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Abstract. The effectiveness of collective navigation of biological or artificial
agents requires to accommodate for contrasting requirements, such as staying in
a group while avoiding close encounters and at the same time limiting the energy
expenditure for maneuvering. Here, we address this problem by considering a
system of active Brownian particles in a finite two-dimensional domain and ask
what is the control that realizes the optimal tradeoff between collision avoid-
ance and control expenditure. We couch this problem in the language of optimal
stochastic control theory and by means of a mean-field game approach we derive
an analytic mean-field solution, characterized by a second-order phase transition
in the alignment order parameter. We find that a mean-field version of a classi-
cal model for collective motion based on alignment interactions (Vicsek model)
performs remarkably close to the optimal control. Our results substantiate the
view that observed group behaviors may be explained as the result of optimizing
multiple objectives and offer a theoretical ground for biomimetic algorithms used
for artificial agents.
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1. Introduction

Awe-inspiring examples of organized collective motions abound in a number of biological
problems [1, 2] from simple microorganisms such as bacteria [3], to insects and higher
animals which display deliberate social behaviors such as insect swarming [4, 5] bird
flocking [6, 7], and fish schooling or shoaling [8, 9]. Most impressively, large and dense
groups of animals can organize themselves in complex coordinated motions avoiding col-
lisions while flying or swimming at close distance. Several models have been proposed
to model the origin of such phenomena in terms of simple behavioral rules. A first intu-
ition of the basic ingredients came from computer graphics [10] and entered the domain
of statistical physics with the Vicsek model [11]: the core idea is that each animal in
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the group needs to align its heading direction with the mean direction of its neighbors.
If such local alignment interactions are strong enough with respect to the unavoidable
noise (in our case, on the heading directions) a transition from a disordered phase to
a collective-order phase, characterized by global orientational order (alignment) of the
heading directions, may occur. This idea was also applied, for instance, to the control
of groups of artificial agents such as robots, where collision avoidance is crucial [12, 13].
Overall, these approaches generally build agent-based models aimed at generating cer-
tain collective behaviors starting from intuition, observations or by reverse-engineering
natural phenomena via data analysis; this often leads to biomimetic algorithms for
robotics.

In this paper, we try to approach the problem of collision avoidance from a different
perspective. We do not aim at modeling the interactions that underlie a certain collective
behavior, but instead we consider a simple model of swarming agents and explicitly set
the goal of avoiding collisions in the form a cost function and ask the following questions:
what is the optimal choice of control which minimizes the collective cost? How does
the optimal control compare with known agent-based models which lead to collision
avoidance?

The natural setting to answer the above questions is that of optimal control theory
[14] and mean-field game formalism [15, 16]. Similar approaches, indeed, have already
been shown to yield promising results. For instance, for collective search problems the
optimal control reduces in some limit to a well known model of chemotaxis [17], for the
problem swarming agents in one-dimensional disordered environments [18], and also for
flocking problems with the aid of reinforcement learning techniques [19].

In what follows, we start by introducing the setting of the problem in section 2.1
where also the optimal control formalism is presented. We model agents as active Brow-
nian particles [20, 21] which move in two-dimensions and whose heading direction is
subject to rotational noise. They try to avoid collisions by exerting some control on
their heading direction, in the form of a torque. Collisions lead to a cost, but also the
control itself is not free of charge, and for that we assume a quadratic dependence in
the angular velocity. The cost for control can either be understood in terms of power
dissipation, physical limitations of an animal/robot, or in terms of the cognitive cost
of deviating from free spontaneous behavior [14]. Therefore, an agent is interested in
applying a non-trivial control to its motion only to the extent to which the gain out-
weighs the cost: the optimal strategy emerges from this tradeoff. This cost minimization
problem can be exactly mapped into a quantum many-body problem which is unfortu-
nately hard to solve in general. For this reason, we introduce a mean field approximation
(section 2.2) that reduces the many-body problem to a quantum pendulum, which is
exactly solvable. Under this approximations, agents are assumed to be homogeneously
distributed. While this is unrealistic under many respects, it can suitably describe
the optimal behavior over an approximately uniform region in the bulk of a swarm.
We show that all relevant parameters combine into a fundamental tradeoff parameter
h, which effectively accounts for the balance between the collision and control costs.
Upon increasing such a tradeoff parameter, the system displays a second order phase
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Figure 1. Sketch of the swarming active Brownian particles. The black particle on
the bottom illustrates the angular dynamics influenced by rotational noise (brown
arrows) and the control (blue arrows). The couple of black particles on the top,
denoted i and j, illustrates the cost paid for each contact, depending on the collision
angle. The agents can avoid the collisions by controlling their angular velocity, but
pay a cost for it.

transition in terms of the polar order parameter (a measure of the mean-field align-
ment) at a certain critical value hc. Then, we study some relevant observables, such as
the cost, the polar order and the susceptivity—which is known to be important in collec-
tive motions [22]—both near the critical point (section 2.3) and in the strong coupling
regime (large h, corresponding to collisions costs dominating, see section 2.4).

Remarkably, in both limits, the optimal control is well approximated by a sinusoidal
function of the difference between the individual heading direction (angle) and the mean
one (section 3.1). Interestingly, the sinusoidal control is a distinctive trait of the well-
known Vicsek-like models [2, 23, 24] and its mean-field versions [25–27]. This observation
motivates a vis-à-vis comparison between the optimal and sinusoidal control. For a
sound comparison, we first find the sinusoidal control which minimizes the total cost
(section 3.2). Remarkably, such best sinusoidal model is controlled by the same tradeoff
parameter, and the polar order turns out to display a second order transition at the same
critical point as for the optimal model; with analytical tools, we explore this regime along
with the strong coupling one. Finally, we proceed with a systematic comparison (section
3.3) in the whole range of the tradeoff parameter, showing how the optimal solution,
while close to its sinusoidal approximation, can better manage the collisions, and that
the sinusoidal model becomes the exact optimum in the strong coupling (large h) limit.
The last section is dedicated to discussion and outlook (section 4). Some derivations
and technical material are moved to the appendices.
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2. Optimal solution of the collision problem

