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A B S T R A C T

Flocking denotes the spontaneous onset of collective motion in systems of self-

propelled agents, of which groups of birds are a prototypical example. A pretty co-

herent corpus of theoretical models has been introduced over the past three decades

to explain how this collective behavior arises from microscopic interactions, reveal-

ing that the emergence of polar order is a manifestation of the non-equilibrium

character of the dynamics. The confront with experimental data allowed for the val-

idation and refinement of those models, and, in some cases, even for the application

of quantitative inference approaches.

In this thesis we employ standard methods from stochastic calculus to study prob-

lems related to the microscopic dynamics of such systems. Motivated by the avail-

ability of data collected by the CoBBS team, we firstly derive a novel Bayesian infer-

ence method for the inertial dynamics of flocks. Our inference scheme is based on

a previously introduced model (the Inertial Spin Model), which is non-Markovian

in the observed variables’ space. This feature raises serious technical problems,

when combined with discrete-time recordings, and is common to many stochastic

dynamic systems. The analytical method we propose for the Inertial Spin Model

applies in fact to a larger class of processes; examples are illustrated. We also ex-

ploit an analogy between the Renormalization Group and augmentation techniques

used to infer partially observed SDEs to provide an alternative proof of the lack of

finite-dimensional delay vector embeddings for stochastic dynamical systems.

The second focus of this thesis concerns the investigation of non-equilibrium ef-

fects in simple models for polar active matter. It is known that the emergence

of polar order in systems of aligning self-propelled particles is due to the non-

equilibrium character of the dynamics. We quantify the distance from equilibrium

through the entropy production rate, which we measure from numerical simula-

tions of interacting active Brownian particles. We investigate two kinds of short-

ranged interaction rules, based on different notions of metrics. We find that the

entropy production rate is maximal at the transition, while two equilibrium limits

are reached in the deeply ordered (perfect flock) or completely disordered (ideal

active gas) phase. We pivot on the entropy production rate to study how irre-

versibility constrains asymmetries in the steady state distribution of microstates. In

the presence of pairwise forces, robust signatures of irreversibility are visible in

the two-particle density, as confirmed by numerical simulations. On the contrary,

in the presence of multi-particle interactions, irreversibility directly constrains only

correlations among a higher number of particles. All these correlations are typi-

cally neglected in the derivation of hydrodynamic equations for polar active matter

through kinetic approaches.
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S O M M A R I O

Con flocking si intende il fenomeno per cui sistemi di agenti autopropulsi si muo-

vono spontaneamente nella stessa direzione: gli stormi di uccelli (flocks) sono un

esempio tipico di tali sistemi. Molti modelli teorici si sono affastellati nell’utlimo

trentennio per spiegare come questo comportamento collettivo possa emergere dal-

le interazioni microscopiche tra gli individui che compongono il gruppo, rivelando

che esso è una specifica manifestazione del carattere di non-equilibrio di questi si-

stemi attivi. Il confronto coi dati sperimentali ha permesso di convalidare e raffinare

questi modelli e, in alcuni casi, persino di tentare approcci quantitativi di inferenza

statistica.

In questa tesi sono impiegati metodi standard del calcolo stocastico per studiare

problemi legati alla dinamica microscopica di tali sistemi. Motivati dalla disponibi-

lità di dati raccolti dal gruppo CoBBS, si è derivato in primis un nuovo metodo di

inferenza Bayesiana per la dinamica inerziale degli stormi di uccelli. Il nostro sche-

ma di inferenza si basa su un modello precedentemente introdotto (Inertial Spin

Model), che, a causa del suo carattere non-Markoviano, solleva difficoltà tecniche

quando viene combinato con un’osservazione a tempi discreti. Questo fatto è co-

mune a molti sistemi dinamici stocastici, e il metodo proposto si applica in realtà

a una classe di processi più ampia, di cui sono illustrati degli esempi. Inoltre, è

possibile sfruttare un’analogia tra alcune tecniche usate nei problemi di inferenza e

il Gruppo di Rinormalizzazione, che mostra intuitivamente l’assenza di delay vector

embeddings per osservazioni parziali di processi stocastici.

Il secondo argomento di ricerca di questo lavoro di tesi riguarda lo studio di effetti

di non-equilibrio in semplici modelli di materia attiva polare. È noto che l’emergere

di ordine polare in sistemi di particelle autoproulse è dovuto a una violazione della

simmetria sotto inversioni temporali. Questa violazione è quantificata dal tasso di

produzione di entropia, il quale è stato misurato in simulazioni numeriche di siste-

mi di particelle Browniane attive. Sono stati investigati due tipi di interazioni locali,

basate su diverse nozioni di metrica. In entrambi i casi, la produzione di entropia è

massima alla transizione, dove la motilità ha un impatto massimo sull’interazione

tra le particelle, mentre due limiti di equilibrio sono raggiunti nella fase fortemente

polarizzata o totalmente disordinata. Si è studiato inoltre l’effetto dell’irreversibi-

lità sulla distribuzione di probabilità stazionaria dei microstati del sistema. Una

produzione di entropia non nulla impone delle robuste asimmetrie, visibili nelle

distribuzioni di due o più particelle. Si noti che le correlazioni associate a tali di-

stribuzioni vengono tipicamente trascurate nelle teorie cinetiche usate per derivare

equazioni idrodinamiche per materia attiva polare.

https://www.isc.cnr.it/groups/cobbs/
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1 I N T R O D U C T I O N

1.1 a long story short

Traditionally, as physicists we hunt for a mathematical understanding of the natural

phenomena that we observe in the world that surrounds us. Centuries of ‘modern’

scientific investigation have taught us how to proceed when confronted with a new

empirical event to explain, but also pushed the boundaries of the ‘still unexplained’

progressively further. This trivial consequence of scientific research takes place at

many different levels — theoretical, experimental, methodological — and is com-

mon to all areas of Physics. Among them, however, Statistical Mechanics occupies

a peculiar position: as the natural framework of complexity, non-equilibrium and

multi-scale problems, in recent times it broadly invaded, with its methods and mod-

els, fields that had long remained elusive from quantitative analysis but now appear

as contiguous.

One very fortunate example is that of living matter. Any assembly of many living

units interacting with each other belongs to this class. Examples range from tissues

and clusters of migrating cells to colonies of bacteria, swarms of insects, or large an-

imal groups — including human crowds — exhibiting collective motion. A crucial

element is the multitude of components: while the study of most living systems at a

deeper level of detail is still a challenge lacking a unifying picture, the macroscopic

properties of large groups of interacting units have been successfully understood

in the framework of active matter. Active matter conventionally designates systems

composed of units which are able to transform free energy — internally stored or

collected from the environment — into motion. Such definition specifies the pecu-

liar way in which such systems are brought out of equilibrium, and finds obvious

inspiration and application to the biological world.

After the seminal works by Vicsek and Toner and Tu in 1995, the field flourished

and imposed itself as a standalone branch of research. Since then, theoretical physi-

cists, attracted by the wealth of novel phenomena that activity makes possible, have

borrowed intuition from Condensed Matter and Non-equilibrium Physics to adapt

their beautiful formal constructions to this new field. Many descriptions at various

levels have been proposed. The first effort concerns modeling the self-propulsion

mechanism of single constituents: this is generally done through effective stochas-

tic descriptions that aim at reproducing the persistence and diffusion properties

of motion, as the final results of the metabolic, mechanical or chemical processes

which allow the particle to self-propel and which are not taken explicitly into ac-

count. The simplest of these single-particle models have been enriched with inter-

actions and successfully used to build microscopic agent-based models exhibiting

emergent macroscopic properties, such as phase transitions, collective ordering, ap-

parent criticality, formation of patterns. Many of these emergent phenomena have

1



2 introduction

been observed in real systems. Another level of description is the hydrodynamic

one: here the relevant quantities which describe the behavior of large extended

systems are continuous fields. General rules are available to derive continuous dy-

namical field theories either from first principles, on the basis of symmetries and

asymptotic expansions, or from direct coarse-graining of microscopic models. The

plurality of descriptions and the known connection between them have allowed to

achieve a quite comprehensive understanding of the subject. Extensive and influen-

tial reviews added on over the years to track the evolution of this fast-developing

field [191, 189, 158, 126, 48, 5, 92].

At the same time, the theoretical progress has fostered (and has been fostered

by) an intense experimental research activity. Major advances regarded the more

tractable subclass of inanimate active matter. We can distinguish two main types of

model systems in this subclass: on one hand, biological extracts like actin filaments,

biopolymers and motor proteins [164, 181, 163]; on the other hand, suspensions of

man-made artificial swimmers or active colloids, where the self-propulsion mecha-

nism is systematically engineered by means of electrical [139, 18, 118], mechanical

[64, 110], light-induced [143], or chemical forces [186, 16]. However, the ever increas-

ing control over biology experiments has also allowed for the design of tunable liv-

ing model systems, like E-coli, spermatozoa, flagellated cells [67, 197, 65] and, more

recently, myxobacteria, epithelial and cancer cells [57, 182, 155, 161].

Experiments on animal groups, spanning much larger scales and involving much

more complex organisms, have so far escaped this kind of systematization. For

this reason, despite the original motivation for the introduction of the Vicsek model

comes from the desire to find a minimalist description of the phenomenon of bird

flocking, the quantitative matching between theoretical models and empirical data

is a bit scarcer in this case. This is not only due to the lower amount of data,

but also to the issue of reproducibility of experimental conditions (distinguishing

between relevant and irrelevant details is a far from trivial task, bouncing back and

forth between theory and observation) and to the fact that applying active matter

models to animal systems requires a higher degree of reductionism compared to

the previous examples. The constituents are indeed insects, birds, fish, mammals,

all of them having elaborate cognitive powers and social functions and a big phase

space of possible individual behaviors.

Nonetheless, some significant progress has been made in the last decades with

the observation of unprecedentedly large groups of animals on the move. These ob-

servations proved that minimal active matter models are in fact able to capture the

emergent features of such systems and to give a satisfactory quantitative account of

them. When interested in macroscopic properties of a large sized system, we can

then neglect the complexity of constituent elements, and describe their individual

behavior through a handful of degrees of freedom — e.g. position and direction of

motion in the classical Vicsek model. In some cases, experimental findings have also

suggested a deep revision of existing models: for instance, the analysis of a large

data-set of natural flocks of starlings allowed to understand that birds’ alignment is

due to topological rather than metric interaction rules [4]. Since then, a thorough in-
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vestigation of the different properties of topological versus metric models occupied

part of the theoretical scene for several years [48, 151, 39, 129].

In summary, times are mature to quantitatively match models and experiments

even for animals. This understanding process obviously needs a close dialogue

between the study of theoretical models and the analysis of empirical data. This

PhD work focuses on two different projects whose general purpose fits in this broad

picture.

The first project consists in the development of a statistical inference method

for a flocking model with ‘inertia’. Previous empirical findings revealed how the

modelling of the dynamics of natural flocks of starlings requires this ingredient.

Motivated by the availability of those data, we developed a maximum-likelihood

scheme which can be efficiently used for inferring the damped stochastic dynamics

of large collections of interacting particles. The main difficulty in the task comes

from the presence of inertia, which raises general issues concerning Markovianity

and phase space reconstruction for partially observed noise-driven systems. The

origin of these problems can be tracked down to the lack of exact delay vector em-

beddings, a long-standing problem in parametric inference of dynamical systems,

which marks the striking difference between stochastic and deterministic evolution.

As a byproduct of our investigation, we proposed a physical interpretation of this

well-known fact based on a formal analogy with the Renormalization Group con-

struction.

The second project consists in a bottom-up investigation on the effects of irre-

versibility in Vicsek-style models. We combine stochastic thermodynamics, numeri-

cal simulations and kinetic theory to search for signatures of time reversal symme-

try breaking (beyond the onset of collective motion) in two-dimensional polar active

systems with alignment interactions. The flavor of this second project is to a greater

extent theoretical, but we could identify quite general and robust features (i.e. not

fully model-dependent) related to the non-equilibrium nature of the system, which

it should be possible to check on various kinds of real data.

1.2 organization of the manuscript

The dissertation is structured as follows. Some background concepts about dilute

dry active matter which will be frequently recalled over all the manuscript are

reviewed in the first section of Chapter 2. In the same Chapter, microscopic models

of flocking are introduced and discussed. In particular, the Inertial Spin Model

introduced by Cavagna et al. is reviewed in some detail. Chapter 3 and Chapter 4

are respectively dedicated to the two projects which have been developed as parts

of this PhD thesis. Each chapter contains an introductory section about motivation

and context of our work and a synthetic review of the employed methods, before

presenting results from published and submitted papers [74, 73] (in Chapter 3)

and original not-yet-published material (Chapter 4). I will close each of these two

chapters discussing unaccomplished tasks and questions that are left unanswered.

A Summary concludes the manuscript.





2 F LO C K I N G M O D E L S

Active matter is a broad umbrella. It comprises various types of many-body systems,

whose common characteristic is being made of self-propelled particles (SPP). A

useful standard classification is based on the three following aspects [126, 48]: (i)

momentum conservation, (ii) type of interaction, and (iii) density of the system.

The class of interest for the work presented in the following Chapters is that of polar

dilute dry active matter, where (i) total momentum is not conserved because the fluid

which surrounds the particles is not included in the description, (ii) interactions

consists in ferromagnetic alignment of the directional degrees of freedom of the

constituents of the system, and (iii) the diluteness assumption consents to neglect

repulsive interactions.

Here I will try to briefly revise how microscopic models of flocking are built

and motivate the introduction of generalized flocking models that include memory

effects in the alignment mechanism, which represent our original motivation for the

work presented in Chapter 3.

2.1 microscopic models of flocking

2.1.1 Self propelled agents

It is clear that the interest of active matter is not that of giving a detailed and re-

alistic account of the self-propulsion mechanism which maintains the system in

a non-equilibrium condition: a schematic description of it through persistent ran-

dom walks is often more than enough. In spite of this simplification, the problem

of modelling self-propelled agents is interesting per se, and several types of per-

sistent random walks have been introduced over the years to model swimming

protozoa, crawling cells, Brownian motors, and many other natural and artificial

self-propelled particles in the category.

The distinctive trait of active particles is their ability to inject energy into the

system, rather than simply dissipate it. Active Brownian Particle (ABP) models are

modified equations for Brownian motion which attain an effective description for

this property through the introduction of non-conservative non-dissipative forces

[160]. A typical ABP model is of the form

ṙ = v, mv̇ = Fn.c. −∇U(r) + f, (1)

with f a Gaussian zero-mean random process, with second moment

〈 fα(t) fβ(t′)〉 = 2Dαβδ(t− t′), (2)

5



6 flocking models

and Fn.c. = −γ(r, v)v a non-conservative force, acting for simplicity in the direction

of motion. While for a standard Brownian particle — which can only dissipate

energy through Fn.c. — we have γ(r, v) > 0, in order to model active systems we

must take γ(r, v) < 0, in at least a region of the phase space. This creates an increase

in the energy of the particle, rather than a dissipative compensation to the uptake of

thermal energy. Hence Fn.c. is not only non-conservative, but also non-dissipative,

and it models the effect of self-propulsion on the system.

A well-known parametrization of γ(r, v) for ABP models is the Rayleigh-Helmholtz

parabolic friction coefficient [160]

γ(r, v) = γ(v) = −a + b|v|2= b(|v|2−v2
0) (3)

where v2
0 = a/b, for a, b > 0 — a negative a would correspond to a passive model.

Given Eq. (3), with U(r) = 0, the stationary probability density of v is the typical

crater-like distribution associated to the double-well potential:

P0(v) ∝ exp
1
D

[
a
2
|v|2− b

4
|v|4
]

. (4)

Simplifications of the Rayleigh-Helmholtz models have also been studied in the

literature, from the linear variant of Schienbein and Gruler [165], where γ(v) =

γ0(1− v0/|v|), to the constant-speed limit case, where P0(v) ∝ δ(|v|−v0). This last

model can be obtained from the Rayleigh-Helmholtz model in the b/D → ∞ limit.

When |v| is constant, it is convenient to work in polar coordinates, where the ABP

model reduces to a diffusive stochastic equation for the angular variables of the

particle’s velocity. In this case, γ(r, v) can also be viewed as a Lagrange multiplier

implementing the speed constraint. Another interesting parametrization of γ(r, v)

is that of the energy depot model [70], which allows for a mechanistic interpretation

of the conversion of internally stored energy into kinetic energy.

Beyond ABPs, two other successful models for self-propelled agents are run and

tumble particles (RTPs) and active Ornstein-Uhlenbeck particles (AOUPs). The dy-

namics of RTPs is, by definition, made up of runs at constant velocity v, and sud-

den random re-orientations of the swimming direction, occurring at a rate α. The

long-time, long-distance behavior of a pure running and tumbling particle is an ef-

fective random walk with diffusivity D0 = v2/αd, where d is the spatial dimension

and v = |v|. The large scale dynamics of RTPs is therefore equivalent to that of

ABPs with fixed speed and isotropic diffusion coefficient, at least in the absence

of anisotropies or direct interactions [174]. This equivalence holds even when we

assume that the microscopic parameters v, α and D (the isotropic diffusion coeffi-

cient of the ABP) depend on external variables, like the local density sensed by the

particle [30]. These models have acquired a paradigmatic role, as it is now well-

established that both RTPs and ABPs with a density-dependent swim speed can

explain the motility-induced phase separation [174].

AOUPs provide an alternative way of modeling the self-propulsion mechanism

through overdamped Brownian motion with colored Gaussian noise:

ṙ = −∇U(r) + f, τḟ = −f +
√

2Dξ. (5)

The self-propulsion force f follows an Ornstein-Uhlenbeck process [82], with

〈 fα(t) fβ(t′)〉 = δαβ
D
τ

e−|t−t′ |/τ . (6)
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The parameter τ quantifies the persistence of motion in this case. Since color is not

accompanied by any memory kernel in the evolution equation for r, the process

does not satisfy the second fluctuation-dissipation theorem [109] and is therefore

a non-equilibrium process. This type of model has been largely studied in the

literature, both analytically and numerically, achieving a quite exhaustive character-

ization of its fundamental statistical properties [130, 27]: the Gaussian nature of the

noise makes it more analytically tractable than ABPs and especially RTPs.

Of course, more ingredients can be added to the minimal models mentioned

above, like translational diffusion (through an additional white noise term in equa-

tion for the coordinate r), or a dependency on time or on other degrees of freedom

of the microscopic coefficients (this is the case of the energy depot model). However,

we are interested here in the simplest among these models, as the goal is to increase

their complexity by including inter-particle interactions.

2.1.2 Vicsek-like models

ABPs with alignment interactions

The class of SPP models which have been most largely used in polar active matter

is that of constant speed ABPs — although empirical observations revealed that

speed fluctuations are far from trivial in real animal systems [40, 10]. The hard

constraint on |v| prevents speed fluctuations and allows us to work directly with

angular variables, thus reducing the dynamics to a lower-dimensional manifold.

The inter-particle interaction is expressed by means of aligning torques acting on the

orientation vectors, which, in d = 2, are parametrized by a single angular variable:

e(θ) = (cos θ, sin θ). The dynamics results into a stochastic underdamped rotation of

particles’ orientations at an angular velocity θ̇, and particles’ transport at constant

speed v0:

ṙi = v0e(θi), θ̇i = −∑
j

Jij sin(θi − θj) +
√

2Dξi , i = 1, . . . , N. (7)

The Jij’s are the entries of the coupling matrix, defining the strength and nature

of interaction — here assumed purely ferromagnetic, with Jij ≥ 0 ∀i, j. D is the

rotational diffusivity and 〈ξi(t)ξ j(t′)〉 = δijδ(t− t′).

A generalization of the model in d ≥ 2 is obtained using γ(r, v) as a Lagrange

multiplier in Eq.(1):

ṙi = v0e(θi), v̇i =

(
−∑

j
Jijvj +

√
2Dξi

)

⊥
, i = 1, . . . , N. (8)

where now ξi is a vector of isotropic white noises: 〈ξi,α(t)ξ j,β(t′)〉 = δαβδij · δ(t− t′)

and θi is a set of d− 1 angles specifying the direction of the particle i. The ⊥ symbol

denotes the projection operation onto the plane perpendicular to the velocity of

each bird vi. The SDE (8) must be integrated following the Stratonovich convention:

because of the projection operation, the process is indeed multiplicative 1.

1 Alternatively, one can transform Eq. (8) into an Itô SDE by adding a parallel drift term equal to −(d−
1)Dvi to the second equation, which guarantees that d|vi |2

dt = 0 when the derivative is computed using

the rules of Itô calculus.
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The original Vicsek model

One motivation for the choice of constant speed ABP models in polar active matter

is that, historically, the first model introduced by Vicsek et al. in 1995 [192] was

defined through the following set of agent-based update rules for the positions and

orientations of the particles:

ri(t + 1) = ri(t) + vi(t + 1), (9)

vi(t + 1) = v0RηΘ
[

∑
j∈Si

vj(t)
]
, (10)

where Θ is the normalization operator, and Si is the set of neighbors of particle i

by which this is influenced. The set of neighbors Si includes, in the original version

of the model, all the particles which are placed within a circle of radius R from

the i-th one. Alternative choices for the parametrization of Si are possible: we can

classify them into two major categories, namely metric and topological, depending

on the notion of distance (metric or metric-free) which is employed to evaluate

whether pairs of birds directly interact. Finally, the noise operator Rη implements a

uniformly distributed random rotation of its argument in the interval [−2πη, 2πη].

Another interesting point concerns the distinction between additive and non-

additive interactions. In the first case, the strength of alignment forces increases

with the local particle density, while in the latter case the relative strength of align-

ment to noise is roughly independent of local density. The Vicsek model in Eq. (10)

falls in this second class as it displays non-additive interactions. An equivalent

parametrization in terms of a continuous-time model of the kind of Eq. (8) should

involve a coupling matrix of the form Jij = wiθ(R − rij), with rij = |ri − rj| and

wi ∝ 1/ni, where ni = ∑j θ(R− rij) = |Si| is the total number of neighbors by which

bird i is influenced. It is evident that non-additive interactions are not pairwise,

since they depend on the global configuration of the system, nor symmetric, hence

not satisfying an action-reaction principle.

Conversely, additive interactions are realized in Langevin-Vicsek-like models like

(8) if we take wi = const. In this case, the feedback between alignment and local

density fluctuations is enhanced, and dense finite-size clusters tend to form. Aver-

age momentum conservation, symmetry and pairwise nature of the interaction are

preserved. At the agent-based level, an equivalent way of incorporating the feed-

back with density fluctuations is through a so-called ‘vectorial’ noise [49]: instead

of adding an angular random variable to the normalized average of neighbors’ ve-

locities, a vector random variable fi (independent of ni) can be added to ∑j∈Si
vj(t)

and the resulting vector can be later normalized: Θ
[

∑j∈Si
vj(t) + fi

]
.

Despite these details might look as irrelevant for the study of the emergent phe-

nomena, the differences between the above-mentioned classes of interactions do

matter and affect the behaviour of the systems at the macroscopic scale.

The order-disorder transition

The most striking feature of the Vicsek model is the spontaneous transition from a

disordered isotropic phase to a polar ordered phase, where all the particles move

in the same direction and true long-range order is realized, even in d = 2. This
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transition occurs as the noise amplitude is lowered (with respect to the average

strength) or the average density is increased (for a fixed interaction range) [192],

and it is now clear that it is better described as a first order phase transition, where

coexistence of phases is realized in a wide region of the phase diagram, rather than

resorting to analogies to the XY model [176, 49]. Indeed, an equilibrium XY spin

system cannot exist in the ordered phase in d = 2, as only quasi-long range order

is established [133]. In contrast, order is truly long-ranged in the Vicsek model:

thanks to the presence of activity, the symmetry broken phase is stabilized by a

feedback mechanism, according to which local misalignment enhances reshuffling,

which allows for a more efficient transmission of the alignment message, which

in turn suppresses fluctuations [48]. As a result, orientational fluctuations are not

capable of disrupting order in a polarized flock, even in d = 2, since they have the

effect of increasing the impact of activity.

The presence or absence of the ‘coexistence phase’ and the way it manifests it-

self depends on the type of microscopic interaction. For the classical (metric non-

additive) Vicsek model, where coexistence is realized, numerical studies have re-

vealed that, as the system approaches the transition from the ordered phase, most

of the particles organize into dense travelling bands which move against a dilute

background in a perpendicular direction to the band itself. In very large systems,

another coexistence regime — dubbed cross-sea phase — has also been observed:

this is characterized by the emergence of a complex pattern looking similar to the

superposition of non-interacting travelling waves at a selected angle of intersection

[112, 48]. Different kinds of patterns do form when interactions are additive [51,

198]. In this case, even in large-sized systems, bands are replaced by polar clusters

which do not span the linear size of the system but may nevertheless contain a

fraction of particles close to 1.

A different story is for topological interactions. It has been long believed that the

transition to collective motion was of second order for Vicsek-like models with an

alignment mechanism based on a topological notion of distance [87]. Traditional

numerical results involve models where the metric-free interaction is implemented

either selecting a fixed number of nearest neighbors (called k-nearest neighbor mod-

els) or the first shell of neighbors in a Voronoi tessellation. In fact, recent numerical

results on flocks of larger sizes suggest the opposite thing, i.e. that the transition is

of first order, at least when the topological interaction is realized through a k-nearest

neighbor Vicsek model [129]. The first order nature of the transition is observed in

numerical simulations thanks to the emergence of travelling bands which denote

the presence of strong density fluctuations mediating the onset of order. The fact

has been formally explained in [129] with the introduction of an effective fluctuating

field theory fuelled by a density-dependent multiplicative white noise. To the best

of our knowledge, if the topological interaction involves Voronoi neighbors rather

than the k nearest neighbors, only transition phenomena compatible with a second

order description have been observed so far. Hence Voronoi Vicsek systems can be

treated as critical, at least up to moderate sizes.
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A glimpse of the Toner-Tu theory

For the sake of completeness, let us recall here the Toner-Tu equations, which will

be useful to understand why Vicsek-like models and their large-scale predictions

proved inappropriate to describe real flocks of starlings. The Toner-Tu theory in-

volves two continuous fields, namely the density field ρ(x, t) and the polarization

field v(x, t), which evolve according to the following fluctuating hydrodynamic

equations:

∂tρ = −∇ · (ρv),

(11)

(12)∂tv + λ(v · ∇)v + λ2(∇ · v)v
+ λ3∇(|v|2) = (α− β|v|2)v−∇P + DT∇2v + DB∇(∇ · v) + D2(v · ∇)2v + f.

Here P = ∑n σn(ρ− ρ0)n is the pressure, with ρ0 the average density of the system,

and f is a Gaussian white noise source, satisfying:

〈 fα(x, t) fβ(x′, t′)〉 = ∆δαβδ(x− x′)δ(t− t′). (13)

This field-theoretical description introduced by Toner and Tu in [188] helped to

understand that the ferromagnetic analogue was not the right framework to inter-

pret the phenomenon of flocking: the passage from disorder to order is not a direct

transition, unlike in the theory of magnetism, but it is mediated by the density

field. The wealth of phenomena arising from the Toner-Tu theory originates from

the double role of v as the order parameter and as the velocity of mass transport

in the continuity equation. The crucial coupling between ρ and v, allows, among

many other phenomena, for a wavelike propagation of perturbations in the flock,

which will be discussed in the following section.

2.2 the inertial spin model

2.2.1 Evidence of inertial dynamics

Because of its minimalist appeal and the richness of emergent phenomena, the Vic-

sek model (together with the corresponding continuous theory by Toner and Tu)

imposed itself as the major paradigm for active matter. Despite this fact, a deeper

examination of the model, in comparison with the available data, reveals that it is

unable to provide a realistic account of the behavior of bird flocks on their natural

time and size scales. The main evidence of this shortage comes from the experimen-

tal observation of turning groups of starlings [3, 37, 34].

Dispersion relation

Turns are an example of decision making process which occurs in the group not as

a homogeneous response to an external stimulus, but thanks to bird-to-bird propa-

gation of information. It has been observed that, irrespective of the flock size, turns
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start as perturbations having a localized origin in space (Fig. 1.b). The perturbation

consists of a change in the flight direction of the birds which is marked by a peak in

the radial acceleration profile of each individual (Fig. 1.d). Measuring the temporal

displacements of these peaks for every pair of birds, Attanasi et al. [3] built a set

of mutual turning delays, which they used to rank the individuals in a flock from

the starter of the turn (ranked 0) to the last one that turns (ranked N − 1). The

ranking curve in Fig. 1.a can be converted into the curve shown in Fig. 1.c, where

the spatial distance traveled by the turning information, x(t), is plotted as a func-

tion of the absolute turning time, t. Far from the region where border effects are

relevant, x(t) exhibits a linear dependency on time: the fitted slope c2 represents the

speed of propagation of the directional information in the center-of-mass reference

frame. The value of the speed c2 extrapolated from the data has been shown to be

much larger than the typical velocity of birds. This result means that information

transport in the flock is not due to the absolute motion of the constituents, whose

relative positions in the center-of-mass reference frame does not change much (and

in any case at a much smaller velocity than the fitted c2).

The linear relation x(t) = c2t, combined with the independence of c2 from the

typical birds’ speed, is a fact which does not find proper explanation within the

Vicsek or Toner-Tu theory. First of all, numerical simulations of the Vicsek-like

stochastic model in Eq. (8) cannot reproduce collective turns and radial acceleration

profiles as those observed in real flocks [37]. This first argument is compelling to

prove the inadequacy of the microscopic discrete model, and it holds even for small-

sized flocks. Yet, it is true that this schematic description of the dynamics leaves

out, by construction, most of the details which characterize a biological system.

Shall we expect this discrepancy to be due to this fact? The answer depends on the

predictive power we expect the model to have for the system under investigation.

The presence (or absence) of propagative phenomena on intermediate scales is, at

least qualitatively, something which carries information of general character about

the behavior of a fluid or the properties of a condensed matter system; by analogy,

even in active models, transport phenomena should not depend on the little details

which are left out (cfr. [190]).

The hydrodynamic theory by Toner and Tu offers us the possibility to work di-

rectly at the macroscopic scale. The model in Eqs. (11)–(12) can indeed be thought

of as the coarse-grained description of several agent-based models whose common

trait is the pairwise alignment of the particles’ velocity vectors [150, 7, 8, 151, 100].

From the study of the power spectra of the density and polarity fluctuations in the

symmetry-broken phase of the Toner-Tu theory, it can be observed that the disper-

sion relation of sound modes always has a nonzero real part 2 [187]:

ω±(q) = c±(θq)q− iqz
⊥ f±

( q‖l0
(q⊥l0)ζ

)
, (14)

2 The fact that <ω± 6= 0 (for q 6= 0) occurs even at the level of the linearized theory (around the polar

homogeneous solution). The perturbative renormalization group analysis of [187] impacts only the

imaginary part, yielding the critical exponents z (ruling the critical dynamics of collective modes) and ζ

(anisotropy critical exponent).
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Figure 1: Figure and caption from [3]. a: The rank r of each bird, i.e. its order in the turning

sequence, is plotted versus its absolute turning delay t, i.e. the delay with respect

to the first bird to turn b: The maximum mutual distance D between the top 5

birds in the rank does not increase with the linear size of the flock, L, indicating

that the first birds to turn are actually close to each other in space. The result does

not change if we use a different number of top birds, as long as this number is

much smaller than the flock’s size. Inset: the actual position of the top 5 birds (red)

within a real flock. c: The distance x travelled by the information in a time t is

proportional to the radius of the sphere containing the first r(t) birds in the rank,

namely x(t) = [r(t)/ρ]1/3. The speed of propagation, cs, is the slope of the linear

regime of x(t) for early and intermediate times (solid lines are linear fits). d: The

intensity of the peak of the radial acceleration, amax, (filled symbols) decreases very

weakly in passing from the first to the last turning birds. Inset: plot of amax
i versus

the rank ri for each bird. Hence, information propagates through the flock with

negligible attenuation.

where c±(q) = v0(1+λ)
2 cos(θq) ±

√
v2

0(1−λ)2

4 cos2(θq) + σ1ρ0 sin2(θq). The parameter

ρ0 = 〈ρ(x, t)〉 is the average density; v0 = |〈v(x, t)〉| is not the average velocity of

the whole flock 1
N |∑N

i=1 vi|, but a parameter which gives us an indication of the

symmetry breaking [187]; l0 is a characteristic length of the system, needed to have

a dimensionless argument for the scaling function f±(x). Finally, θq is the angle

formed by the wavevector q with the collective direction of motion, and the symbols

⊥ and ‖ indicate its transverse and longitudinal components with respect to the

same reference direction.

From an inspection of Eq. (14) we can detect the following elements:

• Attenuation of the wavelike perturbation. The Toner-Tu dispersion relation al-

lows for wave propagation, but, since the imaginary part is nonzero, it is also

accompanied by anisotropic damping. At long wavelengths (q → 0), propa-

gation dominates and becomes almost isotropic. However, localized pertur-

bations like those observed in real flocks are better described by wavepackets

which also include larger q modes. These modes get more fastly damped,
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according to Eq. (14). In the limit q → ∞, the scaling function scales as

f±(x) ∼ xz/ζ , and the high-wavenumber turning waves get mostly damped

in the longitudinal direction (z/ζ > 1). In contrast, a very small attenuation

was indifferently observed in the radial acceleration profiles of real flocks (see

Fig. 1.b)

• Dependency on v0. In the Toner-Tu theory the presence of a nonzero <ω± is

due to the coupling between density and velocity fields — with the latter play-

ing the role of local order parameter and transport velocity at the same time

— and to the lack of Galileian invariance. Precisely, the pressure force term

∇P(ρ), in combination with mass conservation, is responsible of transverse

propagation (in the reference frame of the fluid), while the convective term

λ(v · ∇)v is affecting longitudinal propagation. The sum of the two terms can

be split in the following way:

T1 + T2 = [∇P + (v · ∇)v] + [(λ− 1)(v · ∇)v] . (15)

This rewriting highlights the density-velocity coupling and the advective role

of v, on one hand (T1), and the lack of Galileian invariance, on the other hand

(T2). The term T1 is also present in standard fluids, where λ = 1; its contribu-

tion to <ω± just amounts to the transverse propagation of compression waves

and the trivial transport of perturbations due to the motion of the fluid itself.

The T2 term, on the contrary, is peculiar of active fluids and is the candidate

term to explain the experimental observations within the framework of the

Toner-Tu theory. Let us recall the dispersion relation (14): here c± refers to an

external reference frame, while the experimental c2 is measured in the flock’s

frame. In order to compare the two, we should then subtract from c± the

mean cruising velocity v0 cos(θq) along the considered direction. Let us focus

on the longitudinal one, θq = 0: in this case the speed of density waves is

c+(0) = v0, and the speed of orientation waves is c−(0) = λv0. The two co-

incide in a standard, Galileian invariant, fluid, and both become zero in the

reference frame of the moving fluid. In an active fluid, the speed at which

the turning perturbation travels depends on how ‘strongly’ the Galileian in-

variance is broken, i.e. on how efficient reshuffling of bird’s relative positions

is, at the microscopic level. In real flocks the relative positions of birds do

not change much, even during turns, and the reconstructed adjacency matrix

is, to an excellent degree of approximation, constant [1, 136]. The measured

velocity c2 should therefore be very small, in contrast to experimental values

of 20-40 m · s−1 (starlings’ typical speeds are 7-12 m · s−1).

To sum up, experiments provide evidence that the propagation of information

in a turning flock mustn’t be explained through Eq. (14): an alternative model is

needed.

Collective Turning

How should this alternative model be built? A hint came from another experimental

evidence, namely the observation that birds did turn on intersecting equal-radius

paths rather than on parallel paths [3, 1, 34].
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There are two ways in which a many-particle system can perform a rotation: as

a rigid body, where all the material points in the assembly rotate with the same

angular velocity with respect to an external fixed point, or along paths with equal

radius of curvature (see Fig. 2.a for a schematic representation). In a rigid turn, it is

possible to identify a co-rotating frame where the relative positions of the particles

are unaltered; to an external observer, this appears as a parallel-path turn. Moreover,

since the angular velocity is the same for all the particles in the system, their speed

must be different, and increase with the distance from the pole. Both of these facts

are not observed in real flocks of starlings, whose relative positions do not change in

the observer’s reference frame (Fig.2.b) and all the trajectories have approximately

the same radius of curvature, as computed from the radial acceleration profiles (in

Fig.1.b), allowing all the birds to fly without sharp speedups.

The equal-radius type of rotation cannot be attained using the standard generator

of spatial rotations, i.e. the angular momentum, which would generate a parallel-

path turn. An equivalent generator acting on the internal space of velocities, vi,

while keeping the particles’ positions unaltered, is required. This quantity, called

spin in [3] and [37], is the generator of the rotational symmetry characterizing the

classical XY or Heisenberg systems (see Fig. 2.c). In analogy to the definition of

angular momentum in the external space of positions,

l = r× p, with p = mṙ, (16)

the spin s is defined as:

s = v× pv, with pv = χv̇, |v| = 1. (17)

The definition of the new momentum pv in the internal space of velocities brings

in the definition of the analogous of the inertial mass m, i.e. a generalized inertia

χ. The generalized inertia χ is unrelated to the mass of the bird, but it rather

accounts for the resistance opposed by the particles to instantaneous changes of

their orientations.

2.2.2 Model description

The experimental evidence described above has been rationalized with the introduc-

tion of a new dynamical model, called inertial spin model (ISM). It consists of a mini-

mal modification of the continuous-time Vicsek model in Eq. (8), obtained through

the introduction of the above-mentioned generalized inertia χ, which transforms

the stochastic process from first order (in the variables vi) to second order.

The temporal evolution of the system in d = 3 is given by the following set of

Langevin equations:

ṙi = vi; (18)

v̇i = − 1
χ

vi × si; (19)

ṡi = − η

χ
si + vi ×

J
v2

0
∑

j
nij({ri})vj +

√
2Dξi⊥. (20)
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a

b c

Figure 2: a: On the first row, a schematic representation of parallel path versus equal radius

turns is shown. b: Reorientation of the flock during the turn. The figure shows

the change in the relative positions of birds in the reference frame of the turning

flock. The reference bird in the center is pictured in black, birds flying in front of it

at the start of the turn are green, those on the sides are light blue, the ones behind

are orange. After the turn, the color code does not correspond to the same relative

positions. Green and orange birds are now in the sides, blue birds are at the head

and the back of the flock. Figure adapted from [1]. c: Schematic representation of

velocity, spin, and trajectory for two particles, from [37].

Here the ξi’s are independent isotropic white noises 〈ξiα(t)ξiβ(t′)〉 = δijδαβ · δ(t− t′)

and ⊥ denotes again the perpendicular projection with respect to vi, for each i =

1, . . . , N.

We focus on the dynamics of the orientational degrees of freedom, Eqs. (19)–(20),

neglecting for a while the coupling to the positions ri. These equations can be

read as the stochastic analogue of Newton’s law for the rotational dynamics in the

internal space of velocities. According to Newton’s law, the angular acceleration

of each particle in this internal space is proportional to the torque exerted on the

particle through the generalized inertia χ. The torque is determined in this case

by the contribution of a social force, which aligns the orientation of the bird to the

surrounding ones, plus those of a linear damping force and of a gaussian noise3.

Exploiting the fact that |vi| = v0 ∀i, we can rewrite Eqs. (19)–(20) as a second

order SDE:

χv̈i =

(
−ηv̇i + J ∑

j
nijvj + v0

√
2Dξi

)

⊥
− χ

∣∣∣∣
v̇i
v0

∣∣∣∣
2

vi , i = 1, . . . , N. (21)

Eq. (21) can also be derived from first principles, starting from the conservative

dynamics of the interacting system, immersing it into an effective heat bath which

3 The random torque and the damping torque must satisfy a fluctuation-dissipation relation if we want to

recover an equilibrium limit that reproduces the Heisenberg or XY ferromagnet for vanishing motility

(v0 → 0).
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introduces a viscous drag and a fluctuating force source, and enforcing the hard

constraint |vi| = v0 ∀i. The perpendicular projection with respect to the direction

of motion of the i-th bird and the centripetal acceleration term keep the particles’

speed fixed to a given value. Again, the multiplicative process must be integrated

applying the Stratonovich convention. We can go from Eq. (21) to Eqs. (19)–(20)

using the definition of the spin (17) — see [6] for a more detailed discussion.

By finally coupling the dynamics in the external space of positions to the dynam-

ics of the orientational degrees of freedom, the model becomes active. The same

parametrizations of the adjacency matrix nij that can be adopted in the overdamped

case can also be adopted here. The inertial spin model represents indeed just a New-

tonian generalization of the continuous-time Vicsek model, which is recovered in

the overdamped limit χ/η2 → 0. In the absence of interactions, the difference be-

tween the two models would be purely dynamical, and only visible at intermediate

time and size scales. How inertia mingles with non-equilibrium interactions and to

what extent this modifies the non-equilibrium steady state or the critical dynamics

of the system is less clear, but the topic has attracted considerable interest recently

[141, 36, 38, 96].

In any case, we can conclude that a second order dynamics is associated to the

presence of two time scales for each mode q, even at equilibrium, in the absence

of any coupling with the density field. The relative magnitude of these two time

scales is what mainly determines how a mode is propagated or dissipated and,

at a global level, the damping regime in which the system operates. For a more

exhaustive discussion of this issue, we refer to Refs. [37, 34]. A detailed derivation

of the equations of motion of the ISM can be found in [3, 34].

2.2.3 The spin wave approximation

To study the model in the ordered phase, it is useful to consider a linearization of

the equations of motion (19)–(20) around the perfectly ordered solution vi = v0n

∀i, where n is the collective direction of motion of the flock. This approximation is

called, in analogy to ferromagnets [69], spin wave approximation (SWA). We will

use it in the following for the analysis of the experimental data.

In order to derive it, it is sufficient to decompose each vector vi into its longitudi-

nal and transverse components with respect to n:

vi
v0

= vL
i n + πi where vL

i =
√

1− |πi|2 ' 1− 1
2
|πi|2. (22)

We assume here, without lack of generality, that |vi|= v0 = 1. Thanks to this as-

sumption, the perpendicular projection of any vector a in d = 3 can be obtained as:

a⊥ = −vi × (vi × a). (23)

Using Eqs. (22)–(23), one can evaluate all the terms appearing in Eq. (21), at the

desired order in |πi|.
Let us focus on time derivatives: we notice that, in addition to π̇ and π̈, there

must also have terms containing ṅ and n̈. We assume however that the direction
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of collective motion is constant: ṅ = n̈ = 0. This is legitimate in the limit N → ∞,

when the wandering of the order parameter is suppressed. If, on the contrary, one

wants to take the effect of the rotation of n into account, apparent forces emerge

because the chosen reference frame is non-inertial. Neglecting apparent forces en-

ables us to segregate on-plane (i.e. perpendicular to n) and off-plane (i.e. parallel to

n) contributions, and completely disentangle the corresponding equations. One can

then consider the equations in the π-plane only:

d2πi
dt2 + η

dπi
dt

+ JΛijπ j = P̂ξi⊥ + O(|π|3), (24)

where Λij = ncδij− nij and P̂ is the projection operator onto the plane perpendicular

to the collective velocity. The velocity fluctuations πi play in this case the same role

as spin excitations in Dyson’s SWA, since they become the new degrees of freedom

and are subject to a linear interaction.

At this stage, what remains to explicitly evaluate is P̂ξi⊥. Since ξi⊥ lives in the

plane perpendicular to vi, the perpendicular component to the plane spanned by n

and vi is left unchanged by the projection operator, while the other one is contracted

with a factor cos θi = vi · n. As a result:

〈P̂ξi(t) · P̂ξi(s)〉 = 2(1 + cos2 θi)
Tη

χ2 δ(t− s). (25)

The second moment of each noise term is then rescaled, with respect to the original

one, by a factor:

1
2

(1 + cos2 θi) =
1
2

(
1 +
(

vL
i

)2
)

= 1− 1
2
|πi|2' vL

i . (26)

We can reabsorb this rescaling factor into the temperature parameter T/χ, defining

a new spin wave temperature4

T̃SWA/χ = ΦT/χ, (27)

where Φ = | 1
N ∑N

i=1 vi| is the polarization of the flock. In the low temperature case,

where |π|� 1, the correction to the temperature parameter in Eq.(27) is of a lower

order than the terms which have been neglected in the deterministic part of Eq. (24).

Hence it is consistent to include this first correction to the spin-wave temperature

through this simple effective rescaling. The resulting equations are then

d2πi
dt2 + η

dπi
dt

+ JΛijπ j = ξ̃i , (28)

where ξ̃i = P̂ξi⊥ are skew independent two-dimensional white noises, with effective

amplitude 2ηT̃SWA/χ for each coordinate.

The dispersion relation

Since the main motivation for the introduction of the ISM comes from the observa-

tion that the turning disturbance cannot be propagated in flocks following the dis-

persion relation of the Toner-Tu theory, it is worth studying the dispersion relation

4 In principle, a different temperature for each bird could be defined, using the bird’s longitudinal velocity

vL
i , according to Eq. (26). However, it is convenient to work with a single average temperature T̃SWA/χ

to let the model keep a formal equilibrium structure (when not coupled to the position dynamics).
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associated to the ISM in its ordered phase. This was the object of [44], considering

an on-lattice variant of the ISM, and of [42, 195], where continuous models were

considered.

The on-lattice variant is particularly simple, since there is no advection nor reshuf-

fling. In this case the density field is homogenoeus and non-evolving, and the

dynamics of the polarity excitations only results from the Landau-Ginzburg coarse-

graining of the equilibrium linear model in Eq. (29). This is a plain Gaussian theory,

whose propagator is well-known. When particles lie on the sites of a fixed network,

the model can be analytically solved even at the microscopic level. The linearized

dynamics is easily diagonalized in the basis of eigenvectors of the discrete Laplacian

Λij
5:

d2π̂k
dt2 + η

dπ̂k
dt

+ Jλkπ̂k = ξ̃k , (29)

whose dispersion relation reads ωk = iγ ±
√
−Jλk − γ2/4. In a cubic lattice with

periodic boundary conditions and lattice spacing a, λk(n,m) = −nc
4π2

N (n2 + m2), with

n, m = 1, . . . , L/a, where L is the linear size of the system, and L/a is the number of

sites per side.

