 −20.5 11.5% 8.67% 1.84%

16 −19.4% 23.4% 7.79% 1.84%

Warm season model

Time bands s(Vscal) s(Hmixmin) s(Traff) s(Distnv2)

8 −23.1% 49.1% 0.55% −7.69%

12 −21.6% −2.03% 1.85% −7.69%

16 −44.8% 45.8% 1.84% −7.69%

Overall model

Time bands s(Vscal) s(Tdry) s(DELTA_TKE) Traff s(Distnv2)

8 43.3% 19.7% −18.2% 2.55% −1.19%

12 −16.4% −28.9% −1.63% 4.08% −1.19%

16 −11.2% −15.1% −2.04% 3.90% −1.19%

In the summer model, Hmixmin had the greatest percent relative effect, causing an
increase in PNC of 45.8%, whereas Vscal exhibited a relevant negative effect (p = −27.6%).
Meteorology variables proved to have a strong effect in the winter season too, even if smaller
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than the summer one: the biggest contribution to PNC increase (p = 18.2%) was caused by
DELTA_TKE, while that to PNC decrease was due to Urel (p = −15.3%). The overall model
results confirmed the significant effect of meteorological parameters.

Both Vscal and Urel had prevalence of negative effect occurrences. Hmixmin showed
a strong positive effect frequency. DELTA_TKE exhibited a large prevalence of negative
effect occurrences in the overall model, instead a relevant prevalence of positive effect in
the winter one.

Looking at the overall model in Table 9, for all variables (with the exception of
DELTA_TKE), the smallest percentage contribution increase took place during the evening
band. In the winter model, Urel exhibited a strong negative contribution during the noon-
time and evening bands. In the summer model, Vscal showed a great negative effect,
especially in the evening. Traffic flow contribution during the winter period resulted
bigger than in summer, and during the noontime band achieved a not-negligible 8.67%
relative effect.

Discussion on Influence of Meteorological Parameters

The results of the cold season model showed a negative contribution of Urel (−15.3% in
Table 8) while the trend of spline function (Figure S10) was consistent with the studies that
showed an increase of PNC at low temperatures and high humidity, due to the phenomena
of new particles’ formation [29,67]. Vehicle emissions consist of a mixture of hot organic
gases and sulfur and nitrogen oxides, together with particles. The mixture of hot gases
meets cold air, rapidly forming ultrafine particles in the nucleation mode (1–20 nm) in the
first seconds after emission [32,68]. These particles are always formed, but their formation
is favored by low temperature and high humidity and have been observed in traffic sites
near the sources [25,69].

DELTA_TKE variable was a good interpreter of the standard deviation of the horizontal
wind speed [70]. DELTA_TKE showed a different contribution during the cold season and
the overall models (18.2% and −3.35%, respectively, see Table 8). The relationship with
PNC was positive in the range 0.0–1.0 m2/s2 (Figures S10 and S14) that was also the range
that reproduce very well the daily temporal variability in the overall monitoring periods.
Measured values in the chosen time slot (black dots in Figure 5a,b) seem well distributed
related to daily variability in the overall period (continuous red line): out of that range,
DELTA_TKE variable exhibited explanatory weakness as confirmed by confidence intervals
of the spline functions.