2.1. Collision minimization as an optimal control problem

We consider a group of N agents in two dimensions whose goal is to swarm together
while avoiding collisions with each other (see figure 1). We model the agents as active
Brownian particles [20, 21]: each agent i is a self-propelled particle moving with a con-
stant speed u0 in a direction identified by an angle θi (or, equivalently, by the associated
unitary vector n(θi) = (cos θi, sin θi)) which randomly changes due to rotational noise
with diffusivity D. Each agent, to avoid collisions, can exert some control, fi, on its
angular velocity and possibly contrast the rotational noise. The controls fi are, in the
most general case, functions of all positions, x j , and heading directions, θj, of all agents
(j = 1, . . . ,N). The dynamics of agent i thus reads{

dxi = u0n(θi)dt

dθi = fi(xi, θi; {xj, θj}j �=i)dt+
√
2D dξi,

(1)

where the noise term in the angular dynamics is a zero mean, 〈dξi(t)〉 = 0, Gaussian
process with correlation 〈dξi(t)dξj(t′)〉 = δijδ(t− t′)dt. We assume periodic boundary
conditions, since we are only interested in the bulk interactions within the swarm. This
choice will not be relevant for the rest of the paper.

When particle pairs, say i and j, collide they pay a cost Gij = δ(xi − xj)G(θij) with
G(θij) representing the functional dependence of cost on the collision angle, θij = (θi −
θj). By expanding G(θ) = g0 + g1 cos θ + g2 cos(2θ) + · · · into (even) harmonics and
truncating after the second term, we obtain Gij = δ(x i − x j)(g0 − g1n(θi) · n(θj)) =
δ(x i − x j)(g0 − g1 cos θij). As we will see, the cost per contact g0 > 0 will be somehow
unimportant but its relationship with angular cost g1 > 0 allows for different model
interpretations. For instance, if g0 = 0 we have a pure alignment problem, while for
g1 = g0 we have a pure collision-based model, as in the latter case the collision cost is
proportional to the relative velocity which is exactly zero when velocities are aligned.

Agent i can partially control its heading direction by imparting an angular velocity fi

but it pays a cost αf2
i /2. The quadratic choice for the cost of control, besides being quite

natural when interpreted in terms of power dissipation, has an information-theoretical
foundation as the cost (measured in terms of the Kullback–Leibler divergence) of devi-
ating from a random control strategy [14]. The total cost per unit time—the sum of
individual costs—reads

C(x1, θ1 ; . . . ; xN , θN) =
α

2

∑
i

f2
i +

1

2

∑
i �=j

δ(xi − xj)(g0 − g1n(θi) · n(θj)). (2)

Notice that the parameter α > 0 can be reabsorbed in the definition of g0 and g1,
since we are only interested in the optimal strategy, while it would have played a role
in risk-sensitive scenarios [17, 28, 29].

The agents collective goal is to choose the controls that minimize the average total
cost C̄ =

∫ ∏N
k=1dxk dθk C(x1, θ1 ; . . . ;xN , θN)P (x1, θ1 ; . . . ;xN , θN), with P being the sta-

tionary joint probability density of particles positions and angles. The non-trivial point
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is that P itself depends on the controls {fi}Ni=1 and should be determined as part
of the solution. In particular, the joint probability P , besides the normalization con-
straint

∫ ∏N
k=1dxk dθk P (x1, θ1 ; . . . ;xN , θN) = 1, must be the stationary solution of the

Fokker–Planck equation associated with equation (1), which reads

N∑
i=1

[
−u0∂xin(θi)−

∑
i

∂θifi +D
∑
i

∂2
θi

]
P =

N∑
i=1

LiP = L(N)P = 0, (3)

where Li is the single-agent linear Fokker–Planck operator and L(N) =
∑

iLi the N -
bodies one. By minimizing the total cost, we are looking for a cooperative solution to
the problem. The solution of the constrained minimization can obtained by a general-
ized Lagrange-multipliers technique, or namely, by finding the stationary points of the
auxiliary functional5 (Pontryagin principle [30])

H = λ+

∫ N∏
i=1

dxi dθi[C − λ− ΦLN ]P . (4)

The normalization and dynamical constraints are obtained by imposing stationarity
w.r.t. (with respect to) the multipliers λ and Φ(x 1, θ1 ; . . . ; xN , θN), respectively

6. The
non-trivial results come from the request of stationarity w.r.t. P and fi, which yields

Equation (6) is the Hamilton–Jacobi–Bellman equation associated to the optimal
control problem. It can be linearized via the Hopf–Cole transform, Φ = 2D logZ, by
introducing the desirability function Z(x 1, θ1 ; . . . ;xN , θN ) [14]. Then the control (5)
becomes

fi = 2D∂θi ln Z, (7)

that is a gradient ascent toward more desirable configurations, hence the name. Thanks
to the Hopf–Cole transform, equation (6) becomes the linearized Bellman equation

λ

2D
Z − 1

4D

∑
i �=j

δ(xi − xj)(g0 − g1n(θi) · n(θj))Z + u0

∑
i

n(θi) · ∂xiZ +D
∑
i

∂2
θi
Z = 0.

(8)

which is formally identical to the stationary Schrödinger equation of N identical, inter-
acting bosons. We should solve both for the ground-state eigenvalue λ/2D, which can

5The minus signs in equation (4) are chosen for the convenience of notation.
6 Notice that Φ is a function because LNP = 0 must be imposed for all angles and positions.
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be shown to be proportional to the total cost7, and the eigenfunction Z, requiring Z
to be real and positive. To our knowledge, this quantum many-body problem has no
known general solution for generic N ; therefore, we will seek for the optimal control in
an approximate mean field setting.

2.2. Mean field approximation

To simplify the problem and make it exactly solvable, we proceed with a mean field
approximation based on two hypothesis: first we assume agent-wise factorization of the
desirability Z and then we assume spatial homogeneity—no preferred points in space,
only preferred directions. The agent-wise factorization excludes direct pairwise inter-
actions—agents cannot directly dodge each other—but, rather, each agent interacts
with the joint probability of the remaining N − 1 ones in a self consistent manner. This
approximation is rather strong since in animal collective behavior it would make more
sense to consider local interactions [6]. It must also be remarked that the homogeneity
assumption excludes from the description many interesting phenomena related to het-
erogeneities. Notwithstanding these limitations, we can still assume that this treatment
could be relevant to describe agents within a uniform bulk region of the swarm.

