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Long range correlations and slow 
time scales in a boundary driven 
granular model
Andrea Plati1* & Andrea Puglisi2,3

We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. 
Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, 
determining different kinds of non-equilibrium steady states or free-cooling dynamics. Analytical 
results for spatial and temporal correlations are provided by analytical diagonalisation of the system’s 
equations in the infinite size limit. We demonstrate that spatial correlations are scale-free and time-
scales become exceedingly long when the system is driven only at the boundaries. On the contrary, in 
the case a bath is coupled to the bulk sites too, an exponential correlation decay is found with a finite 
characteristic length. This is also true in the free cooling regime, but in this case the correlation length 
grows diffusively in time. We discuss the crucial role of boundary driving for long-range correlations 
and slow time-scales, proposing an analogy between this simplified dynamical model and dense vibro-
fluidized granular materials. Several generalizations and connections with the statistical physics of 
active matter are also suggested.

The emergence of long-range order, or collective behavior (CB), in non-equilibrium systems such as granular 
materials and living organisms is a matter of great interest for fundamental physics and applications1,2. Examples, 
recently observed in experiments and numerical simulations, are motility induced phase transitions in bacteria3–6, 
collective migration in epithelial cells7, persistent collective rotations in granular systems8–10. An important class 
of CB instances includes flocking and swarming in animals, systematically studied by physicists in the last 25 
years11–13. The great variety of systems in which CB has been observed makes the formulation of a rigorous and 
unifying definition for them a difficult task. Generally speaking we can say that CB occurs when a many-body 
system acts as a whole. Indeed, a common property of the previous examples is the interplay between different 
length scales: the interactions act on microscopic distances while correlations extend to macroscopic scales, com-
parable with the system size. In the study of CB it is common, in fact, to look at spatial correlation functions of the 
relevant fields: if this function has a typical decay length ξ then we can divide the system in almost independent 
subsystems of size ∼ ξ . If the correlation function decays without a typical length it is said to be scale-free: in 
this case the dynamics of every particle is correlated with the whole system. We underline that scale-free spatial 
correlations appear naturally in critical phase transitions at equilibrium14, but a general and well established 
theoretical framework to understand the appearance of long-range ordering in non-equilibrium systems is still 
lacking: sometimes equilibrium-like approaches are successful (effective Hamiltonian/temperatures)15,16 while 
in other cases fully non-equilibrium tools have to be developed17–19.

In this paper, we provide analytical results about the occurrence of scale-free (more precisely power law decay-
ing) correlations in a velocity field defined on a one dimensional lattice with interactions mediated by viscous 
friction. We will show that this behavior is observed in the non-equilibrium stationary state (NESS) obtained 
by coupling only the boundaries of the system with a thermal bath. We call this phase Non-Homogeneously 
Heated Phase (NHHP). If the particles in the bulk are also put in contact with a bath a different regime is found, 
the Homogeneously Heated Phase (HHP), where the spatial correlation is exponential with a characteristic 
length scale that goes to infinity when the contact between the bulk and the bath vanishes. The NHHP is also 
characterized by slow relaxation times that scale with the square of the system size.

Lattices (particularly in 1d) bring two main advantages: (1) analytical calculations are often possible, (2) 
they help to isolate minimal ingredients for the occurrence of the phenomenon under study. Considering just 
the non-equilibrium context, 1D models have been used to study thermal conduction20–22, non-equilibrium 
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fluctuations23,24, correlations and response with non-symmetric couplings25, velocity alignment in active matter26, 
systems with Vicsek-like interactions27,28, velocity fields in granular materials29–31. In the following we will just 
consider linear interactions between variables and this allows to work in the framework of multivariate linear 
stochastic processes. Despite their simplicity, this class of models continues to be a powerful tool when dealing 
with dynamics driven out of equilibrium as in biological systems32,33.