Traffic flow contribution was positive with PNC in all the three models, although a
greater contribution was evident in the winter period compared to the summer one. It is
well known that the new particles’ formation phenomena in the atmosphere by nucleation
related to photochemical processes can be relevant in the summer period (the so-called
midday nucleation events [18,71]), but particles formed through such events have been
reported to fall mainly in the range 3–10 nm, which is outside the counting efficiency of the
instruments we used.
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Vscal had an important negative contribution in the warm season model, and less in
the overall model (−27.6%, −7.10% in Table 8), in line with the trend of spline functions
(Figures S12 and S14) that, with the limit of interval confidence, was consistent with several
studies that showed a decrease of UFP with an increase of wind speed [25,34]; a decreasing
exponential function was proposed with the minimum observed during a wind speed
higher than 5 m/s [72]. In our study, the wind speed during summer (averaged over two
hour) ranged between 1.0 and 2.9 m/s, and the spline has a maximum at around 2.0 m/s.
However, it can be argued that, when the wind speed increases, the availability of particles
on which the gases can condense is reduced, and therefore the probability that these lead
to the formation of new particles increases (this also explains why in rural sites, where the
concentration of particles is lower, the phenomena of formation of new particles have been
shown to be more intense) [73].
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The temporal variability is strongly dependent on the PBLH evolution over time and
on the characteristics of the local wind. The trend of spline function of Hmixmin (Figure S12)
showed a relationship with PNC that was consistent with what we generally expect in
summer: the higher the atmospheric vertical turbulence, the lower the PNC as the other
pollutants’ concentration [25,74]. A typical summer trend in the aerosol vertical profile
and PBLH was showed in Figures 6 and 7. The PBLH tends to increase with the increase
in solar radiation, which favors convective phenomena until it reaches a maximum in the
hottest hours of the day and then falls again in the afternoon.
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3.5. Spatio-Temporal Predictions of PNC

Variables selected for each model were calculated at each study domain cell (25 m × 25 m).
The models’ equations were used to estimate average of PNCs at a two-hour time resolution.
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Inverse distance weighted interpolation of the resulting gridded PNCs was then used to
generate PNC maps.

Figures 8–10 show the spatial and temporal estimates of PNC in the study domain
for a typically summer day, Wednesday 20 June 2018, in the three-time bands 8:00–10:00;
10:00–12:00 and 16:00–18:00.
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The maps show the model capability to capture the intra-day PNC variability. The PBLH
temporal trend and the traffic flow pattern drive the PNC spatiotemporal variability,
since both traffic related variables and PBLH were important predictors in the warm
season model.

PBLH tends to gradually increase in the morning until it reaches very high values,
which remain stable from 1 pm to about 7 pm (on average 2500 m—as shown in Figure 7).
The estimated PNC were high in the morning (low PBL and high traffic values—Figure 8)
continue to increase up to 12 (still low PBL—Figure 9) until they decrease over the entire
domain due to the phenomena of dispersion (high PBL—Figure 10).

Maximum PNC levels were found along the busiest streets, while large PNC decline
was observed just a few tens of meters away from the curbside.

4. Conclusions

We developed GAMs to predict both spatially and temporally resolved PNC variability
at a local (neighborhoods) scale.

The modeling approach effectiveness was demonstrated quantitatively.
All the three models were fully compliant with the basic assumptions for the GAM

models, as demonstrated by diagnostic GAM plot [34,35].
The stepwise procedure allows for developing generally robust models which perform

reasonably well in the cross-validation approach: the R2 adjusted (0.690–0.835) was higher
or within the range of the best performing statistical models already developed at the urban
scale [34,41] and local scale [17,35].

Considering that the relationships between the target variable (PNC) and the potential
predictors were not linear, we demonstrated that including spline functions with small
uncertainty levels significantly improved the models’ performance (LUR R2

adj = 0.528 vs.
GAM R2

adj = 0.835).
To the best of the authors’ knowledge, there are few studies [12,50] that have addressed

the challenge to capture and effectively represent UFP urban hotspots spatial variability,
at a local or microscale, through statistical models. Among them, ours is the only one
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accounting for seasonal and diurnal variability, although the temporal distribution was
only suitable within the limit of the measurement ranges of the descriptive variables of
the models.

The PNC variability main descriptors and their contribution to the PNC-explained
variance were assessed. Based on our best knowledge, this study was the first that demon-
strated the usefulness of time-resolved traffic counts to predict both spatial and temporal
PNCs while accounting for traffic load as well as meteorology, allowing for reliable spatio-
temporal predictions of PNC. In particular, the influence of atmospheric parameters showed
that, in the summer model, there was the greatest percent relative effect of a single meteo-
rological variable (Hmixmin), whereas in the winter season and overall models the effects
of meteorological parameters were generally comparable.