With the factorization and homogeneity assumptions, the desirability can be
written as

Z(x1, θ1, . . . , xN , θN) =
N∏
i=1

ζ(θi), (9)

and, equivalently Φ(x1, θ1, . . . , xN , θN) =
∑N

i=1φ(θi). As a consequence, the probability P

is factorized as P (x1, θ1, . . . , xN , θN) =
∏N

i=1p(xi, θi) and, owing to spatial homogeneity,
we can write p(xi, θi) =

1
V
ρ(θi), with V being the area where the swarm moves.

We define the agents’ average heading direction θ̄ and the polar order parameter
(alignment parameter or polarization) m as

mn(θ̄) =

∫
dθ′n(θ′)ρ(θ′), (10)

in terms of which the average agent speed reads 〈ẋ〉 = mu0n(θ̄); here and in the sequel,
since all particles are equivalent by mean-field ansatz, we drop particle indices.

By defining the parameter δ = (N − 1)/V , which is the particle density measured
by a reference agent, and C0 = δg0/2, with a few straightforward passages, we write the
average per agent cost as

C̄ = C0 +

∫
dθρ(θ)

[
−δmg1

2
cos(θ − θ̄) +

1

2
f2

]
, (11)

and the functional (4) as

H = λ+ C̄ −
∫

dθ[λ+ φ(θ)L]ρ(θ), (12)

7Note that, formally, the HBJ equation (6) can be written as C − λ−L†Φ = 0 with L† being the adjoint of the Fokker–Planck
operator. Taking the average with respect to P we get C̄ − λ−

∫
PL†Φ = 0. Since, at the stationary point, LP = 0 holds, we can

deduce that
∫
PL†Φ =

∫
ΦLP = 0 from which C̄ = λ follows.

https://doi.org/10.1088/1742-5468/ac12c6 7
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Figure 2. Self-consistency equation and polar order parameter: (a) graphical solu-
tion of equation (18), F(m) = m can only be satisfied with m > 0 if F′ > 1, which
requires the tradeoff parameter h = (N − 1)g1/(D

2V ) to be larger than hc = 2;
(b) polar order parameter m as a function of h, a second order phase transition
takes place at h = hc. The inset displays the asymptotic approximation (21) (green
dashed line) showing the critical exponent to be 1/2.

with L = −∂θf +D∂2
θ being the single-particle Fokker–Planck operator as in equation

(3). Proceeding analogously to the general case and by exploiting the Hopf–Cole
transform with the factorized desirability (9), we derive the control to be

f(θ) = 2D
d

dθ
ln ζ. (13)

Plugging the last expression into the stationary Fokker–Planck equation, Lρ = 0,
with periodic boundary conditions, yields

ρ = ζ2, (14)

with
∫
dθζ2 = 1. Therefore, the optimal control problem boils down to solving the self-

consistent system of equations

Equation (15) is just equation (10) where we used (14) and fixed θ̄ = 0 with no
loss of generality, as the rotational symmetry can be broken in an arbitrary direction,
while equation (16) is the mean-field linearized Bellman equation with θ̄ = 0. Formally,

https://doi.org/10.1088/1742-5468/ac12c6 8
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Table 1. Summary of main parameters.

Parameter Description

D Rotational diffusivity
g0 and g1 Positional and angular collision cost
α Weight of the cost of control
m Polar order parameter/polarization
δ = (N − 1)/V Density of particles
h = δg1/(αD

2) Tradeoff parameter
q = −mh Mathieu equation parameter

Table 2. Summary of functions and main relations for the mean field model.

Mean field glossary

ζ Desirability
ρ Single particle angular distribution
ρ = ζ2 Desirability and angular distribution relation
f = 2D d

dθ
ln ζ Optimal control

m = F(m) Self-consistency equation

equation (16) is the stationary Schrödinger equation for a quantum pendulum also
known as Mathieu equation that, for consistency with literature [31, 32], we rewrite in
the canonical form

[a− 2q cos(2y)] ζ + ζ ′′ = 0. (17)

with y = θ/2, a = −λ/(2D2), q = −δmg1/D
2, and ′′ denoting the second derivative with

respect to y. Equation (17) must be solved both for the eigenvalue−a (which corresponds
to solving for λ) and the eigenfunction ζ = ζm, which depends parametrically on m.
The solutions are the so-called Mathieu functions, as briefly recalled in appendix A. For
periodic boundary conditions, the Mathieu ground state eigenfunction, denoted as ce0
in the literature, is an even function with a single maximum in y = 0 and a minimum in
y = π/2. The associated eigenvalue is called characteristic Mathieu function a = a(q),
which is non-positive and takes the asymptotic expressions a(q) ∼ −q2/2 (see equation
(B.2)) and a(q) ∼ 2q + 2

√−q (see equation (C.2)) for q → 0 and q →−∞, respectively.
In order for an eigenfunction ζm to be a solution of the optimization problem, it

must also satisfy the self-consistency condition (15) which, using equation (16), reads

m =

∫
dθ cos θ ζ2m = F(m). (18)

In the sequel we will drop the subscript in ζm whenever that would not hinder clarity.
The function F(m), shown in figure 2(a), depends on the parameter (see table 1 for

a handy summary of all the parameters of the problem and table 2 for main relations

https://doi.org/10.1088/1742-5468/ac12c6 9
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and functions)

h = − q

m
=

δg1
D2

, (19)

which, besides containing all dependencies on the problem parameters N , g1,D,V , has a
natural interpretation as the ratio between the parameters which control the importance
of collision and control costs. For a clearer picture, we reintroduce α and write as
h = (g1δ)/(αD

2): at the numerator, g1 is rescaled with particle density δ while, at the
denominator, α is rescaled with diffusivity D. Note that the solution does not depend on
g0, as follows from homogeneity assumption. As graphically illustrated in figure 2(a) and
equation (18) admits only the trivial solution with no polar order m = m(h) = 0 for 0 �
h � hc = 2, while a non-trivial solution emerges, via a second order transition to non-zero
alignment (m > 0) for h > hc (the critical value hc = 2 is derived in the next subsection
by a perturbative expansion of the self-consistency equation). The numerically computed
function m(h) is shown in figure 2(b). The polar oder parameter m is zero up to the
critical tradeoff value hc = 2, meaning that the alignment benefit outweighs the cost
of control only for h > hc. Therefore, for h < hc, no control is applied and the system
remains isotropic so that the average cost C̄ (11) is equal to C0 = δg0/2, while, as derived
in appendix D, for h > hc, C̄ is equal to

C̄ = C0 +
1

2
D2[hm2(h) + a(−m(h)h)]. (20)

Note that, as anticipated, the constant C0 is irrelevant to the optimization process
(as a consequence of the mean field assumptions), while the remaining part depends
only on the tradeoff parameter h, up to the D2 prefactor.