To reintroduce self-propulsion, it is necessary to restart from Eqs. (18)–(20) and

derive the hydrodynamic theory associated to them. In addition to the density and

velocity fields, the local spinning velocity of the active fluid — corresponding to s in

the microscopic model — must be treated as a slow-varying field. Full continuous

equations are derived in [195] following the Smoluchowski approach. In contrast,

in [42] non-linearities are kept to a minimum, and Galileian invariance is assumed

to hold.

The dispersion relation resulting from this simpler phenomenological model is

analytically tractable and firstly revealed the existence of a different kind of propa-

gating spin waves. The key idea emerging from [42] is that <ω(k) receives contribu-

tion from both first sound (compression waves due to density fluctuations, which

propagate in the transverse direction) and second sound (propagating waves which

would pass the turning information throughout the flock even in the absence of

density-velocity coupling). This idea was confirmed by the more accurate analysis

in [195].

It is interesting to notice that first and second sound have opposite properties.

First sound is damped for large wave-numbers k, whereas it propagates, in a strongly

anisotropic way, close to the hydrodynamic limit k → 0. Conversely, second sound

modes are damped at small k, whereas they propagate at large k, with a speed

which is isotropic in the reference frame of the moving flock. At intermediate wave-

lengths and in a Galileian invariant system, wavelike perturbations either propagate

as a combination of first and second sound modes, or do not propagate at all, de-

pending on the ratio between second and first sound speeds [42].

5 Notice that Λij = ncδij− nij, as defined above, can be identified with the discrete Laplacian only if nij is

symmetric. The origin of the name is clear if we consider the coarse-grained approximation of a regular

cubic lattice in d dimensions, with a the lattice spacing and nc = 2d nearest neighbors per site. After the

coarse-graining, Λij → nca2∇2. Generally speaking, the Λ matrix represents the extension of the concept

of Laplacian for a regular graph, where each vertex has the same degree nc [12].
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When reshuffling is reinstated in the flock and Galileian invariance is broken, the

dispersion relation becomes too complicated to be studied in the whole q space,

and the existence of propagating modes, in any working regime, cannot be ruled

out. However, as we have said before, there is convincing evidence that the contri-

bution coming from the breakdown of Galileian invariance alone could not explain

experimental observations: second sound seems to be the crucial element [34].





3 S TAT I S T I C A L I N F E R E N C E F O R T H E
DY N A M I C S O F F LO C K S

In this Chapter I will present a novel maximum likelihood inference method for

second order stochastic differential equations, which has been developed for the

study of birds’ dynamics. The presentation is preceded by an introduction about

parametric inference methods for stochastic dynamical problems, and by a review

of previous results obtained from the analysis of experimental data of natural flocks

of European starlings.

3.1 parametric inference for static and dynamic
problems

3.1.1 Non-parametric vs Parametric inference

The goal of statistical inference is to optimally reconstruct from empirical data-sets

a parameter-free model that could have generated them. In order to tackle the prob-

lem, several approaches are available, which can be distinguished into two main

classes, namely parametric and non-parametric inference methods. In parametric ap-

proaches the goal is just to infer, based on observations, the parameters of a given

model. In contrast, in the non-parametric case, the observed data — whether sta-

tionary samples or time series — are not asked to follow any specified distribution.

Non-parametric methods therefore employ standard statistical tools or general an-

alytical techniques which do not require prior information on the underlying model.

In this context, the simplest and most common idea is to use density estimators:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− Xi
h

)
(30)

where f (x) is the probability density function we want to reconstruct, n is the num-

ber of data points, {Xi} is the set of measured values, h is a smoothing parameter,

and K(x) is a kernel function that must satisfy the condition
∫

dxK(x) = 1. For a

standard histogram, h is the bin size and K (x) = 1[−1/2,1/2)(x). Alternative kernels

can be used, for instance to give a larger weight to the focal point Xi.

The method of density estimators naturally applies to static problems, where the

data-set consists of multiple observations of a variable — or a set of variables —

describing the stationary state of a system. No equilibrium assumption is implied:

f (x) can represent either an equilibrium ensemble or a non-equilibrium steady state.

However, the simple method described above requires the sampling not to be too

sparse in the phase space, a condition which makes the reconstruction feasible only

for low-dimensional systems. Even when each coordinate of the state variable is

schematized as a discrete random variable which can take only m different values,

21
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we need a number of observations M � mD, where D indicates the phase space

dimension. Hence the lower bound on the sample size can grow very fast, no matter

how small m is (a recurrent example is the inverse Ising problem [138], with m = 2

and D = N is typically very large). The situation rapidly gets out of control when

m is large, as it is the case when the coordinates of the state variable are continuous

and we try to approximate their distribution.

In summary, non-parametric inference is exposed to the curse of dimensional-

ity. A first way to escape it is to adopt parametric or semi-parametric inference

approaches: in the following, we will focus on them. An alternative strategy is

to adopt effective low-dimensional descriptions of the complex system of interest.

Many complex systems of diverse nature indeed exhibit a separation of scales, al-

lowing for the identification of slow and fast variables and for the introduction of

reduced Markov models, where the effect of fast or integrated variables is reab-

sorbed into noise terms. For a review of inference approaches designed for this

kind of dynamic systems, we refer to [80].

3.1.2 The Bayesian setting

In this section, we will put our attention on parametric inference. The fundamental

ingredients we have in this setting are:

• a set of experimental observations X̄ = (X1, X2 . . . XM) of the observable X,

which can have a large but finite number of scalar components, corresponding

to an M-uple of probabilistic events;

• a parameter vector θ, treated as a random variable, with an associated p.d.f.

P(θ).

This framework is known as inverse problem. In contrast to the direct problem of

Statistical Physics, which consists in deducing predictions about observable quanti-

ties from a known model that describes the system, the inverse problem takes as a

starting point empirical observations and aims at extracting a parameter-free model

from them.

The inference problem is conveniently cast in a probabilistic framework: with

this, we do not refer to any statistical mechanical description of the system under

study, but to the fact that a degree of belief — in quantitative terms, a probability

distribution — is associated to the result of the inference procedure itself. The

first advantage of parametric methods over non-parametric ones is therefore the

possibility to compare different generative models and to assess how probable a

certain description of the data is. In this way, the parametric Bayesian setting allows

us to accept or reject a model at some ‘significance level’ [122]. The disadvantage is

that assumptions on the structure of the generative model are inevitably needed. We

denote by I (understood in the following) the amount of prior information carried

by these assumptions: a model is therefore specified by the pair (θ, I).
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Given I, the inference problem is fully solved when the posterior distribution of

model parameters is found. Using Bayes’ theorem,

P(θ|X̄, I) =
P(X̄|θ, I)ρ(θ, I)

P(X̄, I)
=

P(X̄|θ, I)ρ(θ, I)
∑θ P(X̄|θ, I)ρ(θ, I)

, (31)

the task boils down to assigning a prior distribution to the parameters ρ(θ, I) and

computing the likelihood P(X̄|θ, I). Knowing P(θ|X̄, I), we can associate a probabil-

ity ‘score’ to any set of parameter values, given the data. The best output is then

identified by the maximum point of the posterior (maximum a posteriori estimator):

θ̂MAP = arg max
θ

P(θ|X̄, I). (32)

Even if dropped in our notation, it is evident that θ̂MAP is in fact a function of the

data X̄ and of I.

Maximum likelihood

Usually the probability distribution ρ(θ) is not known and it is rather hard, if not

impossible, to acquire it. One general rule consists in taking a uniform prior1. With

this choice, the maximization of the posterior coincides with the maximization of

the likelihood, and the maximum a posteriori estimator θ̂MAP is replaced by the

so-called maximum likelihood (ML) estimator:

θ̂ML = arg max
θ

P(X|θ) = arg min
θ
− log P(X|θ). (33)

An important property of the ML estimator is that in the limit of infinitely numer-

ous samples, it is consistent, i.e. it converges in probability to the value of θ being

estimated. Precisely, for any ε > 0, consistency requires that:

lim
M→∞

Pr(|θ̂− θ| > ε) = 0. (34)

Notice that far from the limit, for finite-size data samples, the estimator can be

biased.

Another legitimate question is whether the solution of the problem (33) is unique.

A sufficient condition is the convexity of the minus-log-likelihood (as a function of

the parameters), but this is in general not guaranteed. Its convexity may depend

on the features of the problem, as well as on the quality of the data, which enter as

given parameters in this inverse problem setting. At equilibrium, however, unique-

ness of the solution is typically ensured [138]. The state of a physical system in

thermal equilibrium is described by the Boltzmann ensemble:

P(z|θ) = Z−1(θ)e−H(z;θ), (35)

with Z(θ) = ∑z e−H(z;θ) (assuming a discrete phase space), and H(z; θ) an effective

Hamiltonian, already multiplied by the inverse temperature β. The likelihood asso-

ciated to the Boltzmann distribution reads:

P(X̄|θ) =
M

∏
k=1

∑
z

δ(X(z)− Xk)
e−H(z;θ)

Z(θ)
=

M

∏
k=1

1
Z̃(θ)

e−H̃(Xk ;θ), (36)

1 The uniform prior can properly be defined only if we assume that parameters are bounded. Alternatively,

suitable decaying priors might be defined, that would make regularization terms appear in Eq.(33)
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where we recall that the k label indexes repeated observations of a set of observables

X(z). The final equivalence in Eq. (36) is for now just formal, and serves us to write

P(X̄|θ) in the Gibbs-Boltzmann style.

Let us introduce the reduced minus log-likelihood:

L(θ) = − 1
M

log P(X̄|θ) = log Z(θ)− 〈H̃(X; θ)〉exp (37)

where 〈 f (X)〉exp = 1
M ∑M

k=1 f (Xk) denotes the experimental average over M indepen-

dent measurements. Now we further assume that the effective Hamiltonian H(z; θ)

depends linearly on the model parameters:

H(z; θ) =
K

∑
µ=0

θµXµ(z), (38)

where Xµ are the scalar components of the measured observable. This kind of

parametrization is recurrent in statistical inference, as it corresponds to the only

family of probability distributions admitting a sufficient statistic with a number of

scalar components which does not grow with the sample size (Pitman-Koopman

theorem [152, 108]). The Hessian matrix of (37) is easily computed and reads:

Hµν =
∂2L

∂θµ∂θν
= 〈XµXν〉 − 〈Xµ〉〈Xν〉. (39)

Because fluctuations are non-negative, the Hessian matrix element (39) defines a

positive semi-definite bilinear form ∑µν qµHµνqν ≥ 0, for any non-null vector q. If

none of the K observables Xµ appearing in the effective Hamiltonian has exactly van-

ishing connected correlations, all the eigenvalues of the Hessian matrix are positive

and the minus-log-likelihood is strictly convex. Thus the concavity of the likelihood

is basically always guaranteed when it belongs to the canonical exponential family

and the associated Hamiltonian is linear in the model parameters.

These facts remain true when the static equilibrium setting is abandoned in favor

of a dynamical one, provided that the probability distribution of the observed tra-

jectory keeps a similar structure to the one we discussed above. An approach that

realizes this condition is the maximum caliber approach, which is better described

in Section 3.1.4.

3.1.3 The Maximum Entropy method

The maximum entropy method is a powerful inference tool which combines infor-

mation theory and variational calculus. It was introduced by E. T. Jaynes in two

celebrated papers [101, 102], where he rephrased the traditional ensemble deriva-

tion of equilibrium Statistical Mechanics in terms of a constrained maximization

task. Despite the controversial reception of Jaynes’ much discussed claims about the

foundations of Statistical Mechanics, the reversal of the usual line of reasoning that

he suggested turned out to be particularly well-suited for inverse problems. Over

the past 50 years, the maximum entropy principle has been used in many diverse

contexts: spectral analysis, image restoration, neural networks, signal processing,

and other vast applications in all areas of physics — including biophysics.
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In a nutshell, the maximum entropy method offers a prescription to find the

‘least structured’ model that is consistent with experimental measurements. The

inference process must indeed be viewed as a process to extract information from

the available data [194]. These data, however, are partial. As a guiding principle,

we want the inferred model to be maximally committed to the observed data and

maximally non-committed to the data which are not available. In this sense, the

model to seek is the most unbiased, or least structured.

The notion of ‘least structured’ is mathematically formulated as ‘maximizing the

uncertainty’ associated to the statistical model of interest. The key concept of un-

certainty of a probability distribution was introduced by Shannon in 1948 [171]: in

this seminal work it was proved that there exists a unique well-defined measure

H(p1, . . . , pn) to quantify the uncertainty of any information source, represented by

a discrete probability distribution {pi , i = 1, . . . , n}. This quantity, better known as

Shannon entropy, is:

H(p1 . . . pn) = −k ∑
i

pi log pi , (40)

with k an arbitrary constant, usually set equal to 1.

Commitment to the available data is expressed in the form of constraints2:

0 = gµ(p1, . . . , pn) = 〈Xµ(z)〉 − 〈Xµ(z)〉exp, µ = 0, . . . , K, (41)

so that the problem reduces to the optimization of the Lagrangian function

S̃(p1, . . . , pn) = H(p1, . . . , pn)−
K

∑
µ=0

θµ

[
〈Xµ(z)〉 − 〈Xµ(z)〉exp

]
, (42)

where 〈Xµ(z)〉exp is the experimental average, and 〈Xµ(z)〉 = ∑i piXµ(zi) is the en-

semble average. We denote by z the state variable of the system, and by zi the set of

discrete values which z can take. In order to account for the case of continuous ran-

dom variables z, a generalization of Eqs. (40) and (42) is needed. A common way to

write the Shannon entropy in these cases is through the differential (or continuous)

entropy:

S[P] = −
∫

dzP(z) log P(z), (43)

where P(z) is the continuous probability density function (p.d.f.). This quantity

is known to present several problems: first of all, it is not guaranteed to be non-

negative and bounded, in contrast to the discrete case; secondly, it is not invariant

under coordinate transformation. Hence S[P] is not a good definition of absolute

uncertainty and it can only be used to calculate variations in the information content

of a p.d.f.. In order to remove these issues, Eq. (43) is conveniently replaced by the

Kullback-Leibler divergence of P(z) from an arbitrary reference probability measure

Q(z):

S[P||Q] = DKL[P||Q] =
∫

dzP(z) log (P(z)/Q(z)) . (44)

2 Because of the required normalization of the probability distribution, one of the constrained observables

in Eq. (41) is always the constant function: X0(z) = 1.
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This quantity — also known as relative entropy — is well-defined for both continu-

ous and discrete random variables. In the second case it reads:

DKL(p1, . . . , pn||q1, . . . , qn) = ∑
i

pi log (pi/qi) . (45)

The Kullback-Leibler divergence is always non-negative, S[P||Q] ≥ 0, with equality

holding only when P(z) = Q(z). Moreover, the chain rule ensures that the quantity

in Eq. (44) is invariant under any coordinate transformation.

The Kullback-Leibler divergence measures the information gain achieved in pass-

ing from a distribution Q(z) — representing our prior knowledge — to P(z). As we

seek for the least structured model (i.e. having the minimal information content)

that is compatible with the given data, Jaynes’ maximum entropy principle must be

restated as a minimum relative entropy principle in the continuous case [172]. The

minimal agnostic choice is that of a uniform distribution Q(z): in this case, Eq.(44)

reduces to the ill-defined quantity in Eq. (43), if we change the sign and add up

an infinite constant, and minimization of S[P||Q] is mapped into a maximization of

S[P].

The constrained optimization problem can finally be solved by means of the La-

grange multipliers method. We define the new Lagrangian function

S̃[P||Q] = S[P||Q] + θ0

(∫
dzP(z)− 1

)
+ ∑

µ

θµ

(∫
dzP(z)Xµ(z)− 〈Xµ(z)〉exp

)
(46)

and solve the variational problem3 associated to it:

δS̃[P||Q] = 0 ⇐⇒
∫

dzδP(z)

[
log

P(z)
Q(z)

+ 1 + θ0 +
K

∑
µ=1

θµXµ(z)

]
= 0. (47)

The maximum entropy p.d.f. is therefore

P(z) = Q(z)
1

Z(θ)
e−∑K

µ=1 θµXµ(z), with Z(θ) = e1+θ0 . (48)

The values of the Lagrange multipliers θ are determined imposing Eqs. (41).

When Q(z) is uniform, the optimal p.d.f. P(z) in Eq. (48) takes the form of a

canonical Boltzmann distribution, with the same Hamiltonian as in Eq. (38). The

minimum relative entropy method is therefore equivalent to the Bayesian ML ap-

proach, with the likelihood belonging to the canonical exponential family. This

equivalence already provides a first clue about the correctness of the maximum

entropy method, which was originally introduced with vague and intuitive motiva-

tions based on the analogy with equilibrium thermodynamics. Another proof for

the correctness of the maximum entropy method in the limit of infinite data has

been later provided by Jaynes himself, resorting to combinatorial arguments and

the notion of typicality [103].

3.1.4 Learning dynamical models

A ubiquitous application of statistical inference methods regards time series analy-

sis. The goal of time series analysis is to answer to the following question: given a

3 Uniqueness of the solution is guaranteed if the constrained observables X1 . . . XK have nonzero fluctua-

tions, as we explained above.
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set of sequentially measured data, how can we reliably extract a dynamical model

that generates the experimental traces and can be used to make predictions?

Of course, the problem is vast and of interest in many disciplines, and it is not

possible to give a fair account of the colossal corpus of scientific work which has

been done over the past century, nor of the work which, in spite of this long tradi-

tion, is still in progress. Let us just notice that the question above can be tackled

in two distinct ways. The first one is seeking for a deterministic description of the

observed dynamical system from suitable analysis of the experimental data. The

second one is building a stochastic dynamical model, where fluctuations are not con-

sidered as superimposed random variables due to an external noise source (e.g. due

to measurement errors) but as a characterizing part of the system’s evolution. Much

effort has been devoted to the first kind of problems, and especially to the analysis

of linear one-dimensional time series [19, 107]. Our interest is however focused on

the reconstruction of stochastic processes.

Non-parametric inference of stochastic processes

Within the stochastic class, a first distinction must be made between continuous-

time and discrete-time models. Experimental data always come in the form of

discrete time series, but it is often convenient to consider them as discrete obser-

vations of an underlying continuous-time process. We assume to have measured a

state variable x whose dynamics is governed by a stochastic differential equation

(we restrict to the case of continuous processes, without jumps):

dx(t) = F(x(t), t)dt + df(x(t), t). (49)

F(x(t), t) indicates the deterministic force, while df(x(t), t) is the stochastic force,

integrated over the infinitesimal time interval dt. The most common situation is

that of diffusion processes, where

df(x(t), t) = g(x(t), t)dW(t), (50)

with W(t) a Wiener process. Eq. (49) then reduces to a standard Langevin equation

with drift vector D(1)(x, t) = F(x, t) and diffusion matrix D(2)
ij (x, t) = ∑k gik(x, t)gkj(x, t).

Conventionally, we assume that the Langevin equation is integrated à la Itô. The

corresponding Fokker Planck (or forward Kolmogorov) equation reads:

∂

∂t
P(x, t|x′, t′) = −∑

i

∂

∂xi

[
D(1)

i (x, t)P(x, t|x′, t′)
]

+
1
2 ∑

ij

∂2

∂xi∂xj

[
D(2)

ij (x, t)P(x, t|x′, t′)
]

.

(51)

The two quantities D(1)(X(t), t) and D(2)(X(t), t) are sufficient to completely describe

the dynamical behavior of the system, and the goal of inference is to provide an

estimate for them.

Even in this case, two types of approaches — namely parametric and non para-

metric — can be employed. Non parametric approaches apply when the functional

form of F and g is not specified but must be reconstructed from the data. A straight-

forward strategy is to adopt the method of cumulants [80]. The method exploits the
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definitions of D(1) and D(2) [159] and reconstructs the drift vector and the diffusion

matrix assigned to the bin located at xα through the following extrapolations:

D(1)(xα, t) = lim
τ→0

1
τ

M(1)(xα, t, τ), D(2)(xα, t) = lim
τ→0

1
τ

M(2)(xα, t, τ), (52)

where M(1) and M(2) are the first and second conditional moments, respectively:

M(1)(xα, t, τ) =
1

Nα
∑

x(t)∈Iα

[x(t + τ)− x(t)] (53)

M(2)(xα, t, τ) =
1

Nα
∑

x(t)∈Iα

[
x(t + τ)− x(t)− τD(1)(x(t), t)

]2
. (54)

We denote by Nα the number of points contained in the bin Iα. Higher order mo-

ments M(n)(xα, t, τ) can also be calculated; they are expected to converge in the small

τ limit to the Kramers-Moyal (KM) coefficients of the process [159], so, depending

on how small they are, they determine how good the assumption of Gaussian white

noise is. If M(3) and M(4) are significantly different from zero, the p.d.f. of fluctua-

tions has non-Gaussian tails, and the Fokker-Planck equation (51) must be replaced

by the full KM expansion.

The method of cumulants for simple diffusion processes is robust and general,

but it requires an enormous amount of data. For this reason, it is practically impos-

sible to use in the absence of a stationary process. Many real experiments produce

few, or even single time series, from which the generative model must be extracted.

Since it is only the expectation of the cumulant to converge to the corresponding KM

coefficient, Nα must be large in all the considered bins. Yet, the number of bins

grows exponentially with the dimension of the system’s phase space: as a result,

non-parametric methods cannot be applied but to very few-dimensional stationary

time series.

Semi-parametric inference approaches

Improved performance with a reduced statistics is exhibited by semi-parametric

inference methods, such as the recently introduced Stochastic Force Inference (SFI)

algorithm [81]. The key idea of semi-parametric methods is to use general, tunable

parametrizations involving, in principle, infinite-dimensional sets of parameters. A

typical example of (static) semi-parametric model for a random variable x is the one

we can obtain by expressing the p.d.f. of interest, P(x), as a linear combination of a

family of functions, like polynomials or Fourier modes.

Similar ideas can be adopted in the dynamical case: SFI approximates the force

field F(x) of Eq. (49) — independent of time for a steady-state process — as a lin-

ear combination of a finite basis of nb orthonormal functions {cα(x)}α=1...nb . The

algorithm allows us to reconstruct the drift vector as:

Fi(x) '
nb

∑
α=1

F̂i,α(x)cα(x), (55)

where F̂i,α are the maximum likelihood estimators of the projection coefficients

Fi,α(x) =
∫

dxP(x)Fi(x)cα(x). In a similar way, the inhomogeneus diffusion ma-
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trix can be reconstructed through the estimated projection coefficients Dij,α(x) =∫
dxP(x)D(2)

ij (x)cα(x) (denoted D̂ij,α):

D(2)
ij (x) '

nb

∑
α=1

D̂ij,α(x)cα(x). (56)

For large enough nb and a suitable choice of the basis of functions, Eqs. (55)–(56)

provide a reliable estimate of the force field and of the inhomogeneous diffusion

tensor. An advantage of this approach is that it does not demand for an exact

knowledge of the generative model of the observed data, like in the non-parametric

case (although it is helpful to make an informed choice of the basis, which may have

a strong impact on the performance of the algorithm), yet it allows us to tackle the

inference problem as in the parametric setting. The semi-parametric SFI algorithm

has been successfully applied to infer the force field and Langevin equations de-

scribing the dynamics of motile cells [21] and to develop new methods of analysis

of Brownian movies [91].

Parametric estimation of diffusion processes

The last class of methods for continuous-time stochastic processes is that of para-

metric ones. A recent review of parameteric inference approaches for Langevin

equations can be found in [120]; additional reviews are referenced therein.

As already pointed out, the common trait of all parametric techniques is that

the statistical model must be fully specified. In the case of stochastic dynam-

ics, this demands us to explicitly derive the finite-time propagator of the process

Pτ(x|x′) ≡ P(x, t + τ|x′, t) — at least approximately, in the small τ limit. The finite-

time propagator is what we need in order to build the likelihood function of the

discrete process:

P(x0:L|θ) =
L

∏
i=1

Pτ,θ(xi|xi−1)Pθ(x0), (57)

where x0:L = (x0, . . . , xL) is the observed time series and θ is the set of parameters.

Pθ(x0) is the probability distribution of the initial condition. Since a very small class

of processes are exactly solvable, the propagators appearing in Eq. (57) are typically

approximated using a Taylor-Itô expansion. If observation lags τ are too coarse,

Markov Chain Monte Carlo (MCMC) approaches can be used to augment the data,

by introducing latent time series points, and reach a more accurate estimation of

the likelihood [72, 71].

Parametric methods generally show very high precision, even with a moderate

amount of data, and a lower computational cost compared to the previously de-

scribed approaches. This beneficial effect of a model-specific design of the infer-

ence procedure comes however at the cost of reduced robustness. The accuracy of

the result strongly depends on the accuracy of the hypotheses about the dynamical

model as well as on the quality of the data; besides, in this context the presence of

measurement noise can be seen as inaccurate modeling.

As a concluding remark, let us notice that, independently of the generative model

we choose, parametric methods always demand to formulate the problem in terms
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of discrete stochastic processes. Experimental data are indeed obtained from record-

ings of the considered dynamical process (e.g. the motion of a tracer colloidal par-

ticle in a solvent) with a finite number of frames per second. If we are interested

in finding a continuous-time description of the process, which is generally easier

to interpret and more analytically tractable to make predictions, we need to em-

ploy a proper discretization. Once the process is discretized, both discrete-time and

continuous-time models are treated on equal grounds, and the same methods apply.

I will conclude this introductory overview about parametric inference methods

for dynamic processes by discussing the maximum caliber principle, i.e. the dy-

namic counterpart of the maximum entropy principle.

Maximum caliber method

The maximum entropy method described in Section 3.1.3 naturally extends to path

distributions. The formalism can be developed for general processes, including con-

tinuous ones, but it was originally introduced for trajectories composed of discrete

time steps [76]. The idea is just to switch from probability density functions of

random state variables to probability density functionals for stochastic paths.

The path entropy for a discrete-time process reads:

HT = −∑
i0:T

P(i0:T) log P(i0:T), (58)

where i0:T = (i0, . . . , iT) is the micro-trajectory, i.e. any sequence of states visited by

the system at times 0, . . . , T. The sum in Eq. (58) denotes that, in addition to the

discrete time dynamics, the discrete nature of the state space is also assumed; a gen-

eralization to a continuous states space can be obtained as in Eq. (44). Constraints on

the dynamics, indexed by µ, are expressed through a set of equations gµ[P(i0:T)] = 0.

These constraints are linear in P(i0:T) when the maximum caliber method is used

as an inference tool. Indeed the constraints must express the equivalence between

expected values and experimental averages for the dynamical quantities of interest,

like average fluxes, velocities, or rates of conversion. Explicitly, the conditions to

impose read:

∑
i0:T

P(i0:T)Xµ(i0:T) = 〈Xµ(i0:T)〉exp, µ = 0, . . . , K, (59)

where X0 = 1 to guarantee the normalization of the path probability density.

The same maximization principle adopted in Section 3.1.3 can now be applied to

the path probability of the dynamical system. The resulting pathways weights are

P(i0:T) =
1

ZT(θ)
e−∑K

µ=1 θµXµ(i0:T), with ZT(θ) = ∑
i0:T

e−∑K
µ=1 θµXµ(i0:T). (60)

The Lagrange multipliers θµ are computed after Eq. (59). The dynamical partition

function ZT(θ) plays the same role as its static counterpart: all the statistical prop-

erties of the process can be derived from it. At this level, the micro-trajectory is not

different from any standard static micro-state living in a (T×D)-dimensional space

(if D is the phase space dimension): what carries information about the dynamics of

the system is the causality relation — i.e. how information is transferred — among

the components of this (T × D)-dimensional vector.



3.2 parametric inference from birds data: previous results 31

In this framework, the measured observables dictate the nature of the dynamical

model. When Eqs. (59) consist of linear constraints on the joint probabilities of k

subsequent points, P(ih, ih+1, . . . , ih+k; th) for k = 0, 1, . . . , n, then the path probability

which maximizes the generalized path entropy corresponds to that of an n-th order

Markov process, whose transition probability is of the form P(iT |iT−1, . . . , iT−n) [115,

156]. A particularly relevant case is n = 1. Here we have only singlet and pairwise

constraints expressed, respectively, by K0 and K1 equations:

〈Xµ0〉exp =
1

T + 1

T

∑
t=0

∑
it

Xµ0 (it)P(it) µ0 = 1, . . . , K0, (61)

〈Yµ1〉exp =
1
T

T

∑
t=1

∑
it

Yµ1 (it, it−1)P(it, it−1) µ1 = 1, . . . , K1, (62)

in addition to the normalization condition ∑i0:T
P(i0:T) = 1. Maximization of the

generalized path entropy

H̃T = −∑
i0:T

P(i0:T) log P(i0:T)−
K0

∑
µ0=1

θµ0

[
1

T + 1

T

∑
t=0

∑
it

Xµ0 (it)P(it)− 〈Xµ0〉exp

]

−
K1

∑
µ1=1

θµ1

[
1
T

T

∑
t=1

∑
it

Yµ1 (it, it−1)P(it, it−1)− 〈Yµ1〉exp

]
− (1 + ρ)

[
∑
i0:T

P(i0:T)− 1

]

(63)

yields a dynamic partition function of the form

ZT(θ) = v† ·GT · v, (64)

where each component vt of the vector v is a function of the state it, and G is the

transfer matrix, having nonzero entries only in the elements Gt,t and Gt,t±1. From

Eq. (64) it is possible to deduce that the conditional probability

P(im|im−1, . . . i0) = P(i0, . . . im)/P(i0, . . . im−1) (65)

only depends on the states im and im−1, so it corresponds to the transition rate of a

first order Markov process, P(im|im−1).

Even when n > 1, the maximum caliber principle induces Markovianity: this is a

general property akin to the fact that the maximum entropy principle lets the likeli-

hood belong to the canonical exponential family — Eq. (48). Maximum caliber can

therefore be used as a principled method to derive from the data dynamical mod-

els described by n-th order master equations. Successful applications are reported

in the literature and include the analysis of neuron firing patterns, single-molecule

dynamics, biochemical cycles, to name but a few [156]. However, it is important to

remember that Markovianity is a strong property which is not always satisfied by

real processes.

3.2 parametric inference from birds data: pre-
vious results

Active matter systems are typically made up of at least hundreds or thousands

of constituents; reconstructing the stationary p.d.f. or the stochastic dynamics of
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all their degrees of freedom through non-parametric methods, without any model

assumption, is clearly an out-of-reach task. On the contrary, parametric inference

has been successfully applied to some available data-sets [11, 136]. In this section

I will review previous results obtained from the experimental analysis of flocks of

European starlings.

The analyzed experimental data come from two different data collection cam-

paigns in the field. Experiments consist in recordings of several flocking events,

which are realized using stereometric photography and computer vision techniques

[45, 46]. During the experiment, three synchronized high speed cameras are placed

at different angles of view4. The 2D image sequence collected by each camera is

segmented and combined with the remaining ones, in order to reconstruct the 3D

trajectories of all the individuals in the flock. Sophisticated algorithms [43, 2] al-

low for a detailed and pretty accurate reconstruction of the microscopic state of the

system over time. This unprecedented availability of data motivated rephrasing the

study of real flocks as an inverse problem and opened the possibility to create a

tight connection between ethological observation and theoretical condensed matter

models.

3.2.1 Inverse Heisenberg problem

In a first work, Bialek et al. [11] directly reconstructed from the data the station-

ary probability distribution of birds’ directional degrees of freedom by means of

a maximum entropy method. Assuming that birds are in a stationary state, and

that their relevant degrees of freedom are just the set of normalized 3D velocity vec-

tors vi/|vi| = σi, the authors look for the minimally structured probability density

function P({σi}) that is compatible with the constraint

〈σi · σ j〉exp = Cij, (66)

where 〈σi ·σ j〉exp is the experimental average and Cij =
∫

dσ1, . . . dσN P({σi}) σi ·σ j

is the two-point correlation function associated to the probability density function

to determine. The maximum entropy model resulting from this set of constraints is

a Heisenberg model with general couplings Jij, whose stationary distribution reads:

P({σi}) =
1

Z(
{

Jij
}

)
exp

[
1
2 ∑

ij
Jijσi · σ j

]
. (67)

A couple of remarks are in order. Firstly, the symmetry of the correlation matrix

implies the symmetry of the couplings Jij, so that the independent Lagrange multi-

pliers to fix from the data are N(N− 1)/2, with N the number of birds. Eq. (67) thus

represents an equilibrium canonical ensemble, where we can recognize the classical

Heisenberg Hamiltonian. A second remark concerns the parametrization of the cou-

pling matrix. In principle, each independent Jij parameter can take a different value.

In this case, however, the complexity of the inverse problem would escalate rapidly

4 In the first campaign six cameras were used, with interlaced synchronization, in order to increase the

acquisition frame rate [45].
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for large sized systems and would make it impossible to have enough statistics to

reconstruct all the parameters of the model. The correlation of a pair of birds Cij is

indeed supposed to change over time, as birds reshuffle their relative positions, so

that experimental averages cannot be computed as time averages. On the contrary,

it is reasonable to assume that the interaction is local and that Cij does not depend

on birds’ identity but only on their mutual distance, be it metric or topological.

Therefore, a parametrization of Jij as a function of an interaction radius is conve-

niently used in [11]. We should then interpret Eq.(67) as a conditional probability

distribution P({σi} |{ri}), for a fixed spatial configuration of the flock, not as the

marginalized distribution
∫ (

∏N
i=1 dri

)
P({σi , ri}).

The results obtained by Bialek et al. with their inference procedure show that a

parametrization of Jij by means of a single coupling strength J and a topological

connectivity matrix nij is robust across different flocking events. The entry of the

topological connectivity matrix nij is equal to one when bird j is among the first

nc neighbors of bird i, and it is zero otherwise (nc-nearest neighbor model). If, in

contrast, a metric interaction mechanism is assumed in the inference procedure, it

yields results that depend on the sparseness of the flock, confirming that the notion

of distance ruling birds’ social behavior is not a Euclidean one, a fact firstly verified

in [4].

In order to test whether the obtained maximum entropy parameter-free model

offers a good mechanistic description of the whole system, the authors compared

its predictions with measurable quantities which were not included among the con-

strained observables. Specifically, they found a good agreement between the pre-

dictions of the maximum entropy model and the experimental observations for the

four-point velocity correlations as well as for the full longitudinal and transverse

velocity-velocity correlations as functions of the spatial distance. Such agreement

indicates that the chosen set of constrained observables is a sufficient statistics for

the inverse problem. From a physical point of view, the maximum entropy model

tells us that interactions are pairwise, short-ranged and topological (see also [41]).

3.2.2 First order dynamics

The static maximum entropy approach described above completely ignores the se-

quential relation between the analyzed snapshots, which are only used in [11] to

reconstruct from the data an equilibrium-like steady state distribution. However,

since experiments give access to full birds’ trajectories, it is also possible to build

dynamical models based on empirical observations.

This has been firstly done in [136] by applying the systematic approach of max-

imum caliber to another data-set of European starlings. The authors extracted the

minimally structured dynamical model which is consistent with the measured cor-

relation functions 〈σi(t) · σ j(t)〉exp and 〈σ̇i(t) · σ j(t)〉exp. In practice, since recorded

trajectories are made up of discrete time points, these correlation functions are

estimated through the two-point spatio-temporal correlations of birds’ flight di-

rections at equal time — 〈σi(t) · σ j(t)〉exp — and at a temporal distance of ∆t —

〈σi(t) · σ j(t + ∆t)〉exp — where ∆t is the inverse frame rate. Therefore we have sin-
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glet and pairwise constraints for the caliber maximization, yielding a first order

Markov process.

The model corresponds to the discretization of a first order SDE of the form:

σ̇i =

(
∑

j
Jijσ j + ξi

)

⊥
, (68)

where ξi are independent white noises and ⊥ indicates the orthogonal projection

onto the plane perpendicular to σi, for any i = 1 . . . N. An exact mapping between

the maximum caliber approach and the maximum likelihood method that can be

developed for the SDE (68) is exhibited in [35]. The dynamical model in Eq. (68)

is a continuous-time variant of the standard Vicsek model, having, in principle,

an independent Jij parameter for each bird pair. However, as in the static case, a

parametrization is not only mandatory, for statistical reasons, but also realistic. In

[136] the authors adopt again the assumption of topological interaction, motivated

by the experimental evidence of previous works [4, 11]. The set of inferred parame-

ters then comprises: the range of interaction nc, i.e. the fixed number of interacting

neighbors, the strength of interaction J and the temperature of the heat bath, or

noise amplitude, T.

Let us notice that in this dynamical case the constraint on the symmetry of Jij may

be lifted, allowing for out-of-equilibrium modeling. Enforcing the symmetrization

of the Jij matrix, the authors could compare the results of the dynamic inference

procedure to those of the static maximum entropy approach obtained in [11]. This

comparison shows that dynamic and static inference procedures give compatible

results only in local equilibrium, i.e. in an adiabatic regime where the rewiring of

the neighbors’ network occurs on much longer time scales than the local relaxation

dynamics of birds’ orientations. Precisely, denoting τrelax the time scale needed by

orientation fluctuations to relax on a spatial scale of the order of the effective interac-

tion radius, and τnetwork the typical time scale of network reshuffling, compatibility

of the two approaches is ensured for τrelax � τnetwork. Conversely, if the system

is far from the local equilibrium condition, the static approach overestimates the

number of interacting neighbors, since unresolved reshuffling creates effective long

range interactions. This fact has been checked in [136] through numerical simula-

tions, where the separation between the two time scales is tunable. Real flocks seem

to work in a regime of local equilibrium: the two time scales are well separated, at

least if τrelax is inferred using the first order model in Eq. (68).

3.3 a novel inference method for second order
stochastic differential equations

3.3.1 Partial observation of stochastic processes

As discussed in Section 2.2.1 experiments on natural starling flocks revealed that

their dynamics is better described by second order SDEs for birds’ flight directions,

rather than first order ones. In order to take this evidence into account, a step for-
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ward is required in the development of dynamical inference approaches, compared

to the ones discussed in the previous section. The interest of the methodological

problem is broad. Birds are just an example of biological systems where second

order dynamical models are needed to account for the phenomenon under study:

recent experimental findings on a variety of living systems, including migrating

cells [22], bacteria [85], worms [180], to groups of animals on a larger scale [83, 84],

indicate that in all these cases the observed behavior cannot be explained with a

first order dynamic process, but requires a higher order description.

The emergent dynamics of all the above systems share three fundamental ingredi-

ents: an effective inertia, dissipation, and a stochastic contribution. These features

are quite general and do not depend on the presence of interactions in the system,

nor on whether detailed balance is violated. Therefore, we focus on the simplest

case of equilibrium Langevin dynamics, assuming that only a partial observation

of the state variable of the system can be performed, and try to develop a general

Bayesian inference scheme for such stochastic processes. The general framework is

the following one: let us assume that the available experimental data are sequences

of points x0:L = (x0, x1, . . . xL) uniformly separated in time by ∆t, and that the un-

derlying dynamics is described by a Langevin equation of the form:

ẍ = −ηẋ + f (x) + σξ, (69)

where f (x) is a general deterministic force, σ2 = 2Tη, and ξ is a standard white

noise: 〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′). Without lack of generality, the inertial mass is

set to 1. Since the noise is additive, it is unnecessary to distinguish between Itô and

Stratonovich integration.

Let us call θ the irreducible set of parameters that enter into Eq. (69), namely the

effective damping coefficient η, the effective temperature T, and the parameters of

the force term f (x). Following the Bayesian ML approach, the goal becomes to find

a tractable expression for the dynamical likelihood associated to the observation

of process (69). The theory of stochastic processes provides us with an explicit

but formal expression for the transition probability P (x(t)|x(0), ẋ(0)), involving, in

general, integro-differential operators. A closed form solution for the stochastic

process may be generally unknown or complicated, especially for many body or

off-equilibrium systems, but finely time-resolved data are available. What we look

for is then an approximated expression for the probability of discrete trajectories.

A general recipe is the following:

1. As a preliminary step, Eq. (69) can be conveniently rewritten as a set of two

first order equations:

ẋ = v , v̇ = −ηv + f (x) + σξ . (70)

2. Since the dynamics is Markovian when parametrized by the vector variable

q = (x, v), the probability of a discrete trajectory in this space, given the initial

condition q0 = (x0, v0), can be split into a product of propagators:

P(q1, . . . , qL|q0) =
L

∏
n=1

P(qn|qn−1). (71)
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3. Following [68], one can exploit any update rule based on a Taylor-Itô expan-

sion to approximate, within a certain order of accuracy, the propagator over a

small time interval ∆t:

P(qn|qn−1) = P(k)(qn|qn−1) + o(∆tk). (72)

Eq. (72) can be replaced into Eq. (71) to get an approximated expression for

the probability density of the sequence of points in phase space:

P(k)(q1, . . . , qL|q0) =
L

∏
n=1

P(k)(qn|qn−1) + o(∆tk). (73)

4. Marginalizing over the velocity-like degrees of freedom one gets a probabil-

ity distribution depending on the x’s only. This projection operation on the

subspace of x variables is where the original Markov property of Eq. (71) is

generally lost. A crucial remark, beyond the non-Markovian nature of the re-

sulting dynamics, is that this procedure does not simply consist of removing

the intermediate variables v1, . . . , vL, but also of eliminating the initial condi-

tion v0.

When this strategy is adopted, the first thing we need is a discrete integration

scheme for Eq. (69) or Eq. (70). The choice of the integration scheme is a deli-

cate point. Although the naive intuition is that any convergent — even if slowly —

discretization scheme should work for small ∆t, in fact the order of approximation

of the temporal discretization affects the mathematical properties of the discrete

path integral measure and, consequently, the consistency of ML estimators [68, 90].

Alternatively, one can follow a second strategy, summarized as ‘first marginalize,

then discretize’, in contrast to the ‘first discretize, then marginalize’ strategy discussed

above. The starting point is here the generalized Langevin equation (GLE) cor-

responding to the desired process, Eq. (69), which can be obtained adopting the

Mori-Zwanzig formalism [200]:

ẋ = v0e−ηt +
∫ t

0
dsK(t− s) f (x(s)) + ζ(t), (74)

where K(t) = e−ηt and ζ(t) =
∫ t

0 dsK(t− s)ξ(s) is the effective noise. This formalism

shows that, when projected from the full phase space into the x subspace, the dy-

namics acquires memory, described by a friction kernel K(t), and color in the noise.

In the limit of infinitely long trajectories, the relation 〈ζ(t)ζ(t′)〉 ∝ K(|t− t′|) holds

asymptotically, and it reduces to the second fluctuation dissipation theorem when

f (x) is linear.

Discrete update equations can now be obtained by integrating Eq. (74) on ∆t in-

tervals, and by self-consistently removing v0. We notice that, for arbitrary forces

f (x), the corresponding term cannot be exactly integrated and it needs to be ap-

proximated at small ∆t. The fact that the derivative of the measured coordinate x

enters parametrically through v0 in the GLE stems from the second order nature

of the process. Its elimination, which is necessary to retrieve a stochastic difference

equation where only the x variable appears, is connected to the problem anticipated

in point 4 of the procedure outlined above.
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Since the order of the discretization and marginalization operations should be

exchangeable, the two strategies must be equivalent. In the following section we

show how the simplest inference schemes derived from Euler-like discretizations

of Eq. (70) do not satisfy this requirement, whereas higher order discretization

schemes, strongly convergent as at least O(∆t3/2), ‘commute’ with the marginal-

ization operation and allow us to find consistent results with both strategies.

3.3.2 Naive Maximum Likelihood scheme based on Euler discretization

Derivation of the Likelihood

Discrete integration schemes for SDEs are well known in the literature in connection

to numerical simulation methods [153]. The simplest one among them is the Euler-

Maruyama scheme. If we apply the Euler-Maruyama discretization to Eq. (69), the

resulting discrete update equations are:

xn+1 − xn = ∆t vn , vn+1 − vn = −η∆t vn − ∆t f (xn) + σ∆t1/2 rn, (75)

with rn IID random variables of normal distribution N (0, 1), for n = 0, . . . , L − 1.

They define a two-dimensional Markov process with a deterministic update for the

x variables, which lets δ-functions appear in the discrete propagator of the process.

In this case one can explicitly marginalize over the velocity degrees of freedom, and

eliminate the initial condition v0. Indeed, to this order of approximation, informa-

tion on v0 is fully equivalent to information on x1. From this marginalization, a

fully factorized probability distribution for the discrete sequence is obtained:

P(1)(x2, . . . , xL|x0, x1) =
L−1

∏
n=1

P(1)(xn+1|xn, xn−1), (76)

where transition probabilities are defined as follows:

P(1)(xn+1|xn, xn−1) =
1

Zn
e−Sn(xn+1 ,xn ,xn−1) , (77)

with

Sn =
1

2σ2∆t3

[
xn+1 − 2xn + xn−1 + η∆t(xn − xn−1)− ∆t2 f (xn)

]2
, Zn =

√
2πσ2∆t3.

(78)

A factorization of P(xL, . . . x2|x1, x0) into a product of transition probabilities of this

kind is possible because the random variables appearing in the x difference equa-

tion, obtained from Eq. (75) through variable elimination, are independent. This is

a crucial but artificial feature occurring only at this level of approximation: more

accurate discretization procedures produce an effective noise for the x variables

which is correlated in time. We can nonetheless derive the ML inference scheme

associated to this Euler discretization.

Connection to Maximum Caliber Principle

Using Eqs. (77)–(78) , an expression for the dynamical likelihood as product of tran-

sition probabilities for a second order master equation is recovered. This corre-

sponds to the discrete path probability one would obtain adopting a maximum
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caliber approach [156] when certain time-dependent observables are taken as fixed.