As discussed in the next section, our model can be thought as an extreme simplification of a vibrated granular 
system at strong compression. Looking for the emergence of a collective motion in it is then motivated also by the 
recent experimental/numerical evidence of slow collective behavior in vibro-fluidized granular materials8,9. This 
phenomenon is not yet fully understood and our study tackles this problem, revealing that non-homogeneous 
heating and frictional interactions (i.e standard features of vibrated granular matter) are minimal ingredients to 
develop a slow collective dynamics.

The manuscript is organized as follows: in section “Model” we present our model discussing its phenom-
enology and its relation with real granular systems and previously studied non-equilibrium 1D models. Section 
“Results” contains the key-steps for the calculation of the spatial correlation function in the NHHP and in the 
HHP shedding light on the limit for which diverging correlation lengths and times are obtained. We also show 
the validity of our results beyond the assumptions used to perform analytical calculations. Finally, in “Discussion” 
we draw conclusions and sketch some perspectives. In the Supplemental Material (SM) details of the calcula-
tions are provided in addition to some insights about the cooling state and the active equivalent of our model.

Model
Definition and phenomenology.  We consider a velocity field on a one dimensional lattice of size L. The ith 
particle interacts with their nearest neighbors j through a viscous force with coefficient γ : Fi = −

∑

j γ (vi − vj) . 
The boundary (bulk) sites are coupled with an external bath defined by a drag coefficient γb ( γa ) and relative 
temperatures which can be different if at the boundaries or in the bulk. Considering particles with unitary mass 
the equations for the model are: 

 where the first equation holds for 1 < i < L and the ηi(t) s are Gaussian white noises with unitary variance: 
�ηi(t)ηj(t ′)� = δijδ(t − t ′).

In this model, the way in which energy is supplied to the system is consistent with the fluctuation–dissipation 
theorem. Indeed, for each viscous force ( γa(b) ) there is a stochastic counterpart at finite temperature ( Ta(b) ). This 
is actually not true for the interaction force defined by γ because it is related to the viscosity of the material that 
forms the grains. Thus, the associated temperature (typical of the thermal agitation at the molecular scale) can 
be reasonably neglected in a granular context. We refer to NHHP when γa = 0 so that just the first and the Lth 
sites are heated, while in the HHP we consider a general γa  = 0 . We note that the HHP is not strictly spatially 
homogeneous because viscous coefficients and temperatures depend on the position: we refer to it as homogene-
ously heated meaning that in this phase all the particles are coupled with a bath.

As we discuss in the next paragraphs, this is a linear model and a full solution can be found in the context of 
multivariate stochastic processes. Nevertheless, a numerical integration of Eq. (1) can be useful to have a physi-
cal insight on the phenomenology in play. In Fig. 1, we show some instantaneous snapshots of the system in the 
stationary state for three different conditions: HHP with Ta  = 0 , HHP with Ta = 0 and NHHP. We note that in 
the NHHP (panel c) almost all the velocities are aligned with similar moduli while in the HHP we have smaller 
aligned domains with moduli that decay sharply moving away from the boundaries when Ta = 0 (panel b) and a 
random configuration when Ta  = 0 (panel a). This comparison makes clear that—in terms of correlations—the 
key parameter is γa rather than Ta : indeed a situation where the sites experience a collective behavior (in the 
intuitive sense that they act as a whole) is only found in the NHHP. In Fig. 1d the typical correlation time for 
each site is shown and we can see that in the NHHP the dynamics is extremely slower with respect to the other 
two conditions. It is worth noting that this model does not present any directional asymmetry so the true mean 
value of the velocity field (i.e. obtained by an average over long times or equivalently over all the realizations 
of the noises) is zero also in the NHHP, even if the single time configurations clearly show an explicit global 
alignment. The phenomenology of the NHHP can then be described as the occurrence of slow and collective 
fluctuations around the expected mean value.