In the following sections, we will give a more detailed description of both the critical
behavior (for h→ hc = 2) and the strong coupling (large h) regime.

2.3. Critical behavior

As clear from figure 2, at the critical point h = hc = 2, there is a second order phase
transition in the polar order parameter with exponent 1/2, a classical mean field value,
which can be derived as follows. When h = h+

c , we can solve equations (15) and (16)
perturbatively (see appendix B), by expanding them in powers of q = −mh for q →
0− (small m ansatz). Then, we can write equation (15) as m(h− 2)/2− 7(mh)3/64 +
o(m3) = 0, from which we obtain the asymptotic expression (for small m or

√
h− hc)

m =
√

(4/7)(h− hc), (21)

which, as shown in the inset of figure 2(b), fully captures the critical behavior. In this
regime, the desirability ζ can be approximated at leading order in m as

ζ(θ) =
1√
2π

[
1 +

hm(h)

2
cos θ

]
. (22)

Since the angular probability density function satisfies equation (14), agent directions
are uniformly distributed but for a tiny O(m) cosine modulation. Plugging equation (22)

https://doi.org/10.1088/1742-5468/ac12c6 10
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into equation (13), the optimal control at the critical point reads

f = −Dhcm sin(θ) + o(m). (23)

Moreover, exploiting the asymptotic expressions (B.2) for a into equation (20), we
can obtain the cost close to the critical point h− hc = 0+:

C̄ − C0 = −(D2/7)(h− hc)
2 + o((h− hc)

2). (24)

We conclude the investigation of the critical properties by studying the susceptivity
to external perturbations, which is an important observable in multi-agent systems, both
when considering artificial swarms control and biological collective behaviors, such as
bird flocks or insect swarms. Indeed, the susceptivity describes the crowd sensitivity to
fluctuations and/or external stimuli [5, 33]. In order to define the susceptivity, we need
to specify an external field, and then compute the derivative of m with respect to it. In
our setting, the external field is represented by a small collective nudge of intensity ε in
the direction θ̂, which formally amounts to adding a small per-agent reward in the cost
function

δGi = −ε cos(θi − θ̂), (25)

for aligning along the direction θ̂. The perturbation (25) breaks the isotropy favoring

an average alignment in the preferred direction θ̂ (which, with no loss of generality,

can be set to 0). Since θ̂ breaks the isotropy, and the system has no intrinsic preferred
direction, we can deduce that the system will polarize along the preferred direction
θ̄ = θ̂. Therefore, susceptivity is then defined as

χ(h) =
∂m

∂ε

∣∣∣∣
ε=0

. (26)

Essentially, the additional (negative) cost (25) induces the shift

q �→ q +
2ε

D2
, (27)

which, plugged into equation (18), implicitly definesm as a function of ε, for any h. Then,
by a straightforward application of Dini’s implicit function theorem (see appendix E), we
obtain the following result: when h < hc, χ = 2/[D2(hc − h)] holds exactly; close to the
critical point (h→ h+

c ), χ = 1/[D2(h− hc)] + o(1/(h− hc)). Therefore, near the critical
point, we have that the susceptivity diverges with h→ hc as

χ ∼ |h− hc|−1, (28)

we notice that the critical exponent 1 for the susceptivity is also quite standard in mean
field theories. On the other hand, exactly at the critical point h = hc, m depends on ε

as m ∼ 2
[

ε
7D2

]1/3
and, hence, m is a continuous but non differentiable function of ε at

the critical point and, consequently, the susceptivity diverges as

χ ∼ ε−2/3. (29)
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The absence of a first order discontinuity implies that, at the critical point, an
infinitesimal nudge is not enough to induce finite polarization in this kind of system.
This a natural consequence of the continuous symmetry which is spontaneously broken
even in the absence of external perturbations. On the other hand, any small nudge is
enough to fix the direction of the polarization vector.

2.4. Strong coupling

The strong coupling regime is identified by the condition h � hc, which can be achieved
with high density (δ = (N − 1)/V � 1), with a high collision cost coefficient g1 or
with low noise D. In the large h limit, we can analytically solve equations (15) and
(16) by exploiting a small oscillations ansatz which transforms the quantum pendulum
into a quantum harmonic oscillator (C.1). As discussed in appendix C, in this limit m
approaches to 1 asymptotically (strong alignment) as

m ∼ 1− 1/2
√
h. (30)

The solution ζ becomes

ζ(θ) ∼
(
2
√

hm(h)

π

)1/4

exp(−
√

hm(h)θ2), (31)

which via equation (14) implies that most agents are aligned along the average direction
θ̄ and that—consistently with the small oscillations assumption—normal fluctuations
vanish as h−1/4. The associated asymptotic control is linear in θ

f = −D
√

hm(h)θ, (32)

where m ≈ 1 from (30). Note that, since this solution has been obtained in the small
oscillations regime and, therefore, equation (32) is only accurate around θ = 0 which is,
on the other hand, the only region which matters, since the probability of visiting other
regions is exponentially suppressed. Exploiting the large h asymptotics for the Mathieu
characteristic function (C.2), one can easily obtain that the cost decreases approximately

linearly with h as C̄ − C0 = D2[−h/2 + (3/4)
√
h] + o(

√
h). Using the same scheme of

the previous section, we can compute the susceptivity is this regime as well obtaining
that χ (26) vanishes for large h as χ ∼ 1/[2D2h3/2m1/2] (see appendix E). Therefore,
as we might have expected, the polar order strength m has little response to external
nudges, when it is already close to its maximum value 1.