In the simple example of a one-dimensional harmonic oscillator, they are the equal-

time correlations, one-time-step correlations and two-time-step correlations of the

process. Indeed, taking f (x) = −ω2
0x in Eq.(69) and rearranging the sum of Sn’s in

Eq. (76), the reduced minus-log-likelihood can be written as:

L(η, T, ω2
0)

L − 1
=

1
2

ln(2πσ2∆t3) +
1

2σ2∆t3

[
C′s + (2− η∆t + ω2

0∆t2)2Cs + (1− η∆t)2C′′s

+2(1−η∆t)Fs−2(2−η∆t+ω2
0∆t2)Gs−2(1−η∆t)(2−η∆t+ω2

0∆t2)G′s
]

,

(79)

where:

Cs =
1

L− 1

L−1

∑
n=1

xnxn; C′s = 1
L−1 ∑L−1

n=1 xn+1xn+1; C′′s =
1

L− 1

L−1

∑
n=1

xn−1xn−1; (80)

Gs =
1

L− 1

L−1

∑
n=1

xnxn+1; G′s = 1
L−1 ∑L−1

n=1 xnxn−1; Fs =
1

L− 1

L−1

∑
n=1

xn−1xn+1. (81)

For long enough trajectories, the time averages in Eqs. (80)–(81) can be thought

of as equivalent to ensemble averages defining the autocorrelation function of the

process, evaluated at equal time points — Cs, C′s, C′′s ∼ C(0) = 〈x(t0)x(t0)〉t0 —, at a

time distance of ∆t — Gs, G′s ∼ C(∆t) = 〈x(t0 + ∆t)x(t0)〉t0 — and at a time distance

of 2∆t — Cs, C′s, C′′s ∼ C(2∆t) = 〈x(t0 + 2∆t)x(t0)〉t0 . Fixing these time-dependent

observables in the maximum-caliber procedure yields the discrete path probability

of a linear second order Markov process [115], also known as AR(2) process [19].

Euler-ML estimators

Minimization of the quantity in Eq. (79) with respect to η, T and ω2
0 gives us the

inference formulas for the parameters of the harmonic oscillator. Let us notice that

the Euler scheme adopted in Eq. (79) is not the unique choice we have, at this order

of approximation: several variants are available. We focus on three particular exam-

ples: the standard explicit Euler-Maruyama scheme (EM-fwd), its implicit variant

(EM-bkd), and the symmetric BBK scheme [23]. The three of them may be obtained

from the second order SDE Eq. (69) by approximating first and second time deriva-

tives adopting a forward, backward or symmetric prescription respectively:

[EM-fwd] xn+1 − (2− η∆t)xn + (1− η∆t + ω2
0∆t2)xn−1 = σ∆t3/2rn−1 (82)

[EM-bkd] (1 + η∆t)xn+1 − (2 + η∆t−ω2
0∆t2)xn + xn−1 = σ∆t3/2rn+1 (83)

[BBK]
(

1 + η∆t
2

)
xn+1 − (2−ω2

0∆t2)xn +
(

1− η∆t
2

)
xn−1 = σ∆t3/2rn. (84)

From each of them, we extract a factorized expression for the dynamical likelihood,

of the form of Eq. (76). The reduced minus-log likelihood, defined as

L
L− 1

:=
− ln P(x2, . . . , xL|x0, x1)

L− 1
, (85)

corresponds in this factorized case to the temporal average of the quantity Sn + ln Zn.

This quantity results into slightly different expressions in the three cases above.
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Minimizing it with respect to the parameters of the model yields the following

optimal values:

η∗fwd =
1

∆t

Gs + G′s − 2Cs + G′s
C′′s

(2G′s − C′′s − Fs)

−Cs + G′s
2

C′′s

; (86)

ω2
0
∗
fwd =

1
∆t2

(2− η∆t)G′s − (1− η∆t)C′′s − Fs

C′′s
; (87)

T∗fwd =
1

2η∆t3 [C
′
s + (2− η∆t2)2Cs + (1− η∆t + ω2

0∆t2)2C′′s − 2(2− η∆t)Gs+

2(1− η∆t + ω2
0∆t2)Fs − 2(2− η∆t)(1− η∆t + ω2

0∆t2)G′s] . (88)

For the sake of brevity, we report here only the parameter estimators obtained with

the Euler-forward discretization; the remaining formulas for
(

η∗bkd, T∗bkd, ω2
0
∗
bkd

)

and
(

η∗BBK, T∗BBK, ω2
0
∗
BBK

)
are reported in Appendix A. The same procedure we fol-

lowed for the stochastic harmonic oscillator can be adopted to derive the Euler-ML

estimators of any other second order process, be it additive or non-additive. A more

general formalism is illustrated in Appendix A.

The 2/3 bias

At this point, having an explicit inference method for a solvable test process (the

harmonic oscillator), it can be both numerically and analytically tested. We sim-

ulate discrete trajectories of the stochastic harmonic oscillator in several damping

conditions using an exact integrator [86], with a numerical time step τsim = 0.005.

We apply the inference formulas to discrete data sets sampled from synthetic tra-

jectories at time intervals ∆t ≥ τsim. This choice mimics real experiments, where

the time resolution is fixed by the acquisition apparatus, while the true microscopic

time-scale of the dynamics is unknown. Filtering the synthetic trajectories in time

is a good blind inspection tool to check the robustness of the inferred continuous

stochastic model, without prior knowledge about the time scales of the process.

Results in Fig. 3 show that a systematic error in the estimation of the damping

coefficient emerges, which can be cast into a constant rescaling factor close to 2/3

for the inferred value η∗, as compared to the true value ηsim. It is worth remarking

that this rescaling is independent of ∆t, as clearly visible in Fig. 3a, so increasing the

resolution of the acquisition instruments is of no help in improving the estimation

of the damping coefficient. On the contrary, the estimation of the remaining param-

eters is in agreement with the parameter values used in the simulations, as shown

in Figs. 3c – 3d.

Our numerical results for the stochastic harmonic oscillator agrees with the re-

sults of Refs. [147, 117], whose authors pointed out, in a non-Bayesian framework,

the failure of the same naïve embedding strategy for second order SDEs. For a

more rigorous discussion in the Bayesian (ML) setting, see [90]. We stress that the

Euler discretization is the simplest and most commonly used extrapolation of the

derivative of an observed variable from its finite increment:

ẋ(t) ' x(t + ∆t)− x(t)
∆t

. (89)
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Figure 3: Inference results for the stochastic harmonic oscillator. Sample trajectories are ob-

tained from exact numerical integration of Eq. (69) with parameters ηsim, ωsim
0 and

Tsim. The simulation time step τsim is always τsim = 0.005, and it corresponds to

the minimum displayed value of ∆t in a. Points at higher values of ∆t are obtained

applying the inference procedure to sub-trajectories extracted from the original one.

Each of the points displayed in b – d is obtained from the average of the inference

results from different ∆t values, in the range where the small ∆t approximation is

valid. We compare the accuracy of all the schemes derived in App. A, both from a

first order Taylor-Itô expansion (Euler-fwd, Euler-bkd, BBK) and from a second or-

der expansion (Toeplitz, Non-Bayes). a : Inferred damping coefficient η∗. Averages

over 10 sample trajectories of 5000 points (for any ∆t) are reported with their 1.96

SD (0.95 CI for Gaussian distributions). Simulation parameters are: T = 1, ω0 = 1,

η = 3. b : Inferred damping coefficient η∗ vs true simulation parameter ηsim: results

from higher order methods follow the line of slope 1, whereas numerical results

from naïve methods fall on the line of slope 2/3. The remaining parameters are

fixed: T = 1, ω0 = 1. c : Inferred stiffness of the harmonic oscillator ω2
0
∗ vs true

simulation parameter ω2
0

sim. All the schemes give correct results in this case in the

whole explored range of values. Simulation parameters: η = 3, T = 1. d : Inferred

temperature T∗ vs the true value of the simulation parameter Tsim: again, results

from all schemes fall on the line of slope 1 in the whole explored range of values.

Remaining simulation parameters: η = 1.5, J = 1.

This approximated estimation of the velocity works if one observes the system in

the overdamped regime, i.e. when η∆t � 1 and ω0/η < ∞, and the effective

dynamics can be described by a first order equation: in this case, Euler-based infer-

ence schemes provide excellent results. However, when a non-Markovian signal is

observed, coming for instance from the partial observation of a higher dimensional

Markov process, these schemes are bound to fail.
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A simple argument can help us to understand what is missing, and why the

parameter η is the one affected by the approximation. Assuming that experimental

averages perfectly reproduce ensemble averages, we can replace into the formula

for the estimator η∗ the known analytical expression for the self-correlation of the

harmonic oscillator in the stationary regime:

C(t) =
T

ω2
0

e−γt


cos

(√
ω2

0 − γ2t
)

+ γ
sin(

√
ω2

0 − γ2t)
√

ω2
0 − γ2


 , (90)

and perform a Taylor expansion around t = 0 to compute C(∆t) and C(2∆t). The un-

derlying assumption of the whole procedure is indeed that the time lag ∆t between

subsequent points is small, compared to the typical time scales of the dynamics.

Using this expansion in Eq. (86) we obtain an expression for η∗ depending only on

the derivatives of C(t) at t = 0:

η∗ ' 1
∆t

2Ċ(0)− 2
3

...
C(0)∆t2 − C̈(0)Ċ(0)

C(0) ∆t3

2Ċ(0) + C̈(0)∆t + 1
C(0)

[
Ċ(0) + 1

2 C̈(0)∆t
]2

∆t
. (91)

Knowing explicitly C(t) for the harmonic oscillator, one can compute the desired

derivatives:

C(0) =
T

ω2
0

; Ċ(0) = 0 ; C̈(0) = −T ;
...
C(0) = ηT . (92)

Proper combinations of these quantities allow us to extrapolate all the parameters

of the model5. By replacing Eqs. (92) into Eq. (91), we obtain:

η∗ = −2
3

...
C(0)
C̈(0)

[1 + O(∆t)] =
2
3

η + O(∆t). (93)

We find then, at the leading order, a rescaling factor of 2/3, as observed in numerical

tests. No rescaling factors appear for the other inferred parameters: performing

the same replacement and expansion of the analytical correlation functions in the

inference formulas of T and ω0, we see that temperature and pulsation are correctly

retrieved from proper combinations of C(0) and C̈(0).

This result gives us a clue to understand the origin of the ∆t-independent rescal-

ing factor for η. We recall that the order of strong and weak convergence of the

Euler-Maruyama scheme for an additive process like (69) is 1. The elimination of

the velocity variable in Eq. (75) makes terms of order O(∆t3/2) appear, even if the

starting accuracy of the expansion is O(∆t). This means that Eq. (79) has been incon-

sistently derived retaining only some of the O(∆t3/2) contributions; in turn there are

missing O(∆t3) contributions to the quadratic fluctuations of x. This fact explains

why Eq. (93) is incorrect and shows the need of higher order discretization schemes

for stochastic second order dynamics.

5 The importance of the first derivative as a quantity to discriminate between first and second order dy-

namics in oscillator-like models has already been stressed in [44, 34], with explicit reference to complex

interacting systems. With inference, we can go beyond the binary answer provided by Ċ(0)/C(0), pro-

portional – through a time scale factor – to 1 or to 0 for first or second order dynamics respectively,

and give a quantitative estimation of the damping regime in which a system operates, employing all the

derivatives at t = 0 up to the third one.
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3.3.3 An approximate analytical method

Higher order discretizations

The minimum requirement for an inference method that exploits only local dynam-

ical information is to reproduce fluctuations correctly at least up to O(∆t3), for sec-

ond order processes. The lowest order of convergence of the discretization scheme

is therefore O(∆t3/2).

If we follow the recipe described in 3.3.1 with an O(∆t3/2) scheme, we reduce

to a sequence of intertwined Gaussian integrals for the marginalization of v1 . . . vL,

which may be cumbersome to compute for arbitrary length of the trajectory. There-

fore, it is convenient to work with update equations in x space. They can be ob-

tained either from a temporal discretization of the GLE (74) or from a self-consistent

elimination of the velocity variables in the discrete-time equations resulting from a

second order Taylor-Itô expansion of Eq. (70). In the first case, it is possible to in-

tegrate the GLE (74) in the interval between two subsequent observation points, tn

and tn+1 and manipulate it to remove the dependency on the initial condition v0.

We obtain:

(94)xn+1 − xn − e−η∆t(xn − xn−1) =
1− e−η∆t

η

∫ tn+1

tn−1

Ψ(t − tn) f (x(t))dt + ζn

where ζn =
∫ tn+1

tn−1
Ψ(t− tn)ξ(t)dt and

Ψ(t) =
eηt − e−η∆t

1− e−η∆t [θ(t + ∆t)− θ(t)] +
1− eη(t−∆t)
1− e−η∆t [θ(t)− θ(∆t− t)] (95)

where θ(x) denotes the Heaviside function.

So far, these equations are exact. Some approximation is needed to evaluate the in-

tegral of the force. Various methods have been investigated in the literature; among

the simplest ones is the Langevin Impulse method [173], which approximates the

integral with the function at the midpoint, leading to

xn+1 = xn + e−η∆t(xn − xn−1) +
1− e−η∆t

η
∆t f (xn) + ζn. (96)

Alternatively, taking the first order expansion of the force around the midpoint,

f (x(t)) ' f (xn) + t−tn
∆t [ f (xn)− f (xn−1)], one recovers the stochastic Verlet algorithm

[93], which is one order more accurate than Eq. (96).

Independently of the chosen method, we can schematically rewrite the discretized

equation as:

xn+1 + F(xn, xn−1; µ) = ζn, (97)

with µ a set of effective parameters for the drift. In addition to them, we have

an extra parameter, the temperature T, associated to ζn. The noise variables ζn in

Eq. (97) are still zero-mean Gaussian variables, but no longer independent. This is

the crucial difference with the Euler-Maruyama scheme, which takes into account

only the diagonal entries of the covariance matrix Cnm = 〈ζnζm〉.
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Toeplitz approximation of the noise covariance matrix

To order O(∆t3), for any consistent derivation of Eq. (97), one can deduce that the

covariance matrix of random increments C has a ‘nearest-neighbour’ structure of

the kind:

Cnm = 〈ζnζm〉 = a δn,m + b δn,m±1 (98)

where

a ' 2
3

2Tη∆t3 ; b ' 1
6

2Tη∆t3. (99)

Hence C has the form of a symmetric tridiagonal Toeplitz matrix of order L − 1.

These mathematical features carry a physical meaning: first of all, the presence of

non-vanishing off-diagonal elements is the signature of a colored noise. Secondly,

the fact that the matrix is banded means that the correlation of the noise variables

is finite-ranged, i.e. that the associated memory kernel, in a continuous-time de-

scription, decays fast [135]. Finally, the Toeplitz structure is synonymous with shift

invariance.

A more careful derivation of the update equations in x space would require shift

invariance not to hold and the first entry of the covariance matrix C11 to be different

from the other elements of the main diagonal. Eq. (94) is in fact not valid for the first

integration step, where the initial conditions intervene. In this respect the structure

of the data also poses the problem of the elimination of the initial condition v0

in favor of x0 and x1. Even if not able to perform it explicitly without stationarity

assumptions, we can argue6 that it has the effect of modifying the covariance matrix

in the following way:

C =




ã b . . . 0

b a .
...

... .
. . . b

0 . . . b a




, (100)

where the shift invariance expressed by the Toeplitz structure of Eq. (98) is then

broken at the beginning of the time series. Despite that, the error we make by

replacing ã with a in the quasi-Toeplitz matrix (100) is negligible in the limit of long

trajectories, as better discussed in the next section about the method’s limitations.

Intuitively, since the breaking of the shift invariance occurs only at the first step, the

longer the trajectory, the more similar this is to a truly shift invariant situation.

Apart from the difficulty in determining correctly ã, the advantage of replacing

the true covariance matrix Eq. (100) with a Toeplitz matrix is that the inverse of the

Toeplitz matrix is explicitly known, as well as the eigenvalues [104, 134]:

C−1
nm =

2
L

L−1

∑
k=1

sin
(

nkπ
L

)
sin
(

mkπ
L

)

a + 2b cos
(

kπ
L

) ; λk = a + 2b cos
(

kπ

L

)
. (101)

6 The argument comes from the fact that the elimination of the velocity variables v1 . . . vn can be indepen-

dently performed from that of v0. This is explicitly visible from the derivation in the previous section.
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These quantities are those which enter into our likelihood expression:

(102)
P(2)(xL, . . . , x2|x1, x0) =

1
Z

exp

−1
2

L−1

∑
n,m=1

(xn+1 + F(xn, xn−1; µ))C−1
nm(xm+1 + F(xm, xm−1; µ)),

being Z =
[
(2π)L−1 det C

]1/2 =
[
∏L−1

k=1 2πλk

]1/2
. Eq. (102) can be derived by notic-

ing that Eq. (97) identifies a transformation ζ1:L−1 7→ x2:L whose Jacobian determi-

nant is one. The reduced minus log-likelihood associated to Eq. (102) reads:

(103)
L =

L − 1
2

ln
(

2π
2
3

Tη∆t3
)

+
1
2

L−1

∑
k=1

ln
(

2 + cos
(

kπ

L

))

+
3/2

LTη∆t3

L−1

∑
n,m=1

[
(xn+1 + F(xn, xn−1; µ))Ãnm(xm+1 + F(xm, xm−1; µ))

]
,

where Ãnm is the rescaled inverse covariance matrix:

Ãnm =
L−1

∑
k=1

sin
(

nkπ
L

)
sin
(

mkπ
L

)

2 + cos
(

kπ
L

) . (104)

Let us highlight that the inverse of the covariance matrix does not preserve a

banded structure. This means that, even if noise correlations are local in time,

two-time functions of every pair of points of the trajectory enter into the minus-log-

likelihood. Hence Eq. (102) cannot be factorized. Factorization corresponds to a

block structure for C−1, which implies a block structure for C. This is incompati-

ble with the tridiagonal Toeplitz or quasi-Toeplitz nature of the covariance matrix,

where off-diagonal elements are of the same order as the diagonal ones.

Nonetheless, having built an explicit discrete path integral measure, a maximum

likelihood approach is practicable, and it reduces to minimizing the quantity L =

− ln P(xL, . . . , x2|x1, x0) with respect to the parameters of the model. Thanks to the

regularities of Eq. (103), the minimization of L can be performed analytically in the

case of the harmonic oscillator and of other simple single-particle processes. The

optimization procedure can be performed semi-analytically also for some many-

particle systems. In these cases an additional parameter is typically the interaction

range of the particles’ interaction. In general, once an expression for L is given, a

large number of optimization algorithms are available to minimize it with respect

to all the extra parameters that do not allow for a fully analytical approach. Explicit

formulas for the Toeplitz-ML estimators in the case of some simple processes that

we studied numerically can be found in Appendix A.

3.3.4 Application

The inference method we proposed is quite general and can in principle be applied

to a variety of processes of the following form (including their generalizations in

more than one dimension):

ẋ = v , v̇ = −ηv + f (x) + σ(x)ξ, (105)
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where f (x) and σ(x) are arbitrary functions. The only strict requirement is that just

a simple linear dependence on the RHS of Eq. (105) is allowed. The linearity in v of

the force terms is exploited in the discretization scheme of the LI integrator [173],

and it is pivotal for us to have easily invertible tridiagonal covariance matrices.

We checked the performance of the scheme on several processes of interest:

1. The damped harmonic oscillator in a heat bath, which is exactly solvable and

can be used to prove the inconsistency of the naive Euler-ML estimators;

2. Brownian motion in a double-well potential;

3. A one-dimensional mutliplicative process with a suitable positive definite co-

variance matrix for the random increments;

4. The Inertial Spin Model on a fixed network, in its ferromagnetic phase.

Complete formulas for all of these processes are reported in Appendix A. Here we

show and comment on the numerical results obtained from their application.

Linear additive processes

The first process we considered is the stochastic damped harmonic oscillator ( f (x) =

−ω2
0x in Eq. (69)). We used it as a sample process to test the validity of our method

and to compare it to ML methods derived by adopting discretization schemes of

order 1/2. We simulated the oscillator dynamics in its phase space (x, v) using the

exact Gillespie algorithm [86], but just observed the positional coordinates to mimic

the real experimental scenario. To analyze the performance of the inference method

at different values of ∆t and observe the impact of time discretization, we further

subsampled the simulated trajectories to progressively increase the time separation

between subsequent points.

The comparison between higher order and naïve lower order inference schemes

for the example of the harmonic oscillator confirms the analytical predictions dis-

cussed in Section 3.3.2 (Fig. 3). In any damping regime, the higher order inference

method outperforms the naïve scheme in two ways: perturbatively, since the con-

vergence of the parameter estimators is extended to a larger ∆t window due to the

higher order Taylor-Itô expansion (see Fig. 3a), and non-perturbatively in ∆t, since

no rescaling factor for the η parameter is required (Fig. 3b). The different behaviour

of the various Euler-like schemes at large ∆t, where the series expansion is non-

asymptotic, is probably related to the details of the discretization rules and their

stability properties.

In addition to the Toeplitz-ML method, we show in Fig.3 the results obtained from

the application of an alternative parametric but non-Bayesian inference method. Pa-

rameter estimators are indeed not unique: we can define many different consistent

estimators for the same parameter, with different convergence rates. Maximum

likelihood estimators have the advantage of being derived from an optimization

principle: the problem is hence well-defined for any kind of process. When the

model is simple enough, it is also possible to find relations between measurable

quantities and model parameters that can be used to infer the latter. For instance,

let us take the discrete-time equation (96) and multiply both sides by xn−1, xn and
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xn+1. Self-consistently averaging over the noise distribution, we obtain a set of three

independent equations, from which all the parameters of the dynamical model can

be extracted (explicit formulas are derived in Appendix A). Remarkably, the 2/3

rescaling is absent, since the method is based on a discretization of the SDE which

is convergent as ∆t3/2.

Non-linear additive processes

Fig. 4 shows numerical results based on the Toeplitz inference scheme for the the

following process, describing the motion of a Brownian particle of unit mass in an

anharmonic double-well potential:

ẋ = v , v̇ = −ηv− kx− λx3 + σξ , (106)

We explored various values of the parameters λsim and ksim (Fig. 4). In all the

explored regimes the inference scheme provides excellent results, showing, in par-

ticular, that no bias is introduced by the possible imbalance between linear and

nonlinear force terms (values close to the origin are correctly estimated in Fig. 4.d

and Fig. 4.f), even if, for a fixed ∆t, an increase in the relative error or more noisy

estimations cannot be prevented in these conditions (Fig. 4.g). Moreover, no bias is

introduced by the fact that, when k assumes a negative value, the particle may be

confined in a single minimum of the double-well potential for all the length of the

sampled trajectory (see Fig. 4.e).

Inference formulas can be easily generalized to any nonlinear additive process

with a polynomial force term f (x) = ∑α µαxα – see Appendix A.

Multiplicative processes

We now consider possible generalizations to the case of non-additive noise. An

adaptation of our non-Markovian Bayesian inference scheme can be developed for

the following class of multiplicative processes:

ẍ = −ηẋ + f (x) + σ(x)ξ , (107)

with ξ(t) a standard white noise and initial conditions x(0) = x0, ẋ(0) = v0. This

model has two features: linear dissipation, and a velocity-independent diffusion

coefficient proportional to σ2(x). Under these conditions, the memory kernel of the

GLE associated to Eq. (107) is explicitly known and, following the same procedure

that led to the discretization of the additive process, we obtain an approximated

discrete time update rule of the form:

(108)xn+1 − xn − e−η∆t(xn − xn−1)− 1− e−η∆t

η
∆t f (xn) = ζn,

where the stochastic term is defined as

ζn =
1− e−η∆t

η

∫ tn+1

tn−1

dt′Ψ(t′ − tn)σ(x(t′))ξ(t′). (109)

The function Ψ(t) is defined in the same way as in Eq. (95). The approximation of

the force term in Eq. (108) corresponds to that of the Langevin impulse integrator



3.3 a novel inference method for second order stochastic differential equations 47

0 100 200
t

2
0
2

x

0 100 200
t

2
0
2

0 100 200
t

2
0
2

0 100 200
t

2
0
2

a

10 2 10 1 100

t

100

6 × 10 1

2 × 100

3 × 100

*

10 2 10 1 100

t

10 3

10 2

10 1

100

T
*

sim = 0.01
sim = 0.05
sim = 0.1
sim = 0.5
sim = 1
sim = 2
sim = 5
sim = 10

10 2 10 1 100

t

10 1

100

k
*

10 3 10 1 101
sim

10 3

10 2

10 1

100

101

*

6 4 2 0 2 4 6
ksim

6

4

2

0

2

4

6
k

*

0.25 0.00 0.25 0.50
k * ksim

|ksim|

0

10

20

30

co
un

ts

k = 2
k = 5

b c d

e f g

Figure 4: Bayesian inference of the dynamical parameters of a Brownian motion in a force

field f (x) = V′(x), with V(x) = 1
2 kx2 + 1

4 λx4. Only the Toeplitz method is applied. a :

Excerpts of sample trajectories in various landscapes. The strength of the confining

potential is qualitatively indicated by the colormap, with light areas corresponding

to the minimum of the potential. The following parameters of the simulation are

kept fixed: T = 1, η = 1, λ = 1. By varying the parameter k we realize, from left

to right: a strong confinement in a double well potential, with long exit times, at

k = −5; a switching dynamics with relatively short switching times, at k = −2;

a marginal situation at k = 0; confined Brownian motion in the vicinity of the

origin at positive values of k (k = 5). b–d : Inferred model parameters against

subsampling parameter ∆t. The true value is equal to 1 in all cases and is marked

by the straight grey line. e : Inferred vs true value of the nonlinear coefficient λ.

f : Inferred vs true value of the parameter of the linear force k, assuming both

positive and negative values. g : Histogram of counts for the relative distance of

the inferred parameter k∗ to the simulation parameter ksim. With fixed λsim = 1

and ksim = {2,−5}, the weight of anharmonicity varies, but the variance of all the

estimated parameters seems to be unaffected. As a result, relative errors decrease

for larger |k|. 100 trajectories are sampled for each k value shown in the histogram,

and ∆t = 0.025 in all cases. In Figs. b–f 10 sample trajectories of length 5000 points

are considered for each ∆t. Errorbars are 1.96 SD.

[173]. As in the additive case, alternative numerical integration schemes for GLEs,

such as the stochastic Verlet algorithm [93], can also be used.

From now on we will implicitly refer to the Itô integration prescription; however,

thanks to the fact that σ(x) only depends on the configurational degree of freedom,
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x, the mean square convergence of ζn is not affected by a switch to the Stratonovich

convention. Up to O(∆t3), the stochastic increments satisfy

Cnm = 〈ζnζm〉 '
2
3

∆t3σ2(xn)δn,m +
1
6

∆t3σ(xn)σ(xm)δn,m±1 . (110)

This choice of off-diagonal terms ensures the positiveness of the matrix, if σ2(x) > 07.

The covariance matrix also preserves a tridiagonal symmetric structure, but the

Toeplitz property is lost since, in the presence of multiplicative noise, shift invari-

ance cannot hold. Nevertheless, we can still build an efficient maximum likelihood

inference routine, exploiting the short-time Gaussian approximation of the random

increments of the process. Let us rewrite the minus log-likelihood associated to

Eq. (108) as

L =
1
2

L−1

∑
k=1

ln λk(x; ν) +
L−1

∑
n,m=1

[
xn+1 + F(xn, xn−1; µ)

]
C−1

nm(x; ν)
[
xm+1 + F(xm, xm−1; µ)

]
.

(111)

We denote by µ the subset of parameters including η and the parameters of the con-

servative potential, and by ν the subset of parameters appearing in the x-dependent

diffusion coefficient σ(x; ν). For the µ parameters, analytical formulas for their max-

likelihood estimators can be found as functions of ν, if f (x) is polynomial. On the

contrary, inferring the latter set of parameters generally requires numerical opti-

mization (unless σ(x; ν) is univariate and has a purely multiplicative dependence

on its single ν parameter).

To illustrate the method, we applied it to the multiplicative process in Eq. (107),

with f (x) = −kx and σ(x) =
√

a + bx2, where a and b are non-negative parameters.

In this case the max-likelihood procedure can be reduced to a one-dimensional nu-

merical optimization. Complete inference formulas are reported in App. A and the

results are shown in Fig. 5. These confirm that the method provides a reliable infer-

ence tool also in the case of a non-equilibrium multiplicative process, independently

of the relative strength of the additive and multiplicative contributions to the noise

term, and that the procedure does not require stationarity nor equilibrium assump-

tions to work.

Inertial Spin Model

We finally consider a passive variant of the Inertial Spin Model (ISM) in the deeply

ordered phase. The ISM equations of motion in d = 3 are:

v̇i = − 1
χ

vi × si , ṡi = − η

χ
si +

1
v2

0
∑

j
Jij
(
vi × vj

)
+ ξi⊥, (112)

for i = 1 . . . N. Each ξi is an independent isotropic white noise:

〈ξα
i 〉 = 0 , 〈ξα

i (t)ξβ
i (s)〉 = 2Tηδα,βδ(t− s). (113)

The symbol ⊥ denotes the orthogonal projection on the plane perpendicular to the

direction of motion of the i-th bird. Compared to Eqs. (18)–(20), we are ignoring

7 There exists a similarity transformation that transforms the matrix in Eq. (110) into a strictly diagonally

dominant matrix with positive entries. Since the spectrum is real and it is unchanged under similarity

transformations, this ensures the non-negativity of all the eigenvalues of the original covariance matrix.
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Figure 5: Inference method applied to a multiplicative process. The process is described by

Eq. (107) with f (x) = −kx and σ(x) =
√

a + bx2. a: The steady state p.d.f. is re-

constructed through the fraction of time spent by the system in each region of the

phase space for a sample trajectory of length 4 · 104, with k = 1, η = 1, a = 1, b = 1

and initial condition (x0 = 0, v0 = 0). There is a clear difference with the Gaussian

distribution having the same second moment (red line), showing the effect of the

multiplicative noise. b: Analytically optimized negative log-likelihood as a func-

tion of the effective parameter α = a/b, computed on a sample sub-trajectory of

5000 points, ∆t = 0.016, with the same parameters as in Fig. a. In the inset optimal

values of α as a function of ∆t are reported. Errorbars correspond to 1.96 SD on 10

sample trajectories of 5000 points for each ∆t. The color code refers to the value of

αsim, measuring the relative contribution of additive and multiplicative part of the

noise term. c: Performance of the method in inferring the whole set of parameters

of the model.

the update of particles’ positions, which therefore behave as passive ones. This

approximation is justified in the highly polarized phase of low density systems,

since reshuffling of the interaction network occurs on very long timescales in these

conditions 8. Since birds’ relative positions do not evolve with time, their constant

speed v0 does not play any role and we set it to 1. Model (112) therefore describes

the inertial dynamics of a three-dimensional Heisenberg model on a random graph

specified by the Jij matrix.

Notice, however, that the process is not an equilibrium one, in general, as no

restriction is imposed on the couplings Jij. Motivated by the findings of [4], we focus

on the topological variant of the inertial spin model, where the coupling constant

is parametrized as Jij = J nij, with nij = 1 if bird j is among the first nc nearest

neighbours of bird i, and nij = 0 otherwise. For a general spatial configuration of

the particles, the Jij matrix may be non-symmetric and the action-reaction principle

may be not valid. The spatial configuration we choose in our simulations is a

random uniform point pattern in a cubic box of linear size L. Periodic boundary

conditions are employed.

8 Typical reshuffling times in real flocks of starlings have been quantified in [136], showing a clear sep-

aration of scales with respect to the relaxational dynamics of the local order parameter in a first order

stochastic description. How reshuffling lowers in the polarized phase is also discussed in Chapter 4 for

a different flocking model.
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We implemented a numerical integrator in d = 3 that combines the leapfrog

method with Boris’s trick to ensure speed conservation [13]. The set of update

equations of our integrator read:

v n+1
i = v n

i + (v n
i + v n

i × tn)× un, (114)

s n+1/2
i =

(
1 +

η∆t
2χ

)−1
[(

1− η∆t
2χ

)
s n−1/2

i + v n
i ×

(
J∆t
χ ∑

j
nijv n

j + g n
i

)]
.

(115)

with tn = − 1
2χ sn+1/2∆t and un = 2tn/(1 + |tn|2). The vector g n

i is a three-dimensional

isotropic Gaussian variable of zero mean and of variance 〈g n
i · g m

j 〉 = δijδmn3 ·
2Tη ∆t.

Systems of N = 1000 boids are simulated to obtain the results shown in this

chapter, with a topological interaction range nc = 6 (except for the data in Fig. 6b),

alignment strength J/χ = 5 and effective temperature T/χ in the range [0.2, 1.2].

When not explicitly indicated, we took T/χ = 0.4, approximately corresponding

to a polarization of Φ = 0.97 (for nc = 6). We tried to ensure that the system

was sampled in a stationary regime by firstly performing a relaxation run. The

stationarity of the system has been evaluated by just looking at the stationarity of

the polarization time series. The polarization is defined, in analogy to the global

magnetization of a Heisenberg model, as

Φ =
1

Nv0

∣∣∣∣∣
N

∑
i=1

vi

∣∣∣∣∣ . (116)

Working in the deeply ordered phase (Φ close to 1) allows us to simplify the

inference scheme by means of the spin-wave approximation (SWA), introduced in

Section 2.2.3. The effect of the approximation is to linearize the force terms, so that

the equations of motion (112) take the form of a set of second order SDEs for N

coupled harmonic oscillators:

χπ̈i = −ηπ̇i − J
N

∑
j=1

Λijπ j + ξ̃i⊥. (117)

Here the πi’s are the birds’ velocity fluctuations, defined as in Section 2.2.3, which

lie on the orthogonal plane to the direction of collective motion n. Λij = ncδij− nij is

the discrete Laplacian of the birds’ network, and ξ̃i⊥ is a two-dimensional isotropic

white noise that lives on the same plane as πi. The same inference formulas which

can be derived for a system of coupled harmonic oscillators can then be applied

to Eq. (117) to extract the ISM parameters: η/χ, JΛij/χ, T/χ. We report them in

Appendix A.

Outside the regime of applicability of the SWA, our inference algorithm cannot

be generally applied to extract the parameters of the ISM. Recalling Eq. (21), it is

evident that the process does not belong to the class (105), due to the presence of a

nonlinear dependence on v̇i in the centripetal force term and of a v-dependent drag

coefficient η(v) = η/χ
(

δαβ − vα
i vβ

i /v2
0

)
. The only exception is the d = 2 case, where

we can define vi = v0eiθi and study the dynamics of the angular variables θi, whose

equations of motion reduce to those of an inertial Kuramoto model [111].
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Figure 6: Inference results for the Inertial Spin Model. a : Inferred values for the effective

damping coefficient η/χ. We notice the emergence of a 2/3 rescaling factor for

naïve methods derived from first order Taylor-Itô expansions. b : Inferred topolog-

ical interaction range from numerical minimization (only obtained in the Toeplitz

scheme and in the three Euler variants). Horizontal lines correspond to simulation

values. c : Inferred values for the parameter T/χ, as derived from Eq. (117). We

notice a slight divergence from the slope-1 line, which is especially evident at large

temperatures. This is due to the spin-wave approximation (SWA), whose first cor-

rection only impacts the temperature parameter and can be explicitly evaluated,

as explained in the text. d : Inferred values of the interaction strength, (J/χ)∗ vs

the parameter value used in simulations, (J/χ)sim. All methods retrieve the correct

results. We remark that only the parameters in the left panels, η/χ and T/χ, can

be estimated by the non-Bayesian method. In all the simulations we took flocks of

N = 1000 birds. Points in a, c and d are obtained as in the case of the harmonic

oscillator (see Fig. 3). For the O(∆t1/2) methods we consider different integration

schemes: standard Euler (Euler-fwd), inverse (Euler-bkd) and BKK.

We applied different inference strategies to the synthetic trajectories: results are

in qualitative agreement to those of the one-dimensional harmonic oscillator. In par-

ticular, the expected rescaling factor of 2/3 for the damping coefficient is retrieved

using any Euler-like scheme, as shown in Fig 6a. In contrast, both Bayesian and

non-Bayesian inference schemes derived from a higher order Taylor-Itô expansion

do not require any rescaling — at least for sufficiently long trajectories.

However, in contrast to the simple one-dimensional case, we could not estimate

all of the ISM parameters using the non-Bayesian method. One additional difficulty

we must face in the case of N-body dynamics is indeed the estimation of the inter-

action range. In the ML setting — independently of the order of convergence of the
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discretization — numerical approaches can always be employed, even though an ex-

plicit analytical minimization of L with respect to nc is not operable. The problem

is not even costly, in our case, since it simply consists of a one-dimensional opti-

mization, once the nij matrix is parametrized. In the topological case the problem

is further simplified by the fact that nc is an integer parameter.

We always manage to find the correct value of the parameter used in the simu-

lations, if the statistics is good enough (see Fig. 6b). Wrong estimations of nc are

just due to a rugged reconstruction of the likelihood from the data, which creates

fake minima in L. As the number of birds N or the number of trajectory points L is

increased, the improved statistics smooths the rugged reconstructed likelihood and

the real minimum becomes easier to detect. To this end, another parameter playing

a relevant role is the time lapse ∆t: when the separation between subsequent data-

points is very small compared to the time scales of the system, increments are also

very small. Smaller increments correspond to smaller terms in L, whose minimiza-

tion is then subject to bigger relative errors: this effect is at the origin of what we

observe on the left-hand side of Fig. 6b. Once the optimal value of nc is recovered,

it is used to compute the spatially structured correlation functions which enter into

the formulas of the remaining parameters (see Appendix A).

Non-Bayesian methods are not based on any likelihood definition: as a result,

they do not allow us to infer nc through numerical optimization. Despite that,

an approximated estimation of the effective temperature T/χ and of the damping

coefficient η/χ is still possible, as shown in Figs. 6a and 6c. On the contrary, the

parameters associated to the interaction potential, nc and J, are not evaluated. In

a non-Bayesian setting, alternative strategies employing semi-parametric methods

can be adopted to infer the force terms in the stochastic dynamics of interacting

many-body systems [81, 20].

Applied to large interacting systems, our Toeplitz-ML method performs well even

for relatively short trajectories. Taking, for instance, trajectories of length9 L = 200

for systems of N = 1000 particles already enables us to achieve good accuracy

(see Fig. 6). The advantage of moving from the single oscillator to the many-body

interacting case is that a restricted number of “local” quantities turn out to dominate

and they self-average in sufficiently large systems. As a result, the statistical issue

can be at least partially mitigated by averaging over the sample size, rather than

relying only on temporal averages as we are compelled to do in the case of the

harmonic oscillator.

A final remark concerns the estimated effective temperature T/χ. It is visible

from Fig. 6c that all the points are slightly displaced below the line of slope 1,

indicating that a systematic bias is present in the inference procedure. The origin

of this little bias, which is more or less the same for all the adopted methods, must

be identified in the use of the spin-wave approximation. As better highlighted

in Fig. 7, as the polarization of the system increases, the difference between the

true and inferred values of T/χ becomes more and more negligible, confirming

our hypothesis on the origin of the bias. It is possible to include a leading order

9 We recall that what matters in the Toeplitz-ML method is just the number of subsequent data-points, not

the length of the trajectory in time units.
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Figure 7: First correction to the SWA. In a the raw inferred values of T/χ, obtained using

the inference formulas derived from Eq. (117), are reported. In b we included

the first correction by rescaling the output with the time-averaged polarization, for

each sample trajectory. Φ̄ is the average (among different simulated flocks) of the

time-averaged polarizations of each flock, at any given temperature. Errorbars for

Φ̄ correspond to standard errors, whereas vertical bars represent, as in the other

figures, 1.96 SD.

correction by rescaling the inferred parameter by 1
N ∑N

i=1 vL
i , which is by definition

equivalent to the polarization of the flock. The result of this a posteriori rescaling is

shown in the right-hand panel in Fig. 7.

3.3.5 Limitations

Asymptotic estimator consistency

An estimator θ∗ is said to be consistent when it converges in probability to the true

value of the parameter θ it aims at estimating, as the sample size goes to infinity:

lim
M→∞

Pr (|θ∗ − θ| > ε) = 0. (118)

Providing a mathematical proof of the consistency of our method goes beyond our

scope: we limit ourselves to a numerical check of the consistency of estimators (in

Section 3.3.4) for various test processes of interest, and for big enough M.

In our case M = (L− 1)× ns, where ns is the number of sample trajectories and

L− 1 is the number of points in each sequence. To lighten the notation, all the for-

mulas above are given in the case ns = 1, but the generalization is straightforward,

even releasing the assumption that all the trajectories have equal length. There are

different ways to take the M → ∞ limit: for instance, we can choose to let ns go to

infinity while keeping L fixed, or let L diverge, while keeping ns fixed. These two

situations do not produce the same result, in terms of estimators’ consistency. Only

in the L → ∞ limit, estimators seem to satisfy the consistency condition (118) — at

least, within our numerical accuracy.

This problem leads back to the quasi-Toeplitz approximation of the covariance

matrix, which served us as a trick to remove the unobserved initial condition v0.

To explain this, let us take a step back. In a maximum likelihood setting, the first

task is to calculate the probability of observing a given sequence of data-points,
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Figure 8: The shift-invariant approximation introduces a finite-size distortion: black points

represent the analytical prediction of the rescaling factor $(L + 1) = η∗(L + 1)/ηsim,

with $(L = 3) = 2/3 and $(L + 1)→ 1 as L→ ∞. Numerical results are in agreement

with this prediction. No dependence on the trajectory length is found for the non-

Bayesian method, nor for Euler-like methods (BBK used here).

knowing the parameters of the model θ. In first order stochastic processes, when all

the degrees of freedom allowing for a Markovian description of the dynamics are

experimentally accessible and measurements are free of error, there is no ambiguity

on how this likelihood should be computed. The probability of a Markov discrete

trajectory (y0, y1, . . . yL) is by definition decomposed as

P(y0, y1, . . . , yL|θ) =
L

∏
n=1

P(yn|yn−1; θ)P(y0|θ) (119)

If the process is fully observed, y0 is known and the distribution of the initial con-

dition can be assumed to be sharply peaked in the measured value: P(Y0|θ) =

δ(Y0 − y0). The measured initial condition acts as a fixed parameter which does not

need to be inferred.

On the contrary, for a continuous-time second order stochastic process the initial

condition is given by the pair x(0) = x0, ẋ(0) = v0 and the corresponding discrete-

time propagator is P(xL, . . . , x1|x0, v0; θ). Unlike x0, the initial condition on the

velocity is not empirically known, so the propagator and the likelihood do not have

the same form as before. Let us briefly note that this issue is strictly connected to the

embedding problem in stochastic processes, as we might be willing to extrapolate

v0 from the measurements of x0 and x1.

In the presence of noise, replacing the conditioning on x0 and v0 with a condi-

tioning on x0 and x1 is, strictly speaking, incorrect. A well-grounded way to bypass

the problem is to use the steady state distribution of v0 and marginalize over the

hidden degree of freedom. Nonetheless, for the development of the suggested in-

ference method, we decided to deal with the initial condition problem in a different

way, in order to avoid introducing any prior on v0 and resorting to purely numerical

methods. Firstly, the choice of the LI discretization scheme we made confined the

effect of the initial condition only to the first time step, independently of the total

number of data-points and of the relation between the decay time of the memory

kernel and ∆t. Concurrently, we introduced a Toeplitz approximation for the noise

covariance matrix, which means neglecting the breaking of shift invariance.
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This approximation works well for long trajectories (with many data-points),

whereas it fails for very short ones. This fact tells us that when only a fragmented

observation of the system is achievable, through repeated short-term recordings, the

method is in general not reliable. The Toeplitz method is exact only in the infinite

trajectory limit, so the smaller the number of subsequent points, the less accurate

the inference scheme becomes. However, the convergence is quite fast, as it is visible

in Fig. 8, and the adopted strategy has several advantages: it is simpler than exact

marginalization, and applies even when a steady state distribution is not available

(e.g. in the multiplicative case, for certain parameter values).

We checked this prediction in numerical simulations of the stochastic harmonic

oscillator, keeping constant the total number of points used in the inference pro-

cedure, (L + 1)nS, and adapting the number of samples nS as the length L + 1 of

the sample trajectories is varied. A significant deviation of the inferred value from

the simulated one is visible in Fig. 8 for small values of L. For small L it is also

possible to approximately estimate the distortion introduced by the finite size of

the trajectory under the Toeplitz assumption. Following the same idea that led to

the prediction of the 2/3 function for the η parameter of the harmonic oscillator,

we expand the two time correlation functions appearing in the Toeplitz inference

formulas for small L, obtaining:

η∗ ' − 1
∆t

ln
(

1 + $(L + 1)
...
C(0)
C̈(0)

∆t
)
[1 + O(∆t)] . (120)

From Eq. (120) we deduce that the ∆t-independent rescaling factor of the damping

coefficient can be identified with $(L + 1) in Eq. (120). The first few values of these

rescaling factors are: $(3) = 2/3, $(4) = 5/6, $(5) = 7/8, $(6) = 19/21, in good

agreement with numerical results. The exact value is only retrieved in the L → ∞

limit, yet time lapse recordings in common experiments with motile objects are

typically composed by a much larger number of frames than those shown in Fig. 8.

Although we showed that the wrong marginalization of the initial condition can

play a role, in practice this effect can hopefully be neglected in many situations.

In summary, what matters in this case is not only the total number of points for

statistical reasons — which is the only thing to worry about for standard definitions

of estimators’ consistency — but also their succession in time. Notice that the total

length (L + 1)∆t of the trajectory in units of the physical time scales of the process

is irrelevant; the relevant element is just the number of points L + 1 of which the

trajectory is made up 10.

Robustness to measurement noise

So far, we have not included observation errors in the developed inference scheme,

but we assumed that stochastic trajectories are sampled with infinite accuracy. How-

ever, data are typically affected by accuracy limitations and other sources of experi-

mental errors. In the current section we show the effects of an additional source of

noise on the estimation of the model parameters.

10 This is not surprising if one carefully looks at the expression of the inverse of the tridiagonal Toeplitz

matrix Eq. (101), which closely resembles Fourier series expansions. Increasing the number of points
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Figure 9: Effect of measurement error on some selected parameter estimators for the ISM. In

the top row results from the Toeplitz inference scheme are reported; in the bottom

row results from the BBK inference scheme are reported. The rescaling of the

inverse sampling rate in the abscissa makes the curves in c–f depart at the same

point (∆t/σ2/3 ∼ 1) from the expected value in absence of experimental errors (1 for

the Toeplitz method, 2/3, marked by the red dot-dashed line, for the BBK method).

The collapse of the curves shown in e–f proves that the control parameter is the

ratio between stochastic and experimental noise: Tη∆t3/σ2. The black lines, having

a slope -3, are a guide for the eye. We notice that for large noise-to-signal ratio the

estimate of η with the Toeplitz method may be problematic since estimators of

positive definite quantities built with noisy data can become negative, as visible in

the inset of c. Errorbars on Figs. a–b are not shown, for sake of clarity, whereas in

Figs. c–f the 1.96 SD errorbar is smaller than the marker size.