Relation with real granular systems and other models.  We note that the kind of interaction used 
in Eq. (1) is typical of contact models for granular materials34,35. In these models, the grains (that are disks or 
spheres depending on the geometry) interact when a distance smaller than the sum of their radius is reached. 
In this condition, the particles penetrate each other and the dynamics is ruled by contact forces that are split 
into a normal and tangential component with respect to the vector connecting the centers of the grains. Both of 
this contributions contain a (linear or non-linear) elastic term that depends on the normal/tangential displace-
ment and a dissipative one that depends on the normal/tangential relative velocity. The latter has, in many cases, 
exactly the form of the viscous interaction we use in our model36. In view of this we can say that if we fix the 
centers of L grains on the lattice sites so that they are partially overlapped, then the dynamics of the particles’ 

(1a)v̇i = −(2γ + γa)vi + γ (vi+1 + vi−1)+
√

2γaTaηi(t)

(1b)v̇1 = −(γ + γb)v1 + γ v2 +
√

2γbT1η1(t)

(1c)v̇L = −(γ + γb)vL + γ vL−1 +
√

2γbTLηL(t)
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velocities would be given by Eq. (1). Neglecting the dynamics of positions (they do not appear at all in Eq. 1) is 
surely the most relevant approximation of our approach: in the SM (S5) we briefly discuss how to go beyond it.

Nevertheless, the physics described by our model can realistically represent the condition of permanent 
contacts in which dense granular matter is found in vertically-vibrated setups. Such kind of systems are widely 
studied experimentally; they consist on assemblies of grains confined in a box vibrated with a noisy or sinusoidal 
signal on the z direction. For low driving energies, the particles are always arranged in a dense packing where they 
vibrate in permanent contact with each other experiencing very rare and slow rearrangements. This implies, if 
the geometry is narrow enough, that just the external layers of the system are in direct contact with the vibrating 
walls while the others never touch them. This last fact tell us that, in addition to the specific form of the viscous 
forces and the permanent interactions, also the way in which the external energy injection is modeled in the 
NHHP resembles the conditions of a vibrated granular system in a dense state. Moreover, if layers of particles 
are mapped into lattice sites, a 1D chain can also be representative of a higher dimensional systems (see Fig. 2). 
On the other hand, the HHP can be referred to a setup where all the particles interact with the vibrating walls, 
as it happens for instance in vibrated monolayers37.

The idea of considering velocity fields defined on lattices, i.e. neglecting the evolution of the positions and 
density fluctuations in the dynamics, has been widely exploited in granular literature29–31 especially for dilute 
systems. In these previous works, however, there is no continuous interaction, but only instantaneous collisions 
occurring between pairs of neighboring grains picked up at random, at every time step. Many results have been 
obtained by solving (analytically or numerically) the corresponding master equation or performing its hydro-
dynamic limit, revealing that these models are a powerful tool to investigate complex phenomena observed in 
experiments and simulations of realistic granular systems such as shock waves, anomalous transport and current 
fluctuations38,39.

To summarize motivations and background, our model reflects three main characteristics of dense granular 
materials in vertically-vibrated setups i.e. viscous forces, permanent contacts and energy injection localized 
at the boundaries. It can be then considered as the high density variant of a well established family of models 
previously investigated.

It is important to note that also the dilute models can exhibit long-range correlations38,39. Nevertheless, those 
are finite-size effects found in the homogeneous cooling state40 i.e. without external driving and with conserved 
total momentum. As we briefly discuss in the next paragraph and more clearly in the SM (S4), our model makes 
clear that there is a sharp difference between the correlations of the cooling state and the NESS ones.

Compact SDE formulation of the model.  Defining the vectors V = (v1, . . . , vL) , η(t) = (η1(t), . . . , ηL(t)) 
and the adimensional parameters β = γb/γ , α = γa/γ then we can rewrite Eq. (1) as a multivariate Ornstein–
Uhlenbeck process obtaining the following stochastic differential equation (SDE):

where B̂ = diag(
√
2γbT1,

√
2γaTa, . . . ,

√
2γaTa,

√
2γbTL) and:

(2)V̇ = −ÂV + B̂η(t)