3. Sinusoidal control vs optimal solution

3.1. Motivation

The optimal solution (23) to the collision avoidance problem in swarming active
Brownian particles suggests that close to the critical point the optimal control is
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sinusoidal at leading order, i.e.

f = −DK sin(θ − θ̄), (33)

with K ≈ hcm; notice that in equation (23) the mean field direction was put to zero
(θ̄ = 0) for the sake simplicity and here restored for clarity. Interestingly, also the strong
coupling optimal solution (32) is well approximated by the sinusoidal control (33): owing
to the small oscillations property |θ − θ̄| � 1, we can replace θ − θ̄ with sin(θ − θ̄)

in equation (32), obtaining K ≈
√
hm. Therefore, in both asymptotics (h→ h+

c and
h→∞), equation (33) approximates the optimal control with a rescaled control strength
K, which only depends on the parameter h in both cases. This is quite noteworthy as
the search of the optimal control is done without specifying the functional form of the
control.

Remarkably, the control (33) is reminiscent of the mean field versions of the
Kuramoto model [34] with zero natural frequencies, which is a paradigm for synchro-
nization [35], and of the (time-continuous) stochastic Vicsek model [24–27], which is
a variant of one of the most popular models used for describing collective motions
and swarming of self-propelled agents [2, 36]. In the mean field version of the latter
[24–26], individual agents are driven by the approximate control fV = −Rm sin(θ − θ̄),
corresponding to equation (33) upon defining

R = DK/m (34)

whenever the polar order parameter m = m(K,D, g1,V ) is non zero.
Given the similarity, both in the critical and in the strong coupling limit, of the

optimal control with the classical models discussed above it is worth to compare vis a
vis the optimal control solution with the class of ‘sinusoidal control models’ defined by
equation (33). In particular, we aim at comparing the optimal control with the ‘best’
sinusoidal control, defined by equation (33) with K = K�, with K� being the value of
K that minimizes the average cost, given the parameters of the problem (N , g1,V ,D).
As we will see, actually best sinusoidal model will depend on the familiar combination
h = (N − 1)g1/(VD

2), so that K� = K�(h) is a function of the tradeoff parameter h
only.

In the following subsection, after obtaining the best sinusoidal control, we briefly
discuss the critical and strong coupling regimes and, then, we compare the optimal and
best sinusoidal control for arbitrary tradeoff parameter values.

3.2. Best sinusoidal model

The dynamics of the heading direction for a generic agent with the sinusoidal control
(33) is dθ = −KD sin θdt+

√
2D dξ, where ξ is the usual Wiener noise and where,

again, we assume θ̄ = 0 for the sake of notation simplicity. Note that the above dynam-
ics also describes the orientation of gravitactic (bottom-heavy) microorganisms in two
dimensions, where 1/KD is the time scale with which the organism orients vertically
upward oppositely to gravity [37, 38]. The Fokker–Planck equation associated with such
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Figure 3. (a) Rescaled best sinusoidal control strength K� as a function of the
tradeoff parameter h. It is non-zero only for h > hc = 2, where a second order tran-
sition takes place. The inset shows the control strength R�(h) = K�(h)/(msD) of
the associated Vicsek mean field model, see equation (34). (b) Polar order param-
eter ms as a function of h for the best sinusoidal control. A second order phase
transition is visible at h = hc = 2 with critical exponent 1/2. The inset shows the
asymptotic approximations (39) (green dashed line) valid close to the critical point.
Notice the similarity with figure 2(b).

dynamics, ∂θ(−KD sin θ −D∂θ)ρs = 0 is solved by the Fisher–von Mises distribution [39]

ρs(θ) =
1

2πI0(K)
eK cos θ, (35)

where Iα(z) is the modified Bessel function of the first kind of order α (briefly surveyed
in appendix F) and where the subscript s is used to remind that it pertains to the
sinusoidal control. Once the distribution is known, we can compute the polar order
parameter as

ms(K) =

∫
dθρs(θ) cos θ =

I1(K)

I0(K)
. (36)

As stated, the best sinusoidal model is given by equation (33) with such K� that
minimizes the average cost (11). By plugging equations (35) and (33) into equation
(11), after a few trigonometric passages combined with the identity (F.4), the sinusoidal
control cost C̄ s can be written as

C̄s[K,D] =

∫
dθ ρsCs = C0 +D2

[
−h

2
m2

s (K) +
K

2
ms(K)

]
, (37)
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from which one can easily deduce that K� = K�(h), as anticipated. Unfortunately, it
is impossible to minimize the cost (37) analytically with respect to K, so we pro-
ceeded numerically. In figure 3(a) we show both K�(h) as a function of the tradeoff
parameter h.

Figure 3(b) displays the behavior of the polar order parameter ms = ms(h) as a
function of the tradeoff parameter h. Like in optimal case, the polar order parameter
displays a second order phase transition at the same critical point h = hc = 2 and with
the same critical exponent 1/2. Indeed, as derived in appendix G, by expanding the cost
C̄s for small K one can derive that for h− hc � 1, at leading order

K� ≈
√
2(h− hc), (38)

and that (see also inset of figure 3(b))

ms(h) ≈
√

(1/2)(h− hc), (39)

so that the sinusoidal control (33), near the critical point, features a rescaled strength
K� ≈ hcms which is similar to the optimal one (23). Note, however, that m and ms

are not fully equivalent. The previous expressions also imply that the best coupling R�

(equation (34)) from the Vicsek interpretation displays a first order discontinuity, as
shown in the inset of figure 3(a).

In spite of the similarities, the asymptotic dependence of ms on h (for h→ h+
c ) differs

by a pre-factor with respect to the optimal control: indeed comparing equations (39)

and (21) we have different prefactors
√
1/2 and

√
4/7, respectively which differ by a

mere 6%. At a first glance this difference may seem surprising, but it can actually be
rationalized by observing that the sinusoidal control is just a first order approximation
to the optimal one while, as detailed below, the polar order parameter prefactor at
criticality is determined by the first sub-leading order.