The simplest (still realistic, in many practical cases) way to model experimental er-

rors is through a superposition of the discretely sampled trajectory with a sequence

of i.i.d. Gaussian random variables N (0, σ2). As pointed out by several authors,

even when σ2 is very small, measurement noise can impact dynamical inference

[147, 117, 20]. A large modification of the high-frequency region of the power spec-

trum of reconstructed velocities is introduced in the presence of noise [147], which

in turns results in a diverging bias in parameter estimation as ∆t → 0 [117]. This

bias and its trend with ∆t appear also in our inference method (see Fig. 9).

The ML inference scheme fully extracts information from the increments of the

measured degree of freedom, ∆x, whose average absolute value grows as ∆t, and

needs to be compared with the amplitude of measurement errors σ, which we as-

sume to be independent of the sampling rate (σ ∼ ∆t0). At very high sampling rates

experimental errors will dominate over the effective dynamics, resulting into an ar-

tificial trend ∼ ∆t−1 for the parameter η, and ∼ ∆t−2 for the effective temperature

and pulsation of the harmonic oscillator.

corresponds to including an increasing number of harmonics; finite size corrections to parameters esti-

mators can be seen as a counterpart of the Gibbs phenomenon.
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Since noise cannot be ignored, let us formally include it to consider a hidden

(non) Markov model. Suppose we measure discrete data-points (x̂0, x̂1, . . . , x̂L) cor-

responding to the noisy reproduction of trajectory points (x0, x1, . . . , xL). Following

a maximum likelihood argument, the parameters θ of the dynamical hidden model

are estimated as:

θ∗H = arg max
θ

P(θ|x̂0:L) = arg max
θ

P(x̂0:L|θ), (121)

where

(122)P(x̂0:L|θ) =
∫

dx0 . . . dxLP(x0:L|θ) ·
L

∏
n=0

P(x̂n|xn).

We assume

P(x̂n|xn) =
1√

2πσ2
exp− (x̂n − xn)2

2σ2 ; (123)

P(x0:L|θ) is determined by the hypothesized dynamical model. At variance with

the noiseless measurement case, we cannot replace the path probability with the

conditional distribution P(x2, . . . , xL|x0, x1; θ), as x0 and x1 are not known. Using

the Toeplitz approximation to remove the conditioning on v0 in favor of a condi-

tioning on x1 is now of no use to find an analytical solution of the problem. As

long as we deal with linear models, as in the interacting and non-interacting cases

considered above, P(x̂0:L|θ) reduces to Gaussian integrals and the marginalization

over the hidden variables can be performed explicitly [106]. A full treatment at

any noise-to-signal ratio is then possible, but not easily generalizable beyond the

harmonic case.

For this reason here we limit ourselves to showing the predicted effect of ex-

perimental uncorrelated noise on numerical simulations. Explicit rewriting of the

likelihood in Eq. (122) allows us to identify the combination of parameters that con-

trol the transition from the small to large noise regime. If Tη∆t3/σ2 � 1, noise

dominates and, to lowest order,

P(x̂0:L|θ) '
L

∏
n=0

1√
2πσ2

e−
1

2σ2 x̂2
n . (124)

If Tη∆t3/σ2 � 1, the effect of noise will be small, and the likelihood will converge

to the one we found in absence of experimental errors.

We conclude, in agreement with Ref. [20, 117], that whenever the experimental

apparatus and the observed process are such that the chain of conditions σ2 �
Tη∆t3 � 1 holds, the developed inference strategy still provides a reliable method-

ology to infer the parameters of the dynamics. When that condition is not fulfilled,

controlled denoising procedures or inference strategies based on hidden modelling

must be employed.
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3.4 general results on the discretization of gaus-
sian processes

3.4.1 A Renormalization Group approach to link discrete and continuous-time
descriptions of Gaussian processes

The Euler-Maruyama scheme: different performance for different use

Choosing a good discretization scheme for a continuous-time stochastic process is

key to find consistent estimators in parametric inference procedures. The discussion

and the results presented in Section 3.3 provide a strong argument for this statement.

In particular, they show how the discretization issue cannot be overlooked when the

inference task is challenged by partial observation of the state of the system. Partial

observation of noise-driven systems breaks indeed the Markovian nature of the

process, when observed and unobserved degrees of freedom are coupled, bringing

in temporal noise correlations and memory effects [200, 135, 97].

The example of the damped Langevin equation we focused on, in which only the

positional coordinates (but not momenta) are directly measurable, is a paradigmatic

one. We have shown in section 3.3 that in this case maximum likelihood methods

based on a naive use of the Euler-Maruyama discretization do not provide con-

sistent parameter estimators, even though the same rule can be successfully used

to numerically integrate the SDE. The inconsistency of Euler-based inference ap-

proaches had been already noticed in the literature [147, 116, 117] and rigorously

proven [90, 162, 66, 54, 154]. However, it is also well-known that the Euler inte-

gration scheme is strongly convergent in the limit of vanishing increments and it

can be successfully used for numerical integration [153]. A natural question is then:

why is the behavior of the same scheme so different for the two tasks?

The condition to impose for a successful application of this approximate scheme

in numerical integration is that the simulation time step, τsim, is sufficiently small

compared to the observation scale, τobs. While this separation of scales is possible

in numerical simulations, state space inference formally requires to discretize the

process over time scales τobs. The lack of such separation of scales explains why the

Euler discretization performs so badly in parametric inference tasks, compared to

numerical integration.

A possible strategy to recover the separation of scales, and hence improve the

performance of inference schemes, is to introduce and marginalize additional inter-

mediate states between pairs of observed points. Many Markov Chain Monte Carlo

methods exploiting this idea have been proposed and applied in several contexts,

for inferring both fully and partially observed stochastic processes [71, 72]. This

augmentation operation amounts to temporal coarse-graining and is reminiscent of

the Real Space Renormalizaton Group (RG), with our time playing the role of space

in usual RG, and the observed time series playing the role of a microstate for a stan-

dard condensed matter system. In the following, we derive this analogy formally

for the class of stationary Gaussian processes, for which an exact RG map can be

explicitly derived. We use this analogy to identify good discretizations of stochastic
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processes — i.e. working for both simulation and inference tasks — with the fixed

points of such RG map. RG fixed points satisfy indeed the property of invariance

under coarse graining, a feature that consistent discretizations of continuous-time

models must have. This invariance property amounts to requiring that, when the

discretization interval τ is small enough, integrating the process with a given inte-

grator over a single step 2τ or through a combination of two steps on intervals τ

should provide the same result.

Analogy with the Renormalization Group

In order to better explain this formal analogy, let us consider again the damped

harmonic oscillator in a heat bath:

dx = vdt, dv = −ηvdt− κxdt + σdW, (125)

with W(t) a Wiener process. We assume that the coordinate x is observed at a finite

sampling rate τ−1, producing an infinite time series denoted as {Xn, n ∈ N}. Our

goal is to find a suitable model to describe the discrete stochastic dynamics which

results from this partial observation of the continuous process. For stationary linear

processes, such as Eq. (125), an exact solution can be computed and used in infer-

ence and simulation problems [106, 86]. However, for more general processes exact

solutions are typically not available, and one must resort to Taylor-Itô expansions

of the integrated SDE. We start by applying the lowest order nontrivial expansion

to Eq. (125). Eliminating v, we obtain:

Xn = ψXn−1 + θXn−2 + µεn, (126)

where ψ = 2− ητ − κτ2, θ = (−1 + ητ), µ = στ3/2 and εn ∼ N (0, 1).

This process is also known as autoregressive model of order two, AR(2) [19], and

is fully characterized by the conditional probability P(Xn|Xn−1, Xn−2). Its Markov

structure allows for an easy derivation of the probability of the time series:

P({Xn, n ∈N}) = ∏
n≥2

P(Xn|Xn−1, Xn−2)P(X0, X1). (127)

Under stationary assumptions11, we can neglect boundary terms and interpret

P({Xn}) as the Boltzmann weight of a configuration of continuous variables on

a one-dimensional lattice with first- and second-nearest-neighbor interactions (cor-

responding to the zig-zag ladder topology – see Fig. 10). At this stage, the main idea

is to view the approach to continuum as a progressive increase in the number of

steps contained within a fixed time window. A possible way to reach the continuum

limit is by iterating the two operations that make up the Renormalization Group: (i)

coarse graining and (ii) joint rescaling of the time unit and of the parameters of the

model.

Explicit RG transformations for ARMA(p, q) time series models

We adopt the strategy of decimation to coarse grain [105, 144, 17], as sketched in

Fig. 10. The goal is to get rid of half of the sites (e.g. odd ones) in the sequence

11 Here the initial condition is moved arbitrarily far in the past to ensure stationarity. In contrast to Section

3.3.5, we do not have the problem of broken shift invariance.
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a b

Figure 10: a: Sketch of the RG procedure for ARMA processes: the discrete times series is

firstly decimated and then rescaled, so that the time step is always kept equal

to τ. b: In the case of second order processes, the Euler starting point — AR(2)

time series — corresponds to a spin chain model with nearest-neighbor and next-

nearest-neighbor couplings, which can also be represented as a zig-zag ladder.

The ladder structure is not invariant under real space RG transformations. The

decimation procedure sketched in (a) produces, since the first iteration, infinite

range couplings. However, these couplings are not independent, and the 4 pa-

rameters of the ARMA(2,1) model φ1 = ψ, φ2 = θ, µ and ν1 = ν are sufficient to

characterize them.

generated by Eq. (126), deriving effective update equations for a sub-series of states

having only indexes of the same parity. In order to implement this transformation,

we take a suitable linear combination of neighboring update equations of the form

of Eq. (126),

Eqn(Xn) + ψEqn(Xn−1)− θEqn(Xn−2), (128)

which results into an update equation:

Xn = ψ̃Xn−2 + θ̃Xn−4 + r̃n, (129)

where ψ̃ = ψ2 + 2θ and θ̃ = −ψ2.

Unlike in the original process, the random increments r̃n = µ[εn + ψεn−1 − θεn−2]

are now correlated across nearest neighbors, E[r̃n r̃n±2] 6= 0. However, we can exploit

the fact that linear combinations of Gaussian variables are Gaussian to decompose

them in the following way:

r̃n = µ̃ε̃n + ν̃ε̃n−2, (130)

with ε̃i ∼ N (0, 1) new I.I.D. variables, and µ̃, ν̃ satisfying:

E
[
r̃2

n

]
= µ̃2 + ν̃2 = (1 + ψ2 + θ2)µ2; (131)

E[r̃n r̃n±2] = µ̃ν̃ = −θµ2. (132)

It can be easily verified that E
[
r̃l

n r̃l
n±2k

]
= 0 for k > 1. Then Eq. (129) becomes an

ARMA(2,1) model [19]:

Xn = ψ̃Xn−2 + θ̃Xn−4 + ν̃ε̃n−2 + µ̃ε̃n. (133)

Autoregressive moving-average processes of order (p, q), denoted ARMA(p, q),

are time series generated by update equations of the form

Xn =
p

∑
i=1

φiXn−i +
q

∑
i=1

νiεn−i + µεn, (134)
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with εn ∼ N (0, 1) I.I.D., νi , µ ∈ R. The autoregressive (AR) part of the equation

corresponds to the contribution from the previous p states of the system; the moving

average (MA) part, of order q, corresponds to the second sum in the RHS of Eq. (134)

and is responsible for the time correlation of random increments.

It is evident that, after coarse-graining, the process in Eq. (129) is no longer Marko-

vian, as its probability distribution cannot be factorized into the product of single-

step transition probabilities. Recalling the analogy with the spin chain, RG creates,

since the first iteration, infinite-range effective couplings, starting with just first- and

second-nearest-neighbor bonds. This is indeed the effect of simple decimation on

the zig-zag ladder topology (Fig. 10.b).

However, these emerging couplings are not independent, and the 4 parameters in

Eq. (133) are sufficient to characterize them. Let us call A = (ψ, θ, µ, ν) the set of pa-

rameters of the ARMA(2,1) model, and Ã = (ψ̃, θ̃, µ̃, ν̃) the parameters of the coarse

grained model, prior to rescaling. In order to get a closed-form RG transformation,

we need to ensure that further iterations of the decimation procedure do not keep

introducing novel higher order terms. Luckily, the ARMA(2,1) structure is stable,

as an example of a more general result that we discuss in the following (‘Memory

selection’ paragraph). Hence, applying RG to the class of ARMA(2,1) models yields

a well-defined map from A to Ã.

The second operation that completes the RG iteration is rescaling the time step,

2τ → τ, and reabsorbing this change of units through a redefinition of the param-

eters. The parameters of our models are dimensionless, yet their dependency on τ

is what determines how to connect any discrete-time process to its continuous-time

counterpart. We express ψ, θ as asymptotic power series of τ, ψ(τ) = ∑k ψkτk and

θ(τ) = ∑k θkτk, and work, up to the desired order, with recursive relations for the

coefficients of the series expansion, ψk and θk. These coefficients are dimensional

and get rescaled with the time unit. The same idea can be applied to ν and µ, except

for expanding them in powers of τ1/2. It is therefore convenient to reparametrize

the noise amplitudes using:

α = E[rnrn] = µ2 + ν2 and β = E[rnrn±1] = µν, (135)

as their asymptotic series expansions involve integer powers of τ: α(τ) = ∑k αkτk,

β(τ) = ∑k βkτk.

The physical dimension of each coefficient Ak ∈ {ψk , θk , αk , βk} is now set by

the order of the corresponding term in the series expansion, and each of them

gets rescaled, after coarse graining, as Al+1
k = 2−k Ãl

k, where l is the index of

the RG iteration, and Ãl
k is the result of the decimation step described before.

With this expansion we define the RG map as a set of recursive equations in the

infinite-dimensional space of the Taylor coefficients parametrizing the 4 functions

ψl(τ), θl(τ), αl(τ), βl(τ):

ψl+1
k = 2−k

[
2θl

k +
k

∑
i=0

ψl
i ψ

l
k−i

]
, (136)

θl+1
k = −2−k

k

∑
i=0

θl
i θ

l
k−i , (137)
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Figure 11: a: Fixed points of the RG map, projected on the plane of leading autoregressive

coefficients ψ0, θ0. The interior of the triangle is the basin of attraction of fixed

point A. The equal sides are the basin of attraction of point B. The basins of points

C and D are contained in the basis of the triangle (plus vertex on the top for D).

The Euler AR(2) process has coordinates (2,-1) in this plane. Shaded trajectories

represent the solution of recurrence relations from three sample initial conditions.

Arrows show the direction of (discrete) moves and should not be interpreted as

continuous flow lines. All the points in the exterior of the triangle escape towards

diverging fixed points. b: RG flow on the plane of third order MA coefficients for

s = 0. The black solid line is the manifold of fixed points α∗3 = 4β∗3. The dashed

parallel lines represent different orbits associated to the solution (149) of the linear

system. A Euler-Maruyama discretization of a 2nd-order SDE corresponds to an

initial condition (σ2, 0) on the positive α3 axis, which flows towards the ARMA(2,1)

fixed point of coordinates (2/3, 1/6)σ2 with an l-dependent decay shown in the

inset. When s 6= 0 the picture above is just slightly modified, as the RG map

becomes an affine one.

αl+1
k = 2−k

{
(1 + ψ2

0 + θ2
0)αl

k + 2βl
kψ0(1− θ0)

+
k−1

∑
i=0

[
αl

i

k−i

∑
j=0

(
ψjψk−i−j + θjθk−i−j

)
+ 2βiψk−i(1− θ0)− 2βi

k−i−1

∑
j=0

ψjθk−i−j

]}
,

(138)

βl+1
k = 2−k

{
βl

kψ0(1− θ0)− αl
kθ0−

k−1

∑
i=0

αl
iθk−i +

k−1

∑
i=0

βl
i

[
ψk−i(1− θ0)−

k−i−1

∑
j=0

ψjθk−i−j

]}
.

(139)

Notice that, since the recursion equations at order k only involve lower orders,

they can be solved recursively over k, and can also be truncated to an arbitrary

order while retaining a closed form.

Fixed points

Solving the fixed point equations associated to Eqs. (136)–(139), we find 4 different

types of linear processes, parametrized by the Taylor coefficients
{

ψ∗k , θ∗k , α∗k , β∗k
}

.

Results are reported in Table 1 up to order k = 3. The four classes of fixed points

correspond to four manifolds in the space of all possible ARMA(2,1) models, whose

projection onto the plane of leading order AR coefficients, ψ0 and θ0, is shown in

Fig. 11.
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Table 1: Fixed point solutions of the RG recurrence relations up to third order in τ. We find

4 manifolds of fixed points, corresponding to 4 types of processes, parametrized

by the arbitrary constants u, s, z and b. In addition to the reported ones, there are

diverging fixed points.

A. B. C. D.

MA(0) AR(1) ARMA(2, 1) ARMA(2, 1)

AR coefficients

k = 0
ψ∗0 0 1 -1 2

θ∗0 0 0 -1 -1

k = 1
ψ∗1 0 u u u

θ∗1 0 0 2u −u

k = 2
ψ∗2 0 u2/2 −u2/2 z

θ∗2 0 0 −2u2 −u2/2

k = 3
ψ∗3 0 u3/6 u3/6 u(6z− u2)/12

θ∗3 0 0 (2u)3/6 −u3/6

MA coefficients

k = 0
α∗0 s 0 0 0

β∗0 0 0 0 0

k = 1
α∗1 0 s 4s −2s

β∗1 0 0 s s

k = 2
α∗2 0 us −8us −2us

β∗2 0 0 −2us us

k = 3
α∗3 0 2u2s/3 32u2s/3 4b− (2z + 3u2)s

β∗3 0 0 13u2s/6 b

The first class of fixed points A corresponds to sequences of independent random

variables (ψ∗ = θ∗ = ν∗ = 0). Fixed points B are AR(1) processes: they can be in-

terpreted as discretizations of fully observed Markov processes, described by linear

first-order SDEs in continuous time:

dx = uxdt +
√

sdW. (140)

By induction, it is possible to show that, if θ∗0 = θ∗1 = 0, then θ∗k = 0 ∀k, and that

a solution of the recurrence relation (136) is ψ∗k = 1
k!

(
ψ∗1
)k. Renaming ψ∗1 = u, the

sum of the series for the first AR parameter reads ψ∗(τ) = euτ , which corresponds

to the exact discretization of a first order linear process, whose deterministic part

reads ẋ = ux. Concerning the MA coefficients, it is possible to show that, selecting

the fixed point deterministic coefficients of B, β∗k = 0 ∀k and α∗(τ) = α∗1
2u
(
e2uτ − 1

)
.

In addition, there are two other fixed-point manifolds corresponding to ARMA(2,1)

models, denoted by C and D. Model C is not a continuous process, but evolves

through finite jumps. This fixed point satisfies ψ∗k = − (−u)k

k! and θ∗k = − (−2u)k

k! , im-

plying ψ(τ) = −e−uτ and θ(τ) = −e−2uτ . The process has a three-branched phase

diagram, and evolves in time jumping from one branch to the next one — approach-

ing the origin or moving away from it depending on the sign of ψ∗1 = u, as shown

in Fig. 12. This structure is invariant under the RG transformation we defined, but

it would not be so under a different one. For instance, if the coarse graining proce-

dure was implemented by trimming two points out of three, it would result into a

single-branched phase diagram in Fig. 12.
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Figure 12: Sample trajectories in the phase diagram of the fixed point process C. Red points

are obtained iterating the deterministic process Xn = ψXn−1 + θXn−2, with ψ(τ) =

−e−ψ1τ and θ(τ) = −e−2ψ1τ . Blue points correspond to the stochastic process of

fixed point C (cfr. Table 1. Color code from dark to light indicates advancing

time. The deterministic model exhibits a three-branched phase diagram: at each

iteration the system jumps from one branch to the next one, moving towards the

origin or far from it depending on the modulus of the complex eigenvalues. a:

When ψ1 > 0 the origin is an asymptotically stable fixed point (ψ1 = 2, s = 0.5,

τ = 0.002). b-c: The origin becomes unstable for negative ψ1. We plot two samples

with the same parameter values ψ1 = −2, s = 2, τ = 0.002. The presence of noise

in the unstable case may give rise to very different phase diagrams from the

deterministic one, if a large stochastic deviation occurs at small times.

We discuss models of the D class in the next paragraph.

D class: Second order continuous-time models

Fixed point D represents the discretization of a partially observed two-dimensional

Markov process of the form:

dx = vdt + σxdWx , (141)

dv = −ηvdt− κxdt + σdWv, (142)

of which (125) is a particular case. The (ψ, θ) coefficients of D reconstruct a second

derivative at leading order, and the effect of linear drift at first order (with u = −η

in Table 1). The variable s = −σ2
x in Table 1 encodes noise added to the x variable,

and it is zero in inertial models like Eq. (125).

The parametrization of the partially observed second order process is not unique;

in general we can write the set of SDEs in vector form as:

dy = Aydt + BdW, (143)

where

y = (x, v)>, W = (Wx , Wv)>, A =

(
−λ 1

−κ −η

)
, BB> =

(
σ2

xx σ2
xv

σ2
vx σ2

vv

)
. (144)

Setting A12 = 1 does not imply a loss of generality: compared to the arbitrary choice

of A12 = a ∈ R \ {0}, it just corresponds to a rescaling of the time unit, which does

not alter the process (the only caveat is that a < 0 would revert the time direction).
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The case A12 = 0 is not of interest for us, as it would decouple the dynamics of

the unobserved degrees of freedom from that of the observed ones. Assuming that

time evolves in the positive direction, we require that A is negative semidefinite to

ensure stability.

Partial observation of the process in Eq. (143) results into a Gaussian process

described, at the continuous level, by a Generalized Langevin Equation (GLE), and,

at the discrete level, by an ARMA(2,1) model. Thanks to linearity, Eq. (143) is exactly

integrable, and its discrete-time description is readily obtained:

Xn −
(
e2Aτ

)
12

(eAτ)12
Xn−1 −

[(
e2Aτ

)
11
−
(
e2Aτ

)
12

(eAτ)12

(
eAτ
)

11

]
Xn−2 = rn, (145)

(146)

rn =
∫ tn

tn−2τ

(
eA(2τ−s)

)
11

[B11dWx(s) + B12dWv(s)]

−
(
e2Aτ

)
12(

eAτ
)

12

∫ tn−τ

tn−2τ

(
eA(τ−s)

)
11

[B11dWx(s) + B12dWv(s)]

+
∫ tn

tn−2τ

(
eA(2τ−s)

)
12

[B21dWx(s) + B22dWv(s)]

−
(
e2Aτ

)
12(

eAτ
)

12

∫ tn−τ

tn−2τ

(
eA(τ−s)

)
12

[B21dWx(s) + B22dWv(s)] .

It is now possible to find a noninvertible12 map between (A, BB>) and the Taylor

coefficients of (ψ, θ, α, β):

u =− (λ + η), z = −κ +
1
2

(η2 + λ2), (147)

s =− σ2
xx , b =

1
6

[
σ2

vv + 2ησ2
xv + σ2

xx(2κ − 3η2 − 6ηλ− 4λ2)
]

. (148)

A subclass of models contained in fixed point D is represented by inertial pro-

cesses, obtained by further setting σ2
xx = 0. This condition implies that there are

no stochastic contributions to the observed process of order O(τ1/2) — the order of

convergence of the Euler scheme. As one can read from Table 1 by setting s = 0,

leading contributions to noise covariances are in this case determined by third-order

coefficients. If we start with the Euler discretization (126) as an initial condition for

the RG recurrence relations (α0
k = σ2δk,3, β0

k = 0), the associated RG flow, on the

plane of noise parameters, reads:

αl
3 = σ2

(
2
3

+
1
3

4−l
)

; βl
3 = σ2

(
1
6
− 1

6
4−l
)

. (149)

While the initial model (Euler) is strongly convergent as τ1/2, the resulting fixed

point is at least convergent as τ3/2. Indeed, the asymptotic values (α∗3 , β∗3) are those

we would obtain if we applied a discretization scheme like that of the Langevin

impulse integrator [173] to Eq. (125) in the first place.

12 Because of the partial nature of the observation, multiple models are mapped to the same ARMA pro-

cess. Hence there is no bijection between the continuous-time Markovian description of the dynamical

system and its experimental non-Markovian observation. Extracting the parameters of an underlying

continuous-time Markov model from time series analysis is therefore an arbitrary task, which postulates

the choice of suitable hidden variables. If we set λ = 0, σ2
xv = 0, we retrieve Eqs.(141),(142).
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Memory selection

The RG procedure we detailed for ARMA(2,1) models can be generalized to arbi-

trary ARMA(p, q) processes, defined by:

Xn =
p

∑
i=1

φiXn−i +
q

∑
i=1

νiεn−i + µεn, (150)

with εn ∼ N (0, 1). Decimation of the time series can be done by combining p

neighboring equations (150), in a similar way as in Eq. (128):

Eqn(Xn) +
p

∑
i=1

(−1)i+1φiEqn(Xn−i). (151)

This decimation prescription yields new update equations with an ARMA(p,q̃) struc-

ture, with

q̃ =
⌊ p + q

2

⌋
, (152)

where bxc denotes the rounding down operation (details in Appendix B). The con-

dition of invariance under RG imposes that any fixed point satisfies q̃ = q, implying

q = p or q = p− 1.

This result leads to two important observations. Firstly, it shows that purely

autoregressive models — AR(p)≡ ARMA(p, 0) — of order p ≥ 2, cannot be stable

points, and thus cannot be exact discretizations of stochastic differential equations

of second or higher order. Secondly, the sharp selection of q reveals that longer

memory than p steps in the past is irrelevant in the RG sense.

Our result is related to the non-existence of exact delay vector embeddings for

noise-driven systems. Delay vector embeddings are equivalent to estimating the

derivatives of the observed stochastic process through differences of subsequent

measurements. Precisely, they consist of stacking a finite number of subsequent

points to define a new dynamical variable X = (Xn−p+1, . . . , Xn) — known as delay

vector [183, 28] — and assuming that it follows a Markov dynamics. This dynamics

is described by AR(p) models.

Although this derivative reconstruction method is standard in deterministic con-

texts, it cannot be directly extended to stochastic processes, as partial observation

sets strong limitations to phase space reconstruction for stochastic dynamical sys-

tems [178, 179, 142]. Controlled embedding procedures need to be employed, such

as in [58, 14]. Another possible suggestion, which can be drawn from our analy-

sis, is to abandon the Markov setting in favor of descriptions with correlated noise.

The RG construction shows indeed that time correlations in the noise terms are

spontaneously generated to match the original dimension of the partially observed

dynamical system. This fact suggests to introduce an additional noise delay for

any new coordinate that is appended to the delay vector. Inference of the result-

ing ARMA(p, q) models and, in general, of nonlinear processes with memory, can

be done using several available methods, including the one we introduced in Sec-

tion 3.3. How to extend the RG formalism to nonlinear processes remains, on the

contrary, an open question.
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Figure 13: a Inconsistent ML estimators (derived from Euler discretization) for the damp-

ing coefficient η of a Brownian process in a symmetric quartic potential: V(x) =
κ
2 x2 + λ

4 x4, for different values of the simulation parameters κ and λ. b The estima-

tor η∗ is rescaled of a factor 2/3 compared to the true value of the parameter used

in the simulation (in the τ → 0 limit). The same rescaling affects the diffusion

coefficient σ2 = 2Tη; hence the equilibrium temperature T is correctly estimated

from their ratio. Estimators κ∗ and λ∗ obtained with the same Euler-based pro-

cedure are inconsistent: disentangling the contributions of the different terms in

the polynomial force requires dynamical information of higher order in τ (not

accessible through the Euler scheme).

3.4.2 A ‘shortcut’ to Markov embedding for partially observed equilibrium pro-
cesses

The argument presented so far is not based on any stationarity nor equilibrium as-

sumption for the continuous process we observe: it only relies on the requirement

that the discretized model must have an invariant structure under coarse graining.

Such a requirement ensures that a transition over a time interval 2τ can be equiv-

alently described, up to a given order of approximation, either by a discretization

on a single time step of amplitude 2τ or by the composition – using the same

scheme – of two τ-steps. When this request is not satisfied, the discretization is

inadequate, producing biased estimators when applied to inference problems [147,

89]. Nonetheless, we have seen in Section 3.3.2 that the bias comes in a regular form.

Given a damped Langevin equation like

dx = vdt, dv = −ηvdt− κxdt +
√

2TηdW, (153)

the bias consists in a τ-independent rescaling factor equal to 2/3 for the linear

damping coefficient η, whereas the remaining parameters are unbiasedly estimated.

In a similar way, by applying Euler-based inference schemes to simulated time series

for the Brownian particle in a double well (formulas in Appendix A), we obtain a

damping coefficient η rescaled of a factor 2/3, while the parameter estimator for the

temperature of the heat bath is consistent. Results are shown in Fig. 13.

In this section we try to rationalize this finding, in order to understand how

universal this rescaling is, and whether it can be exploited to build an effective

discrete Markov model for generalized Langevin equations, which neglects noise
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correlations. We try to provide an argument for this fact, working out the reference

problem of the integrated Ornstein-Uhlenbeck (OU) process.

The integrated OU process, described by the Eqs. (153) with κ = 0, is the simplest

example of 2nd-order SDE for which the Euler-related inconsistency appears. Sup-

pose we can only observe (with infinite accuracy) the inertial degree of freedom, at

a sampling rate τ−1. Let us recall the notation for the time series of empirical ob-

servations {Xn}n∈N, and introduce that of reconstructed velocities {V̄n}n∈N, where:

V̄n =
(Xn+1 − Xn)

τ
. (154)

Let us also introduce the series of real velocities {Vn}n∈N, corresponding to the one

we would obtain if we were able to measure directly the velocity degree of freedom.

Because the evolution of the velocity degree of freedom is described by an inde-

pendent first-order SDE in the OU process, the time series {Vn}n∈N is described

by an AR(1) model. On the contrary, the evolution of the reconstructed velocities

V̄n inherits a nonzero MA order from the non-Markovian dynamics of the x vari-

ables, ending in an ARMA(1, 1) process. Nonetheless, we look for an effective AR(2)

process for {Xn}n∈N, i.e. an effective AR(1) process for the {V̄n} series:

V̄n − (1− α)V̄n−1 = σεn, (155)

where εn ∼ N (0, 1) I.I.D. and α, σ are parameters to fix. The goal is to find a

memory-less discrete model for {V̄n}n∈N that reproduces correctly the sufficient

statistics employed by parametric inference approaches based on the exploitation of

local dynamical information13.

In the case of the integrated OU process, a sufficient statistics corresponds to the

set S1 =
{

E
[
V̄2

n
]
, E[V̄nV̄n+1]

}
, i.e. the self-correlations of the reconstructed velocities

at equal time and at a distance of one time step. A statistics is a collection of

functions of the observed data which can be used to extract information from them

[77]. It is sufficient when it contains all the information contained in the sample, and

the addition of any other function does not bring more information [108].

We impose on these observables the two following consistency conditions:

i. V̄n follows a Maxwell Boltzmann distribution with temperature T (equiparti-

tion):

E
[
V̄2

n

]
= T (kB = 1). (156)

ii. The relation between the reconstructed acceleration Ān = (V̄n+1 − V̄n)/τ and

the reconstructed velocity V̄n is the one we can exactly compute for the inte-

grated Ornstein-Uhlenbeck process:

E[Ān|V̄n] '
τ→0
−2

3
ηV̄n. (157)

13 The common characteristic of these approaches (both Bayesian and non-Bayesian) is being derived from

a Taylor-Itô expansion in the small τ limit; hence they only exploit short time information to learn the

laws of motion. This information is typically carried by the first few elements of the autocovariance of

the time series.
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A detailed derivation of Eq. (157) is in [147]. From this relation we immedi-

ately deduce the condition to impose on the observables of interest:

E[V̄n+1V̄n] =
(

1− 2
3

ητ

)
E
[
V̄2

n

]
. (158)

The self-correlation function E[V̄nV̄n+k] of an AR(1) process of the form of Eq. (155)

is explicitly known [19]:

E[V̄nV̄n+k] =
(1− α)|k|σ2

1− (1− α)2 . (159)

Taking its value at k = 1 and using Eq. (156) in Eq. (158) yields the expected result

α = (2/3)ητ. Computing the self-correlation of the reconstructed velocities at k = 0

and imposing equipartition, we set the value of σ:

σ2 = T
[
1− (1− α)2

]
'

τ→0
2Tα. (160)

This is the celebrated Einstein relation [109].

In conclusion, it is possible to describe the sequence of measurements of an inte-

grated OU process as an effective AR(2) series with a rescaled damping coefficient

η′ = (2/3)η. Due to its link to the Einstein relation, we expect such effective rescal-

ing to provide a shortcut to Markovian delay vector embeddings for any stochastic

process at equilibrium [127]. Numerical and analytical evidence confirm that the re-

sulting purely autoregressive model can be used for maximum likelihood inference

in the simple case of linear Langevin equations, as discussed in Section 3.3.2. In the

presence of nonlinear conservative forces, numerical results suggest that the same

rescaling procedure can be effectively used to infer η and T, while the remaining

parameters of the model do not match the Euler-ML estimators.

As a final remark, we underscore the starting observation about the different be-

haviour of the Euler scheme in inference and integration tasks. While this seemingly

universal bias can be exploited to simplify parametric inference procedures based

on ‘local in time’ sufficient statistics, the same effective rescaled white scheme can-

not be used for simulations: it would obviously converge to a continuous process

with the wrong parameters.

3.5 final remarks

3.5.1 Summary

For the work presented in this Chapter, we employed standard methods from

stochastic calculus. The goal was to address the problem of parametric inference

for non-Markovian dynamical processes. Our original contribution consists of:

1. The development of a new inference algorithm for second order stochastic

differential equations based on the maximum likelihood principle. This work

was motivated by the study of starling flocks, whose dynamics seems to be

ruled by effective inertial models for the velocity degrees of freedom. The
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method we developed is however more general, and can be applied to a whole

class of processes in a fast and efficient way.

2. The discussion of a formal analogy between data augmentation methods used

in statistical inference and the renormalization group construction. Despite

the analogy is obvious, it helps explaining why the naïve Euler-Maruyama

discretization of a second order stochastic process can work for numerical

integration but not for inference, yielding inconsistent maximum likelihood

estimators. The Euler-Maruyama discretization of a second-order SDE is in-

deed an AR(2) process, which is not an RG fixed point. For simple Gaussian

processes, modeled by ARMA(p, q) processes at the discrete level, we showed

that a specific relation between p and q must hold if we want the model to be

the exact, RG-invariant discretization of a continuous-time process. The result,

q = b(p + q)/2c, is a manifestation of the lack of finite-dimensional delay vector

embeddings for partially observed SDEs, and suggests an alternative rule to

embed these processes in a non-Markov way: for any new point added to the

delay vector, the MA order of the discrete Gaussian process shall be increased

by one, by adding a delay also in the noise variables.

3.5.2 Prospects

The natural prospect of this work is the application to real data. Applying the

Toeplitz-based inference method for the ISM to the available experimental data on

starling flocks is however not straightforward, as this step is hampered by several

problems.

The first one is that there are missing points in the reconstructed data. Because

of tracking problems of various nature, including the fact that birds may spend a

fraction of time out of the field of view of the cameras, many of the birds’ trajectories

are cut and do not cover the whole time span of the observation. An inference

method like the one we proposed, whose accuracy is only asymptotic in the length

of the trajectory, might then not look as an optimal choice. However, we saw that

the convergence to the true value is pretty fast. Moreover, thanks to the analysis of

the finite-length bias in Section 3.3, we could deduce the rescaling factors coming

from the Toeplitz shift-invariant approximation for the biased parameter estimator

η∗, which can be used to apply an a posteriori correction.

An alternative strategy, which we have tried to pursue, could be to adopt a Euler-

based scheme on triplets of subsequent points. Since the inertial spin model is linear

in the SWA, the equations of motion for the velocity fluctuations π correspond to

those of N coupled harmonic oscillators. We know, for linear processes, that the

effect of modeling the system through an AR(2) process is just a 2/3 rescaling of

the estimated η parameter (Section 3.4.2). So, if we implement again an a posteriori

correction, the problem can also be reframed through a maximum caliber approach

that produces a second order Markov description.

A second annoying problem, which we better discuss in the next paragraph,

comes from the birds’ wing flapping. Before describing our attempts of data analy-

sis, let us refer to Appendix D for a description of the dataset.
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Figure 14: Parameter estimators of the ISM with k-nearest neighbor interaction (k = nc) ob-

tained applying our ML-BBK inference scheme on triplets of subsequent frames,

where the velocity time series {v̄i} is computed as in Eq. (161). Each point is an

average over the triplets which compose the system’s trajectory; errorobars are the

standard deviations of the inference results on the various triplets. a: The number

of interacting neighbors is found through a numerical minimization of the minus-

log-likelihood (nc ∈ N). The sampled interval is indicated between the dashed

lines; the solid line is the average. The picture is compatible with a measurement

noise-dominated estimation of the parameter: since nc is dimensionless, there is

no trend with ∆t, but the distribution of the results is not far uniform sampling

— see also Fig. 16. b: The inferred parameter η/χ scales as ∼ ∆t−1 (dashed line).

c–d: The inferred parameters J/χ and T/χ scale as ∼ ∆t−2 (dashed line). Time

units are 1s for ∆t, 1s−1 for η/χ, and 1s−2 for J/χ and T/χ.

Preliminary data analysis

We tried to apply the BBK-ML scheme (based on Euler discretization — see App. A)

to the available data, but this revealed the presence of strong measurement noise,

compared to the temporal resolution of the experimental setup. The fact is evident

from the comparison between Fig. 9 and Figs. 14–15. In the latter we see that the

trend of the inferred parameters with ∆t is purely ruled by the physical dimension

of the parameters, in the same way as when uncorrelated measurement errors dom-

inate in numerical simulations. While the inferred (J/χ)∗(∆t) and (T/χ)∗(∆t) scale

as ∆t−2, (η/χ)∗(∆t) scales as ∆t−1 and n∗c (∆t) is approximately constant. In these

plots we vary ∆t by selecting one every n points in the time series of reconstructed

velocities. Given ∆t = nτ, with τ the minimal time interval corresponding to the

resolution of the apparatus, we firstly derive the reconstructed velocity time series{
v̄t

i
}

, where:

v̄t
i =

xt+τ
i − xt

i
τ

(161)
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Figure 15: ISM parameter estimators obtained applying our ML-BBK inference scheme ap-

plied to triplets of subsequent frames, when the velocity time series is {ṽi}, with

ṽi defined as in Eq. (162). Points and their errorbars correspond to averages and

standard deviations as in the previous case. Again, the trends are compatible with

the dimensional scaling for all the parameters, i.e., setting χ = 1: (a) n∗c ∼ ∆t0, (b)

η∗ ∼ ∆t−1, (c) J∗ ∼ ∆t−2, (d) T∗ ∼ ∆t−2. Notice that, in this case, the inferred

value of n∗c is systematically below the uniform average of the sampling interval.

Here again the time unit for ∆t is 1s, while for the inferred parameters is s−1 or

s−2, according to the physical dimension of the parameter.

and then select one point out of n in order to produce an observed time series at a

temporal resolution ∆t.

We checked that even cooking the observed time series in other ways, e.g. averag-

ing the velocities over m-point intervals, the behavior of the parameter estimators

is the same, and points at a scenario where measurement noise dominates over the

intrinsic dynamic noise. Precisely, we reconstructed a smoothed velocity time series

{ṽt
i}, where:

ṽt
i =

xt+m
i − xt

i
mτ

. (162)

At the least coarse-grained level, subsequent points are separated by τ. In order

to increase ∆t, we select again one point out of n, having ∆t = nτ. In particular,

we carefully analyzed the cases m = 17 (for data samples recorded with cameras

shooting at 170 fps) and m = 8 (for data samples recorded at 80 fps). The spectra

of the reconstructed trajectories exhibit indeed a peak at a frequency of 10 Hz,

which corresponds to the wing flapping frequency of starlings (cfr. Fig. 18). Even

employing Eq. (162) to define the velocity, the inferred parameters show a trend

which is compatible with the dimensional scaling, see Fig. 15.

However, this trend is more blurred than in Fig. 14, and a significant improve-

ment is visible in n∗c . We notice indeed that the inferred values in the first plot of

Fig. 15 are typically below the midpoint of the interval [ncmin, ncmax], over which

the log-likelihood is minimized, in contrast to Fig. 14. In Fig. 16 we compare the
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Figure 16: Inferred number of interacting neighbors n∗c for varying ncmax. The dot-dashed

line is the midpoint of the interval [ncmin, ncmax]; the shaded area is the SD of the

uniform distribution. a When vi is computed as in Eq. (161), n∗c grows with ncmax,

suggesting that the minimization results are not far from a uniform sampling

of the interval [ncmin, ncmax]. b Using Eq. (162) to compute vi and feeding our

inference algorithm with these trajectories, n∗c seems to be independent of ncmax.

results of these log-likelihood minimizations with the expectation coming from a

uniform sampling of the considered interval, for different values of ncmax and sev-

eral flocking events. When the velocity time series is not averaged over a period, but

computed according to Eq. (161), n∗c follows an increasing trend compatible with the

hypothesis of uniform sampling of the interval. On the contrary, when velocities

are computed using Eq. (162), the trend is almost flat, suggesting robustness of the

inferred value.

We cannot say, however, that inference works at this stage, due to the above-

mentioned ∆t dependency of the remaining parameters, shown in Fig. 15. The fact

that the supposed dynamical model does not properly match the raw data is also

suggested by the low success rate of the inference algorithm (Fig. 17), which is

programmed to give a ‘failure’ output whenever the optimal nc value corresponds

to one of the extremes of the considered interval.
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Figure 17: Failure ratio of the BBK inference algorithm on real data. The algorithm is applied

to subsequent triplet of frames, for varying ∆t. The failure ratio is computed as the

number of triplets over which the optimal n∗c is equal to ncmin = 3 or ncmax = 34,

divided by the total number of frame triplets (which is reduced as ∆t increases).

The temporal coarse graining is implemented selecting one point out of n in the

reconstructed velocity time series {v̄t
i}, defined as in Eq. (161). Here ∆t = nτ,

for n = 1, . . . , 20. The resolution of the cameras is τ−1 = 170 fps for all the data

samples, except for the three where τ−1 = 80 fps. a: the vi’s are defined as in

Eq. (161); b: the vi’s are defined as in Eq. (162). The unit for ∆t is 1s.
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Figure 18: Average spectral density of the velocity components of the 189 birds of the data

set 20111201_ACQ3F4 which have been fully recorded for 442 frames. Raw data

(with vi computed as in Eq. (161)) are displayed in blue. The peak at 10Hz fre-

quency comes form the birds’ wing flapping. Green and orange lines correspond

to the spectra obtained by computing vi from the trend or trend+residual signal

resulting from the STL decomposition of each bird’s spatial trajectory. The as-

sumed period for the STL decomposition is TP = 0.1s — luckily commensurable

with the sampling rate τ: TP = 17τ. Spectral densities have been computed using

the Welch’s method.

In all the plots shown here we use the following parametrization for the connec-

tivity matrix, already adopted in [136]:

nij = e−kij/nc , (163)

where kij is the rank of the bird j among the neighbors of bird i. No significant

difference in the performance of the inference approach nor in the results was ob-

served using the standard binary parametrization: nij = Θ(nc − kij + ε).

Future strategies

What emerges from our discussion is that, at the current status, data are not pro-

cessed reliably enough to apply the proposed Bayesian or maximum caliber infer-

ence schemes. These methods are very efficient and precise but extremely non

robust to contamination of the data. We therefore need a reliable strategy to go

from the raw data to smoothed trajectories, where at least the flapping signal is

removed.

A standard tool in time series analysis is the STL algorithm (Seasonal-Trend de-

composition using LOESS). Through a controlled iterative procedure, the STL al-

gorithm decomposes a time series into three components [55]: a trend, a periodic

(or seasonal) component, and a residual component, as schematically represented

in Fig. 19. One possible strategy is to perform dynamical maximum likelihood in-

ference on the trend component of our multidimensional signal, assuming that, in

addition to the periodic flapping signal, also measurement errors are removed with

the residual component. However, we expect that the residual will contain also part

of the intrinsic dynamic noise, which is not possible to disentangle from other noise

sources in a model-independent way.

Further systematic analysis on synthetic data is required to assess what is the

effect of the STL decomposition when combined with a maximum likelihood dy-

namic inference scheme which exploits only local (in time) observables. This would

help us determining whether the impact of this or other filters results into a con-
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Figure 19: Schematic representation of how the STL filter is employed on a subset of bird tra-

jectories from the data-set 20111125_ACQ2. a–b: Three-dimensional reconstruc-

tion of few bird trajectories, with a zoom on the right that evidences the flapping.

c: The recorded (x and y components) and reconstructed signals (z component)

are decomposed using the STL filter into three parts: trend, seasonal and noise.

d: We show here the three components associated to the y signal. e: From the

trend part of the signal of each component, the velocity vectors are calculated as

in Eq. (161). Alternatively, they can be computed, using the same formulas, from

trend+noise. The corresponding spectral densities are reported (for a different

flock, where the periodic signal is more evident) in Fig. 18. In all the plots, the

time unit is 1s, the distance unit is 1m, and the velocity unit is 1m/s.

trolled and predictable bias, and ultimately whether it is reasonable to infer at least

some of the dynamical parameters with this strategy. Work along these lines is

underway.





4 S I G N AT U R E S O F T I M E R E V E R S A L
S Y M M E T R Y B R E A K I N G I N
M I C R O S C O P I C F LO C K I N G M O D E L S

4.1 introduction

4.1.1 Global order is a genuine non-equilibrium feature

Irreversibility is a distinguishing feature of active systems. Self-propulsion indicates

indeed the ability to dissipatively consume resources to sustain a state of motion.

In an extended active system made of particles with such property, detailed balance

is therefore broken at the constituents’ level. In contrast to many passive systems,

the non-equilibrium state of an active system is not the result of an extremely slow

relaxation process towards equilibrium, nor of external gradients imposed at its

boundaries; we can rather conceive it as a homogeneous internal driving generated

by activity, which creates irreversible currents in the system’s phase space.