As far as we know, a few numerical simulations have been developed to predict PNC at
a street/local scale [18,75–77]; however, reliable emission inventories as well as monitoring
networks for the models’ validation are still sparse [76–79]. Thus, statistical models remain
to date a reliable and computationally affordable way to address the challenge.

In this study, our attention was focused on an area where the main activities take place,
on the Sapienza university. It is one of the largest and oldest universities in Europe and has
more than 100,000 students and about 8000 workers.

From the point of view of exposure, it therefore represents a rather large popula-
tion with unique characteristics in terms of age distribution (mainly young adults) and
prevailing health status.

We have highlighted that there is a significant difference between the concentrations
detected in the internal areas of the university campus and those detected in the immedi-
ately adjacent external areas. In the former, students and university staff spend a large part
of their day studying or working, but in the latter, they spend a significant part of their day
for recreational and leisure activities (given the presence of a dense network of clubs, pubs,
bars and restaurants that welcome them during breaks and in the evening).

However, also in the areas outside the university campus there is a significant variabil-
ity essentially linked to the distance from the main traffic arteries. This variability affects
the student, worker and resident population in the area itself.

A significant difference was also observed in the average summer levels (lower)
compared to the winter ones, even if the spatial variability in the two seasons remains
almost unchanged. This aspect is also important considering that the level of attendance of
the campus in the two seasons is very different [80].

The method to assess PNC temporal and spatial variability proposed in this study can
therefore represent a useful tool for the development of future studies that aim to estimate
the integrated daily residential exposure to ultrafine particles of people that live, work or
study in the area.

Moreover, our monitoring and modelling strategy could be easily replicable, with
little economic effort, in other contexts as well as whenever monitoring data are needed to
validate numerical simulations.

Supplementary Materials: Supplementary data related to this article can be found online at https://
www.mdpi.com/article/10.3390/su14010313/s1. Figure S1: Horizontal wind intensity fields obtained
by ENVIMET numerical simulations with different wind directions: (a) 0◦, (b) 45◦, (c) 180◦, (d) 225◦.
Figure S2: (a) Measurement points selected in Path A: within Sapienza borders. (b) Measurement
points selected in Path B: main roads outside Sapienza borders. (c) Measurement points selected in
Path C: urban area 3B—San Lorenzo. Figure S3: H/L parameter values, representative of the urban
canyon. Figure S4: Comparison between average PNC values, observed in winter and in summer:
(a) within Sapienza borders, path A; (b) in the points most affected by the greater proximity to roads
with high traffic flows, (points B1, B2, B3, B4, B5 and points C1, C3, C7); (c) in points relatively far
from the busiest roads (B6, C2, C6). Figure S5: Site characterization: ratio between traffic flows on
the nearest road and distance from the road. Figure S6: Distribution of average PNC values by day
of the week and by season. Figure S7: Correlation matrix between the natural logarithm of PNC
(ln(PNC)) and the main meteorological and micrometeorological variables, in the two seasons, winter
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(left), summer (right). Figure S8: Correlation matrix between the natural logarithm of PNC (ln(PNC))
and the main spatial variables. Figure S9: Correlation matrix between the natural logarithm of PNC
(ln(PNC)) and the traffic flows, in winter (left) and in summer (right). Figure S10: November 2017
model: trends of the spline functions for Urel, Distinv2 and DELTA_TKE variables. Figure S11: Checks
of the basic assumptions of the November 2017 model: residual analysis. Figure S12: June 2018 model:
trends of the splines for Vscal, Distinv2, Hmixmin and Traff variables. Figure S13: Checks of the basic
assumptions of the June 2018 model: residual analysis. Figure S14. Overall model: spline trends for
Tdry, Distinv2, Vscal and DELTA_TKE. Figure S15: Check of the basic assumptions of the overall model:
residual analysis. Table S1: First campaign, 8–17 November 2017. Summary statistics for two-hour
PNC (particles/cm3) measurements at 21 sites in the study area. Table S2: Second campaign, 17–23
June 2018. Summary statistics for two-hour PNC (particles/cm3) measurements at 21 sites in the
study area. Table S3: Explanatory and response variables.
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