For the optimal control, we have derived the optimal critical behavior by expand-
ing the self-consistency condition (18) F(m) = m. The latter can be rewritten as
m = 〈cos θ〉m, which plays the same role as equation (36) for the sinusoidal model;
〈[. . .]〉m is to remind that the probability density depends on the polarization itself
as typical in self-consistent problems. As the control is odd w.r.t. the transformation
θ̄ �→ θ̄ + π, it turns out that 〈cos θ〉m is odd in m. Consequently, close to the criti-
cal point (i.e. form small m) we can write 〈cos θ〉m = c1hm+ ck(hm)k + o((hm)k) with
k > 1 being an odd integer, which we know to be 3 (see e.g. equation (B.4)). Now,
imposing the self-consistency condition m = 〈cos θ〉m yields

m ≈
[

1

hkck
(1− c1h)

] 1
k−1

, (40)

from which we deduce that the critical point hc = c−1
1 is solely determined by the first

order and is, therefore, a leading order effect; the critical exponent is fixed by the value of
k (ordinal number of the first non-vanishing sub-leading order) as 1/(k − 1) (1/2 in our
case as k = 3) and the prefactor is given by the sub-leading order prefactor −c1/(ckh

3).
Since the optimal solution is sinusoidal at leading order, we expect hc = 2 to hold for
both the optimal and best sinusoidal controls, by construction. The value of k = 3 and,
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Figure 4. Comparison for the optimal and best sinusoidal model between the angu-
lar probability density function (left scale) and the control f/D (right scale) for
(a) h = 2.1, i.e. close to the critical point, and (b) h = 50, corresponding to the
strong coupling regime. See the figure legend for the various curves.

therefore, the critical exponent 1/2, is fixed by the symmetry and should be the same for
both models. However, any further equivalence is not obvious and, in particular, there
is no specific reason for c3 to be the same: they are actually different and this explains
the difference in the prefactors discussed above.

Now we briefly discuss the strong coupling regime. For large h (which implies large
K), the von Mises distribution (35) is well approximated by the Gaussian

ρK =

√
K

2π
exp

(
−K

2
θ2

)
, (41)

and cos θ ≈ 1− θ2/2. With such an approximation the self-consistency condition (36)
yields ms = 1− 1

2K
+ o(1/K), which inserted into the cost (37) and minimizing with

respect to K gives

K� =
√
h+ o(

√
h). (42)

Consequently, the polar order parameter in the large h limit is given by ms ≈ 1− 1/2
√
h

as for optimal case (30).
The above discussion establishes a connection between sinusoidal and optimal model

in the asymptotic regimes, but provides little insights into the intermediate region. In
the next section, we further investigate the differences and similarities between optimal
and best sinusoidal control.

3.3. Comparison between optimal solution and best sinusoidal model

Critical case comparison. For both models, below the critical point, h < hc, no control
is exerted as it is too expensive. Consequently, the stationary distribution of agents
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Figure 5. Differences between the optimal and best sinusoidal model: (a) angular
probability density and (b) rescaled control, (f(h)−DK�(h) sin(θ))/D, for different
h as in figure legend.

Figure 6. Cost comparison between optimal and best sinusoidal model: (a) rescaled
average cost differences ΔC̄ = (C̄ − C̄s)/D

2—total (cyan curve), collision (purple)
and control (green)- plotted as universal functions of the tradeoff parameter h;
(a) the relative cost difference ΔC̄/|C̄|, as a function of the tradeoff parameter h
in two notable cases g0 = 0 (pure alignment) and g0 = g1 (pure collision).

orientation is uniform in both cases. Near the critical point, h− hc = 0+, the angular
distribution remains approximately uniform and collision costs remain high, since colli-
sions of anti-aligned particles are common. However, in this regime, tiny deviations of
the optimal control from the sinusoidal one (see figure 4(a)) allows to slightly squeeze
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the distribution toward the alignment with the mean direction θ̄ = 0 in figures 4(b) and
5(a). Therefore, the optimal model pays slightly more in the control cost to achieve
a reduction of the collision cost w.r.t. the sinusoidal one, overall reducing the average
cost, as shown in figure 6. In particular, close to the critical point, the cost difference
between the optimal and sinusoidal model is

ΔC̄ = C̄ − C̄s = −D2

56
(h− hc)

2 + o((h− hc)
2), (43)

as obtained by subtracting equation (G.5) from equation (24).
Intermediate and strongly interacting regimes. As h grows away from the critical point,
both distributions shrink toward the origin, but not exactly in the same way. The best
sinusoidal model distribution is more peaked both around the origin (strong alignment)
and around ±π (strong anti-alignment), while intermediate values are less probable.

This difference, highlighted in figure 5(a), is the largest around h = ĥ ≈ 8, which also
corresponds to the the region where the difference between the total costs ΔC̄ is the
largest, as shown in figure 6(a). Just before ĥ, the optimal model outperforms the sinu-
soidal one in both control and collision costs. However, the collision costs advantage
rapidly declines and, for large h, the edge of the optimal solution is preferred only
due to lower control costs, while collision costs are higher. To understand the origin
of these differences, we should look at the shape of the optimal control, which starts
sinusoidal at h− hc = 0+ and then approaches a sawtooth shape for h � 1 (see figures
5(b) and 4(b)). The strong control near ±π makes little difference in terms of costs,
because the probability of exploring such region is exponentially suppressed. Indeed,
both optimal and best sinusoidal distributions converge to the same Gaussian distri-
bution with vanishing variance for large h (see figure 4(b)). In other terms, the two
seemingly different controls (figure 5(b)) only contribute with their linear approximation
near the origin and are therefore equivalent, consistently with derivation of the previous
section.
Rescaled-cost difference analysis. We have provided a detailed description of the dif-
ferences between the two models. We should remark that all discrepancies we have
highlighted are somehow small, since the two distributions never show significantly dif-
ferent shapes. Moreover, at the critical point, the critical exponents are the same and,
finally, the polar order parameters are closely related for all h. The most delicate point
is the cost difference: the universal behavior of the average cost difference as a function
of h (figure 6(a)) only emerges when rescaling with such difference with the factor D2.
In other terms, such difference can be made arbitrarily large as can be deduced, for
instance, by rescaling g �→ zg and D �→ D