Irreversibility plays a crucial role in active matter, as it allows for the emergence of

collective phenomena that would be impossible at equilibrium. Two major examples

for scalar and polar matter are the phenomena of motility-induced phase separation

and of flocking. In both cases, the role of activity can be mechanistically seen as

creating effective interactions that would not be present otherwise. In the case

of MIPS, it consists of an effective attraction due to the persistence of motion; in

flocks, it consists of an effective long-range ferromagnetic alignment between flying

XY spins produced by their motility, which violates the hypotheses of the Mermin-

Wagner theorem [133].

The case of flocks is of particular interest to us. Understanding rigorously which

are the crucial ingredients that allow for spontaneous ordering in Vicsek-like mod-

els is not a completely closed question. The Mermin-Wagner theorem only holds

for ferromagnetic or antiferromagnetic spin systems on a regular lattice or recur-

sive graphs [29], with short-ranged — or sufficiently fast-decaying — interactions1.

Different arguments can be made to invalidate both the hypotheses in Vicsek-like

models. Firstly, particles’ motility potentially induces effective long-range inter-

1 Technical requirements for the original proof by Mermin and Wagner are the possibility to work in

a discrete Fourier space and that the isotropic coupling J(R) decays fast enough to guarantee that

∑R R2|J(R)|< ∞, with R the vectors of a Bravais lattice. Subsequent or contemporaneous versions of

the theorem also exist, both for classical and quantum spin systems. Mermin and Wagner focused on

quantum systems, only highlighting in the concluding part of [133] that the theorem must extend to

the classical case. An alternative proof for classical SO(n)-symmetric ferromagnets was later provided

by McBryan and Spencer [132], who used the microscopic lattice just to take a continuous-space limit.

The hypothesis that particles lie on the sites of a regular lattice can then be relaxed, but we expect the

theorem not to hold in the case of a (metric) Vicsek-like model, due to giant number fluctuations, which

create a strongly irregular neighbors network.

77
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actions; secondly, the structure of the system resembles that of a liquid or a gas,

rather than that of a regular crystal lattice, especially in the metric case. At this

point, though, the arguments are not very rigorous. In a recent paper, Tasaki eluci-

dated that motility alone is not able to give rise to true long range order in d = 2,

unless it is accompanied by detailed balance violation [184]. In the presence of

detailed balance, a Hohenberg-Mermin-Wagner-type theorem can be derived, even

when particles are self-propelled. This result corroborates the widely shared belief

that the crucial ingredient for collective motion is precisely the irreversibility of the

microscopic process.

Significant progress has been made over the last decade in the attempt of char-

acterizing the non-equilibrium steady-state of self-propelled systems, with special

emphasis on the two prototypical models of ABPs and AOUPs, both with and with-

out inter-particle interactions [63, 47, 130, 27, 56]. An approach which has often been

used is to look for approximations of the steady state of the active system through

equilibrium-like descriptions, for which extended fluctuation-dissipation relations

(FDR) or equations of state may hold [175, 79, 88, 75, 128]. However, whether such

descriptions are good or not depends on the features we want to reproduce and

on the regime in which the system operates. Finding a good way to quantify the

departure from equilibrium in active systems has been a hot topic in the past years,

and, as it is common in non-equilibrium systems, the answer seems to be really

dependent on the model under investigation and on the spatio-temporal scale at

which this is observed.

Except for single particle models, most of the efforts have focused so far on the

case of non-aligning scalar matter [140]. Among the preferred systems are AOUPs

or ABPs with repulsive interactions, at the microscopic level [119, 78, 47, 61], or

scalar active field theories which have been introduced to describe MIPS, at a coarse-

grained level [137, 24]. There is a good reason for this fact: equilibrium-like state

functions hold to describe the bulk of phase-separated systems, far from the in-

terfaces [75]. Moreover the RG analysis of scalar φ4 theories like Active Model B

or their variants [31], typically used to describe systems of active particles under-

going a motility-induced phase separation, shows that activity is irrelevant in the

RG sense and that these systems belong to the Ising universality class [25, 145], as

confirmed by numerical simulations [125]. Quantifying how far the system is from

an equilibrium condition, which seems to be recovered at the macroscopic scale, is

then an interesting question. On the contrary, activity is relevant (in the RG sense)

in polar active matter, whose field theories generally have their own dynamic uni-

versality classes, which are different from equilibrium ones [187, 38, 50]. In addition,

it has been shown that, when repulsive forces are replaced with non-conservative

torques that reorient the polar particles, pressure is no more a state function [175].

Although irreversibility has a key role at all scales in the polar case, relatively little

has been done to characterize at the microscopic level the non-equilibrium steady

state of self-propelled particles with ferromagnetic interactions. Few results, mainly

employing fluctuating hydrodynamic models, have been obtained so far [15].

In this Chapter we want to adopt the formalism of stochastic thermodynamics to

characterize microscopic irreversibility in a Vicsek-like model with purely aligning
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active particles. We carried out a numerical analysis, which allowed us to mea-

sure the entropy production rate and identify signatures of time reversal symmetry

breaking. Inertia is neglected in this context 2. I will finally discuss our attempts of

reproducing the observed features in the framework of kinetic theory.

4.1.2 Review of general formalism

In this section I will present some of the main concepts of stochastic thermodynam-

ics, mainly following Seifert’s review [168], and some results about the symmetries

of NESS distributions. These results are then applied to simple active Brownian par-

ticle models for flying spins, in order to show that time reversal symmetry breaking

induces an explicit asymmetry in the steady state distribution of the system’s mi-

crostates.

Path integral formalism

Let us stick to the paradigm of Langevin dynamics: we consider a continuous

Markov process described by the SDE:

ẋα(t) = Aα(x, t) + Bαβ(x, t)ξβ(t), (164)

with ξ an isotropic white noise. The trajectory of the degrees of freedom is denoted

by x(t). As the process is Markovian, the weight of the trajectory, given an initial

condition x(0) = x0, is

p[x(t)|x0] = N exp−A[x(t), λ(t)], (165)

with A the Onsager-Machlup action, N a (diverging) normalization factor, and

λ(t) a set of possibly time-dependent control parameters, hidden in A and B in

Eq. (164). To lighten the notation, we will take a single scalar control parameter.

The explicit expression of the Onsager-Machlup action depends on the adopted Itô

or Stratonovich convention. In the following we will focus on the case of additive

processes where the B matrix is independent of x and of time. For such processes,

the weight of the trajectory between the time points t = 0 and t = τ is specified by

A[x(t), λ(t)] =
1
2

∫ τ

0
dt
{

1
2

[ẋ−A(x, t)]>D−1[ẋ−A(x, t)] +∇ ·A(x, t)
}

, (166)

where D = 1
2 B>B is assumed to be an invertible matrix3 and the latter term ∇ ·A

comes from the discretization of the Jacobian under the Stratonovich convention.

Discretizing with the Itô convention, the last term on the RHS of Eq. (166) disap-

pears4.

2 Although inertia can be introduced in the dynamical equations through terms that do not break the

TR-symmetry, can change the steady state of the system, thus modifying the degree of irreversibility of

the process. Since inertial effects may mingle with pre-existing non-equilibrium effects in an unknown

way, we prefer to focus here on the primary causes of irreversibility, and defer the analysis of inertial

effects to a later stage.
3 For underdamped dynamics, D is non-invertible, but the path integral formalism can still be adopted,

as pioneered by Onsager and Machlup [121].
4 The difference between the two conventions however affects only the path integral weight, and disap-

pears when this is used to compute any physical quantity expressed through an ensemble average — the

two discretizations must indeed be equivalent in the case of additive processes.
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First law of thermodynamics

The path integral formalism is useful to compute ensemble averages of trajectory-

dependent observables. In general, for an observable Ω[x(t)],

〈Ω[x(t)]〉 =
∫

dx0

∫
D[x(t)] Ω[x(t)]p[x(t)|x0]p0(x0). (167)

Among the path-dependent observables one can define, there are the stochastic

analogues of standard thermodynamic quantities [169], i.e.

• Work applied to the system (e.g. a colloidal particle in a heat bath). It

is convenient to decompose the force A(x, t) into a conservative and a non-

conservative part5 (occasionally including external forces) as:

A(x, t) = ∇V(x; λ(t)) + f(x, t). (168)

The infinitesimal work is identified with:

d̄w = (∂V/∂λ)dλ + f ◦ dx, (169)

so that the work along the stochastic trajectory reads:

w[x(t)] =
∫ τ

0
dt[(∂V/∂λ)λ̇ + f ◦ ẋ]. (170)

The ◦ symbol indicates that the integrals must be interpreted in the Stratonovich

sense [169].

• Heat dissipated into the medium. The infinitesimal increment is defined as

d̄q = A(x, t) ◦ dx, (171)

so that the corresponding path-dependent observable becomes

q[x(t)] =
∫ τ

0
dt[A(x, t) ◦ ẋ]. (172)

These two quantities satisfy the first law:

w[x(t)] = q[x(t)] + ∆V(xτ , x0), (173)

where ∆V(xτ , x0) = V(xτ ; λτ)−V(x0; λ0) is the internal energy variation, with obvi-

ous notation for the values assumed by the coordinates and the control parameter

of the system at the final and starting times. It is worth noting that alternative defi-

nitions of work have been provided, and a debate on the interpretation of stochastic

work, heat, and the first law took place soon after their introduction [193, 98, 148,

149].

5 In this decomposition we implicitly set the mobility tensor of the colloidal particle to 1. We would

otherwise have A(x, t) = µ [∇V(x, λ(t)) + f(x, t)]. We recall that, at equilibrium, mobility and diffusion

tensors, µ and D, are linked by the Einstein relation D = µT.
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Stochastic entropy and irreversibility

A notion of entropy at the level of a single trajectory can also be defined [185, 123].

Thermodynamics teaches us that heat dissipation must be associated to an increase

in the entropy of the medium. Since an expression of heat as a functional of the

stochastic trajectory is provided, whenever the system admits the definition of a

single temperature6 T = Dαβ/2, a first quantity is defined:

∆sm[x(t)] =
q[x(t)]

T
. (174)

At the same time, a Gibbs entropy

SG (t) = −
∫

dx p(x, t) log p(x, t) (175)

is associated to the probability density p(x, t), which represents the solution of the

Fokker-Planck equation (FPE) associated to Eq. (164):

(176)
∂t p(x, t) = LFP p(x, t)

= −∂α

[
Aα(x, t)p(x, t)

]
+ ∂α∂βDαβ p(x, t)

≡ −∇ · j(x, t).

The quantity in Eq. (175) can be interpreted as the average of − log p(x, t) ≡ s(t).

The rate of variation of s(t) along the dynamics generated by LFP takes the following

form, when the noise is additive:

ṡ(t) = −∂t log p(x(t), t) + D−1
[

j(x(t), t)
p(x(t), t)

−A(x(t), t)
]
◦ ẋ. (177)

Once we recognize the (minus) rate of heat dissipation into the medium in the LHS

of Eq. (177), it follows that the rate of increase of the total entropy, defined as the

sum of the entropy increase in the medium and the change of entropy of the system,

reads [167]:

ṡtot(t) = ṡ(t) + ṡm(t) = −∂t log p(x(t), t) + D−1 j(x(t), t)
p(x(t), t)

◦ ẋ. (178)

This quantity has the nice property that, taking the ensemble average, it is always

non-negative and it is equal to zero only at equilibrium. Moreover, the integrated

quantity ∆stot =
∫ τ

0 dt ṡtot(t), where p(x, t) is replaced by the stationary solution of

the time-independent FPE, satisfies integral and detailed fluctuation theorems [167,

114].

Another definition of fluctuating entropy production, which shares the same fea-

tures of stot and is valid for general stochastic processes, was formerly introduced

in, e.g., [114, 59]. This definition is as follows:

σ[x(t)] = log
p[x(t), λ(t)]

p[x†(t), λ†(t)]
= log

p0(x0, λ0)
p0(xτ , λτ)

+ log
p[x(t), λ(t)|x0, λ0]

p[x†(t), λ†(t)|xτ , λτ]
. (179)

Notice that, in contrast to stot, σ is a functional of the trajectory x(t). The trajectory

can be either a function of a continuous parameter t or a time series, in a unified

formalism for both discrete and continuous-time processes. In Eq. (179) p0 is the

6 In one-dimensional additive processes the definition (174) does not pose any problem. Notice also that,

even if there is no unique thermostat temperature T, the heat definition in Eq. (172) is well-posed.
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p.d.f. of the initial condition, τ the fixed length of the trajectory, and the † symbol

indicates the time reversal operation. The time reversal transformation maps any

functional gα[x(t), λ(t)] into g†
α[x†(t), λ†(t)]. Observables having a definite parity

under time reversal behave as follows:

g†
α[x†(t), λ†(t)] = εαgα[x(τ − t), λ(τ − t)] with εα = ±1. (180)

They are, in other words, eigenfunctions of the time-reversal operator associated to

the ±1 eigenvalues. Assuming that all system coordinates and control parameters

have a definite parity, they are transformed as:

xα(t) 7→ x†
α(t) = εαxα(τ − t), λ(t) 7→ λ†(t) = ελλ(τ − t), (181)

whereas the reversed dynamics is described by the same model as the direct one.

In the case of the Langevin equation in Eq. (164), this means that the functional

form of A(x, t) and B(x, t) is unchanged, hence the path probability functional is

computed following the same rules.

Time reversal belongs in fact to a more general class of ‘conjugate’ transforma-

tions that can be used to derive general fluctuation theorems [177, 166], where the

generator of the dynamics can be modified as well. Our interest is limited here to

the standard time reversal transformation, as this is the operation used to define

the equilibrium condition, and our goal is to quantify irreversibility in active matter

models. The path ensemble average of Eq. (179) is the ideal quantifier for it, as it

corresponds to the Kullback-Leibler divergence between the path probabilities of

the forward and time-reversed dynamics:

S = 〈σ[x(t)]〉 =
∫
D[x(t)] p[x(t)] log

p[x(t)]
p[x†(t)]

= DKL

[
p[x(t)]||p[x†(t)]

]
. (182)

Eq. (182) satisfies the property DKL
[
p[x(t)]||p[x†(t)]

]
≥ 0, with the equality holding

only when detailed balance is realized, i.e. p[x(t)] = p[x†(t)]. The parallelism be-

tween the fact that S ≥ 0, for any p[x(t)], and the second law of thermodynamics

has often been stressed.

A final quantity of interest is the entropy production rate (EPR). For a trajectory

length τ, the entropy production in Eq. (182) is a function of this parameter, so it is

natural to introduce a dissipation rate that is independent of it:

Ṡ = lim
τ→∞

S(τ)
τ

= lim
τ→∞

− 1
τ
〈A[x(t), λ(t)]−A[x†(t), λ†(t)]〉. (183)

To derive the latter identity, Eq.(179) is decomposed into bulk and boundary terms,

and the following assumption on the initial and final states of the system is ex-

ploited:

lim
τ→∞

1
τ
[log p0(x0, λ0)− log p0(xτ , λτ)] = 0. (184)

A final remark concerns the fact that the entropy production rate defined in Eq. (183)

is equivalent to the rate of heat dissipation into the medium in units of kBT (kB = 1),

when the thermostat temperature T is well-defined [166].
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Symmetry of non-equilibrium steady states

Let us now focus on the characterization of purely non-equilibrium steady states

(NESS). In a NESS the system is not driven out of equilibrium by any external

protocol λ(t) but by internal irreversible currents. We recall the definition of the

probability current

j(x) = A(x)ψ(x)−D(x)∇ψ(x). (185)

coming from rewriting the FPE as a continuity equation (176). We rename ψ the

solution of the stationary FPE: LFP (x)ψ(x) = 0. By reversible and irreversible we refer

to the usual decomposition of current and drift terms [159]:

Arev
α (x) =

1
2
[Aα(x)− εα Aα(εx)] , Airr

α (x) =
1
2
[Aα(x) + εα Aα(εx)] , (186)

with ε denoting the time reversal operator. For now, we assume that ε acts (linearly)

on coordinate variables x having a definite parity (εα = ±1). The probability current

is correspondingly decomposed as j = jrev + jirr:

jrev
α (x) = Arev

α (x)ψ(x), jirr
α (x) = Airr

α (x)ψ(x)− Dαβ(x)∂βψ(x). (187)

It can be proven that a necessary and sufficient condition for detailed balance to

hold, i.e. :

p(xτ , τ|x0, 0)ψ(x0) = p(εx0, τ|εxτ , 0)ψ(εxτ) ∀τ, x0, xτ , (188)

is that the two following conditions are verified (in addition to stationarity,∇ · j = 0):

jirr(x) = 0 and Dαβ(x) = εαεβDαβ(εx). (189)

As a consequence, a non-equilibrium steady state in the absence of external driving

can be realized only in two- or higher-dimensional systems, since the first equation

in (189) can always be solved by quadrature in one dimension (unless the state space

is an interval with periodic boundary conditions)7.

If detailed balance is broken, jirr(x) 6= 0. This condition is sufficient to guarantee

the positivity of the entropy production in a NESS, where ∆stot reduces to the so-

called housekeeping entropy production, ∆shk. In general, ∆stot = ∆shk + ∆sex, with

∆sex the excess entropy production, which quantifies changes in system entropy

associated to explicit time dependencies (absent in a proper NESS). Working with

rates, the housekeeping EPR can be conveniently written in the form:

Ṡhk =
∫

dx ψ(x) Virr
α (εx)

(
D−1(εx)

)
αβ

Virr
β (εx) (190)

where V(x) = j(x)/ψ(x) is the phase space velocity [177]. We recall that rates like

Ṡhk are defined after averaging the fluctuating entropy production functional (i.e.

taking here 〈∆shk(τ)〉). The decomposition of the phase space velocity into Vrev and

Virr follows from that of j. By definition, D is invertible only when positive definite,

7 Another way to see that the steady state of a one-dimensional system is bound to be an equilibrium state

is that there cannot be non-conservative forces, i.e. f = 0 in Eq. (170). Hence the first principle implies

that d̄q = 0 and compels the entropy production rate to be zero.
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from which Ṡhk ≥ 0 follows. The equality is only realized when the irreversible

phase space current vanishes and detailed balance is restored.

Another expression for Ṡ is given in [177]8:

Ṡ =
∫

dx ψ(x) Virr
α (x)

(
D−1(x)

)
αβ

Virr
β (x). (191)

Identifying the housekeeping EPR (190) with Eq. (191), Dal Cengio et al. derived

a general constraint on the phase space velocity of non-equilibrium systems whose

diffusion matrix D is invertible and x-independent [47]:

∑
αβ

D−1
αβVirr

α (x)Virr
β (x) = ∑

αβ

D−1
αβVirr

α (εx)Virr
β (εx) almost surely. (192)

Since

Virr
α (x) ≡ jα(x)

ψ(x)
= Airr

α (x) + Dαβ∂βφ (193)

and Airr
α (x) = εα Airr

α (εx), Eq. (192) implies:

∑
α

[
Airr

α (x) + Dαβ∂βφ+(x)
]

∂αφ−(x) = 0 almost surely. (194)

The functions φ± are defined as the T-symmetric and T-antisymmetic parts of the

quasi-potential φ(x) = − log ψ(x), respectively:

φ+(x) =
1
2
[φ(x) + φ(εx)] , φ−(x) =

1
2
[φ(x)− φ(εx)] . (195)

The parity of the variables under time reversal crucially determines the properties

of the NESS distribution. If all the variables are even under time reversal, εx = x,

then φ−(x) = 0 and Eq. (194) is trivially satisfied. In order to break the detailed bal-

ance, the remaining part of the quasipotential must satisfy ∂αφ+(x) 6= −D−1
αβ Airr

β (x).

Notice that φ− cannot be a constant function different from zero: thus, if x has odd

coordinates, also ∂αφ− is not the null function. In the presence of T-odd coordi-

nates, Eq. (194) must be interpreted as an orthogonality condition, according to

which Airr + D (∇φ+) is the tangent vector to the level curves of φ−. The informa-

tion on the NESS we can obtain from this constraint is however scarce, since φ+ is

one of the unknowns we want to determine.

The conclusion derived by Dal Cengio et al. in [47] is stronger but, in our opin-

ion, the derivation is wrong: even working with a diagonal diffusion matrix D, we

see no reason to equate all the terms in the sum in Eq. (194) to zero and conclude

that in a NESS either φ−(x) = 0 or ∇φ+(x) = −D−1Airr(x). It is however true that

both conditions cannot be realized simultaneously. Here we propose an alternative

justification for this fact and a general formula for the housekeeping entropy pro-

duction, which is obtained by further manipulation of the results by Dal Cengio et

al..

For the sake of simplicity, let us focus on the case of diagonal D diffusion matrix.

All the results can be generalized to the non-diagonal case, thanks to the fact that

8 Eq. (191) can be derived from Eq. (183) neglecting λ(t) and assuming natural boundary conditions for

ψ(x). Moving from the time average in Eq. (183) to the average over the NESS probability measure ψ(x)

in Eq. (191) is justified under reasonable ergodicity assumptions.
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D is symmetric and positive definite9. We start from an explicit rewriting of the

entropy production rate from Eq. (191):

Ṡ =
∫

dx e−φ(x) ∑
α

D−1
α

[
Airr

α (x) + Dα∂αφ(x)
]2

. (196)

Exploiting the symmetries of Airr, φ+ and φ− under the time reversal transformation,

we can rewrite Eq. (196) as

Ṡ =
∫

dx 2 cosh
(
φ−(x)

)
e−φ+(x) ∑

α

D−1
α

[(
Airr

α (x) + Dα∂αφ+(x)
)2

+ Dα

(
∂αφ−(x)

)2
]

+
∫

dx 4 sinh
(
φ−(x)

)
e−φ+(x) ∑

α

(
Airr

α (x) + Dα∂αφ+(x)
)

∂αφ−(x).

(197)

The second line of Eq. (197) is null because of Eq. (194). Hence:

Ṡ =
∫

dx cosh (φ−(x)) e−φ+(x) ∑
α

[
D−1

α

(
Airr

α (x) + Dα∂αφ+(x)
)2

+ (∂αφ−(x))2
]

. (198)

From this formula for the entropy production rate it is immediate to verify Ṡ ≥ 0.

The condition to have zero entropy production rate is that both of the following

conditions are verified:

Airr
α (x) + Dα∂αφ+(x) = 0 ∀α (199)

and

∂αφ−(x) = 0 ∀α ⇐⇒ φ−(x) = 0. (200)

Breakdown of detailed balance imposes that at least one of these terms is nonzero,

together with the constraint (194).

Application to the NESS of a Langevin-Vicsek-like model

The discussion contained in the previous section highlights the importance of keep-

ing track of the parity of the state variables involved. A simple argument based

on the analysis of such properties in Langevin-Vicsek-like models can connect the

breakdown of detailed balance to that of the O(n) symmetry in the velocity sub-

space.

Let us consider active matter systems which are described as a set of N interacting

ABPs, whose degrees of freedom are position and velocity coordinates {(ri , vi), i =

1 . . . N} in a d-dimensional external space. We impose that the speed of the particles

is fixed, and we restrict ourselves to d = 2, so that we deal with flying spins whose

effective degrees of freedom are {(ri , θi), i = 1 . . . N}. Let us denote by ΓΓΓ the state

variable of the system, and by ψ(ΓΓΓ) its non-equilibrium steady state distribution.

While positions and velocities are respectively even and odd under time reversal,

the direction of flight of the particle has no definite parity. Under time reversal, the

degrees of freedom are transformed as:

εri = ri , εvi = −vi , εθi = θi + π. (201)

9 We remark that it is not possible to merely diagonalize D through a change of basis, because we need

all the coordinates of x to have a definite parity under time reversal.
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Since not all of the coordinates of ΓΓΓ are even under time reversal, we can in principle

have φ−(ΓΓΓ) 6= 0 and ∇φ−(ΓΓΓ) 6= 0 in non-equilibrium conditions. This inequality

corresponds to ψ({ri , θi}) 6= ψ({ri , θi + π}), meaning that the breakdown of detailed

balance causes an explicit symmetry breaking in the NESS.

In the following, we show that this condition is realized in a simple ABP model

with Vicsek-like interactions in d = 2, described by the equations:

ṙi = v0e(θi), θ̇i = −Jnij({ri}) sin(θi − θj) +
√

2Dξi , (202)

where e(θi) = (cos θi , sin θi)), nij({ri}) is assumed to be symmetric, and a sum over

repeated indices is understood. In this case, the drift term decomposes into its

reversible and irreversible parts as:

Arev
i =

(
v0e(θi)

0

)
, Airr

i =

(
0

−Jnij sin(θi − θj)

)
. (203)

If we hypothesize that the rotational symmetry in the space of velocities is not

explicitly broken by irreversibility, φ−(ΓΓΓ) = 0, then the following condition must

hold:

∂θi φ+(ΓΓΓ) 6= Jnij sin(θi − θj) ⇐⇒ φ+(ΓΓΓ) 6= H(ΓΓΓ)
D

+ c({ri}), (204)

with H(ΓΓΓ) = − J
2 ∑ij nij cos(θi − θj) the classical XY Hamiltonian. However, the FPE

associated to Eq. (202) under the assumption φ−(ΓΓΓ) = 0 reduces to the equation for

the equilibrium process which we recover when v0 = 0. Let us show it in greater

detail by starting from the stationary FPE

v0 ∑
i

e(θi) · ∇iψ = J ∑
ij

nij∂θi (sin(θi − θj)ψ) + D ∑
i

∂2
θiθi

ψ, (205)

from which a PDE for the quasi-potential can be derived:

v0 ∑
i

e(θi) ·∇iφ = J ∑
ij

nij cos(θi−θj)+ J ∑
ij

nij sin(θi−θj)∂θi φ+D ∑
i

∂2
θiθi

φ+D ∑
i

(∂θi φ)2.

(206)

We can now apply the time-reversal operator to both the R.H.S. and L.H.S. of

Eq. (206) and split the quasi-potential into its T-symmetric and T-antisymmetric

parts to rewrite a set of two coupled stationary equations:

(207)
v0 ∑

i
e(θi) · ∇iφ− = J ∑

ij
nij cos(θi − θj) + J ∑

ij
nij sin(θi − θj)∂θi φ+

+ D ∑
i

∂2
θiθi

φ+ + D ∑
i

(∂θi φ+)2 + D ∑
i

(∂θi φ−)2;

v0 ∑
i

e(θi) · ∇iφ+ = J ∑
ij

nij sin(θi − θj)∂θi φ− + D ∑
i

∂2
θiθi

φ− + 2D ∑
i

(∂θi φ+)(∂θi φ−).

(208)

Assuming φ− = 0 in Eq.(207), the resulting PDE for ψ = eφ+ is of the form:

0 = J ∑
ij

nij∂θi (sin(θi − θj)ψ) + D ∑
i

∂2
θiθi

ψ. (209)
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This equation is solved by the Boltzmann distribution10

ψ(ΓΓΓ) = f ({ri}) exp[−H(ΓΓΓ)] ⇐⇒ φ+ =
H(ΓΓΓ)

D
+ c({ri}), (210)

with c({ri}) an arbitrary constant. Hence the non-equilibrium condition (204) is

contradicted: the hypothesis φ−(ΓΓΓ) = 0 leads to an absurdum.

We must not confuse the condition φ−(ΓΓΓ) 6= 0 with an explicit breaking of the

full rotational symmetry of the ABP system. Due to the coupling between position

and velocity degrees of freedom, a reorientation of the birds’ direction of motion

cannot be decoupled from a rigid rotation of the whole system, so the expected

condition to have a full explicit breaking of the rotational symmetry of the system

is ψ({ri , θi}) 6= ψ({Rαri , θi + α}), where Rα implements a rotation of an angle α

on the two-dimensional spatial coordinates. However, this full explicit symmetry

breaking is not occurring in flocking models.

4.2 entropy production in vicsek-like models

The deep connection between irreversibility and emergence of collective motion

motivates our interest in quantifying the non equilibrium nature of the process at a

microscopic level. The quantity we choose to study is the entropy production rate:

even though this is a non-universal, model-dependent observable, it is by definition

a measure of the breakdown of detailed balance, which is the event we want to

relate to the emergence of polar order in the system.

4.2.1 Stochastic thermodynamics for polar ABPs

Computing the entropy production rate for the model in Eq. (202) is a simple exer-

cise. The structure of the equations of motion

ṙi = v0e(θi), θ̇i = −Jnij({ri}) sin(θi − θj) +
√

2Dξi , (211)

is such that the update for the positions is deterministic, whereas, for symmetric nij,

the second equation has the structure of an overdamped stochastic dynamics of a

Hamiltonian system, with a gradient force term of the form −∂θi H(ΓΓΓ), where H(ΓΓΓ)

is the XY Hamiltonian introduced above:

H(ΓΓΓ) = − J
2 ∑

ij
nij({ri}) cos(θi − θj). (212)

We highlight that this aligning force acts on the angular degrees of freedom (or,

equivalently on the XY spin vectors) and depends on the particles’ orientations

{θi , i = 1, . . . , N}, in contrast to microscopic models for scalar active matter.

10 Uniqueness of the stationary solution of a Fokker-Planck equation is guaranteed under rather general

smoothness hypotheses on the FPE stationary solution and drift term, and other requirements on the

manifold where the solution is defined. A proof based on the Perron-Frobenius theorem is provided in

[196]. The Boltzmann-Gibbs distribution, which we can easily construct when the force term is gradient-

like, is therefore our unique solution for Eq. (209). This fact is enough to constrain φ−(ΓΓΓ) 6= 0. Let us

notice that we crucially exploited the symmetry of nij in Eq. (210) to write a Boltzmann-Gibbs distribu-

tion.
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The fact that the first equation of (211) is deterministic raises the apparent prob-

lem of the non invertibility of the diffusion matrix of the process, in the ΓΓΓ phase

space. Nonetheless, a formal Onsager-Machlup action can always be written, either

employing δ-functions to define the propagator, or introducing a small regularizing

diffusion term on the ri’s. Introducing such action

A[{ri(t), θi(t)}] = lim
ε→0

∫ τ

0
∑

i

{
1
ε2 [ṙi − v0e(θ)]2 +

1
4D

[θ̇i + J ∑
j

nij sin(θi − θj)]2

}
dt

(213)

into the definitions (179) and (183), we obtain

σ[{ri(t), θi(t)}] = log
p({ri(0), θi(0)})
p({ri(τ), θi(τ)}) −

J
D ∑

i

∫ τ

0
dθi ◦ nij sin(θi − θj), (214)

and thus

Ṡ =
〈q̇〉
D

= − J
D ∑

ij
〈dθi

dt
◦ nij sin(θi − θj)〉. (215)

Boundary terms coming from the ratio of initial and final steady state distributions

have been neglected; brackets indicate averages over the non-equilibrium steady-

state distributions. Recalling the definition of stochastic heat, Eq. (215) coincides

with the average heat dissipated in the system, divided by the temperature (here

named D). The dissipated energy is equal to the average work made by the aligning

torques.

An alternative way to cope with the same problem is to restrict the process, since

the beginning, to those phase space directions where Airr has nonzero projections.

Recalling Eq. (203), this operation basically consists of eliminating the spatial de-

grees of freedom. In this subspace, the diffusion matrix is invertible, and all the

formulas above can be used, including Eq. (190) and Eq. (191) for the housekeeping

entropy production rate. The effect of the eliminated spatial degrees of freedom

can be taken into account by recognizing them as external parameters driving the

system through a time-varying protocol. In this framework, reshuffling is seen as

a quasi-static transformation implemented on the flock. At a formal level, we are

just replacing nij({ri}) with nij(t) in Eq. (211), thus transforming the implicit time

dependence of the adjacency matrix into explicit.

Having rephrased the problem in this way, we can borrow from a large corpus of

references about stochastic thermodynamics of quasi-statically driven systems. In

particular, following Crooks [60], we can proceed by discretizing over infinitesimal

intervals of time the trajectories of the angular degrees of freedom — in = {θi(tn), i =

1 . . . N}— and the trajectories of the external variables — λn = {nij(tn), i, j = 1 . . . N}.
By means of straightforward manipulations we can firstly compute the fluctuating

entropy production for a trajectory of arbitrary length τ, discretized into Ns steps

of amplitude ∆t:

σ[{θi(t), ri(t)}] = log
P(i0

λ1−→i1
λ2−→i2 . . . iNs−1

λNs−→iNs )

P(iNs

λNs−→iNs−1 . . . i2
λ2−→i1

λ1−→i0)
= log

P(i0; λ0)
P(iNs ; λNs )

+ ∑
n

∆σn,

(216)
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with

∆σn = − J
D ∑

i
∆θn

i nn+1
ij

1
2

[sin(θn
i − θn

j ) + sin(θn+1
i − θn+1

j )] + o(∆t). (217)

Then, taking the limits ∆t → 0, τ → ∞, Eq. (217) yields an expression for Ṡ that

is identical to Eq. (215). The average is now interpreted as an average over the dis-

tribution of the θi’s and the realizations of the λ(t) trajectories. Our transformation

protocol is indeed effectively stochastic and correlated to the state of the reduced

system: for this reason, we generally have Ṡ > 0.

Alternative formulas

Eq. (215) can be interpreted as the heat that gets dissipated in the thermal bath

per unit time. Another equivalent formula for the entropy production rate of the

Langevin-Vicsek model in Eq. (211) is obtained by exploiting the definition (183)

and the stationarity of the process. Stratonovich calculus allows us to apply stan-

dard differentiation and integration rules, according to which Eq. (214) can be inte-

grated by parts, leading to non-extensive (in time) boundary terms and a resulting

expression for the entropy production rate:

Ṡ =
〈ẇresh〉

D
= − J

2D ∑
ij
〈ṅij ◦ cos(θi − θj)〉. (218)

The derivation of Eq. (218) is based on the assumption that there exists a steady

state where the properties of the interaction matrix of the flock are stable, as well as

its degree of polar order. The neglected boundary terms are indeed proportional to

the change in the ‘internal energy’ of the system between starting and final times:

− [〈H〉(τ)− 〈H〉(0)] /D. The equivalence between Eq. (215) and Eq. (218) is nothing

but an expression of the first principle of stochastic thermodynamics: if the flock

is in a steady state, the internal energy of the system is not varied. We relabel the

quantity in Eq. (218) as 〈ẇresh〉/D, since it can be interpreted as the average work

of a fictitious external protocol designed to reshuffle particles’ configurations.

The same formula is obtained in the ‘external protocol’ framework assuming local

detailed balance. The local detailed balance condition reads [60]:

P(in, λn+1)P(in
λn+1−→in+1)

P(in+1, λn+1)P(in+1
λn+1−→in)

= 1, (219)

where P(in, λn) are meant to be the equilibrium Boltzmann distributions of the ori-

entational degrees of freedom associated to fixed network configurations (fixed λn):

Peq({θi}; n) =
1

Z(λ)
e−βH({θi};n), with β = D−1. (220)

Applying the local detailed balance hypothesis (219) on Eq. (216) and taking the

continuous limit yields:

σ[{θi(t), ri(t)}] = β
∫ τ

0
dt ∑

i<j
ṅij

[
∂nij H(n)− 〈∂nij H(n)〉eq,n

]
. (221)

In computing Ṡ , the contribution from the second term in the RHS of Eq. (221)

vanishes under the assumption of stationarity, and the formula reduces to Eq. (218).
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Microscopic description of neighbors’ reshuffling

Eq. (218) highlights how the non-equilibrium character of this simple Vicsek-like

model is entirely due to the rewiring of the interaction network. The formulas de-

rived so far are pretty general and can be applied to any Langevin-Vicsek model

with momentum-conserving interaction, be it metric or topological. Additional

contributions to the entropy production rate appear if we consider non-reciprocal

alignment forces, which do not obey the action-reaction principle and may generate

currents in the flock even in the limit of vanishing motility. Since we are interested

in quantifying the effect of self-propulsion alone, we have restricted to the case of

symmetric interaction networks, to which Eqs. (215) and (218) apply. How the adja-

cency matrix changes over time depends however on its precise parametrization.

We focus here on the case of additive isotropic metric interactions, which by

definition have the following property: nij = n(|ri − rj|). Hence Eq. (218) reads:

Ṡ =
Jv0

2D ∑
ij
〈−∂n(r)

∂r

∣∣∣∣∣
r=|ri−rj |

(e(θi)− e(θj)) · (ri − rj)
|ri − rj|

cos(θi − θj)〉. (222)

When direct alignment is short ranged, it is reasonable to assume that n(r) and its

derivative ∂rn(r) decay (in magnitude) sufficiently fast. A common parametrization

for the Vicsek model is, for instance, nij = Θ(R− |ri − rj|), where Θ is the Heaviside

function. In this case, −∂rn = δ(r− R), so only pairs of particles at a distance equal

to the interaction radius are selected in Eq. (222).

The whole formula can be read, from a coarse-grained perspective, as a weighted

divergence, the weight being the mutual alignment of particles’ velocities. Notice

that this weight has no definite sign: for almost aligned birds, cos(θi − θj) > 0

and positive contributions to the EPR come from diverging configurations. On

the contrary, anti-aligned spins, such that cos(θi − θj) < 0, produce entropy when

they move towards each other. In Fig. 20.c we show some configurations, in terms

of velocity alignment and mutual displacement, associated to positive (red) and

negative (blue) entropy production. The same weighted divergence interpretation

also holds for other parametrizations of the nij matrix which bring little variations

compared to the Heaviside function, like n(r) = e−r/R.

To fix the ideas, we will only work with the former parametrization from now on.

In this case, Eq. (218) is conveniently rewritten as:

Ṡ =
Jv0

2D ∑
ij
〈δ(R− |ri − rj|) cos(θi − θj)

[
cos(α̂ij − ϕ)− cos α̂ij

]
〉, (223)

where we introduced a new variable α̂ij, defined as the angle between the distance

vector rj − ri and the direction of motion of the i-th bird, e(θi). Eq. (223) shows

that, in the presence of metric interactions, the EPR is a rather simple quantity,

expressed as the sum of two-particle functions. The violation of the time reversal

symmetry is then ultimately determined by the properties of the two-body steady

state distribution.

Let us call q(α, ϕ) the number of particles with mutual misalignment ϕ = θj − θi

placed at a distance R along a direction parametrized by a newly defined angle
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a b

c

Figure 20: a: Definition of α and ϕ used in the main text: given α̂ij the angle formed

by the vector ∆∆∆ = rj − ri with vi, and ϕ = (θj − θi) mod 2π, we define αij =

α̂ij − ϕ/2 + πΘ(ϕ mod 4π − 2π). Notice that, because of the modulo operation in

the definition of ϕ, ϕ/2 ∈ [0, π). Since ϕ/2 can only span a half circle, the remain-

ing set of configurations is parametrized by transforming α into α + π. b: Time

reversal transformation on the pair of particles (i, j): the positions are unchanged,

while the directions of motion are flipped. The transformation amounts to the

rotation of α of an angle π. c: Illustration of positive (red arrows) and negative

(blue arrows) contribution to the EPR for three selected values of α̂. Black arrows

denote configurations which do not produce entropy.

αij = α. It is indeed convenient to ‘symmetrize’ the definition of the displacement

angle α̂ij and introduce the new variable:

αij = α̂ij − ϕ/2 + πΘ(ϕ mod 4π − 2π) . (224)

The displacement angle α̂ij is the one formed by the distance vector rj − ri with vi

(see Fig. 20); the variable αij indicates, on the contrary, the angular displacement

with respect to the average direction of the two particles11. The Heaviside function

Θ in Eq. (224) serves us to reconcile the 2π-periodicity of the natural angular vari-

ables of the problem, α̂ij, θi and θj, with the introduction of ϕ/2 in the definition

(224). With this rewriting, Eq. (223) becomes:

Ṡ =
Jv0

2D

∫

[0,2π]2
q(α, ϕ)ε(α, ϕ)dαdϕ, (225)

with

ε(α, ϕ) = cos ϕ
[
cos

(
α− ϕ

2

)
− cos

(
α +

ϕ

2

)]
, for ϕ ∈ [0, 2π). (226)

The function in Eq. (226) is represented in Fig. 21: a relevant feature is that

ε(α, ϕ) = −ε(α + π, ϕ). Rewriting Ṡ as in Eq. (225) is helpful to notice that the

11 Only when ϕ is convex, α̂ is the angle formed by rj − ri with respect to the direction of motion of the

center of mass of this 2-body system; when ϕ is concave, the reference direction is the opposite one.
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a b

Figure 21: a: ε(α, ϕ), i.e. the intensive fluctuating entropy production rate (rescaled by J/D)

as a function of α and ϕ. b: Plot of the function ε(α, ϕ) + µ cos ϕ (with µ = 4). This

function seems to reproduce qualitatively the numerically reconstructed log q(α, ϕ)

(cfr. Fig. 26) — at least in the proximity of the transition point where the EPR

peaks. For a better quantitative evaluation, cfr. Fig. 28.

entropy production is wiped out by symmetry arguments: if mirror configurations

like those in Fig. 20.b are equally probable, the EPR is bound to be zero. A neces-

sary condition to have violation of the time reversal symmetry is therefore that the

steady-state two-particle distribution is asymmetric under exchange of the relative

positions of the two self-propelled particles, i.e. q(α, ϕ) 6= q(α + π, ϕ). The positivity

of the entropy production rate constrains the way this asymmetry is realized, as

illustrated by numerical simulations.

PT violation

Before presenting numerical results, let us remark that asking for a violation of the

T symmetry is the same as asking for a violation of the PT symmetry. As already

pointed out by Cates and coworkers in a coarse-grained analysis of the stochastic

field dynamics [15], in an extended flock, where the entropy production rate is

computed through spatial averages of local quantities, irreversibility requires that

the PT-symmetry is violated, not the T-symmetry alone. If PT symmetry holds,

reversibility is restored. At the microscopic level, the same requirement is still true,

and still results into a constraint on the spatial distribution of the particles which

make up the active fluid. This constraint is however expressed as a condition on

the local scale, whereas constraints are imposed on the shape of the mesoscopic

patterns when working with stochastic field theories [15].

The effect of the parity transformation on the microscopic degrees of freedom of

the system is to flip all the orientation vectors, e(θi) 7→ −e(θi) = e(θi + π), and to

reflect the spatial coordinates with respect to the origin, ri 7→ −ri. Combined with

the T transformation, which only maps the velocities vi to −vi, PT amounts to

ri 7→ −ri , θi 7→ θi + 2π = θi mod 2π. (227)

On our reduced variables α and ϕ, both T and PT act as follows:

α 7→ α + π , ϕ 7→ ϕ. (228)
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The asymmetry condition on q(α, ϕ) that we derive from the irreversibility condition

Ṡ ≥ 0 is then the microscopic analogue of the asymmetry constraints emerging in

the hydrodynamic model.

4.2.2 Numerical results

Phenomenology of the simulated model

In order to check the predictions of the previous sections, we study numerically two

variants of the model in Eq. (211) for systems of N aligning ABPs constrained on a

square box of linear size L = (N/ρ0)1/2 with periodic boundary conditions. In this

section we analyze the metric variant with nij = Θ(R− rij). The discussion of the

Voronoi topological variant is contained in 4.2.5.

The considered continuous-time ABP model exhibits a phase transition from an

isotropic disordered phase to a polar ordered phase, as in the original discrete-time

model introduced by Vicsek et al. [192], but it does not reproduce some of the

familiar patterns observed there, such as travelling bands. Typical configurations

are shown in Fig. 22. The structures that tend to form, as the noise amplitude is

reduced and the system enters into the ordered phase, are high-density polar clus-

ters moving against an isotropic low-density background fluid. Phase coexistence

between dilute and dense portions of the system is lost when the rotational diffu-

sion coefficient of the ABPs is very low (i.e. the persistence time τp = D−1 is very

high); in such conditions the whole flock consists of a single dense moving cluster.

The most important difference between the ABP model we simulate and the orig-

inal model by Vicsek et al.[192], which explains the different phenomenology we

observe, is in the additive nature of interactions [51]. In the original model, each

bird firstly implements an average over the directions of motion of the surround-

ing particles, and then imperfectly aligns to it. This average operation makes the

strength of the total alignment force roughly independent of local density, whereas

in Eq. (211) local density fluctuations enhance or lower the weight of the ferro-

magnetic interaction over the stochastic term. The original Vicsek model is in

fact better described, in the Langevin formalism, by a ‘weighted’ adjacency ma-

trix nij = wiΘ(R− |ri − rj|), with weights equal to the inverse number of neighbors:

wi = n−1
i =

[
∑j Θ(R− |ri − rj|)

]−1
. This matrix cannot be built using only the in-

formation on the positions of particles i and j (although interactions are still local),

it is generally non-symmetric and causes the violation of momentum conservation

within the system. However, with this kind of non-additive interactions, band-like

structures are recovered. A detailed analysis of the properties of continuous-time

ABP models with additive versus non-additive interactions is contained in [51]. De-

spite the greater numerical stability of the latter, we decide to use a model with ad-

ditive interactions in our analysis, in order to disentangle possible non-equilibrium

effects due to the lack of momentum conservation from non-equilibrium effects

resulting from self-propulsion alone.
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Figure 22: a-f: Snapshots of the SPP system (N=4096) in its (supposed) steady state, in vari-

ous points of the phase diagram (marked by the white circles in Fig. h). Typical

configurations in the ordered phase display dense polar clusters against a dilute

isotropic background. In the deeply disordered phase, particles are oriented and

displaced randomly. g: Order parameter Φ = 1
N

∣∣∣∑N
i=1 e(θi)

∣∣∣. h: Phase diagram

showing the quantity χ̂ = 1
D
(
〈Φ2〉 − 〈Φ〉2

)
, which can be considered as a proxy

of the susceptibility (χ = − ∂Φ
∂h , with h the magnitude of a magnetic field h that

couples to the vi’s) at equilibrium. Notice that the color code is in log scale. i:

Phase diagrams showing the entropy production rate computed as in Eq. (218).

Figs. g-i have been obtained from simulations of N = 1024 SPPs observed over

5 · 106 integration steps. In all the plots the white line indicates the mean field

transition line.