√
z. Under this transformation, while h does

not change, the cost difference does, as ΔC̄ �→ zΔC̄.
Relative-cost difference analysis. The above observation implies that a sound analy-
sis should take into account the relative difference ΔC̄/C̄. Note, though, that such
quantity depends on the constant C0 and thus on g0 (which otherwise play no role
in the optimization process). However, as discussed g0 relates to the interpretation
of the model, thus it is not possible to give a universal description. We can briefly
consider some notable cases: g0 = 0 and g0 = g1 which represent a pure alignment
and collision problem, respectively. In the former case, ΔC̄/|C̄| is 0 for h < hc and
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then (first order discontinuity) jumps to −1/8 at h = hc (see figure 6(b)) and finally
vanishes to zero for h→∞. Note, however, that the maximal relative cost differ-
ence at h = h+

c is obtained in a limit in which both ΔC̄ and, mostly important, C̄
itself vanishes (see equations (43) and (24) with C0 = 0). On the other hand, in the
g0 = g1 case, we have that C̄ = C0 �= 0 at h = hc meaning that the even the cost of
isotropic random collisions is not zero. Consequently, since the denominator never van-
ishes, we have ΔC̄/|C̄| → 0 for h→ h+

c . Similarly, for h→∞, it is easy to see that
ΔC̄/|C̄| → 0, as the two models are equivalent at leading order. Therefore, the maximal
relative difference is realized for some h ∈ (hc,∞): a numerical test shown in figure
6(b) reveals that this is realized at h ≈ 6 with ΔC̄/|C̄| ≈ −0.0135. By considering
both the rescaled and the relative cost difference analysis, we can conclude that the
sinusoidal model is always a good approximations for the optimal solution in realistic
scenarios.

4. Discussion

We have shown by means of optimal control techniques, that the optimal behavior
for collision-avoiding active particles can be characterized by a tradeoff parameter h
between collision and control costs, and that the polarization of the system under-
goes a phase transition in the mean-field regime. The possibility of approaching this
problem analytically, albeit in an approximate form, provided insights into the fea-
tures of the optimal solution and a comprehensive statistical characterization. Moreover,
we found that the optimal behavior, both close to the transition and for large trade-
off values, is well approximated by a mean-field version of the kinetic Vicsek model
[24–26], which also displays a second order transition. Therefore, such model, whose
short range version was mainly derived from phenomenology, turns out to be a quasi-
optimal solution for the collision-avoidance task, given appropriate parameters. Clearly,
when working with task-oriented agents, as in biological systems or robotics, being close
to optimality is a highly desirable feature. The optimal control framework is there-
fore a very valuable tool not just for discovering new optimal models, but also for
assessing the quality of existing ones with respect to some performance criteria. More-
over, in accordance with previous works, e.g. [17] where known chemotactic behaviors
were found to be optimal solutions to target search problem, our findings suggest that
optimal control formalism can, at least in some cases, provide a theoretical ground
to interpret some biological solutions in situations where specific tasks need to be
solved.

While our analysis was restricted to a single scenario, the same approach could be
successfully carried in different settings to explore other classes of collective behaviors,
for instance allowing for linear acceleration or for particles of finite sizes. Also, remaining
in the context of mean-field Vicsek-like models, it would be interesting to explore how
different kinds of noise can influence the optimal solution. Another interesting outlook
would be to go beyond the mean field approximation, either analytically or numerically,
by introducing a spatial structure.
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Appendix A. Mathieu functions

Mathieu functions are solutions of eigenvalue Schrödinger equation for the quantum
pendulum, which is customarily written as

ζ ′′ + (a− 2q cos(2y))ζ = 0, (A.1)

with y ∈ [−π/2, π/2], and where q is some constant and a is (minus) the eigenvalue
(the ‘energy’). For any q, the eigenvalues ak(q) depend on a parameter k and are called
Mathieu characteristic function. By imposing boundary conditions, k > 0 becomes and
integer representing the ordinal number of the energy level: if q < 0 then −ak(q) < −
ak+1(q). The eigenfunctions mk are either even cek = m2k or odd sek = m2k+1. Since we
are only interested in the ground state with periodic boundary conditions, we focus
on k = 0. The eigenvalue is a(q) := a0(q) (main text notation) and the eigenfunction
ζ = ce0(a(q), q). For further details, see for instance [31, 32, 40].

Appendix B. Optimal solution near the critical point

In this appendix, we derive the mean-field solution of the system of equations (15)
and (16) near the critical point. We start from the Mathieu equation (A.1) and we
observe thatm→ 0 implies q = −hm→ 0 (see table 1) for finite h. We solve the equation
perturbatively by expanding the solution ζ and the eigenvalue a in power series of q, by
writing {

ζ = ζ0 + ζ1 + ζ2 + ζ3 + ζ4 + o(q4)

a = a0 + a1 + a2 + a3 + a4 + o(q4).
(B.1)

where ak = O(qk) and ζk = O(qk) (for instance in C∞ norm). At any order k, we impose

ζ ′′ + (a− 2q cos(2y))ζ = o(qk) and
∫ π/2

−π/2dy ζ
2 = 1 + o(qk), starting from order 0 to 4.

Clearly, for any k, ζk and ak only depend on {ζs, as}s<k. From this procedure, we find
that the eigenvalue is

a(q) = −1

2
q2 +

7

128
q4 + o(q4), (B.2)

while the eigenfunction can be written as the following expansion in harmonics

ζ =
1√
π

[
1− q2

16
+

(
−q

2
+

11q3

128

)
cos(2y) +

q2

32
cos(4y)− q3

1152
cos(6y)

]
+ o(q3). (B.3)

From expansion (B.3), the self-consistency condition (18) can be written as

m =

∫ π/2

−π/2

dy ζ20 cos(2y) =
hm

2
− 7(mh)3

64
+ o(m3), (B.4)
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which has three solutions: the trivial one m = 0, an unphysical solution m < 0 and

m ∼
√

32

7h3

√
h− 2 ∼

√
4

7

√
h− 2 (B.5)

which is only well defined for h > hc = 2, where a second order phase transition occurs.
This yields the asymptotic behavior and the critical exponent 1/2.

Appendix C. Optimal solution for large h

To study the h � hc regime, we assume m ≈ 1, from which it follows that q(h) = −
hm(h) becomes large and negative. For large q, then both ζ and ρ are peaked around
y = 0 and, therefore, we can assume a regime of small oscillations |y| � 1. Then, by
expanding cos(2y) ≈ 1− 2y2, as one would expect from physics, equation (A.1)) reduces
to the well-known Schrödinger equation of the quantum harmonic oscillator:

−1

2
ζ ′′ +

1

2
(−4q)︸ ︷︷ ︸

ω2
0

y2ζ =
a− 2q

2︸ ︷︷ ︸
E

ζ. (C.1)

From the ground state eigenvalue solution E0 = ω0/2, we get the large q approxima-
tion of the characteristic function a

a(q) ≈ 2q + 2
√
−q for q � −1. (C.2)

Conversely, from the ground state eigenfunction exp(−ω0/2y
2), we get

ζ =

(
2
√−q

π

)1/4

exp(−
√
−qy2) (C.3)

where we have extended the domain of y from [−π/2, π/2] to (−∞,∞) by enforcing nor-
malization

∫ ∞
−∞dy ζ

2(y) = 1. We can then rewrite equation (18) as
∫ ∞
−∞dy ζ

2(y) cos(2y) =
m, which becomes

m = e−
1

2
√
hm . (C.4)

Hence, if h→∞, thenm→ 1, validating our small-oscillations ansatz. More precisely

1−m ∼ 1

2
√
h

for h→∞. (C.5)

Appendix D. Proof of equation (20)
The mean field costs (11) can be written as

C̄ − C0 = −D2h

2
m

∫
dθζ2 cos θ + 2D2

∫
dθ ζ2(∂θ ln ζ)2 = −D2h

2
m2 + 2D2

∫
dθ(∂θζ)

2.

(D.1)
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We can apply partial integration to the control cost term
∫
dθ(∂θζ)

2 = −
∫
dθζ∂2

θζ.
By using the Mathieu equation (A.1), we can write

∫
dθ(∂θζ)

2 = a/4 +m2h/2. Equation
(20) follows from a straightforward substitution.

Appendix E. Proofs of the expressions for the susceptivity

Consider an external field as defined in equation (25). The self consistency condition
(18) implicitly defines the polar oder parameter m = m(h, ε) as

F(m(h, ε)) = m(h, ε). (E.1)

Upon defining F̃ = m− F , Dini implicit function theorem allows to compute the
susceptivity as

χ(h) =
∂m

∂ε

∣∣∣∣
ε=0

= −
∂F̃
∂ε

∣∣∣
ε=0

∂F̃
∂m

∣∣∣
ε=0

, (E.2)

though, in some cases, there is a shorter procedure. We consider the following four
scenarios.

• h < hc. In this case, we can assume that, unless there is some discontinuity,
limε→0 m(h, ε) = 0. Hence, assuming both ε and m small, equation (E.1) can be
expanded as

−(h− 2)m+ 2ε/D2

2
+

7(mh+ 2ε/D2)3

64
+ o((mh+ 2ε/D2)3) = 0. (E.3)

Then we can either use Dini’s theorem or simply observe that F = 0 at leading order
implies m = 2ε/[D2(2− h)] and, therefore

χ =
2

D2(hc − h)
, (E.4)

holds exactly in this region.

• h = hc. We can again use the ansatz limε→0 m(h, ε) = 0 along with equation (E.3).
Then, either applying Dini’s theorem, or observing that, since h− 2 is zero exactly,
leading order in εmust match leading order inm, which ism3. Hence, we immediately
get

m ∼ 2
[ ε

7D2

]1/3
, (E.5)

thus, at the critical point, m(ε) in continuous in ε but non differentiable.

• h = h+
c . As in the critical regime, it remains valid that the nudge selects the direc-

tion in which the symmetry is broken since other choices would be sub-optimal.
Here limε→0 m(h, ε) = m(h) > 0, however, as long as h is close to hc, we can still use
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expansion (E.3). From equation (B.5) we can write m(h) =
√
(4/7)(h− 2) + δm,

with δm � 1 and match leading order of δm and ε. As a result, we get

χ ∼ 1

D2(hc − h)
. (E.6)

• h � hc. Using equation (C.4), the self consistency equation (18) becomes

m− e
− 1

2
√

hm+2ε/D2 = 0, (E.7)

and a straightforward application of Dini’s theorem yields

χ ∼ 1

2D2h3/2m1/2
. (E.8)

Appendix F. Modified Bessel function of the first kind

Modified Bessel functions of the first kind are non decreasing solution of the modified
Bessel equation:

z2I ′′n + zI ′n − (z2 + n2)In = 0. (F.1)

We report a few identities we have used in the main text

I0(z) =

∫ π

−π

dθ ez cos θ (F.2)

I ′0(z) = I1(z) =

∫ π

−π

dθ cos θ ez cos θ (F.3)

I ′′0 (z) = I0(z) −
1

z
I1(z) =

∫ π

−π

dθ cos2 θ ez cos θ. (F.4)

For further details, see [40].

Appendix G. Best sinusoidal control near the critical point

To obtain some analytical insights into the critical behavior of the best sinusoidal model,
we follow the same logic as for the optimal model (appendix B). The main difference is
that, instead of expanding for small q, we expand for small K. In the end, the procedures
appear to be equivalent as they are both expansion in

√
h− hc. First, we can expand

(35) and get

ρs =
1

2π

(
1 +K cos θ +

K2

4
(2 cos2 θ − 1)

+
K3

12
(2 cos3 θ − 3 cos θ) +

K4

192
(9− 24 cos2 θ + 8 cos4 θ)

)
+ o(K4).

(G.1)
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Then, by using equations (36) and (G.1), the average total cost (37) can be written
explicitly as

C̄s − C0 = D2

[(
1

4
− h

8

)
K2 +

h− 1

32
K4

]
+ o(K4). (G.2)

A positive K = K� which minimizes the previous expression exists only for h > hc = 2
and its asymptotic expression near hc is

K� ∼
√
2(h− 2), (G.3)

which plugged into equation (36) yields

m ∼
√

1

2
(h− hc). (G.4)

It follows from equations (G.3) and (G.2) that

C̄s − C0 = −D2

8
(h− hc)

2 + o((h− hc)
2). (G.5)
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[11] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
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