Global properties

Using the formulas in Eq. (215) and (218), we measured the entropy production

rate across the phase diagram. Results are reported in Fig. 22. Control parameters

are here the average density ρ0 and the temperature of the thermal bath D, while

we fix the value of the SPP speed to v0 = 0.5. The interaction strength and the

interaction range are set, respectively, to: J = 1, R = 1. Two equilibrium limits can

be immediately identified, at the two extremes of the phase diagram: Jρ0/D → 0

and Jρ0/D → ∞.
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Figure 23: a-b: Polarization curves of a flock of N = 1024 birds as a function of the control

parameter D/J and of the rescaled distance from the mean field critical value

DMF(ρ0) = Jπρ0R2/2. The mean field prediction works remarkably well, espe-

cially at higher densities, as expected. c: EPR estimates. Solid lines correspond

to the dissipated heat interpretation — Eq. (215). Dashed lines correspond to the

interpretation in terms of work of (fictitious) reshuffling forces — Eq. (218). d:

Dashed curves are now plotted versus the rescaled distance from the mean field

critical point (D−DMF)/DMF. The collapse is not very good, especially for small

ρ values, where the system is arguably farther from a mean field approximation.

e: Sensitivity to the choice of the integration step ∆t: blue lines are estimates of

the EPR using Eq. (215), orange lines are estimates of the EPR using Eq. (218).

There is a discrepancy between the two when ∆t is too large, compared to the

parameters of the process. Microscopic time scales are ρ
−1/2
0 v−1

0 and D — here

N = 1024, D = 5, ρ0 = 1.8. Notice that Eq. (218) (orange line) is numerically more

reliable, even at a larger ∆t. f: Parametric plot of the EPR mesured using Eq. (215))

and Eq. (218). The two quantities coincide when ∆t is sufficiently small. Different

colors indicate different densities, as in Fig. a.
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In the non-interacting limit, Jρ0/D → 0, the system corresponds to an ideal gas

of active Brownian particles where each particle can be seen as a passive tracer

transported by a fluid [170]. The system is therefore in a situation of effective equi-

librium12. The second limit, Jρ0/D → ∞ is less obvious and reveals that interac-

tions do not bring the system out of equilibrium in a monotonic way. In a perfectly

aligned system, torques do not make work, but it is not evident that the EPR must

vanish, because of a D−1 factor in front of Eq. (215). Even using the equivalent for-

mula (218), the argument is not conclusive: reshuffling is suppressed in the low-D

limit, but we do not know how fast ṅij converges to zero. Our numerical simula-

tions show that the system is asymptotically detailed balanced as D → 0. Then a

good reference equilibrium model in this region of the phase diagram is the XY

ferromagnet (Heisenberg in d = 3), which has been used as an effective description

for natural flocks of birds in the past years [136, 11].

From Figs. 22.g-i we see that the EPR maximum is approximately located at the

mean field critical point (white lines), which provides a good estimate of the true

transition point [51]. Polarization curves in Fig. 23.a-b show indeed a good collapse

when plotted as a function of the distance of the control parameter D from the

mean field critical value DMF = Jπρ0R2/2. On the contrary, EPR curves in Fig. 23.c-

d, do not exhibit a perfect collapse on a single master curve. This fact suggests

that the departure from equilibrium is not controlled by the polar order parameter

alone. Let us notice that, since the number N of SPPs is kept constant for all the

values of ρ0, there might be some uncontrolled finite size effects. However, we

believe that they are negligible, and that the decrease in non-equilibrium effects

observed at larger ρ is just due to the fact that those systems are closer to a mean

field situation. If the dynamics occurs at high densities on almost fully connected

interaction graphs, rewiring (due to the motion of few bids on the boundaries of

the interaction disk) acquires a lower and lower weight.

The final evidence from Figs. 23.c and 23.f is the agreement between dashed and

solid curves, which respectively correspond to the quantities (218) and (215). This

result provides a numerical validation of the hypothesis that the N-body system is

in a stationary state, the only assumption we made use of.

Local origin of dissipation

As a function of N, the EPR seems to be an extensive quantity: this fact has been

checked by varying the number of particles in numerical simulations, at fixed aver-

age density ρ0 — see Fig. 24. The weighted divergence interpretation of Eq. (218)

indicates indeed that heat is dissipated at a local scale — precisely the scale R of

the interaction radius. Specifically, this occurs because a bird which is exiting the

interaction disk (labeled j) has exchanged information with the bird in the middle

12 Let us notice that finding an equilibrium limit for D → ∞ is a strict consequence of the absence of

speed fluctuations. For fixed speed ABPs, the alignment force in the Langevin equation (211) is always

bounded, irrespectively of D. On the contrary, if speed fluctuations are allowed, they typically depend

on D in an unbounded way. In a model where the social interaction term is modified accordingly, in

order to reproduce an imitation mechanism which is not limited to the flight direction but also involves

the speed magnitude, we do not recover in the D → ∞ limit an ideal gas behavior, and the system is in

general out of equilibrium.
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Figure 24: Positivity and extensivity of EPR. a: We illustrate the origin of the asymmetry

between positive (red) and negative (blue) contributions to EPR. Pairs of particles

which modify their status of neighbors contribute to the irreversibility of the flock-

ing process (dashed lines indicate a distance equal to R). Pairs of particles that

are exiting each other’s interaction disk are typically more aligned than when

they enter. For particles moving in approximately opposite directions (left), a

large positive contribution to the EPR is associated to entrance events (red arrows,

εin = 1.76); a smaller contribution is associated to exit events, where particles are

less anti-aligned (red arrows, εout = −0.92). For pairs of particles approximately

moving in the same direction (right), the EPR contribution tends to have a larger

positive weight on exit events (red arrows, εout = 0.38 for the displayed configu-

ration) than on entrance events (red arrows, εin = −0.34). On entrance events the

two particles are typically less aligned because no direct interaction was occur-

ring at previous times. The shown trajectories have been selected from numerical

simulations with N = 1024, D = 3, ρ0 = 1 for illustration purposes. We remark

that the positivity of the EPR is only guaranteed on average on an ensemble of

trajectories. The fact that all contributions come from pairs of particles at distance

R� L means that this mechanism is local (R/L→ 0 in the thermodynamic limit)

and justifies the extensivity of the EPR. b: Numerical results for ρ0 = 1, v0 = 1,

J = 1, and varying N.

(labeled i) and is typically more aligned to its velocity, compared to a bird j′ which

is entering now the interaction disk and has not interacted directly with i before.

This mechanism (illustrated in Fig. 24.a) provides an explanation for several facts:

(i) positivity of the EPR, as it assigns a bigger weight to positive EPR contributions

than to negative ones; (ii) local origin of dissipation, jusifying the extensivity of the

EPR, as confirmed by numerical results in Fig. 24.b; (iii) emerging asymmetries in

the steady-state two-particle density q(α, ϕ), which we analyze in Section 4.2.3.

Comparison with MIPS irreversibility

Previous studies on the irreversibility of the motility-induced phase separation pro-

cess have revealed that dissipation in apolar active matter is localized and particles

tend to segregate in space according to their energetic role. It has been shown,

both using microscopic AOUP models [130] and hydrodynamic theories [137], that

the entropy production can be localized on interfaces, whereas the bulk is approxi-

mately at equilibrium. The decomposition of the global EPR as an integral of a local
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Figure 25: a–d: Snapshots showing the single-particle contribution to the EPR, ṡi. On the

left (a,c) this is computed from Eq. (215) as ṡi = 〈q̇i〉
D = − J

D ∑j〈θ̇i ◦ nij sin(θi − θj)〉.
On the right (b,d) the single-particle contribution is computed from Eq. (218) as

ṡi = 〈ẇi〉
D = − J

2D ∑j〈ṅij ◦ cos(θi − θj)〉. In both cases no correlation between the

spatial segregation of particles and their contribution to the EPR (positive/red

or negative/blue) is observed. e: Time series of the average EPR of the flock

and of a sample single particle contribution (properly rescaled). The two time

series have comparable fluctuations, especially when the stochastic heat is con-

sidered. This fact shows that all the particles contribute in the same way to the

global EPR. f: Probability density of the single-particle stochastic heat (left) or ir-

reversible work of fictitious reshuffling forces (right). The histogram is unimodal,

even when particles are organized into polar clusters, in clear contrast with the

MIPS phenomenology [52].

field (in continuous theories) or as the sum of single-particle contributions (in agent-

based models) is however non-unique, since local quantities are always defined up

to an additive state function.

One of the single-particle quantities that characterize the irreversibility of the

MIPS process is the active work per particle, i.e. the work that the active force ex-

erts on single particles along a trajectory of length τ. Its probability distribution

has been studied in the framework of the large deviation theory and it has been

shown that it displays a marked bimodality in the phase-separated state, with corre-

sponding non-convexity of the associated rate function [52]. The active work values

corresponding to the minima of the rate function are typical of particles belonging

to the bulk of the dense phase and to the dilute phase, respectively. Work values

corresponding to the non-convex region are, on the contrary, typical of particles at

the interface [52].

Motivated by such results, we try to understand whether a similar scenario is

occurring in polar systems. We recall that the dissipation mechanism in our model

is completely different form the one studied in [130, 52], where the self-propulsion

force is treated as a T-even variable and irreversibility stems from the fact that in the

forward trajectory the self-propulsion force pushes the particle, while in the time-

reversed one it opposes the particle’s motion. In our case, self-propulsion enters
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through a reversible term, translational diffusion is absent, and the particles’ motil-

ity is not altered by any excluded volume effects. Nonetheless, at low D, particles

clusterize themselves and it is possible to seek for specific dissipative behaviors on

the interface, the bulk, the front or the rear of the flock. From the analyses reported

in Fig. 25, we deduce that this is not the case. These analyses consist in a direct in-

spection of the single particle contribution, computed from Eqs. (215) and (218) as

ṡi = 〈q̇i/D = − J
D 〈∑j θ̇i ◦ nij sin(θi − θj)〉 and ṡi = 〈ẇi〉/D = − J

2D 〈∑j ṅij ◦ cos(θi − θj)〉,
respectively. Looking at the movies, we could not observe any stable segregation

of the flock into positively and negatively contributing assemblies of particles. on

the contrary, we observed very large fluctuations of the local entropy production

rate. A comparison between the time series of the average EPR (over the flock) and

the single-particle contribution to the EPR (Fig. 25.e) suggests that particles do not

have their own fixed energetic role, but this strongly fluctuates in time (as much

as the global EPR does). Also the reconstructed probability distributions of 〈q̇i〉/D

and 〈ẇi〉/D are unimodal rather then bimodal, in clear contrast with what has been

observed in MIPS models [52].

We conclude that dissipation in polar flocks is due to a local, non localized mech-

anism.

4.2.3 The two-particle density

The most interesting insight derived from this analysis concerns the two-particle

density. We have already observed that, in the considered active matter model,

non-equilibrium stems from the combination of interaction and self-propulsion: in

the absence of any of these two ingredients, the system falls in an equilibrium

state. Since the interaction we implement is purely pairwise, signatures of non-

equilibrium can be traced in the steady state two-particle density.

Given the distribution of the N-body system ψ(ΓΓΓ), where Γi = (xi , θi) and ΓΓΓ =

(Γ1, . . . ΓN) is a point in the system’s phase space [0, L]2N ⊗ [0, 2π]N , let us introduce

the one-particle density

p1(Γ1) =
∫

dΓ2 . . . dΓNψ(ΓΓΓ), (229)

and the two-particle density

p2(Γ1, Γ2) =
∫

dΓ3 . . . dΓN ψ(ΓΓΓ). (230)

The two-particle distribution in Eq. (230) is linked to the quantity q(α, ϕ) introduced

in Eq. (225) by the following relation:

(231)
q(α, ϕ) = N

∫
dΓ1dΓ2 p2(Γ1, Γ2) δ2π(θ2 − θ1 − ϕ)

· δL
(

x2 − x1 − R cos
[
θ1 + ϕ/2 + α + πΘ(ϕ mod (4π)− 2π)

])

· δL
(
y2 − y1 − R sin

[
θ1 + ϕ/2 + α + πΘ(ϕ mod (4π)− 2π)

])
,

where δ2π(·) and δL(·) are the periodically extended Dirac distributions. With this

definition, q(α, ϕ) is 2π-periodic in both the arguments, and invariance under par-

ticles’ permutations amounts to the symmetry of q(α, ϕ) with respect to ϕ, i.e.
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q(α, ϕ) = q(α, 2π − ϕ) in the [0, 2π) domain. Moreover, the definition (231) corre-

sponds to a simple operational procedure to compute q(α, ϕ) from the data: it is

sufficient to firstly extract α̂ij and ϕ and work, for both angles, in the quotient set

[0, 2π); we can later compute α as (α̂− ϕ/2) mod 2π.

We have already seen that, in order to have nonzero EPR, q(α, ϕ) must satisfy

q(α, ϕ) 6= q(α + π, ϕ) for at least some sets of ϕ values of non-vanishing measure.

Precisely, since the housekeeping entropy production is by definition non-negative,

the asymmetries of q(α, ϕ) must be positively correlated to those of ε(α, ϕ). We

define a ‘two-particle quasi-potential’ u(α, ϕ) associated to q(α, ϕ):

q(α, ϕ) = N2g(R)e−u(α,ϕ) (232)

and consider its T-symmetric and T-antisymmetric parts:

u+(α, ϕ) =
1
2
[u(α, ϕ) + u(α + π, ϕ)] u−(α, ϕ) =

1
2
[u(α, ϕ)− u(α + π, ϕ)] . (233)

In terms of these quantities, the housekeeping EPR is computed as

(234)
Ṡ = −

∫
dαdϕ e−u+(α,ϕ)2 sinh(u−(α, ϕ))ε(α, ϕ)

' 2
∫

dαdϕ e−u+(α,ϕ) (−u−(α, ϕ)
)

ε(α, ϕ)

where we exploit the assumption that u−(α, ϕ) is small to go from the first to the

second line. The quantities q(α, ϕ) and −u−(α, ϕ) have been reconstructed from the

numerical simulations and are shown in Fig. 26.

From a comparison between Figs. 21.b and 26, it is evident how the reconstructed

−u(α, φ) resembles a functional form of the kind λε(α, ϕ) + µ cos ϕ + γ, with λ, µ, γ

free parameters. We can empirically argue that most of the features of the two-

particle distribution are thus captured by:

q(α, ϕ) ∼ eλε(α,ϕ)+µ cos ϕ+γ. (235)

Recalling the maximum entropy construction, Eq. (235) reads as the Max-Ent distri-

bution in the reduced two-body phase plane (α, ϕ) that is obtained by constraining

the average values of the following physical observables: ε(α, ϕ) and cos(ϕ). These

observables respectively correspond to measures of the irreversiblity and of the de-

gree of local order at the scale of the interaction range. The final Lagrange multiplier

γ comes from a normalization constraint. Let us recall that q(α, ϕ) is not normalized

to one but to Ng(R), where R is the interaction radius and

g(r) =
∫

dΓ1dΓ2 p2(Γ1, Γ2) δ(|r2 − r1|= r). (236)

A more detailed analysis of the T-antisymmetric parts of the quasi-potential high-

lights the strong correlation between u−(α, ϕ) and ε(α, ϕ). In Fig. 26 we plot the level

curves of ε(α, ϕ) over the data obtained from our numerical simulations. There is

remarkable agreement between the two, especially at intermediate angular diffusiv-

ities, D ' DMF (close to the mean field critical point), where the EPR peaks. At low

D, the smaller modulations around ϕ = ±π/4 are washed out in the data: when the

system is strongly polarized, u+ is much larger than u−, and this might result into a
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a

b

Figure 26: a: Minus two-particle quasipotential −u(α, ϕ) = log q(α, ϕ) reconstructed form

numerical simulations (N = 1024). Precisely, q(α, ϕ) is estimated through a his-

togram that we build using all the particle pairs at a distance R− δR < |ri − rj|<
R + δR, with δR = 0.05 (R = 1). We highlight the striking similarity between

these figures and Fig. 21. Anti-symmetric part of the minus quasi-potential

−u−(α, ϕ) = 1
2 [log q(α, ϕ)− log q(α + π, ϕ)] for different values of the control pa-

rameter D. White curves indicate the level curves of the ε(α, ϕ) function.

systematic reconstruction error due to low statistics. In the large D limit the recon-

struction of the T-antisymmetric quasi-potential u−(α, ϕ) is dominated by statistical

noise: as D → ∞, we approach indeed an equilibrium limit, where we expect the

probability density function to be symmetric, like in an ideal gas of ABPs. For a 3D

representation of the reconstructed u−(α, ϕ) and of their fit functions, see Fig. 27.

As regards the T-symmetric part of the quasi-potential, we reconstructed u+(α, ϕ)

from the simulations and fitted it to the truncated Fourier series of a symmetric

ϕ-dependent function: ∑4
k=0 ak cos(kϕ). Despite there is a clear decay of the ampli-

tude of Fourier coefficients with k, modes of order higher than 1 are needed in the

ordered phase, where particles are strongly aligned and u+(ϕ) is too peaked around
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D = 0.80 D = 3.00

D = 4.20 D = 8.00

Figure 27: Three-dimensional representation of the numerically reconstructed function

−u−(α, ϕ) (on the left) and λε(α, ϕ) (on the right), with the value of λ obtained

from a least square fit. The comparison between left and right-hand sides of each

sub-figure reveals how good our guess — based on the heuristic interpretation in

Eq. (235) — is. Residuals of this fit are shown in Fig. 28.

the origin to be described by a simple cosine function (see Fig. 28). We conclude

that the heuristic functional form (235) works pretty well in the disordered phase,

up to the transition, D & DMF. Notice that for both D � DMF and D � DMF, a

working equilibrium description holds and the role of the two-particle distribution

becomes less important.

Finally, let us consider how this asymmetry in the pair distribution decays with

the inter-particle distance r. Let us define q(α, ϕ; r) as in Eq. (231), but now for an
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Figure 28: a: Residuals of the least square fit of the antisymmetric quasi-potential

u−(α, ϕ) ∼ −λε(α, ϕ) shown in Figs. 26–27. Residuals are computed as

∑ij

[
u−(αi , ϕj) + λ∗ε(αi , ϕj)

]2
/∑ij

[
u−(αi , ϕj

]2
. The region where the fit works the

best is the one where the EPR peaks and density heterogeneity is not too strong,

in the near right of the mean field transition line. b: We fit the numerically recon-

structed function −u+(ϕ) = −
∫

dα u+(α, ϕ) (shown in the inset) with a truncated

Fourier series ∼ ∑4
k=0 ak cos(kϕ). The color code of the inset plot refers to the

values of the D parameter. The fitted Fourier coefficients a1 . . . a4 are plotted as

functions of D.
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Figure 29: a: Scalar measure (L1([0, 2π]2) norm) of the asymmetry of the minus-quasi-

potential, u−(α, ϕ; r) = log q(α + π, ϕ; r)− log q(α, ϕ; r), for varying r and D. There

is a clear peak at the interaction radius r = R for all the considered values of

the rotational noise variance. For lower values of D the decay to zero at large r

is slower because of the presence of heterogeneous structures affecting the pair

distribution. b: Color maps showing −u−(α, ϕ; r) for D = 4.5. Notice the different

scale for r = R and r 6= R. All these analyses have been performed on systems of

size N = 2048.

arbitrary r; from this function we can again define a quasi-potential and especially

its T-antisymmetric part u−(α, ϕ; r). In Fig. 29 we numerically reconstruct this func-

tion from our simulations and quantify its degree of asymmetry through the scalar

measure

‖u−‖1(r) =
∫

[0,2π]2
dαdϕ u−(α, ϕ; r). (237)

When the particles’ spatial distribution is not too anisotropic, this asymmetry mea-

sure presents a clear peak at r = R. This feature obviously depends on the precise

parametrization of n(r) we chose. We expect that, choosing alternative parametriza-

tions, Eq. (237) will still give an indication of the shape of −∂rn(r).

In summary, the pair distribution asymmetry under the time-reversal operator is

not only a signature of the irreversibility of the flocking process, but can also be used

to infer the nature of pairwise interactions in such high-dimensional off-equilibrium

systems. This quantity is easy to reconstruct even with moderate statistics, and

possibly provides a useful tool to analyze experimental datasets on diverse polar

active systems.

4.2.4 Kinetic theories for the two-particle density

An interesting question is how to reproduce analytically the traits of the two-particle

density discussed above. The task can be addressed using kinetic theory.

Kinetic theory approaches for active matter have been developed by adapting

standard methods used in the statistical mechanics of passive systems. Let us no-

tice that usually the interest is limited to the reconstruction of the single particle

density p1(Γi), which describes the probability of finding the sample particle i in
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the point Γi of its own phase space. This quantity is indeed sufficient to compute

several average quantities of interest, which are defined as single-particle functions,

like the average number density or the average kinetic energy. Such p.d.f., p1(Γi),

can also be defined for N-body systems with a deterministic and time reversible

dynamics; here, however, since the particles’ dynamics is stochastic, a probabilis-

tic description is already present at the microscopic level. The micro-state of the

N-body system is described by the NESS density ψ(ΓΓΓ), and the single particle distri-

bution, the pair distribution, and any other n-particle distribution are just obtained

by marginalization.

There are several ways to model the microscopic stochastic dynamics, with as

many different approaches to derive the kinetic equations. A first type of ap-

proaches consists of defining agent-based rules for the motion, diffusion and col-

lision events which influence the evolution of each particle’s state, and build from

them a Boltzmann-like equation for the single particle p.d.f.. This is the case of

the so-called BGL (Boltzmann-Ginzburg Landau) method [150, 7, 8], and of the

Enskog-type kinetic theory [100].

Another possibility is to consider N-body ABP models, like Eq. (202), described

by a set of SDEs in continuous time. This second option potentially allows us to

answer broader questions, as we know the evolution of the N-body p.d.f. through

the Fokker-Planck equation (205), whose marginalization yields the evolution equa-

tion for any probability density pn(Γ1, . . . , Γn) with n < N. Kinetic theories derived

using this second approach (also known as Smoluchowski approach) are therefore

not limited to the reconstruction of p1 and to the study of average single-particle

observables, but may extend, for example, to average quantities depending on the

two-particle density, like our entropy production rate. For this reason, we will focus

on this second kind of derivation.

Formally, while the full FPE (205) is an ordinary PDE, the marginalized equation

is a partial integro-differential equation, where partial derivatives of pn mingle with

collision integrals depending on higher pm’s (m > n). The procedure indeed pro-

vides us with a hierarchy of equations of the BBGKY kind. We report here the first

two ones for the model in Eq. (211):

D(1)
t p1(Γ1) = J(N − 1)

∫
dΓ2n12∂θ1 [sin(θ1 − θ2)p2(Γ1, Γ2)] + D∂2

θ1θ1
p1(Γ1), (238)

D(2)
t p2(Γ1, Γ2) = Jn12

{
∂θ1

[
sin(θ1 − θ2)p2(Γ1, Γ2)

]
+ ∂θ2

[
sin(θ2 − θ1)p2(Γ1, Γ2)

]}

+ J(N − 2)
∫

dΓ3
{

n13∂θ1 [sin(θ1 − θ3)p3(Γ1, Γ2, Γ3)]

+ n23∂θ2 [sin(θ2 − θ3)p3(Γ1, Γ2, Γ3)]
}

+ D
(

∂2
θ1θ1

+ ∂2
θ2θ2

)
p1(Γ1).

(239)

where D(1)
t = ∂t + v0e(θ1) · ∇1 and D(2)

t = ∂t + v0e(θ1) · ∇1 + v0e(θ2) · ∇2. The goal

of any kinetic theory is to truncate this hierarchy by finding a suitable closed form

approximation of the collision integrals [131].

Molecular chaos

The simplest possible closure is Boltzmann’s molecular chaos hypothesis. Renam-

ing gn the n-body connected correlation function, the ansatz reads g2 = 0. In other
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words, the two-particle density factorizes into the product of single particle distri-

butions, p2(Γ1, Γ2) = p1(Γ1)p1(Γ2), and p1(Γ1) remains the only quantity to compute.

This closure is equivalent to a mean field approximation and it is the most widely

used to derive hydrodynamic equations for active matter — only one or two excep-

tions regard a very small number of recent works [146, 113, 53].

In order to simplify the scenario even further, we can start by assuming homo-

geneity. Having a system in a periodic box of linear size L, the homogeneity as-

sumption amounts to:

p1(x, θ) =
1
L2 φ(θ). (240)

The associated Boltzmann equation for φ(θ) can be derived from Eq. (238) and easily

studied by looking at the evolution of its Fourier series coefficients (details are

reported in Appendix C for the sake of completeness). Numerical integration and

linear stability analysis agree in predicting a transition from an isotropic phase to a

polar ordered phase, occurring at the mean field transition point DMF = JπR2ρ0/2.

Clearly, assuming that g2(x, θ) = 0 and that the single particle distribution p1 is

of the form of Eq. (240), it is impossible to reproduce the desired asymmetry in the

two-body p.d.f.. The same happens for any factorized p.d.f. of the kind

p1(x, θ) = ρ(x)φ(θ). (241)

If we try to compute the joint probability of a pair of particles at a distance x2− x1 =

∆∆∆, i.e.

p̃2(θ1, θ2, ∆∆∆) =
∫

dx1dx1 p1(Γ1)p1(Γ1)δ(x2 − x1 −∆∆∆), (242)

using the molecular chaos hypothesis and Eq. (241), we obtain indeed a T-symmetric

p.d.f.:

p̃2(θ1, θ2, ∆∆∆) = φ(θ1)φ(θ2)
∫

dx1ρ(x1)ρ(x1 + ∆∆∆) = p̃2(θ1, θ2,−∆∆∆). (243)

A first step forward may be to allow for spatial and angular coordinates to be in-

terdependent; besides, even in standard BGL approaches, Fourier coefficients which

depend on the spatial degrees of freedom are used. However, since the molecular

chaos ansatz is a closure for p1, the resulting kinetic theory is not supposed to pro-

vide in general a good prediction for the two-particle p.d.f.. We also tried to assess

the degree of mutual dependence of the single particle degrees of freedom, x and

θ, by measuring their mutual information from numerical simulations. We found

that their mutual dependence is always very low, in all the regimes of interest, even

though a little difference is visible when moving from the disordered to the or-

dered phase (additional details in App. C). This fact justifies the hypothesis that the

single-particle distribution p1(x, θ) is factorized in its phase and space components.

An alternative route is to include pair correlations in the kinetic theory, as already

done by Ihle and coworkers in [53] and in [113] for two variants of the Vicsek

model, in discrete time with random binary collisions and in continuous time with

non-additive interactions, respectively. We discuss this second option in the next

paragraph.
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Ring-kinetic theory

The ring-kinetic closure consists in setting the connected part of the three-particle

distribution equal to zero, g3 = 0, so that the hierarchy is consistently truncated

at the level of the second equation — Eq. (239). In this way, correlations between

pairs of colliding particles, which originate from previous collision events, are taken

into account, but not higher order ones. The inclusion of such correlations is par-

ticularly relevant to describe dense systems, or systems with strong density fluctua-

tions. Indeed, we recall that the molecular chaos ansatz typically comes along with

a diluteness assumption, requiring that the time between subsequent collisions is

longer than the time needed for single particle velocity distributions to decorrelate.

Unlike standard Vicsek-like models13, the model we consider has additive interac-

tions, which are responsible for the formation of very dense clusters in the whole

symmetry-broken phase (Fig. 22). The presence of these dense structures then in-

validates the molecular chaos assumption in a big region of the parameter space.

Let us focus on our additive case, where closed integro-differential equations for

p1(Γ1) and g2(Γ1, Γ2) = p2(Γ1, Γ2) − p1(Γ1)p1(Γ2) can be straightforwardly derived.

However, these equations are intricate and in general hard to solve. Following

[113], a great simplification is to invoke again the assumption of homogeneity for

p1: in this setting, the anisotropy of the two-body p.d.f. will then be entirely carried

by the connected part of the two-particle density g2. The condition of homogeneity

on p1 may seem restrictive, since it is verified only in the disordered phase, far from

the transition, but it allows us to make some analytical progress by working with

the reduced functions φ(θ) — from definition (241) — and g̃2(θ1, θ2, ∆∆∆), which is

defined as:

g̃2(θ1, θ2, ∆∆∆) = L2
∫

dx1dx2δ(x2 − x1 −∆∆∆)g2(Γ1, Γ2) = L2 p̃2(θ1, θ2, ∆∆∆)− φ(θ1)φ(θ2).

(244)

The evolution equations for φ(θ) and g̃2(θ1, θ2, ∆∆∆) are obtained from Eqs. (238)–

(239) using Eqs. (241) and (244) and taking the thermodynamic limit: N → ∞,

L → ∞, N/L2 = ρ0. If we also rescale the time in order to transform it into a

dimensionless variable, t→ Dt, we find:

(245)∂tφ(θ1) =
2ν

πR2

∫
d∆∆∆ n12(∆)∂θ1

[
sin(θ1 − θ2)g̃2(θ1, θ2, ∆∆∆)

]

+ 2ν
∫

dθ2 ∂θ1

[
sin(θ1 − θ2)φ(θ1)

]
φ(θ2) + ∂2

θ1θ1
φ(θ1);

13 Of course, going beyond the molecular chaos approximation is helpful to derive a more accurate kinetic

theory also for Vicsek-like models with non-additive interactions, where phase coexistence and pattern

formation take place across the transition point, even though in different forms. This has been done in

[53, 113].
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D(1−2)
t g̃2(θ1, θ2, ∆∆∆)

=
J
D

n12(∆)
(
∂θ1 − ∂θ2

) {
sin(θ1 − θ2)

[
g̃2(θ1, θ2, ∆∆∆) + φ(θ1)φ(θ2)

]}

+ 2ν
∫

dθ3 φ(θ3)
{

∂θ1

[
sin(θ1 − θ3)g̃2(θ1, θ2, ∆∆∆)

]
+ (1↔ 2)

}

+
2ν

πR2

∫
dθ3dh

{
n13(h)∂θ1

[
sin(θ1 − θ3)φ(θ1)

]
g̃2(θ2, θ3,−∆∆∆ + h) + (1↔ 2)

}

+
(

∂2
θ1θ1

+ ∂2
θ2θ2

)
g̃2(θ1, θ2, ∆∆∆).

(246)

with D(1−2)
t the material derivative of g̃2, defined as:

D(1−2)
t = ∂t −

v0

D

[
(cos θ1 − cos θ2) ∂∆x + (sin θ1 − sin θ2) ∂∆y

]
. (247)

The phrase (1 ↔ 2) indicates a term of the same kind as the previous one in the

brackets, where particles 1 and 2 are exchanged (see App. C).

What we look for is a steady state solution for Eqs. (245)–(246). Given the struc-

ture of the equations, it is helpful to exploit the periodicity of the domain, both

in the angular and spatial variables, and focus on the coefficients of the associated

Fourier series:

φ(θ) = ∑
k

Akeikθ ; g̃2(θ1, θ2, ∆∆∆) = ∑
k,l,m,n

Fk,l,m,neikθ1+ilθ2+im 2π
L ∆x+in 2π

L ∆y . (248)

Thanks to the simple step form of n(r) we consider, the resulting equations for Ak

and Fk,l,m,n are easily derived (see App. C). They consist of an infinite set of coupled

ODEs for the Fourier modes, with symmetries and constraints guaranteeing that:

• A∗k = A−k and F∗k,l,m,n = F−k,−l,−m,−n, since φ and g̃2 are real-valued functions;

• Fk,l,m,n = Fl,k,−m,−n, reflecting the invariance of the functions p2 and g2 under

particles’ labels permutation (1↔ 2);

• ∂t A0 = 0 and ∂tF0000 = 0. As p1(Γ) and p2(Γ1, Γ2) are probability densities, they

must be normalized. From the normalization of p1 we deduce that A0(t) = 1
2π

at any t, while the normalization of p2 requires
∫

dΓ1dΓ2 g2(Γ1, Γ2) = 0, hence

F0000 = 0 exactly.

Moreover, the connected two-particle density g2(Γ1, Γ2) must satisfy, by definition,
∫

dΓ1 g2(Γ1, Γ2) =
∫

dΓ2 g2(Γ1, Γ2) = 0, (249)

hence Fk000 = F0k00 = 0 for any k. This condition is only ensured if we work in the

thermodynamic limit, where these Fourier coefficients do not evolve and g2 satisfies

the normalization condition at any time. From now on we will always be implicitly

referring to the thermodynamic limit.

The resulting evolution equations for the tensors of Fourier coefficients A and F

are of the form:

∂tA = f (A) +LF (250)

∂tF =MF + C(A) +H(A)F (251)
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Figure 30: Order parameter Φ = 2π<A1 as a function of the control parameter of the kinetic

theory ν. We compare the result of the two closures: molecular chaos (g2 = 0) and

ring-kinetic (g3 = 0) with homogeneity assumption. For larger values of ν than

those shown in the plot, the Fourier coefficients diverge, in the homogeneous

ring-kinetic theory.

where L, M and H are linear operators, some of which depend on A as indicated.

The explicit expression of Eqs. (250)–(251) reads (see also App. C):

(∂t + k2)Ak = ν2πk(Ak−1 A1−Ak+1 A−1) + ν2πk ∑
mn

Kmn [Fk−1,1,m,n − Fk+1,−1,m,n] ; (252)

∂tFk,l,m,n +
v0

2D
2π

L
[
(im + n)

(
Fk+1,l,m,n − Fk,l+1,m,n

)

+ (im − n)
(

Fk−1,l,m,n − Fk,l−1,m,n
)]

= ν2πk
(

Fk−1,l,m,n A1 − Fk+1,l,m,n A−1
)

+ ν2πl
(

Fk,l−1,m,n A1− Fk,l+1,m,n A−1
)

+ νKm,n
[
2πk

(
Ak−1F1,l,m,n− Ak+1F−1,l,m,n

)

+ 2πl
(

Al−1Fk,1,−m,−n − Al+1Fk,−1,−m,−n
)]
− (k2 + l2)Fk,l,m,n.

(253)

Here ν is a dimensionless control parameter defined as

ν =
Jρ0

2D
πR2. (254)

Numerical integration of Eqs. (252)–(253) indicates that the system has a transi-

tion from the isotropic homogeneous phase to the polar ordered phase, occurring

at ν∗ slightly smaller than 1 (mean field critical value). The presence of two-body

correlations in the kinetic theory facilitates the transition and transforms the mean

field polarization curve into a steeper curve, which more closely resembles the be-

havior of the order parameter of a first order phase transition. A comparison of the

two curves is shown in Fig. 30.

As regards the reconstruction of the connected two-body p.d.f., the adopted ring-

kinetic theory is less satisfactory. First of all, the F coefficients do not seem to always

reach a stationary stable fixed point over the observed temporal evolution (which is

pretty long — at least more than 20 times the intervals considered for the mean field

theory). Moreover, the two-body p.d.f. that we reconstruct from the (apparently

stationary) numerical solutions of Eqs. (252)–(253) does not have the same features

observed in the agent-based simulations of the model (see App. C). A possible

explanation for this fact is that, since g2 is the only x-dependent function, it might

be undertaking not only the description of the two-particle (connected) correlations,

but also the description of spatial heterogeneities. These features should be already

visible at the single-particle level, but are inevitably missed with the homogeneous



4.2 entropy production in vicsek-like models 109

parametrization we employ. In other words, the g2 function may be aiming here at

reproducing two effects: the one we are interested in, and another one coming from

a compensation for the wrong description of the marginalized p.d.f. of lower order.

Overall, these negative results suggest that the approach is not well-suited to the

considered problem. The assumptions g3 = 0 and that of homogeneity, despite

crucial to make analytical progress, are not physically motivated in the considered

system. A more detailed discussion of our numerical attempts can be found in

App. C: further investigation is however in progress at the moment of writing.

Non-additive ring-kinetic theory reproduces the T-asymmetry

As a final remark, we would like to comment on the results recently obtained by

Kurtsen and Ihle in the non-additive case [113]. The ring-kinetic theory devel-

oped by the authors is based on a variant of the ABP model (202) which consid-

ers non-additive, non-momentum-conserving interactions. Precisely, in this vari-

ant of the model, the metric binary adjacency matrix we adopted is replaced by

nij =
[
∑j Θ(R− |xi − xj|)

]−1
· Θ(R − |xi − xj|). With this choice of nij, collisions

have in fact a multi-particle nature. Nonetheless, the authors managed to compute

weights of the various collision integrals and derive a final set of equations which

are now nonlinear in F. This feature seems to stabilize the system of ODEs, which

they have numerically integrated.

In addition to the quantitative agreement of their theory with the reference non-

additive microscopic model, the two-particle density that Kursten and Ihle recon-

struct is also in qualitative agreement with our predictions for the additive model.

Precisely, they define from the connected two-body p.d.f. the quantity

h(r, α̂, ϕ) =
∫

d∆∆∆dθ1dθ2δ(∆x− r cos(α̂ + θ1))δ(∆y− r sin(α̂ + θ1))δ(θ2− θ1− ϕ)g̃2(θ1, θ2, ∆∆∆)

(255)

and they analyze it at the onset of polar order. This function exhibits a significant

and recognizable asymmetry at a distance equal to the interaction radius, r = R,

while the same asymmetry is much reduced for r > R or r < R. This feature

reveals that pairs of particles tend to be more diverging than converging, when

they are quite aligned, and more converging than diverging, when they are close to

a completely anti-aligned configuration (cfr. Fig. 31).

Let us notice that we made exactly the same predictions on the basis of pure

thermodynamic arguments in Fig. 20, exploiting only the EPR formula and the

irreversibility of the process. It is worth remarking that the entropy production

rate of the non-additive model considered by Kursten and Ihle is not exactly given

by Eq. (218) (while Eq. (215) still holds): in order to compute the EPR for this

model, in addition to the contribution of reshuffling, one should also include a

contribution coming from the presence of irreversible currents associated to a lack

of symmetry in the interaction (nij 6= nji). However, it is reasonable to assume

that this effect is small, unless enormous and very sharp density fluctuations form

within the system. A comparison between the entropy production rate of additive

versus non-additive Vicsek-like ABP systems may help clarifying how different the

non-equilibrium properties of these two variants of the model are.
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a b

Figure 31: Figures taken from [113], representing h(r, α̂, ϕ) at a distance equal to the interac-

tion radius (R = 1). In the notation of Kursten and Ihle, α corresponds to our α̂ and

∆φ to our ϕ. The black bullets indicate the relative positions of particle 1 (in the

center of the circle) and particle 2 (on the circumference). a: Two-particle correla-

tion function h as a function ∆φ for selected values of α = α∗. The red arrows indi-

cate the direction of the particle velocities at ∆φ = 0. When α∗ = π/2 or α∗ = 3π/2,

the second arrow preferentially points outward. b: Two-particle correlation func-

tion h as a function α for selected values of ∆φ = φ∗. The relative positions of the

bullets is α = 0. From the panels corresponding to φ∗ = π/2 and φ∗ = 3π/2, we

see that peaks in the distributions are approximately located at values of α which

maximize the outward projection of the red arrows along the segment connecting

the bullets. Perfectly aligned particles (φ∗ = 0) are approximately uniformly dis-

tributed on the circle. On the contrary, completely anti-aligned particles are more

likely colliding than getting apart from each other.

4.2.5 The Voronoi topological case

Model definition and numerical results

We investigate numerically another variant of the previous model, Eq. (211), where

the interaction neighborhood of each bird is defined by means of a global Voronoi

tessellation of the periodic domain:

nij =





1 if i, j are centers of neighboring Voronoi cells,

0 otherwise.
(256)

This kind of topological model exhibits a continuous phase transition from the

isotropic state to a polar ordered state where the symmetry is spontaneously broken.

In contrast to the previous case, density fluctuations do not cause an increase in the

average number of neighbors per bird (always equal to 6 on the plane), so that the

feedback mechanism leading to the segregation of dense ordered structures is not

at play. Nonetheless, long-range order is established in systems of finite density

[87].

The entropy production rate can be computed even in this case using Eqs. (215)

and (218); however, the interaction matrix nij is no more a simple function of |ri −
rj|, since determining whether two birds are Voronoi neighbors or not depends

on the whole local arrangement of their positions. We apply these formulas to
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measure irreversibility from numerical simulations of the model. As in the metric

case, we checked that the formulas give equivalent estimates when the steady state

is reached, so we only show results corresponding to Eq. (218) in Figs. 32–33.

The EPR curves exhibit a sharper peak than in the metric case, which is located

at the transition between the isotropic and polar ordered phases (see Fig. 32). This

is the point where reshuffling of the Voronoi network is mostly efficient. Here noise

and alignment strength are balanced, so that the motion of the self-propelled parti-

cles does have enough persistence to prevent that they swirl around a fixed position,

yet they do not move all in the same direction and can escape their neighborhood on

relatively short time scales. For an illustration, see the sample trajectories reported

in Fig. 33.

Quantifying network reshuffling

The fact that reshuffling is mostly efficient at the transition can be observed from

a comparison of the auto-correlation curves of the adjacency matrix at different

temperatures:

Cnet(t) =
1

N(N − 1) ∑
ij
〈nij(t0 + t)nij(t0)〉t0 , (257)

where 〈·〉t0 denotes a time average over multiple starting times. The function form

of Cnet(t) is quite well described by the following formula:

C(t) ∼ M(1 + cta)−d. (258)

Eq. (258) was empirically introduced in [32] to measure the neighbor overlap in

real flocks of birds. Due to the binary nature of nij, Cnet(t) indicates the average

fraction of neighbors at time t0 + t which were also neighbors at time t0. With a

crude approximation, the number of non-changing neighbors of a focal bird i can

be computed assuming that the mean square distance travelled by its neighbors

is l2 ∼ ta and that the diffusion is isotropic. The original M neighbors of bird

i will therefore occupy a volume proportional to (R + ĉta/2)d at time t0 + t, where

R is the the radius of the volume occupied at time t0 and ĉ a diffusion constant.

Therefore the number of non-changing neighbors is approximately estimated as the

ratio between these two volumes, from which Eq. (258) derives. Let us notice that,

since we only work in d = 2, both d and M are not parameters to fit: thanks to

Euler’s formula for planar graphs, the average degree of a Voronoi vertex is always

M = 6.

A fit of Eq. (258) with free parameters a and c is shown in Fig. 33.d: the agreement

is good, given the small number of fitting parameters. Both the fitted values of the

rescaled diffusion constant c = ĉ/R and exponent a show a positive correlation with

the EPR of the Voronoi flock (parametric plot in Fig. 33.e), indicating that the faster

is the decorrelation of the reshuffling network, the farther from equilibrium the

system is. However, the fitted parameters must not be interpreted as the exact coef-

ficients governing birds’ mutual diffusion, especially in the ordered phase (low D),

where the isotropy assumption through which Eq. (258) was derived breaks down

and the mutual diffusion is almost one-dimensional. Moreover, reshuffling of the nij
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Figure 32: a: Order parameter Φ on the plane (D, ρ). The white line indicates the alleged

critical point of the model. b: Entropy production rate across the phase diagram

of the topological Vicsek model (computed using Eq. (218)). Irreversibility clearly

peaks at the transition in this case. c: Polarization curves of the Voronoi ABP

model as a function of the noise amplitude D, for different values of ρ (indicated

by color code): without any rescaling, all of them are already overlapped on a

single master curve. The Binder parameter in the inset hints at the presence of

a second order phase transition. d: EPR curves as a function of D. The trend

with ρ (color code) is opposite to the one observed in the metric variant (Fig. 23).

This trend can be rationalized on the basis of dimensional arguments, according

to which reshuffling in the Voronoi topological case is purely ruled by the combi-

nation v0ρ1/2, as shown in the inset. All the figures are realized from simulations

of N = 2048 boids, with average density ρ = 1.

matrix involves multiple scales and the argument does not take into account that

the mutual diffusion exponent is, in general, non unique. A direct inspection of

the mutual diffusion curves in Fig. 33.c reveals that, on the spatio-temporal scales

allowed by the periodic boundary conditions, the diffusion exponents are pretty

different from those extracted from the fit, with the EPR maximum point corre-

sponding to a separating super-diffusive regime between the normal diffusive one

(for D > Dc ' 2) and a ballistic one (for D < Dc).

Heuristic explanation of the EPR phase diagram

As expected, the transition point in the studied Voronoi ABP model is independent

of the density of the flock, and almost no finite size effects are observed as N is

varied. The EPR scales with N in an approximately linear way, indicating that

entropy production is an extensive quantity and time reversal symmetry breaking
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occurs at a local scale. The rescaled curves in Fig. 33.a collapse into a single master

curves, corresponding to the EPR per unit bird, showing an unmistakable power

law dependence in the low-temperature and high-temperature regions of the phase

diagram: Ṡ/N ∼ Dσ, with exponents σlow_D ' 0.5 and σhigh_D ' −2.

A simple argument explains such scaling. Let us adopt the EPR formula (218),

where Ṡ is interpreted as the heat dissipated in reshuffling. The parameter D enters

in Eq. (218) through the D−1 coefficient, through the birds’ alignment cos(θi − θj)

and through the reshuffling rate ṅij. We approximately estimate these terms by

means of their average magnitude. In particular, let us take 〈cos(θi − θj)〉 ∼ C(l),

with C the (full) correlation function , which we assume isotropic, and l the average

distance of a pair of birds which are leaving each other’s Voronoi shell. As regards

ṅij, this amounts to estimating the rate of reshuffling events. We assume that the

typical reshuffling rate must be related to the time needed for a bird to travel the

same reference distance l.

For low D, the system is deeply ordered, so we can work in the spin-wave ap-

proximation (see Sec. 2.2.3) and only consider transverse velocity fluctuations πi,

whose magnitude scales as |π|∼
√

1−Φ ∼ D1/2. Mutual diffusion occurs mainly

in the perpendicular direction to the collective motion of the flock. Since the rota-

tional noise is little, we can assume that transverse motion is ballistic on the scale

of the average inter-particle distance l, and that the condition 〈∆x2
⊥(t)〉 ∼ π2t2 ∼ l2

identifies a reshuffling time scale τresh ∼ l/D1/2. Hence ṅij ∼ τ−1
resh ∼ D1/2. The

correlation function is dominated in this limit by the non-connected part or, in other

words, by the contribution of the parallel projections on the direction of collective

motion. A low-D expansion is C(l) ∼ 1− |π|2∼ 1− αD. Since ∑ij ṅij = 0 because

of the Euler formula, the nonzero contribution of the EPR is expected to come from

the connected fluctuations and to scale as Ṡ ∼ D1/2.

In the high D regime, where alignment interactions are negligible compared to

rotational noise, the limit model is an ideal gas of free ABPs. The mean squared

displacement of a free ABP is known:

〈∆x(t)2〉 =
2v2

0
D

[
t− 1

D

(
1− e−Dt

)]
. (259)

From Eq. (259) we deduce (both in ballistic and diffusive limits) that the reshuffling

rate scales as ṅij ∼ D−1. At the same time, since the system is disordered, the full

correlation function corresponds to the connected one: Cc(l) ∼ e−l/ξ(D). For D → ∞,

ξ(D) is a finite correlation length, which does not scale significantly with D; thus we

can assume that the mutual alignment of the particles will be equal to some default

value, independent of D. The resulting scaling for the EPR is Ṡ ∼ D−2.

Symmetry breaking

Let us notice that the argument above does not provide any cue on the symmetry

breaking, hence on the positivity of the EPR. Yet, in analogy to the metric case, we

can reverse the line of reasoning: knowing that the system is out of equilibrium,

irreversibility must impose asymmetry constraints, at least on the N-body steady

state distribution, ψ(ΓΓΓ) 6= ψ(εΓΓΓ). Is it possible to find signatures of irreversibility in

a lower-dimensional space, and how do they look like?
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Figure 33: a: EPR curves for different system sizes (log scale). The curves perfectly col-

lapse when rescaled by N. The master curve is peaked at the transition point and

roughly scales as D0.5 and D−2 in the low D and high D limits respectively. b: Tra-

jectories of few sample particles in the periodic box where the flock is confined, in

different regimes. In the ordered phase the trajectories are shown in the reference

frame of the center of mass. All the trajectories span the same time interval. The

observed diffusion behavior is very different: in the symmetry broken phase, mu-

tual diffusion occurs mainly in the transverse direction (with respect to collective

motion, black arrow). At D = 2, where reshuffling is mostly efficient, the flock is

disordered but the motion of the particles is still persistent. Persistence is reduced

as the rotational diffusion coefficient D is increased. In all cases, N = 1024, ρ0 = 1.

e: Mutual diffusion curves |∆rij|2, where ∆rij(t) = rij(t0 + t)− rij(t0) and rij = ri− rj.

The exponents we observe for D < 2 are different from those obtained through

the fit: see the main text for a discussion. The dotted upper bound corresponds

to the maximum distance that a pair of birds can reach before periodic boundary

effects kick in. d: Autocorrelation function of the adjacency matrix of the flock,

Cnet(t), defined as in Eq. (257). The color map refers to D values. The maximum

point of the EPR, D = 2, is marked in red and corresponds to the curve with the

fastest decay. Dashed lines are the fitted curves from Eq. (258). e: Parametric plot

of fitted parameters, a and c, versus EPR. The figure shows a positive correlation

both for the effective diffusion coefficient c and exponent a. Close to the transition

point (marked by the red dot) reshuffling is the most efficient and the system is

in the farthest condition from an equilibrium one.

In contrast to the model with pairwise metric interaction, we cannot write an ex-

plicit simple expression for ṅij. However, since the considered model is continuous

in time and space and the number of particles (i.e. of Voronoi cells) is conserved, we

can notice that cell rearrangements can only be mediated by two kinds of transition

configurations: T1 and rosettes (Fig. 34.c). The T1 transition corresponds to the tem-
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Figure 34: Reshuffling of Voronoi cells through T1 and rosette transitions. The transitional

configuration associated to T1 includes a 4-fold Voronoi vertex and a set of 4

particles forming a quadrilateral inscribed in a circle. All the radii ri have the same

length, for i = 1 . . . 4, and the angles satisfy α + γ = β + δ = 2π. Conventionally, we

set θ1 = 0 (vertical direction in the figure).

porary formation of a 4-fold vertex from the coalescence of two standard three-fold

vertices; rosettes correspond to configurations with n-fold Voronoi vertices, with

degree n ≥ 5. In a dilute system, we can expect rosettes to be much less likely to

form, and assume that reshuffling is entirely due to T1 transitions.

In order to have a 4-fold vertex in a Voronoi tessellation, four neighbor particles

must form a quadrilateral inscribed in a circle, as in Fig. 34.c. The condition to be in

this transition configuration is therefore that the opposite angles of the quadrilateral

are supplementary: α + γ = β + δ = π. Using simple trigonometric formulas and the

condition sin(α + γ) = 0, we can deduce that, crossing the T1 configuration:

(260)

d
dt

sin(α + γ) =
1

|l1||l2||l3||l4|
{ [l4 × (v2 − v1) + l1 × (v4 − v1)] (−l3 · l2)

+ [l2 × (v4 − v3) + l3 × (v2 − v3)] (−l1 · l4)
+ (l4 × l1) [(v3 − v4) · l2

+ (v2 − v3) · l3] + (l3 × l4) [(v1 − v2) · l4

+ (v4 − v1) · l1] },

where li = r(i+1) mod 4− ri. Since the quadrilateral is inscribed in a circle (|ri|= r0) and

|vi|= v0, Eq. (260) can also be rewritten as a function of 7 independent angular pa-

rameters which are sufficient to characterize the 4-fold vertex configuration. Given

ri = r0(cos ζi , sin ζi), and vi = v0(cos θi , sin θi), the angular parameters of interest are:

• ζ̂1, i.e. the angle formed by the radius r1 with respect to the reference direction

θ1,;

• the angles ϕi = θi − θ1 measuring how each particle is aligned to the first bird;

• the angles between adjacent radii, ζ21, ζ32, ζ43, where ζij = ζi − ζ j.

The sign of the quantity in Eq.(260) determines the evolution of the 4-fold vertex.

If d
dt sin(α + γ) > 0, α + γ shrinks and becomes smaller than π. The quadrilateral will

not be inscribed in the circle anymore, and the particles 1 and 3 will become non-

neighbors: ṅ13 < 0. The opposite fate is for the pair of particles (2, 4), associated
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Figure 35: a: Distribution of the number of neighbors reconstructed from numerical simula-

tions. b: Statistical characterization of the geometrical properties of the Voronoi

cells through the parameter p0, defined as the ratio between the perimeter and

the square root of the area of the Voronoi cell. We recall that the transition point

is at D ' 2.

to the angles β and δ. Due to the linear dependence of Eq. (260) on the velocity

vectors, the effect of the time reversal operator is to change the sign of d
dt sin(α + γ).

Therefore, in order to have Ṡ > 0, the pair of neighbors (1, 3) such that ṅ13 < 0 must

be more aligned than the pair (2, 4). In conclusion, in a metric-free model signatures

of irreversibility do not directly affect the two-particle p.d.f., but must be sought in

the four-particle steady-state p.d.f..

Another interesting question is whether the Voronoi interaction network presents

any distinctive static features close to the transition point, which may help predict-

ing its dynamical rearrangements. We briefly looked at two quantities of possible

interest: the number of neighbors and the ratio between the perimeter and the

square root of the area of the Voronoi cells. The distributions of both parameters

are shown in Fig. 35.

The number of neighbors’s distribution must have, at any D, a constrained av-

erage (〈nc〉 = 6), but we observe that there is no relevant difference even in the

fluctuations. The whole histograms are overlapping for a broad range of D values,

suggesting that the efficiency of reshuffling (which is maximal at the transition) is

not correlated to an excess or a lack of defects. By defects we mean here any kind

of deviation from the reference hexagonal structure of the Voronoi cells.

The second parameter, defined as p0 = Perimeter/
√

Area, is another indicator of

the geometrical properties of the Voronoi cells. The typical value of this parameter

(computed using the average perimeter and area, around which the cells’ perimeters

and areas fluctuate) acts as a control parameter for the jamming transition in self-

propelled Voronoi models [9]. In our Vicsek model with Voronoi-based alignment

interactions, this parameter does not govern directly the evolution of the system, in

contrast to [9], but it can give an indication of how elongated the cells are in different

conditions. Unfortunately, even from the analysis of this second parameter, no clear

picture emerged.
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4.2.6 Methods

We integrate the stochastic equations of motion using a forward Euler-Maruyama

scheme, where positional and angular updates are shifted of a half-step. We obtain

in this way two parallel time series {rn−1/2
i , n = 1 . . . Ns} and {vn

i , n = 1 . . . Ns},
where Ns is the number of iterated steps. The entropy production rate is computed

as:

q̇
D

= − J
D

1
Ns∆t

Ns

∑
n=1

∑
ij

(
θn+1

i − θn
i

)
nn+1/2

ij
1
2

[
sin(θn

i − θn
j ) + sin(θn+1

i − θn+1
j )

]
(261)

and

ẇresh
D

= − J
2D

1
Ns∆t

Ns

∑
n=1

∑
ij

[
nn+1/2

ij − nn+1/2
ij

]
cos(θn

i − θn
j ). (262)

This prescription corresponds to the discretization adopted in Eqs. (216) and (219),

through which we found the same formulas as those obtained with a continuous-

time formalism.

The amplitude ∆t of the integration time step is tuned according to the values

of the control parameters, ρ0, D and v0, in order to assure that reshuffling and

heat dissipation rates are correctly reproduced (see Fig. 23e-f). To speed up the

thermalization, a pre-thermalization evolution with a time step 10∆t is implemented,

followed by a thermalization run with integration step ∆t. We checked that the

system has reached a steady state by looking at the stationarity of the polarization

and EPR time series.

Particles are constrained on a square box of linear size L = (N/ρ0)1/2 with periodic

boundary conditions. The nij matrix is updated at each time step because we need

an accurate measurement of reshuffling. In the metric case, the neighbor network

is built by dividing the box in cells of size R and scanning adjacent cells at each

sweep, while in the topological case we use the C++ library CGAL (5.1.1 release)

for Delaunay triangulations on the torus [99].

4.3 final remarks

4.3.1 Summary

In this ongoing project we have tried to characterize the non-equilibrium state of

two paradigmatic variants of the Vicsek model through the measurement of their

entropy production rate. These models describe systems of interacting ABPs which

interact through short-ranged ferromagnetic interactions which are either topologi-

cal or metric in nature. In both cases, the departure from equilibrium is exclusively

due to a combination of interaction and motility: without the latter, the model could

describe the Langevin dynamics of a Hamiltonian spin system.

Exploiting classical results in stochastic thermodynamics, we could cast the effect

of motility into an effective time dependence of some parameters of the Hamiltonian

(also known as protocol). In contrast to the standard scenario where deterministic
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external protocols are employed, here they are effectively stochastic and correlated

to the state of the system, making it hard to analytically evaluate the EPR with-

out knowing the NESS distribution. However, we could pursue a numerical study

on systems of moderate size, which has helped us to characterize the degree of

irreversibility of the observed non-equilibrium dynamics across the phase diagram.

Our numerical analysis confirms the existence of two equilibrium limits, for van-

ishing and diverging angular diffusivities. For intermediate D values, Ṡ > 0 and

signatures of irreversibility can be ferreted out in asymmetries of suitable steady-

state distributions. The distributions to choose and the observed asymmetries reflect

the properties of the interaction rule.

We consider for the metric case a sharp step-like interaction kernel, according to

which a pair of ABPs interact (with equal strength) only if their distance does not

exceed a given threshold R. This parametrization concentrates the dissipation on

the scale of the interaction radius: positive and negative contributions to the entropy

production rate respectively correspond to pairs of aligned birds which are exiting

each other’s interaction disk or entering into it. When particles are anti-aligned (a

much less common situation at distance R) the role of colliding and diverging pairs

is exchanged. Positive and negative inputs mainly cancel out, except for a residual

contribution which is always positive, and maximal in polar systems that are not

too far from the transition. Typical configurations for these systems are made of

dense moving clusters of aligned particles, coexisting with a fraction of particles

in a more dilute and isotropic phase. This fact hints at an enhancement of non-

equilibrium effects when phase coexistence (a hallmark of first order transitions)

is realized. Similar conclusions were obtained in [15] working with fluctuating

continuous theories at the mesoscopic level.

In the topological variant of the model, each particle interacts with the first shell

of Voronoi neighbors. Here again the interaction is additive and symmetric, and

momentum is conserved, but reshuffling is harder to characterize, as it involves

four-particle distributions, rather than two-particle distributions. Since the dynam-

ics of these systems is less sensitive to density fluctuations, compared to the metric

case, formation of dense polar clusters is suppressed — at least at the observed

sizes — and the transition looks like a second order ferromagnetic transition. Cor-

respondingly, we observe a more regular EPR phase diagram with a peak at the

critical point. The power-law scaling of the EPR curve at low and high temperature

is well predicted on the basis of approximate arguments.

As a final remark, let us notice that in both cases, metric and topological, the

entropy production seems to be an extensive quantity: dissipation occurs at a local

scale, thanks to the presence of torques which irreversibly align particles’ orienta-

tions. The role of these peculiar force terms in bringing the system out of equi-

librium has been already pinpointed in [175, 75], by showing that it is impossible

to define the pressure as a state function. Here their peculiar role stems from the

parity under time reversal of the variables on which they act. This observation is

opposed to what has been observed for scalar active matter models, both at a micro-

scopic and coarse-grained level [137, 130]. When MIPS is realized, in the absence
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of explicit alignment interactions14, non-equilibrium effects are concentrated at the

interface between dense and dilute phases. The non-equilibrium terms of active φ4

theories which describe the motility-induced phase separation at a coarse-grained

level are indeed gradient terms which give a negligible contribution in the phase

bulk, but are large at the interface.

4.3.2 Pending issues

We believe that the current study can be improved and expanded in several di-

rections: the first pending issue is that of building an adequate kinetic theory to

describe the density function q(α, ϕ). We recall that q(α, ϕ) measures the probability

of finding a pair of particles with mutual misalignment ϕ at a distance R, along

a direction parametrized by α. Our attempts to use a ring-kinetic theory with a

homogeneity assumption for the additive ABP model resulted into an improved

description of the transition, compared to the homogeneous mean field case, but

did not allow us to reconstruct a function q(α, ϕ) sharing the same properties as the

one we reconstructed from agent-based simulations.

A second interesting point regards the relation with the violation of the fluctuation-

dissipation theorem (FDT). The fluctuation dissipation theorem links responses to

small perturbations with correlations in the unperturbed steady-state of equilibrium

systems. While the entropy production rate measures the breakdown of detailed

balance, FDT violations may be quantified through an effective temperature as the

one defined in [62]. This parameter has been largely used in the study of spin glass

dynamics and was recently applied to characterize the non-equilibrium steady state

of some active matter models [62, 119, 78, 124]. In the case of polar matter with pure

ferromagnetic interactions, it can be used as a tool to investigate the ability of the

flock to respond to directional perturbations and the impact of irreversible currents

on the realization of collective turns.

Finally, it could be interesting to study, within the same framework, the role of

spatial dimension, which is very important in the theory of critical phenomena,

and how the presence of inertia modifies the non-equilibrium steady state of the

system, by enhancing or suppressing the observed asymmetries in the pair distri-

bution of active particles, which results into an enhancement or suppression of the

breakdown of detailed balance.

14 It is worth noting that, even if microscopic MIPS models do not contain explicit alignment interactions,

an effective alignment of the particles’ velocity can emerge from the interplay between self-propulsion

and repulsion [26].





5 C O N C L U S I O N S

In this thesis we have studied the microscopic dynamics of polar active systems

by addressing two very different problems. The common trait of the presented

work is the interest in describing emergent non-equilibrium phenomena in groups

of animals which have acquired a paradigmatic role in the field of active matter. We

primarily refer to starling flocks, but the presented analysis and methods can be

extended also to other active systems which are supposed to be described by the

same kind of models.

The first part of the work consists in the development of a new inference scheme

for the collective dynamics of birds. The project was motivated by the availability

of experimental data on large flocks of European starlings collected by the CoBBS

group. Previous analysis of these data have revealed that the observed dynamics is

better described by inertial stochastic models for the birds’ velocities than by over-

damped ones. The introduction of a generalized inertia allows us to explain how

collective turns are performed, but also introduces significant complications for the

application of statistical inference methods. Indeed, the new model enlarges the

dimension of the system’s phase space, which cannot be fully accessed in experi-

ments.

The problem of reconstructing partially observed processes from time series data

is common in many types of empirical studies and is well-known in the literature.

Usually, it is tackled by means of computationally demanding methods. In Chapter

3 we propose a novel efficient inference scheme for generalized Langevin equations

obtained as underdamped generalizations of standard, first order, SDEs. Thanks to

the mathematical properties of the considered class of equations, for which memory

and color kernels are explicitly known and easy to manipulate, we could derive

an approximate analytical expression for the likelihood of the observed time series.

This provides the solution to the considered Bayesian inference problem for a whole

class of processes of physical interest.

The method we propose gives reliable and fast results, provided that the time

series is noiseless and sufficiently long. We recall indeed that in any parametric

inference approach the correctness of the results depends on the correctness of the

underlying assumptions about the chosen model. A significant presence of noise

would result into incorrect modeling, in this setting. Additionally, the parameter

estimators of our inference scheme are only asymptotically consistent, in the limit

of infinitely long time series. However the bias is fastly decaying with the length of

the trajectory (measured in number of points) and in any case under control. This

bias can be easily predicted, and an a posteriori correction may be implemented

when necessary.

The analysis of the bias turns helpful for the application of the inference scheme

to real data, which may come in the form of segmented collections of short time
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series. In the case of starling flocks, even if individual trajectories are typically re-

constructed for longer intervals, it is convenient to work with triplets of subsequent

frames. A preliminary analysis of the data conducted with this method shows how-

ever that the raw trajectories do not fit the supposed inertial model. The origin for

this observation is the presence of spurious signals due to measurement noise and

birds’ wing flapping. Therefore, the available data must be carefully pre-processed,

before a sensible parameter-free model can be extracted from them.

At the moment, a definitive protocol for the above-mentioned data-set is not avail-

able, but several strategies can be employed to tackle this issue. A first possible

strategy may be to apply non-specific filters to the time series, in order to de-noise

the signal and/or remove the periodic components. An alternative method would

consist in introducing an explicit model for the noise and infer it from the available

data, along with the dynamics of the system, pursuing, for instance, an expectation-

maximization principle. Finally, one can also think about using non-parametric

or semi-parametric inference approaches. However, the analyzed data is high di-

mensional (hundreds of 3D trajectories for each flocking event) and the statistics is

limited (we can rarely perform multiple observations of the same flock in the same

conditions, and each time series is of the order of several hundreds of time points).

Parametrization — at least a partial one — is then inescapable to build a tailored

method which allows for efficient and statistically reliable inference.

An additional advantage of the parametric Bayesian method is the possibility to

assign a probability score to the optimal parameter-free model that results from

its application, and compare how good different types of dynamical models are in

describing the available data. In our case, this means quantifying the improvement

associated to switching from a first order Vicsek-like model to the inertial spin

model. The information we can extract through parametric approaches is however

not limited to this piece: being able to have separate estimates for all the ISM

parameters — not just appearing in combinations as in previous empirical studies

— opens new possibilities to check the predictions of the model and test diverse

hypotheses.

A first example regards the second sound speed c2, which can be numerically or

analytically computed once the parameters of the inertial spin model are known.

This estimate can be compared with the fitted values of the speed of propagation

of the turning perturbation obtained in [3]. Moreover, the values of the ISM pa-

rameters, combined in proper ways, can be compared with previously inferred pa-

rameters of static models [11] or first order dynamical models [136], in order to

understand under which conditions these simpler descriptions are effective.

New predictions, specific of the interacting inertial dynamics, can also be checked.

For instance, a parameter-free model can provide an approximate quantitative pre-

diction of the maximum distance over which real flocks can sustain an almost un-

damped propagation of the turning perturbation. Despite starlings can gather in

large groups, containing up to hundreds of thousands of individuals, the flocks

which have been experimentally observed during collective turns are typically much

smaller. A possible explanation for this fact may come from constraints imposed

by information transfer mechanisms. In inertial models, as the wave-vector k is re-



conclusions 123

duced, information transmission switches from wavelike to diffusive, causing shape

deformations and coupled polarity-density fluctuations, like in Toner-Tu liquids.

This kind of perturbations will lead to a disruption of the flock, hindering its social

and protective function [199, 157]. For this reason, the prediction of the maximal

size — i.e. minimal k sustained by the finite system — which allows for undamped

propagation is particularly interesting, as it is related to the ability of the flock to

perform coherent turns.

These aspects make up the physical motivation to strive for the development

and employment of parametric Bayesian inference methods. The work presented

in Chapter 3 focuses on technical issues and served to highlight the shortcomings

of the most intuitive low-order discretizations that one can apply in order to recon-

struct partially observed stochastic processes from time series data. The technical

difficulties raised by partial observation are not a peculiar feature of the inertial

model which we use to describe bird flocks, but a ubiquitous problem in time series

analysis. The origin of such difficulty can be tracked down to the lack of finite-

dimensional delay vector embeddings that provide an exact Markovian description

of a partially observed stochastic process. As abyproduct of this investigation, we

proposed a simple formal analogy with the Renormalization Group construction in

real space to provide an intuitive explanation for this fact.

In the second part of this thesis, contained in Chapter 4, we tried to address the

leitmotif of quantifying the departure from equilibrium in active matter. Specif-

ically, we considered two variants of ABP systems (with metric and topological

interactions) which can be thought of as continuous-time regularizations of the

original Vicsek model. In these minimal models, where each particle has a fixed

speed and the interaction is a reciprocal short-ranged interaction of ferromagnetic

nature, irreversibility only stems from the interplay between motility and interac-

tion. As particles move, mutual distances — and consequently interaction networks

— evolve with time, breaking the detailed balance and allowing for the onset of

collective motion even in d = 2.

The question of measuring the distance from equilibrium can be addressed at

many different scales for such spatially extended systems, and using several analyt-

ical tools. We decided to focus on the microscopic level and to pivot on the entropy

production rate to characterize the non-equilibrium steady state of these systems.

The entropy production rate is notoriously a model-dependent quantity, which we

cannot measure in agnostic ways in experiments. Yet general observable signatures

of irreversibility can be deduced solely on the basis of which degrees of freedom are

selected to describe the desired process. These signatures can be used to quantify

the departure from equilibrium in systems for which reasonably satisfactory mod-

els already exist, or to infer precious information about the nature of the interaction

in complex off-equilibrium active systems.

For the considered class of ABP models, such signatures come in the form of

asymmetries in suitably defined steady-state distributions. The time reversal sym-

metry breaking constrains indeed an explicit symmetry breaking in the steady state

of the N-particle system. We investigated how this asymmetry is manifested in

simpler and empirically accessible functions, depending on the kind of interaction
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that is implemented. Specifically, we found that when the interaction is purely pair-

wise, this asymmetry directly affects the two-particle distribution. This prediction

has been confirmed by numerical simulations of metric additive models. A similar

qualitative picture emerges from the numerical study of a topological variant of the

model, where each particle interacts with the first shell of Voronoi neighbors. The

interaction is not purely pairwise in this second case, and the irreversibility condi-

tion directly constrains the four-particle density rather than the pair density, whose

asymmetries are much more complicated to analyze. In summary, knowledge about

the interaction between the constituents of the system projects the asymmetry of the

steady-state probability density onto a low-dimensional space, which offers conve-

nient tools for the analysis of experimental and numerical data.

The picture that emerges from this study points at reshuffling as an effective

(self-sustained) mechanism to inject energy into the system, and dissipate it by ex-

changing heat with the thermal bath. We could observe that the autocorrelation

function of the interaction network has the fastest decay close to the transition

point, where the EPR curve peaks. In this regime, reshuffling is mostly efficient,

since individual trajectories have enough persistence to quickly move away from

a previously occupied point, without being followed by the rest of the flock (un-

like in the deeply ordered phase). From numerical simulations we could check the

existence of two equilibrium limits, for highly polarized or completely disordered

flocks. While the latter is easy to predict, since the system corresponds asymptot-

ically to an ideal gas of non-interacting ABPs, the former is less trivial because it

depends on how strongly reshuffling is suppressed as the noise amplitude is low-

ered. An interesting aspect which connects the existence of such limits with the

previous discussion about the asymmetries of the steady-state distribution is that,

as the system approaches these equilibrium regimes and recovers a time-reversal

symmetry, the rotational symmetry in the space of velocities is recovered. Indeed

the breakdown of detailed balance comes along with the explicit breakdown of a

more general symmetry, i.e. the symmetry of the NESS under independent rota-

tions in the subspaces of particles’ positions and velocities. Out of equilibrium,

these two subspaces are inestricably linked; at equilibrium, the two subspaces get

decoupled and Mermin-Wagner-like theorems are re-introduced, independently of

whether particles are motile or not [184].

A wealth of related questions arose from this second work, and they are in part

under current investigation. The first one concerns the search of a suitable kinetic

theory which could predict the salient features of the two-particle density function

of the metric model. A correct reproduction of this quantity must include pair

correlations, i.e. the connected part of the pair distribution, which is typically ne-

glected in the derivation of hydrodynamic theories based on the molecular chaos

approximation. A step forward is represented by ring-kinetic theories. These have

been already developed by other authors for a variant of the Vicsek model with

binary interactions and for the non-additive ABP model, where alignment torques

are normalized by the total number of interacting neighbors of each bird [53, 113].

In the latter case, the asymmetries they observe are of the same kind as the ones we
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predict on the basis of thermodynamic arguments, suggesting that the signatures

of irreversibility are in fact quite independent of the microscopic details.

A second question of interest is the connection between the EPR and other mea-

sures of irreversibility. Among them, the most important ones are effective tem-

peratures, which quantify the violation of the fluctuation-dissipation theorem in

non-equilibrium systems. When exposed to a turning perturbation, a flock gener-

ally responds in a different way than it would respond to internal fluctuations. We

expect the deviation from the equilibrium-like response to be more and more ev-

ident as the polarization is lowered and the system approaches the region of the

phase diagram where the EPR is maximal. FDT violation and EPR are indeed con-

nected by a well-known relation, when the non-equilibrium dynamics is described

in terms of a Langevin equation [94, 95].

We are also wondering about the possible effects on the EPR of speed fluctuations,

non-reciprocal interactions and inertia. Despite these might look like irrelevant de-

tails, the phenomena observed at the macroscopic scale in metric versus topological

models, momentum-conserving versus non-momentum conserving models, inertial

versus overdamped models are significantly different, and we expect that these dif-

ferences will be reflected by the EPR behavior.

In conclusion, the presented work can be seen as a tiny part of a larger effort aim-

ing at describing the collective behavior of bird flocks (and similar animal groups

ascribing to the class of polar active matter) through simple theoretical models in-

spired by experimental observations. We hope that the developed methodological

tools and our numerical investigations on the above-mentioned reference models

may help expand our understanding of these inevitably complex, out of equilib-

rium systems.
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A E X P L I C I T I N F E R E N C E F O R M U L A S

We report in this Appendix the explicit inference formulas used to compute the

Euler-ML, Toeplitz-ML and non-Bayesian parameter estimators in the numerical

analysis shown in Chapter 3.

a.1 euler-ml estimators

We considered three variants of the Euler-Maruyama scheme obtained by comput-

ing the derivatives in an asymmetric way centered on the pre-point (EM-fwd) or on

the post-point (EM-bkd) of the time interval, or in a symmetrized way (BBK method

[23]). Although the symmetric variant is known to be more stable, in the small ∆t

limit the three variants behave in the same way, for our inference purposes.

Given any process in the Kramers class:

ẋ = v, v̇ = −ηv + f (x; µ) + σ(x; ν)ξ (263)

with ξ(t)ξ(t′) = δ(t− t′), the discrete update rules in the x space derived from the

three discretizations are:

[EM-fwd] : xn+1 − 2xn + xn−1 + η∆t(xn − xn−1)− f (xn−1; µ)∆t2 = ∆t3/2σ(xn−1; ν)rn;

(264)

[EM-bkd] : xn+1 − 2xn + xn−1 + η∆t(xn+1 − xn)− f (xn; µ)∆t2 = ∆t3/2σ(xn; ν)rn; (265)

[BBK] : xn+1 − 2xn + xn−1 +
η∆t

2
(xn+1 − xn−1)− f (xn; µ)∆t2 = ∆t3/2σ(xn; ν)rn;

(266)

where the rn’s are Gaussian random variables satisfying 〈rnrm〉 = δnm. Let us notice

that the backward discretization, Eq. (265), does not correspond to a true backward

integration of the stochastic process: only the drag term is computed according to

this rule, while force and diffusion terms are computed on the central time point.

This choice allows for an easy calculation of the Jacobian of the transformation

r1:L−1 7→ x2:L.

From Eqs. (264)–(266) the minus log-likelihood L = − log P(x2 . . . xL|x0, x1) is

found:

(267)
[EM-fwd] L =

L−1

∑
n=1

1
2

log σ2(xn−1; ν) +
1

2σ2(xn−1; ν)∆t3

[
xn+1 − 2xn + xn−1

+ η∆t(xn − xn−1)− f (xn−1; µ)∆t2
]2

;

145
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(268)
[EM-bkd] L =

L−1

∑
n=1

1
2

log σ2(xn; ν)− 1
2

log(1 + η∆t)

+
1

2σ2(xn; ν)∆t3

[
xn+1 − 2xn + xn−1 + η∆t(xn+1 − xn)− f (xn; µ)∆t2

]2
;

(269)
[BBK] L =

L−1

∑
n=1

1
2

log σ2(xn; ν)− 1
2

log(1 +
η∆
2

t)

+
1

2σ2(xn; ν)∆t3

[
xn+1−2xn + xn−1 +

η∆t
2

(xn+1− xn−1)− f (xn−1; µ)∆t2
]2

.

In the case of a multiplicative process, it is important that σ2(x) is strictly positive,

in order to be able to wrote the discretized path probability. The same procedure we

adopted to derive Eqs. (267)–(269) can be applied to higher-dimensional processes.

The set of parameters to estimate are θ = {η, µ, ν}: once the functional depen-

dence of f (x; µ) and σ(x; ν) is specified, estimators can be derived through an ana-

lytical or numerical minimization procedure (or hybrid). We report here the explicit

formulas used for the processes studied in Sec. 3.3.

Linear additive processes

This model describes, in one dimension, a stochastic harmonic oscillator in thermal

equilibrium with a heat bath: f (x; µ) = −ω2
0x, σ(x; ν) =

√
2Tη. the parameters to

infer are thus θ = {η, ω2
0 , T}. The Euler-based inference equations for the stochastic

harmonic oscillator read:

• [EM-fwd]:

η∗fwd =
1

∆t

Gs + G′s − 2Cs + G′s
C′′s

(2G′s − C′′s − Fs)

−Cs + G′s
2

C′′s

; (270)

ω2
0
∗
fwd =

1
∆t2

(2− η∆t)G′s − (1− η∆t)C′′s − Fs

C′′s
; (271)

T∗fwd =
1

2η∆t3 [C
′
s + (2− η∆t2)2Cs + (1− η∆t + ω2

0∆t2)2C′′s − 2(2− η∆t)Gs+

2(1− η∆t + ω2
0∆t2)Fs − 2(2− η∆t)(1− η∆t + ω2

0∆t2)G′s] . (272)

• [EM-bkd]:

η∗bkd =
1

∆t
C′′s + Fs − G′s

Cs
(Gs + G′s)

GsG′s
Cs
− Fs

; (273)

ω2
0
∗
bkd =

1
∆t2

(2 + η∆t)Cs − G′s − (1 + η∆t)Gs

Cs
; (274)

T∗bkd =
1

2η∆t3 [(1 + η∆t)2C′s + (2 + η∆t−ω2
0∆t2)2Cs + C′′s + 2(1 + η∆t)Fs

− 2(1 + η∆t)(2 + η∆t−ω2
0∆t2)Gs − 2(2 + η∆t−ω2

0∆t2)G′s] ; (275)
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• [BBK]:

η∗
BBK

=
2

∆t
C′′s + Fs − G′s

Cs
(Gs + G′s)

C′′s − Fs − G′s
Cs

(G′s − Gs)
; (276)

ω2
0
∗
BBK

=
1

∆t2

2Cs −
(

1 + η∆t
2

)
Gs −

(
1− η∆t

2

)
G′s

Cs
; (277)

T∗
BBK

=
1

2η∆t3 [ (1 + η∆t/2)2 C′s + (2−ω2
0∆t2)2Cs + (1− η∆t/2)2 C′′s −

2(2−ω2
0∆t2) (1 + η∆t/2) Gs + 2 (1 + η∆t/2) (1− η∆t/2) Fs−

2(2−ω2
0∆t2) (1− η∆t/2) G′s] ; (278)

where C, G and F indicate the experimental correlation functions:

Cs =
1

L− 1

L−1

∑
n=1

xnxn; C′s =
1

L− 1

L−1

∑
n=1

xn+1xn+1; C′′s =
1

L− 1

L−1

∑
n=1

xn−1xn−1;

Gs =
1

L− 1

L−1

∑
n=1

xnxn+1; G′s =
1

L− 1

L−1

∑
n=1

xnxn−1; Fs =
1

L− 1

L−1

∑
n=1

xn−1xn+1.

(279)

The parameters which enter in the inference formulas for ω2
0 and T are the op-

timized values η∗ and (η∗, ω2
0
∗), respectively. Let us remark that the equations

above have been derived by solving the saddle point equations ∇θL = 0, since the

minimum point of L is unique when this is derived using the Euler-Maruyama

discretization.

Explicit inference formulas for the inertial spin model in the SWA are obtained

through an N-body generalization of the equations above. The additional difficulty

we must face in the case of linear N-body dynamics is that of estimating the inter-

action range. Since an explicit analytical minimization of the minus-log-likelihood

is not operable, a numerical approach is needed. The core of the inference algo-

rithm for the SWA-ISM is a one-dimensional minimization routine for an effective

cost function which, up to additive constants and multiplicative factors, is propor-

tional to the reduced minus-log-likelihood L/(L − 1). Since the coupling matrix

is parametrized by a single integer parameter nc, corresponding to the topological

range of interaction, this minimization can be performed by enumeration.

In d > 1, out of equilibrium generalizations are also possible: the derivation

of the inference equations is analogous, but the results can vary significantly. In

particular, the bias is manifested in a specific way for equilibrium processes, while

out of equilibrium it appears to be non-universal.

Nonlinear additive processes

Let us consider one-dimensional equilibrium processes with constant diffusion co-

efficient σ and polynomial force f (x, µ) = ∑α µαxα. We restrict in this case to the

EM-fwd discretization. Let us define the following quantities, which only depend

on the data sample:

Pα =
L−1

∑
n=1

xα
n(xn+1 − 2xn + xn−1); Rα =

L−1

∑
n=1

xα
n(xn − xn−1); (280)
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Qαβ =
L−1

∑
n=1

xα
nxβ

n ; K =
L−1

∑
n=1

(xn − xn−1)(xn+1− 2xn + xn−1); K0 =
L−1

∑
n=1

(xn − xn−1)2.

(281)

The EM-fwd maximum-likelihood estimators read:

µ∗fwd = [R⊗ R− K0Q]−1[KR− K0P]; (282)

η∗fwd = − 1
∆t

(
K
K0
− 1

K0
∑
α

(
[R⊗ R− K0Q]−1[KR− K0P]

)
α

Rα

)
; (283)

(σ2)∗fwd =
1

∆t3
1

L− 1

L−1

∑
n=1

[xn+1 − 2xn + xn−1 + η∆t(xn − xn−1)− ∆t2 ∑
α

µαxα
n]2.

(284)

For the studied case of the Brownian particle in a double well potential, the force

term corresponds to f (x) = −κx − λx3, and σ2 = 2Tη. The parameters to estimate

are therefore only η, T = σ2/η, κ = −µ1 and λ = −µ3.

a.2 toeplitz-ml estimators

Let us start from the same Kramers process as in Eq. (263) or, equivalently, from the

marginalized equation

dx(t) = v0e−η(t−t0)dt +
[∫ t

t0

e−η(t−s) f (x(s))ds
]

dt +
∫ t

t0

dW(s)σ(x(s))e−η(t−s). (285)

Toeplitz-ML estimators are obtained adopting a second order Taylor-Itô expansion

which is strongly convergent as ∆t3/2. As discussed in Section 3.3.3, this discretiza-

tion method is sufficiently accurate to reproduce emerging memory and correlation

effects due to the projection onto the x subspace. To carry on explicit calculations,

let us make a distinction between additive processes and the more complicated

multiplicative ones.

Additive processes

The formalism for the additive case has been presented for general additive pro-

cesses in Section 3.3.3: we rewrite the reduced minus-log-likelihood from Eq.(103)

as

L
L − 1

=
1
2

ln
(

2π
σ2

3
∆t3
)

+
1

2(L − 1)

L−1

∑
k=1

ln
(

2 + cos
kπ

L

)

+
3

L(L − 1)σ2∆t3

L−1

∑
n,m=1

[
(xn+1 + F(xn, xn−1; µ))Ãnm(xm+1 + F(xm, xm−1; µ))

]
,

(286)

where

F(xn, xn−1; µ) = −
(

1 + e−η∆t
)

xn + e−η∆txn−1 −
1− e−η∆t

η
∆t f (xn; µ) (287)
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and

Ãnm =
L−1

∑
k=1

sin
(

nkπ
L

)
sin
(

mkπ
L

)

2 + cos
(

kπ
L

) . (288)

Given Eq. (286), it is possible to minimize it, numerically or analytically, with respect

to the set of parameters θ = {σ, η, µ}. In the case of a polynomial force f (x, µ) =

∑α µαxα, the saddle point equations are analytically solvable. Like for the lower

order scheme, it is convenient to redefine auxiliary parameters

β = e−η∆t, λα =
1− e−η∆t

η
∆tµα, (289)

and data-dependent quantities:

K =
L−1

∑
n,m=1

(xn − xn−1)Ãnm(xm+1 − xm); K0 =
L−1

∑
n,m=1

(xn − xn−1)Ãnm(xm − xm−1);

(290)

Pα =
L−1

∑
n,m=1

xα
n Ãnm(xm+1 − xm); Rα =

L−1

∑
n,m=1

xα
n Ãnm(xm − xm−1); (291)

Qαγ =
L−1

∑
n,m=1

xα
n Ãnmxγ

m. (292)

The Toeplitz-ML estimators for the auxiliary parameters read:

λ∗ = [R⊗ R− K0Q]−1[KR− K0P]; (293)

β∗ =
K
K0
− λ · R

K0
; (294)

(σ2)∗ =
1

∆t3
1

L(L− 1)

L−1

∑
n,m=1

[
(xn+1 + F(xn, xn−1; µ))Ãnm(xm+1 + F(xm, xm−1; µ))

]
.

(295)

From the solutions (293)–(295), the physical parameters of the process (η, µα, and

occasionally T, when σ2 = 2Tη) can then be extracted. Explicit formulas for two

simple cases, the harmonic oscillator and the Brownian particle in a double well

potential, can be found in [74].

Multiplicative processes

The difficulty with multiplicative processes comes from the need to ensure the in-

vertibility of the covariance matrix. We recall that the discretization scheme we

adopt is not readily extended to arbitrary processes, since a linear dependence on

the velocity variables is required. Hence σ(x; ν) must be a function of the x coordi-

nate only, and must be such that the covariance matrix that one can define from it

is positive definite.

Let us focus on the example process with f (x) = −kx, σ(x) =
√

(a + bx2). The quan-

tities appearing in the expression of the log-likelihood, Eq.(111), which represents

the effective cost function to minimize, are:

(296)F(xn, xn−1; µ) = xn − e−η∆t(xn − xn−1) + (1− e−η∆t)
k∆t
η

xn,
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and

Cnm =
(

a + bx2
n

)
δn,m +

√
(a + bx2

n) (a + bx2
m)δn,m±1. (297)

Simple manipulations allow us to reduce to the minimization problem to a one-

dimensional numerical optimization, since analytical formulas for the optimal val-

ues of the effective parameters β = e−η∆t, K = k∆t/η and b can be found:

b∗ =
3

L− 1

[
P0 −

P2
4

P2
− (P3P2 − P4P5) (P3P2 − P4P5)

P1P2 − P2
5

]
;

β∗ =
P∗3 P∗2 − P∗4 P∗5
P∗1 P∗2 − (P∗5 )2 ; K∗ =

β∗P∗5 − P∗4
(1− β∗)P∗2

. (298)

Here {Pi} is a collection of functions of a remaining effective parameter, which

we rename α = a/b. The starred value corresponds to P∗i = Pi(α∗), with α∗ the ML

estimator of the new parameter α. This value is obtained by numerically minimizing

the following quantity:

(299)L(α) =
1

L − 1

L−1

∑
k=1

ln λ̃k + ln

[
P0 −

P2
4

P2
− (P3P2 − P4P5) (P3P2 − P4P5)

P1P2 − P2
5

]
,

where {λ̃k} is the set of eigevnvalues of the reduced covariance matrix

3Cnm/(b∆t3) = A−1
nm(α) = 2

(
α + x2

n

)
δn,m +

1
2

√
(α + x2

n) (α + x2
m)δn,m±1 . (300)

The functions Pi(α) are defiend as follows:

P0 =
1

L− 1

L−1

∑
n,m=1

(xn+1 − xn)Anm(xm+1 − xm) ;

P1 =
1

L− 1

L−1

∑
n,m=1

(xn − xn−1)Anm(xm − xm−1) ;

P2 =
1

L− 1

L−1

∑
n,m=1

xn Anmxm ;

P3 =
1

L− 1

L−1

∑
n,m=1

(xn+1 − xn)Anm(xm − xm−1) ;

P4 =
1

L− 1

L−1

∑
n,m=1

(xn+1 − xn)Anmxm ;

P5 =
1

L− 1

L−1

∑
n,m=1

(xn − xn−1)Anmxm .

a.3 non-bayesian estimators

We build in this section an alternative approach to the Bayesian one, whose perfor-

mance was compared to the Toeplitz method in Section 3.3.4. The idea is to exploit

discrete update equations in x space to find some relations which link the parame-

ters of the model to accurately measurable quantities. We restrict to the case of the

one-dimensional stochastic harmonic oscillator, with f (x) = −ω2
0x, σ = 2Tη.
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Let us choose again the update equation corresponding to the usual continuation

rule of the LI integration method [173]:

xn+1 = xn + e−η∆t(xn − xn−1) +
1− e−η∆t

η
ω2

0∆t xn + ζn, (301)

and multiply its r.h.s. and l.h.s. by xn, xn+1 and xn−1; then take the average over the

noise distribution. The resulting equations are:

〈xn+1xn〉 =〈xn
2〉 + e−η∆t(〈xn

2〉 − 〈xnxn−1〉) +
1− e−η∆t

η
ω2

0∆t〈xn
2〉 + 〈xnζn〉 ;

(302)

〈xn+1xn+1〉 =〈xnxn+1〉 + e−η∆t(〈xnxn+1〉 − 〈xn−1xn+1〉) +
1− e−η∆t

η
ω2

0∆t〈xnxn+1〉

+ 〈ζnxn+1〉 ; (303)

〈xn+1xn−1〉 =〈xnxn−1〉 + e−η∆t(〈xnxn−1〉 − 〈x2
n−1〉) +

1− e−η∆t

η
ω2

0∆t〈xnxn−1〉 .

(304)

Using again Eq. (301) – combined with the covariance matrix of the Gaussian

variables – to compute 〈ζnxn〉 and 〈ζnxn+1〉, the relations we find are:

Gs = Cs + e−η∆t(Cs − G′s) +
1− e−η∆t

η
ω2

0∆t Cs + b ; (305)

C′s = Gs + b + a + e−η∆t(Gs − Fs + b) +
1− e−η∆t

η
ω2

0∆t(Gs + b) ; (306)

Fs = G′s + e−η∆t(G′s − C′′s ) +
1− e−η∆t

η
ω2

0∆t G′s . (307)

In order to find Eqs. (305)–(307), we identified the actual correlation functions

with the empirical ones, denoted with C, G and F symbols, and defined as in

Eq. (279), and we hypothesized a stationarity assumption to hold. After proper

manipulation, one can extract “inference relations” for b, e−η∆t and ω2
0∆t, and de-

rive from them the physical parameters of the model. Firstly, e−η∆t is given as the

solution of the second-degree polynomial equation:

(308)(2G′s − Cs − C′′s )e−2η∆t +
[
2Gs + C′′s − Cs − 2Fs + 5(2G′s − Cs − C′′s )

]
e−η∆t

+
[
Gs − G′s + Fs − C′s + 5(G′s − Cs − Fs + Gs)

]
= 0;

then b and ω2
0∆t are computed as follows:

b = G′s − Fs + Gs − Cs + e−η∆t (2G′s − C′′s − Cs
)

; (309)

ω2
0∆t =

−η

1− e−η∆t

[
Gs − Cs − b

Cs
− e−η∆t Cs − G′s

Cs

]
. (310)

Notice that these inference equations are not unique. Combining the starting

equations in a different way would result into slightly different inference formu-

las, which, however, should provide the same result if the experimental correlation

functions faithfully reproduce ensemble averages at the steady state.

This strategy cannot be adapted to interacting oscillators, unless they are fully

connected. The obstacle comes indeed from the parametrization of the interaction

matrix. Without a priori parametrization, the issue of sufficient statistics arises:
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bypassing the technical difficulties related to solving the resulting system of N2 + 2

second degree equations for the unknowns b, e−η∆t and the independent entries of

the interaction matrix {Jij}i,j=1...N , the real problem is that we have a much greater

number of parameters to infer than of points in each frame. This problem becomes

totally intractable if one also allows Jij to evolve in time, as in active animal groups.

Assumptions about the structure of the coupling matrix Jij dramatically diminish

the number of parameters, and help us deal with the worry of insufficient statistics,

but require an alternative strategy to estimate the interaction range, since closed-

form equations are not available. However, it is still possible to approximately esti-

mate the damping coefficient and the effective temperature of the system, assuming

that all the particles are immersed in the same uniform thermal bath. Under this

assumption, Eqs. (302)–(304) can be adapted to the interacting case and properly

manipulated to find the following relations:

(311)
Fs − G′s − Gs + Cs = e−

η
χ ∆t (2G′s − C′′s − Cs

)

+
G′int − Cint

Cint

[
Gs − Cs − b − e−

η
χ ∆t(Cs − G′s)

]
− b ;

(312)

C′s − 2Gs + Cs = e−
η
χ ∆t (Gs − Fs − Cs + G′s

)

+ b
{

4 + e−
η
χ ∆t +

nc

Cint

[
Gs − Cs − b − e−

η
χ ∆t(Cs − G′s)

]}

+
Gint − Cint

Cint

[
Gs − Cs − b − e−

η
χ ∆t(Cs − G′s)

]
;

where we have redefined Jij = JΛij and exploited the fact that a = 4b, with b =
1
6 2 Tη

χ2 ∆t3.

Let us define the empirical spatio-temporal correlation functions involved in these

inference formulas:

• Equal-time correlations:

Cij =
1

L− 1

L−1

∑
n=1

xn
i · xn

j ; C′ij =
1

L− 1

L−1

∑
n=1

xn+1
i · xn+1

j ; C′′ij =
1

L− 1

L−1

∑
n=1

xn−1
i · xn−1

j ;

(313)

• One-step correlations:

Gij =
1

L− 1

L−1

∑
n=1

xn+1
i · xn

j ; G′ij =
1

L− 1

L−1

∑
n=1

xn
i · xn−1

j ; (314)

• Two-step correlations:

Fij =
1

L− 1

L−1

∑
n=1

xn+1
i · xn−1

j . (315)

The observables appearing in Eqs. (311)–(312) are defined from (313)–(315) as in the

following. We can distinguish the contribution of self-correlations, encoded by:

Cs =
1
N

Tr C ; C′s = 1
N Tr C′ ; C′′s =

1
N

Tr C′′ ;

Gs =
1
N

Tr G ; G′s = 1
N Tr G′ ; Fs =

1
N

Tr F ;
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and that of correlations between directly interacting birds, encoded by the quanti-

ties:

Cint =
Tr(ΛC)

N
; Gint =

Tr(Λ>G)
N

; G′int =
Tr(ΛG′)

N
.

In the case of the SWA equations of the inertial spin model, Λij = ncδij − nij. Notice

that all of them are by definition self-averaging quantities, which obviously tend to

be more and more stable as the size of the system increases.

In the absence of a proper likelihood, we cannot deal with int functions; however,

the manipulation we carried out to derive Eqs. (311)–(312) confines them into sub-

leading terms. This can be checked by looking at the combinations:

Gint − Cint
Cint

[(
1− e−η∆t

)
(Gs − Cs)− b

]
' O(∆t5) , (316)

the one obtained replacing Gint with G′int, and

b · nc

Cint

[
(1− e−η∆t)(Gs − Cs)− b

]
' O(∆t6). (317)

Under the working hypothesis that ∆t is sufficiently small, we can neglect these

terms and find usable relations to extract the effective parameters of the thermal

bath (η, T) from the experimental self-correlations only. Precisely, η is found as a

solution of the equation:

(318)(C′′s + Cs − 2Gs)e−2η∆t + 2(Fs − 5G′s − Gs + 3Cs + 2C′′s )e−η∆t

+ 4Fs − 4G′s − 6Gs + 5Cs + C′s = 0 ,

whereas the effective temperature is extracted from b, being:

b = G′s + Gs − Fs − Cs + e−η∆t (2G′s − Cs − C′′s
)

. (319)





B D E C I M AT I O N P R O C E D U R E F O R
G E N E R A L A R M A P R O C E S S E S

An autoregressive moving-average process of order (p, q), denoted ARMA(p, q), is a

time series generated by the update equation

Xn =
p

∑
i=1

φiXn−i +
q

∑
i=1

νiεn−i + µεn (320)

with εn ∼ N (0, 1) I.I.D., νi , µ ∈ R [19]. The autoregressive (AR) part of the equation,

of order p, can be thought of as the discretization of the deterministic part of an

associated continuous-time dynamical model, and corresponds to the first RHS sum

of Eq. (320). The moving average (MA) part, of order q, corresponds to the second

RHS sum of Eq. (320). For the sake of simplicity, let us rename the whole random

increment as rn = ∑
q
i=1 νiεn−i + µεn.

In Section 3.4.1 we apply to ARMA(2,1) models a Renormalization Group proce-

dure inspired to real space renormalization in one-dimensional systems. We will

generalize here the discussion to arbitrary ARMA(p, q) models, with a special focus

on the definition of the coarse-graining transformation and the derivation of the

constraints on the fixed points processes imposed by the invariance condition.

Starting from Eq.(320), decimation is performed through the linear combination

Eqn(Xn) +
p

∑
i=1

(−1)i+1φiEqn(Xn−i). (321)

which generalizes (128). Notice that this combination only depends on the AR order

p. The resulting discrete-time model reads:

(322)

Xn =
p

∑
i=1

[
1 + (−1)i

]
φiXn−i

︸ ︷︷ ︸
A

+
p

∑
i=1

(−1)i+1φi

p

∑
k=1

φkXn−k−i

︸ ︷︷ ︸
B

+ µ0εn +
q

∑
j=1

µjεn−j +
p

∑
i=1

(−1)i+1φi

[
µ0εn−i +

q

∑
k=1

µkεn−i−k

]

︸ ︷︷ ︸
r̃n

.

Sum B in Eq. (322) can be rewritten, with a rearrangement of terms, as

B =
p

∑
i=1

(−1)i+1φi

p

∑
k=1

φkXn−k−i =
p

∑
i=1

(−1)i+1


φ2

i Xn−2i + 2
b p−1

2 c
∑
k=i

φiφ2k+1Xn−2k−2


 .

(323)

Eq. (323) shows that, after the decimation, one maintains an autoregressive part of

order p. The picture is not modified by sum A , which only contributes up to an

AR order bp/2c.
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Thus Eq. (322) can be rewritten as:

(324)Xn =
bp/2c
∑
i=1

2φ2iXn−2i +
p

∑
i=1

(−1)i+1


φ2

i Xn−2i + 2
b p−1

2 c
∑
k=i

φiφ2k+1Xn−2k−2


 + r̃n,

where it is possible to recognize a structure of the following kind

Xn =
p

∑
i=1

φ̃iXn−2i + r̃n. (325)

The process corresponds to an ARMA model with the same autoregressive order as

the original one (p), but jumps cover time intervals of doubled amplitude.

Further manipulation of the sums A and B in Eq. (322) allows us to find

formal expressions for the AR coefficients of the coarse grained process, φ̃i=1...p:




φ̃1 = 2φ2 + φ2
1 ;

φ̃i = 2φ2i + (−1)i+1φ2
i + 2φ2i−1 ∑i−1

k=1(−1)k+1φk for 2 ≤ i ≤
⌊ p

2
⌋
− 1;

φ̃i = (−1)i+1φ2
i for

⌊ p
2
⌋

+ 1 ≤ i ≤ p.

(326)

The coarse-grained coefficient φ̃bp/2c takes a different form depending on p being

even or odd:

p odd : φ̃bp/2c = 2φ2bp/2c + (−1)1+bp/2cφ2
bp/2c; (327)

p even : φ̃bp/2c = 2φ2bp/2c + (−1)1+bp/2cφ2
bp/2c + 2φ2bp/2c−1

⌊
p−1

2

⌋

∑
k=1

(−1)k+1φk .

(328)

What remains to determine is whether there is an invariant MA order q associated

to p. Let us restart from Eq.(322) and focus on the random term rn. Since linear

combinations of Gaussian variables are still Gaussian, one can properly redefine

the εm’s and rearrange the coefficients in front of them to rewrite r̃n = ∑
q̃
i=0 µ̃iεn−2i,

where

q̃ =
⌊ p + q

2

⌋
. (329)

We deduce there are only 2 invariant scenarios for ARMA(p, q) processes: q = p

or q = p− 1. This fact tells us that partial (discrete) observation of continuous-time

processes let memory emerge: each hidden degree of freedom increases by one the

order of both the AR part and the MA part of the discrete model, thus introducing

color, as expected [200, 97].

Once the general invariant structure under decimation of ARMA(p, q) time series

is found, the RG machinery can be deployed, and a careful study of the fixed points

can be carried out. In order to complete the RG step and obtain explicit flow equa-

tions, it is necessary to detail the rescaling operation. It is convenient to expand any

coefficient of the ARMA(p, q) model as a power series of the time step τ (the ARMA

parameters are indeed dimensionless functions of τ, whereas physical problems

have dimensional parameters). Therefore, we resort to an asymptotic expansion in

power series: to work exclusively with integer powers of τ, we replace the set of

parameters {φi=1...p, νi=1...q, µ} with the equivalent set {φi=1...p, γk=1...q+1}, where

γk = E[rnrn+k]. (330)



decimation procedure for general arma processes 157

Any parameter A in the new set can be expressed as A = ∑∞
k=0 Akτk. The infinite

collection of coefficients Ak constitute the parameter space of our model. Upon

rescaling of the time unit, each of them is now rescaled, after coarse-graining, ac-

cording to its physical dimension: 2−k Ãk, with Ãk the coarse-grained parameter.

This completes the prescription to derive the RG map for the considered class of

linear time series models.





C K I N E T I C E Q U AT I O N S

In this Appendix we include some details about our tentative use of kinetic the-

ory approaches to reproduce signatures of irreversibility in the two-particle density

function. We firstly revise how to predict the mean field transition point by linear

stability analysis of a Boltzamnn-like kinetic theory — obtained via the molecular

chaos ansatz — and then discuss the shortcomings of this closure. Next, we de-

scribe our attempts to find the solution of the ring-kinetic equations associated to

the additive ABP model (211).

The starting point for the construction of the kinetic theory in the Smoluchowski

approach is given by the equations of motion of the microscopic model, which we

report here for the readers’ sake:

ẋi = v0e(θi), θ̇i = −Jnij({ri}) sin(θi − θj) +
√

2Dξi , (331)

whose associated Fokker-Planck equation reads:

∂tψ + v0 ∑
i

e(θi) · ∇iψ = J ∑
ij

nij∂θi

[
sin(θi − θj)ψ

]
+ D ∑

i
∂2

θiθi
ψ. (332)

By marginalization of Eq. (332) we obtain the usual BBGKY hierarchy, which we

need to truncate with suitable closures. The first two equations of such hierarchy

are:

D(1)
t p1(Γ1) = J(N − 1)

∫
dΓ2n12∂θ1 [sin(θ1 − θ2)p2(Γ1, Γ2)] + D∂2

θ1θ1
p1(Γ1), (333)

D(2)
t p2(Γ1, Γ2) = Jn12

{
∂θ1

[
sin(θ1 − θ2)p2(Γ1, Γ2)

]
+ ∂θ2

[
sin(θ2 − θ1)p2(Γ1, Γ2)

]}

+ J(N − 2)
∫

dΓ3
{

n13∂θ1 [sin(θ1 − θ3)p3(Γ1, Γ2, Γ3)]

+ n23∂θ2 [sin(θ2 − θ3)p3(Γ1, Γ2, Γ3)]
}

+ D
(

∂2
θ1θ1

+ ∂2
θ2θ2

)
p2(Γ1, Γ2),

(334)

where D(1)
t = ∂t + v0e(θ1) · ∇1 and D(2)

t = ∂t + v0e(θ1) · ∇1 + v0e(θ2) · ∇2. We recall

that we are focusing here on the metric additive case, where the adjacency matrix

is defined as nij = Θ(R− |xi − xj|).
Let us firstly notice that all the equations of the hierarchy can be rescaled by

D: this allows us to transform the time into a dimensionless variable through the

transformation t → Dt. The material derivatives are therefore redefined from now

on with v0/D instead of v0.
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c.1 molecular chaos

The first closure is the well-known molecular chaos ansatz, according to which two-

body correlations can be neglected (at least when the system is sufficiently dilute):

p2(Γ1, Γ2) = p1(Γ1)p1(Γ2), i.e. g2(Γ1, Γ2) = 0. (335)

This corresponds to a mean field approximation and truncates the BBGKY hierarchy

at the level of the first equation, yielding:

(336)

[
∂t +

v0

D
e(θ1) · ∇1

]
p1(Γ1) =

J
D

(N − 1)
∫

dΓ2n12∂θ1 [sin(θ1 − θ2)p1(Γ1)]p1(Γ2)

+ ∂2
θ1θ1

p1(Γ1).

Expanding in a Fourier series, p1(x, θ, t) = ∑k Ak(x, t)e−ikθ , Eq. (336) reads:

(337)
∂t Ak(x1) +

v0

2D
[
∇∗Ak+1(x1) +∇Ak−1(x1)

]

= −k2 Ak(x1) + 2πk
J(N − 1)

2D

∫
dx2n12[Ak−1(x1)A1(x2)− Ak+1(x1)A−1(x2)].

The simplest hypothesis

If we further assume independency of angular and spatial variables, Ak(x) = ρ(x)Ak,

then the resulting equations for the Fourier coefficients will have no advective term:

∂t Ak = 2πk
J(N − 1)

2DL2 w (Ak−1 A1 − Ak+1 A−1) , (338)

where w = L2
∫

dx1dx2Θ(R − |x1 − x2|)ρ(x1)ρ(x2). A relevant case is the homoge-

neous one: when ρ(x) = 1/L2, w = πR2. Let us rename:

ν =
Jρ0

2D
w where ρ0 = N/L2; (339)

this parameter will play the role of control parameter for the transition to collective

motion1.

A linear stability analysis of the isotropic solution — Ak = 1
2π δk,0 — reveals that

the linearly unstable modes are only k = ±1, for ν > ν∗ = 1. To go beyond the

linear stability analysis one can integrate the equations numerically. Results of a

numerical integration in the case of homogeneous spatial distribution are shown

in Fig. 36. We implement a sharp truncation of the equations for the evolution of

the modes, assuming that Ak = 0 for any |k|> kmax; the integration algorithm we

use is a simple Euler forward scheme for the resulting finite set of coupled ODEs.

Furthermore, we exploit the arbitrariness of the phase offset in order to work with

real coefficients. It is indeed always possible to shift the phase offset θ → θ − θ0 in

order to have a real-valued A1 coefficient: A1 = A−1. Since A0 is also real, we can

combine Eq.(338) (the imaginary part) and the assumptions A0, A1 ∈ R, to deduce

that A±2 ∈ R. Repeating the same argument, one can easily see that taking real

Fourier coefficients Ak = A−k for all k is not restrictive, in this factorized case.

1 We have in mind that N � 1, so that N − 1 ' N, N − 2 ' N.
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Figure 36: Numerical solution of the kinetic theory, under the molecular chaos closure and

homogeneity assumption. a: Evolution of the Fourier coefficients Ak(t) for ν = 1.5.

The initial condition is a small perturbation around the isotropic solution. b:

Reconstructed single-particle p.d.f. φ(θ) in the stationary state, for different ν

values (different colors). c: Polarization as a function of the control parameter ν.

d: Decay of the Fourier coefficients with increasing index k, for different ν values

(colors as in Fig. b).

From this simple analysis, it is clear that this approximated description is already

good to predict macrosocopic mean field properties of the system, most notably

the emergence of a polarized ordered phase for high ν values. In terms of the

microscopic model parameters, high ν values may be obtained having either a high

interaction strength J, or high density ρ0, or low noise amplitude D. In this regime,

Fourier modes different from the zero mode acquire nonzero values; in particular,

we are interested in A±1, which is related to the order parameter of the system by

the following relation:

〈Φ〉 =
∫

dxdθ<eiθ p1(x, θ) =
∫

dθ cos θφ(θ) =
2π

2
(A1 + A−1) = 2π<A1 (340)

The above-mentioned arbitrariness in the choice of the offset can be seen as the

arbitrariness in the selection of the collective direction of motion. The phase offset

θ0, with respect to which all the phases θ should be measured in order to have

<A1 = A1, indicates the direction of spontaneous symmetry breaking on the plane.

We recall that when the symmetry is broken, the generators of the broken symme-

try transform one ‘ground state’2 into another one, equivalent to the former. The

reconstructed φ(θ) is not indicating the global probability distribution of all the pos-

sible configurations of the system, corresponding to a mixture of pure states, but

the p.d.f. of a single macrostate, where the symmetry breaking is realized in the

direction θ0.

2 The model we are considering is in fact an equilibrium model, since with this closure the effect of self-

propulsion (conveyed by the advective term) is removed. It makes thus sense to talk about ground states

of the equilibrium Hamiltonian, corresponding to the XY Hamiltonian.
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Figure 37: a: Mutual information between angular and positional degrees of freedom of

the active Brownian particle, as a function of the angular diffusivion parameter

D. b: Normalized conditional entropies H(x|θ)/H(x) and H(θ|x)/H(θ). In the

disordered phase the curve is basically lying on the horizontal dashed line, corre-

sponding to absence of correlations. In the ordered phase, there is a little mutual

dependency between angular and spatial degrees of freedom, but the absolute

values are really close to 1. In both plots the solid vertical line indicates the mean

field transition point, while the dashed line is the supposed transition point of the

finite-size system (N = 1024) that we deduced from our numerical simulations.

Beyond equilibrium closures

When the single particle p.d.f. is factorized into a spatial and angular part, we are

in fact at equilibrium and there is no way to reproduce the asymmetries we observe

in the two-particle correlations. The assumptions we made so far can be violated in

two possible ways (or a combination of the two): (i) when g2 6= 0, i.e. the molecular

chaos hypothesis is violated (discussed in C.2); (ii) when p1(x, θ) is not factorized.

Let us assume that condition (ii) is realized, while molecular chaos holds. This is

the hypothesis which has been most largely used to derive hydrodynamic equations.

Let us notice, however, that hydrodynamic descriptions aim at reproducing the be-

havior of the system on large spatio-temporal scales by considering only the evolu-

tion of slow fields: for polar active matter, they are the density field ρ(x) = 2πA0(x)

and the velocity field v(x) = 2π(<A1(x),=A1(x)). On the contrary, we are interested

in reconstructing the microscopic pair distribution, on a scale R � L. What is the

best approximation on this scale? Shall we rely on the molecular chaos assump-

tion? In which conditions does hypothesis of factorization of p1(x, θ) (ii) make a

difference?

Measures of the mutual information between angular and spatial variables in Fig.

37 hint at the fact that x and θ are approximately independent in the disordered

phase — hence p1(x, θ) factorizes —, while they become slightly dependent in the

ordered phase. Precisely, the mutual information is defined as:

I1(θ; x, y) = DKL(p1(x, y, θ)||px(x, y)⊗ φ(θ)) = H1(x, y, θ)− H1(θ|x, y)− H1(x, y|θ),

(341)

where H(·) denotes the Shannon entropy and H(·|·) the conditional entropy. The

subscript 1 refers to the single body p.d.f.. We estimate these quantities employing
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the p.d.f.s reconstructed from numerical simulations of the ABP model, i.e. his-

tograms which are therefore defined on a discrete state space. For example, the

reconstructed one-particle distribution is estimated through

p̂1(x, y, θ) =
1
N

N

∑
i=1
〈χBx (xi(t)− x)χBy (yi(t)− y)χBθ

(θi(t)− θ)〉t (342)

where 〈·〉t denotes the empirical time average in the alleged stationary regime and

χBx is the characteristic function of the bin for the x variable, centered in 0:

χBx =





1 if x ∈ [−Bx/2,Bx/2)

0 if x /∈ [−Bx/2,Bx/2) .
(343)

Marginalized distributions are computed in analogous ways. To realize Fig. 37 we

chose non-overlapping bins of amplitude Bx = L/nx
bins, By = L/ny

bins, Bθ = 2π/nθ
bins,

with nx
bins = ny

bins = nθ
bins = 100.

We plot in Fig. 37 both Î1(θ; x, y) and Ĥ1(θ|x, y)/Ĥ1(x, y): this latter quantity takes

values between 0 and 1 since the conditional entropy is normalized by the maximum

value it can take. From this second plot we deduce that the degree of mutual

dependence of the angular and spatial coordinates θ and x = (x, y) is pretty low,

suggesting that the independence hypothesis is a quite reasonable one. Nonetheless,

there is a little but visible transition exactly at the onset of polar order. Probably the

two options presented above might work equally well in general, but, depending

on the goals and the working regime, one can have advantages or disadvantages

over the other.

As regards the molecular chaos assumption, g2 = 0, two remarks are in order.

First of all, we expect the correlation g2 to be small, compared to the factorized

part, especially far from the transition point (the region across the transition point

is however the one of interest for us, where non-equilibrium signatures are visible).

Therefore, if we are interested in p2 and not in g2, it is reasonable to neglect the pair

correlation. At the same time, we remark that the role of g2 is not limited to the

prediction of local features of no impact on the global behavior of the system. On

the contrary, the Fourier coefficients of g2 are linked to the fluctuations of the order

parameter [53], which we have shown — rescaled by D — in Fig.22. If we rewrite

g2 as:

g2(x1, θ1, x2, θ2) = ∑
kl

Gk,l(x1, x2)e−ikθ1−ilθ2 , (344)

then the fluctuations of the order parameter correspond to:

(345)〈Φ2〉 − 〈Φ〉2 = (2π)2
∫

dx1dx2
G1,−1(x1, x2) + G−1,1(x1, x2)

2
.

The fact that the plots in Figs. 22.h and 22.i qualitatively resemble each other is an in-

dication that G±1,∓1 may play an important role in reproducing the non-equilibrium

signatures of the considered model. For this reason, we choose to include pair cor-

relations and consider the ring-kinetic equations.
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c.2 ring kinetic theory

Let us now assume g2 6= 0 but g3 = 0: the ring kinetic closure moves the truncation

of the hierarchy one step beyond that of molecular chaos. This operation brings in

significantly more complicated collision integrals: a good strategy to handle the re-

sulting equations is to assume again homogeneity of the single particle distribution:

p1(x, θ) =
1
L2 φ(θ) (346)

and to define a reduced two-particle correlation

g̃2(θ1, θ2, ∆∆∆) = L2
∫

dx1dx2g2(Γ1, Γ2)δL(x2 − x1 −∆∆∆). (347)

The evolution equations for these two functions, derived from Eqs. (333)–(334), read:

(348)
∂tφ(θ1) =

2ν

πR2

∫
d∆∆∆ n12(∆)∂θ1

[
sin(θ1 − θ2)g̃2(θ1, θ2, ∆∆∆)

]

+ 2ν
∫

dθ2 ∂θ1

[
sin(θ1 − θ2)φ(θ1)

]
φ(θ2) + ∂2

θ1θ1
φ(θ1);

D(1−2)
t g̃2(θ1, θ2, ∆∆∆) =

J
D

n12(∆)
(
∂θ1 − ∂θ2

) {
sin(θ1 − θ2)

[
g̃2(θ1, θ2, ∆∆∆) + φ(θ1)φ(θ2)

]}

+ 2ν
∫

dθ3 φ(θ3)
{

∂θ1

[
sin(θ1 − θ3)g̃2(θ1, θ2, ∆∆∆)

]

+ ∂θ2

[
sin(θ2 − θ3)g̃2(θ1, θ2, ∆∆∆)

]}

+
2ν

πR2

∫
dθ3dh

{
n13(h)∂θ1

[
sin(θ1 − θ3)φ(θ1)

]
g̃2(θ2, θ3,−∆∆∆ + h)

+ n23(h)∂θ2

[
sin(θ2 − θ3)φ(θ2)

]
g̃2(θ1, θ3, ∆∆∆ + h)

}

+
(

∂2
θ1θ1

+ ∂2
θ2θ2

)
g̃2(θ1, θ2, ∆∆∆).

(349)

To obtain these equations we rescaled the time unit, t→ Dt, and defined the dimen-

sionless control parameter

ν =
Jρ0

2D
πR2 ' J(N − 1)

2D
πR2

L2 . (350)

The latter approximated equivalence is valid in the thermodynamic regime we are

interested in (N � 1). Finally, the material derivative of g̃2 is defined as

D(1−2)
t = ∂t −

v0

D

[
(cos θ1 − cos θ2) ∂∆x + (sin θ1 − sin θ2) ∂∆y

]
. (351)

Eqs. (348)–(349) also have a diagrammatic expression – see Ref. [113].

To make any progress we need to expand in Fourier series:

φ(θ) = ∑
k

Ake−ikθ ; g̃2(θ1, θ2, ∆∆∆) = ∑
kl

Fk,l(∆∆∆)e−ikθ1−ilθ2 . (352)

The dynamic equations for the Fourier modes read:

(∂t + k2)Ak = ν2πk(Ak−1 A1− Ak+1 A−1) + ν2πk
∫

d∆∆∆n(∆) [Fk−1,1(∆∆∆)− Fk+1,−1(∆∆∆)] ;

(353)
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(354)

∂tFk,l(∆∆∆)− v0

D
[
∇∗
(

Fk+1,l − Fk,l+1
)

+∇
(

Fk−1,l − Fk,l−1
)]

=
J

2D
n(∆)(k − l)

[
Fk−1,l+1(∆∆∆)− Fk+1,l−1(∆∆∆) + Ak−1 Al+1 − Ak+1 Al−1

]

+ ν2πk
[
Fk−1,l(∆∆∆)A1 − Fk+1,l(∆∆∆)A−1

]
+ ν2πl

[
Fk,l−1(∆∆∆)A1 − Fk,l+1(∆∆∆)A−1

]

+
2ν

R2

∫
dhn(h)

{
k
[
Ak−1F1,l(∆∆∆− h)− Ak+1F−1,l(∆∆∆− h)

]

+ l
[
Al−1Fk,1(∆∆∆ + h)− Al+1Fk,−1(∆∆∆ + h)

]}
− (k2 + l2)Fk,l(∆∆∆),

where ∇ = ∂∆x + i∂∆y , ∇∗ = ∂∆x − i∂∆y . Although simpler, these equations are

still integro-differential: in order to remove the spatial integrals we can either ap-

proximate the collision kernel in such a way that it yields punctual local collisions,

n(∆) ∼ δ(∆), or exploit the PBC of the domain, in the same way as for the angular

variables (cfr. [113]).

Following this second approach, we define new tensor-like Fourier coefficients

Fk,l,m,n s.t.

Fk,l(∆∆∆) = ∑
m,n

Fk,l,m,ne−im 2π
L ∆x−in 2π

L ∆y . (355)

Let us define:

Kmn =
1

πR2

∫ R

0
dr
∫ 2π

0
dα reir 2π

L (m cos α+n sin α) = 0 F̃1

(
2;−(m2 + n2)

π2R2

L2

)
, (356)

where 0 F̃1(·; ·) denotes the regularized confluent hypergeometric function, 0 F̃1(a; z) =
0F1(a;z)

Γ(a) , which can be also rewritten as follows:

(357)
Kmn = 0 F̃1

(
2;−(m2 + n2)

π2R2

L2

)
=

L
πR

J1

(
2 πR

L

√
m2 + n2

)

√
m2 + n2

= J0

(
2πR

L

√
m2 + n2

)
+ J2

(
2πR

L

√
m2 + n2

)
,

being Jn(z) the Bessel function of the first kind. Since Kmn only depends to (m, n)

through
√

m2 + n2, we have the useful properties:

Km,n = K−m,n = Km,−n = K−m,−n. (358)

Exploiting the series representation of the Heaviside function

n(∆) = H(R− |∆∆∆|) = ∑
m,n

πR2

L2 Km,ne−im 2π
L ∆x−in 2π

L ∆y , (359)

we obtain from Eqs. (353)–(354):

(∂t + k2)Ak = ν2πk(Ak−1 A1−Ak+1 A−1) + ν2πk ∑
mn

Kmn [Fk−1,1,m,n − Fk+1,−1,m,n] ; (360)

∂tFklmn +
v0

2D
2π

L
[
(im + n)

(
Fk+1,l,m,n − Fk,l+1,m,n

)
+ (im − n)

(
Fk−1,l,m,n − Fk,l−1,m,n

)]

=
ν

N
(k − l) ∑

s,t
Ks,t

(
Fk−1,l+1,m−s,n−t − Fk+1,l−1,m−s,n−t

)

+ ν2πk
(

Fk−1,l,m,n A1 − Fk+1,l,m,n A−1
)

+ ν2πl
(

Fk,l−1,m,n A1 − Fk,l+1,m,n A−1
)

+
ν

N
(k− l)Kmn

(
Ak−1 Al+1−Ak+1 Al−1

)
+νKm,n

[
2πk

(
Ak−1F1,l,m,n−Ak+1F−1,l,m,n

)

+ 2πl
(

Al−1Fk,1,−m,−n − Al+1Fk,−1,−m,−n
)]
− (k2 + l2)Fklmn.

(361)
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Figure 38: Numerical integration of the ring-kinetic equations (360)–(361), for different val-

ues of ν in the ordered phase. In the first row, we plot the coefficients Ak(t) of

te single particle distribution; in the second row we plota subset of coefficients

for the two-particle p.d.f. g̃2, F0lmn(t). The color code in the second row is based

on the value of |l|, ranging from 0 (black) to 8 (yellow). In all the numerical in-

tegrations of the ring-kinetic equations, we chose nmax = mmax = 10; for ν ≤ 0.9,

kmax = 5, whereas for ν > 0.9, kmax = 8. T time intervals of the plots in the first

and second row are very different, in order to highlight the short-time dynamics

of Ak. The coefficient of Ak are approximately stationary from t = 500 to t = 5000.

The constraints imposed by reality and normalization conditions, in addition to

the invariance under particles’ label permutations, are:

• A∗k = A−k, F∗k,l,m,n = F−k,−l,−m,−n;

• A0 = 1
2π , F0000 = 0;

• Fk,l,m,n = Fl,k,−m,−n.

Eqs.(360)–(361) are compatible with these conditions. By definition, g2 must also

satisfy:
∫

dΓ2 g2(Γ1, Γ2) = 0 =⇒
∫

dθ2d∆∆∆ g̃2(θ1, θ2, ∆∆∆) =
∫

dθ1d∆∆∆ g̃2(θ1, θ2, ∆∆∆) = 0, (362)

hence

• Fk,0,0,0 = F0,k,0,0 = 0 ∀k.

If Fk,l,m,n evolves according to Eq. (361), this requires:

ν

N
k ∑

s,t
Ks,t (Fk−1,1,−s,−t − Fk+1,−1,−s,−t) = − ν

N
k (Ak−1 A1 − Ak+1 A−1) . (363)

Assuming ν
N k 6= 0 and plugging the resulting equation into Eq.(360), one obtains

a simple diffusion equation for φ(θ): (∂t + k2)Ak = 0 which does not allow for non-

trivial steady state solutions. However, let us notice that Eqs. (360) and (361) have

been obtained in the N → ∞ limit; terms of order 1/N have already been neglected,

assuming that N− 1 ' N− 2 ' N. To be consistent, we should work in the N → ∞
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Figure 39: a: Single particle distribution φ(θ) reconstructed from the stationary Fourier coef-

ficients Ak, for varying ν values (specified in the colorbar). The inset shows the

order parameter curve (corresponding to 2π<A1 =
∫

dθφ(θ) cos(θ), comparing the

results of the ring kinetic theory and of the mean field theory. b: Reconstructed

function h(α̂, ϕ) at ν = 1.1 (to be compared with Fig. 31 from [113]): we show for

selected values of ϕ the dependency on α̂ (as defined in Fig. 20). The obtained

result is unsatisfactory under several respects. Firstly, the asymmetry we look

for is not reproduced; on the contrary, if we compare the curves for ϕ = ±ϕ/4

(the pair at height ∼ 0.25), converging configurations seem to be more probable

than divergig ones, in clear contrast with thermodynamic constraints. Moreover,

the curves do not have the right periodicity in α̂ (expected periodicity of 2π).

However, a possible explanation for this result may be that since h(α̂, ϕ) is the

only function which contains information about the spatial structure, it primarily

tends to reproduce the fact that a particle which travels in a fixed direction has

a greater probability of finding another close particle (typically well aligned, at

R = 1) on one of its sides (α̂ = ±π/2), rather than in front or at the back (α̂ = 0 or

α̂ = π).

limit, where Eq. (362) is immediately satisfied: let us then remove the corresponding

terms form Eq. (361).

Eq. (360) and the thermodynamic limit of Eq. (361) define an infinite set of cou-

pled ODEs, which have a linear dependency on F but nonlinear on A. We are in

principle interested in the stable equilibrium points of such equations. In order to

study them, we have integrated numerically a truncated set of equations (separat-

ing real and imaginary parts3), obtained imposing that Ak = 0 and Fk,l,m,n = 0 for

all |k|> kmax, |l|> kmax, |m|> mmax or |n|> nmax. In our numerical attempts we an

initial condition describing a little perturbation around the homogeneous isotropic

solution: Ak = 1
2π δk0 + α(1− δk0), with |α|� 1

2π (α ∈ C), and Fk,l,m,n = ε � 1
(2π)2

(ε ∈ R) — except in the cases k = l = m = n = 0, or k = m = n = 0, or l = m = n = 0,

where Fk,l,m,n = 0.

From numerical integration of Eqs. (360)–(361), we observe that, whenever ν <

ν∗ ' 0.98, the homogeneous isotropic solution (Ak , Fk,l,m,n) = ( 1
2π δk,0, 0) is asymp-

totically stable, while it becomes unstable for ν > ν∗. It is worth noticing that

our initial conditions are chosen in such a way that Fk,l,m,n � Ak. Recalling

3 We could not find an easy way to remove the degeneracy associated to the SSB in this second case. Since

complex Fk,l,m,n coefficients appear in the equation for Ak , requiring that A±1 is real does not guarantee

that Ak ∈ R for all the subsequent k values.
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that ν∗ = 1 is the value at which the instability of A1 emerges in the absence

of correlations, the picture seems consistent with an instability led by the coeffi-

cients of the single-particle p.d.f.: as A1 becomes significantly different from zero,

the terms ν2πk (Fk−1,l,m,n A1 − Fk+1,l,m,n A−1) + ν2πl (Fk,l−1,m,n A1 − Fk,l+1,m,n A−1) in

Eq.(361) are no more negligible (as they are at the beginning) and boost the growth

of F coefficients. In turn, as the coefficients of the two-particle p.d.f. evolve, the

Fourier modes Ak grow and reach a new stable stationary point. We cannot ex-

clude that other routes to instability may be covered with different initial conditions;

a direct inspection of the linearized equations is not easy to carry on for such a high-

dimensional tensor system. The difference between the stationary state reached in

the molecular chaos approximation and in the ring-kinetic theory is visible in Fig. 30

the main text. We show in Fig. 38 the temporal evolution of Ak and Fklmn for two

selected values of ν.

When ν > 1.5 the numerical solution diverges. This fact is not worrying per se, be-

cause it can simply be an indication that, when the system is deeply ordered, higher

order correlations described by the third and following equations of the BBGKY hi-

erarchy are non-negligible. Moreover, the homogeneity assumption clearly breaks

down in this regime, as it is visible in Fig. 22, so we expect the theory to become

inappropriate. Our hope is to describe with the ring-kinetic theory the asymmetries

in the pair correlation function which emerge close to the onset of order. A more

problematic issue comes then from the fact that the function q(α, ϕ) that we can

build using the asymptotic values of the F and A coefficients does not match the

one we reconstructed from numerical simulations, for ν close to 1. The resulting

plot is shown in Fig. 39. However, a ring kinetic theory developed by Kursten and

Ihle in [113] for the non-additive model leads to results that are in qualitative agree-

ment with our findings, as discussed in the main text. What changes in this theory

is that the PDE is nonlinear in F because of the presence of F-dependent weights in

the collision integrals.

Numerical reconstruction of the reduced two-particle density

Once the stable stationary solutions of the set of ODEs for the truncated series of

Fourier coefficients is found, we use them to reconstruct the quantity of interest

for us, i.e. the reduced two-particle density q(α, ϕ). The tricky function to recon-

struct is the non-symmetrized version of the connected pair distribution h(r, α̂, ϕ),

which contains the entire spatial dependence. Knowing this function, we can com-

pute q(α̂, ϕ) = h(R, α̂, ϕ) +
∫

dθ1φ(θ1)φ(θ1 + ϕ), and the desired symmetrized function

q(α, ϕ) is eventually obtained by using the definition of α in Eq. (224).

Exploiting the definition of h and the Fourier series expansion of g̃2, h(r, α̂, ϕ)

reads:

h(r, α̂, ϕ) =
∫

dθ1dθ2d∆∆∆ g̃2(θ1, θ2, ∆∆∆)δ(θ2−θ1−ϕ)δ(∆x−r cos(α̂+θ1))δ(∆y−r cos(α̂+θ1))

= ∑
klmn

2πFklmne−ilϕ+i(k+l)α̂
( −n − im√

m2 + n2

)k+l
Jk+l

(
2πr

L

√
m2 + n2

)
,

(364)
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where Jn(x) is the Bessel function of the first kind:

Jn(x) =
1

2π

∫ π

−π
dτ ei(x sin τ−nτ). (365)

Let us employ the symmetries of the Fourier coefficients and of the Bessel functions

to rewrite the sum in Eq. (364) as a sum which only involves real numbers.

Thanks to the invariance of the two-particle density under particle relabeling,

Fk,l,m,n = Fl,k,−m,−n, so:

(366)
h(r, α̂, ϕ) = ∑

klmn
2πFk,l,m,n

( −n − im√
m2 + n2

)k+l
Jk+l

(
2πr

L

√
m2 + n2

)
ei(k+l)(α̂−ϕ/2)

· 1
2

[
ei(k−l)ϕ/2 + (−1)k+le−i(k−l)ϕ/2

]
.

Notice that k + l and k− l are either both odd or both even, so we can split the sum

as follows (depending on the parity of the indexes k + l):

(367)
1

2π
h(r, α̂, ϕ)

= ∑
k+l even

∑
mn

Fk,l,m,n

( −n − im√
m2 + n2

)k+l
Jk+l

(
2πr

L

√
m2 + n2

)
ei(k+l)(α̂−ϕ/2) cos

[
(k− l)

ϕ

2

]

+ ∑
k+l odd

∑
mn

Fk,l,m,n

( −n − im√
m2 + n2

)k+l
Jk+l

(
2πr

L

√
m2 + n2

)
ei(k+l)(α̂−ϕ/2)i sin

[
(k−l)

ϕ

2

]
.

We now exploit the following property of the Bessel functions of the first kind of

integer order:

J2ν(x) = J−2ν(x), x ∈ R, ν ∈ Z; J2ν+1(x) = −J−(2ν+1)(x), x ∈ R, ν ∈ Z. (368)

Let us indicate explicitly the real and imaginary parts of the Fourier coefficients:

Fk,l,m,n = fk,l,m,n + igk,l,m,n, (369)

so that each term in the sums above can be explicitly rewritten as

(370)

k + l even : ( fk,l,m,n + i gk,l,m,n︸ ︷︷ ︸
changes sign

)


cos[(k + l)τnm] + i sin[(k + l)τnm]︸ ︷︷ ︸

changes sign




· Jk+l

(
2πr

L

√
m2 + n2

){
cos

[
(k + l)

(
α̂ − ϕ

2

)]

+ i sin
[
(k + l)

(
α̂ − ϕ

2

)]

︸ ︷︷ ︸
changes sign

}
cos

[
(k − l)

ϕ

2

]

or

(371)

k + l odd : ( fk,l,m,n + i gk,l,m,n︸ ︷︷ ︸
changes sign

)


cos[(k + l)τnm]︸ ︷︷ ︸

changes sign

+i sin[(k + l)τnm]




· Jk+l

(
2πr

L

√
m2 + n2

)

︸ ︷︷ ︸
changes sign

{
cos

[
(k + l)

(
α̂ − ϕ

2

)]

+ i sin
[
(k + l)

(
α̂ − ϕ

2

)]

︸ ︷︷ ︸
changes sign

}
i sin

[
(k − l)

ϕ

2

]

︸ ︷︷ ︸
changes sign

.
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We marked down how the sign of the various pieces change under the conjugate

transformation (k, l, m, n)→ (−k,−l,−m,−n). The angle τnm is defined by

cos(τnm) =
−n√

m2 + n2
; sin(τnm) =

−m√
m2 + n2

. (372)

Under the conjugate transformation it transforms as τ−n,−m = τnm + π.

Only products involving an even number of changes of sign do survive in the

sum, so we have:

h(r, α̂, ϕ) = 2π ∑
k,l,m,n:
k+l even

Jk+l

(
2πr

L

√
m2 + n2

)
cos

[
(k − l)

ϕ

2

]

·
{

fk,l,m,n cos
[
(k + l)

(
α̂− ϕ

2
+ τnm

)]
− gk,l,m,n sin

[
(k + l)

(
α̂− ϕ

2
+ τnm

)]}

− 2π ∑
k,l,m,n:
k+l odd

Jk+l

(
2πr

L

√
m2 + n2

)
sin
[
(k − l)

ϕ

2

]

·
{

gk,l,m,n cos
[
(k + l)

(
α̂− ϕ

2
+ τnm

)]
+ fk,l,m,n sin

[
(k + l)

(
α̂− ϕ

2
+ τnm

)]}
.

(373)

Using Eq. (373), we can finally compute:

q(α̂, ϕ) = h(R, α̂, ϕ) + 2π ∑
k
|Ak|2e−ikϕ. (374)



D D E S C R I P T I O N O F T H E DATA S E T

In this appendix we give a more detailed description of the analyzed dataset and

of the experimental protocol, with a focus on the possible sources of ‘measurement

errors’. We argue in the main text (Section 3.5.2) that there must be spurious contri-

butions in the reconstructed trajectories, which have a comparable effect to the one

that superimposing an uncorrelated noise series to the model time series has.

The dataset

The analyzed data belong to the second collection campaign of the CoBBS group,

which was conducted mainly in the winter season 2011/2012. In all data collection

campaigns, bird flocks are always observed in natural conditions during their aerial

display before roosting. In nature, birds easily gather in large groups of more than

thousands or even tens of thousands of individuals, a fact that creates severe issues

for the reconstruction of 3D individual coordinates from such dense clouds of mov-

ing animals. However, starting from the STARFLAG project, a modern methodol-

ogy for the observation of large groups of birds outside the lab has been developed.

An overview of the experimental setup and reconstruction procedure is contained

in [45, 46] and in [43, 2] (the latter regarding dynamic reconstruction).

The dataset of the second campaign comprises flocks mostly performing collec-

tive turns: the same data were indeed used in [3], where the Inertial Spin Model was

proposed. The size of these flocks, in the range of hundreds, is smaller than those

collected during the first experimental campaign (STARFLAG 2007-2010). This is

due to the different apparatus used in the two campaigns. The first experimental

campaign was performed with Canon D1 Mark ii cameras shooting interlaced at 10

fps, with a resolution of 8.2 MP and with a sensor size of 28.7mm x 19.1 mm. Such

a low frame rate represented a severe limitation for the dynamic reconstruction of

the flocks. The empirical study of the first campaign was indeed limited to static

reconstruction of birds’ relative positions. To overcome this limitation, the second

experimental campaign was carried out with much faster cameras IDT M5, shoot-

ing at a maximum speed of 170 fps, but with a much lower resolution (4MP) and

with a smaller sensor (16mm x 8.1 mm), which results in a dramatic reduction of

the size of the field of view and consequently of the potentially collectable flocks.

Few details about the observed flocking events, e.g. concerning the size of the

flock and the length of the observation, are summarized in Table 2. The analyzed

data were obtained using the GReTA algorithm for 3D dynamical reconstruction

[2].
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Table 2: The analyzed dataset consists of the output of the reconstruction algorithm GReTA.

For each flocking event, we have 3D trajectories of maximum length tmax. Time

is measured in number of recorded steps. Not all of the trajectories are of the

same length, due to reconstruction errors which may create breaks. Nfull birds are

recorded for the full length tmax of the observation; N̄in is the average number of

birds appearing simultaneously in a single frame. Finally, t̄in is the average length

of reconstructed trajectories or subtrajectories, without breaks in the middle.

Event obs. rate tmax Nfull N̄in t̄in

20120209_ACQ1 170 (fps) 600 231 373 536

20111214_ACQ4F1 170 (fps) 761 49 126 579

20111214_ACQ4F2 170 (fps) 708 45 115 507

20111215_ACQ1 170 (fps) 976 123 305 753

20111220_ACQ2 170 (fps) 300 95 145 230

20111222_ACQ1 170 (fps) 609 59 62 596

20111201_ACQ3F4 170 (fps) 400 189 354 320

20111201_ACQ3F1 170 (fps) 500 62 112 410

20110211_ACQ1 80 (fps) 360 420 564 334

20110208_ACQ3 80 (fps) 440 133 166 412

20110217_ACQ2 80 (fps) 150 301 378 142

20111124_ACQ1 170 (fps) 310 97 120 302

20111125_ACQ1 170 (fps) 955 44 49 900

20111125_ACQ2 170 (fps) 761 259 424 621

Stereometry experiments

In order to understand the origin of possible measurement errors, whose relevance

in the inference procedure was highlighted by the trends in Figs. 14–15, it is useful

to pause over some technicalities concerning the experimental protocol. A graphical

abstract of the entire strategy is provided in Fig. 40.

Flocks are observed at a distance, using the technique of stereometry and em-

ploying still cameras with high digital resolution. These cameras are professionally

calibrated in the lab to estimate their internal parameters (focal length, position of

the image center and distortion coefficients), and on a daily basis in the field to

estimate the external parameters of the system (mutual orientation and position of

the cameras). The 2D images shot by each of them are segmented to isolate the

birds from the background. Several specific problems related to the recognition of

individual birds may arise in this segmentation step and are discussed in [45]. What

is of interest for us is that the experimental setup is chosen and designed in such

a way that each bird covers at least 4 pixels on the CCD (but typically many more).

The position of the bird on the 2D photo is identified with the center of mass of the

intensity distribution, after background subtraction and blob splitting. A blob is an

ensemble of two or more birds that coalesce and appear as a unique feature in the

2D picture of the camera.

Due to the finite resolution of digital images, the segmentation process intro-

duces unavoidable errors that affect the reconstructed position of the birds. The

upper bound for this segmentation error may be computed from 3D reconstruction
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1. Synchronized camera setup 2. Segmentation

3. Featureless matching
4. Dynamical matching

Figure 40: Graphical abstract of the experimental procedure. The figures are reproduced

with permission from [45, 2]. The first step involves the true experiment, whose

difficulties are in the calibration and synchronization of the cameras. Three cam-

eras, placed as shown in the figure, are used for stereometric photography (six

in the first type of experiments in order to double the shooting rate). Image seg-

mentation is performed on each frame recorded by each camera. The 3D static re-

construction is done in step 3 using only stereometric photography. The dynamic

reconstruction of birds’ trajectories is performed in a recursive way combining

stereometry with bird matching in subsequent frames.

formulae [33], using standard error propagation and assuming a segmentation er-

ror of 1px. In our experimental setup (baseline of the system equal to d=25m, birds

at z=125m from the cameras and 28mm lenses) this upper limit corresponds to a

maximum error of 15cm in the reconstructed positions. It is worth noting that this

error refers to absolute positions, whereas for all practical purposes concerning this

work, we are interested in birds’ velocities, computed as the difference between

positions in consecutive frames. When comparing the images of the same bird in

consecutive frames, or more in general in frames close in time, its shape essentially

does not change, hence the images are affected by segmentation errors of the same

order, which actually compensate for each other, reducing the overall error on the

reconstructed velocity.

Other sources of error may be related to the calibration of the cameras, which are

tested [33] and checked to be negligible compared to the major error source coming

from segmentation.
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