Figure 1.   (a–c) Snapshots of the velocity field in the stationary state of the two phases. We exclude the first 
five (really hot) sites near the boundaries to have a more clear view of the field. Each panel shows the vectors in 
linear scale and the moduli in log scale in order to better appreciate the phenomenology of the system. Orange 
and blue bars discriminate the two directions. We note that a great cluster of particles with same direction 
and similar modulus is found in the NHHP only, signaling that in terms of correlations the key parameter 
is γa rather than Ta . (d) Autocorrelation times for each site defined as the time τi for which Ŵi(τi) = 0.4 . The 
autocorrelation function is defined as Ŵ(t ′) = limt→∞�vi(t)vi(t + t ′)�/�v2i (t)� where the brackets refer to a 
time average on the stationary state. We note that in the NHHP the dynamics is far slower than in the HHP 
also when Ta = 0 . The snapshots are obtained by numerical integration of Eq. (1) with L = 50 , γ = 5 , γb = 10 , 
γa = {3, 0} , T1 = TL = 0.002 , Ta = {0.002, 0} after a time tM = 108/γ and with a temporal step dt = 0.05/γ.
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is a L× L tridiagonal symmetric matrix.
The information about space-time correlations of the system are encoded in the two times correlation matrix 

σ̂ (t, s) whose entries are defined as σjm(t, s) = �vj(t)vm(s)� ≡ �
[

vj(t)− �vj(t)�
]

[vm(s)− �vm(s)�]� . We now define 
the quantity of principal interest in this paper i.e. the static spatial correlation function of the velocity field:

With this definition we have ζjm = 1 if j = m or vj = vm and ζjm = 0 if �vjvm� = 0 . It is then clear that our goal 
is to solve Eq. (2) and find the stationary correlation matrix σ̂ = limt→∞ σ̂ (t, t) that exists if Â is positive semi-
definite. In this conditions, regardless the symmetry of Â , the correlation matrix can be found by inverting the 
relation41:

Nevertheless, a more direct way to obtain an analytic expression of σ̂  can be followed exploiting 
the fact that Â is symmetric. In this case there exists a unitary matrix Ŝ such that ŜŜ+ = Î  and Ŝ+ÂŜ
=Ŝ+ÂT Ŝ = �̂ = diag(�1, �2, . . . , �L) where Î is the identity matrix, the �j s are the eigenvalues of Â while Sji is the 
jth component of the ith eigenvector of it. With these hypotheses and in the case of B̂ = diag(b1, . . . , bL) we can 
write the covariance matrix in the two-times (with t ≥ s ) and non-stationary case:

where: 

 The first matrix represents the transient and the brackets refer to the average over initial conditions while the 
NESS is described by lims→∞ G(t, s) . Without noises, Eq. (7a) would be the solution of Eq. (2) representing the 

(3)Â = γ













1+ β − 1 0

−1 2+ α − 1

. . .
. . .

. . .

− 1 2+ α − 1
0 − 1 1+ β













(4)ζjm = σjm
√
σjjσmm

where σjm =
〈

vjvm
〉

.

(5)Âσ̂ + σ̂ ÂT = B̂B̂T .

(6)σ̂ (t, s) = Ŝ
(

Ĉ(t, s)+ Ĝ(t, s)
)

Ŝ+

(7a)Ĉ(t, s) = exp(−�̂t)Ŝ+�V(0),VT (0)�Ŝ exp(−�̂s)

(7b)Gjm(t, s) =

(

e−�j(t−s) − e−(�j+�m)s
)

∑

n S
+
jnSnmb

2
n

�j + �m
.

Figure 2.   Sketch of the model and relation with higher dimensional systems. On the left we suggest a 
hypothetical 2D dense granular system where particles are roughly located on the vertices of a regular lattice. 
A possible mapping from the 2D to the 1D system involves replacing the mean horizontal velocity on the ith 
layer of the 2D system and replacing it with the vi of the 1D system. The dynamics in the vertical direction is 
neglected, an approximation which is justified by the presence of the vertical confinement, while the periodic 
boundary conditions (indicated by the dotted lines) are representative of a ‘free’ direction in which the grains 
can flow without obstacles. This can be realized experimentally, for instance, in a 3D cylindrical geometry, where 
the velocity of grains in the tangential direction (with respect to the central axis of the cylinder) constitute the 
horizontal velocities in the putative 2D system sketched here, see for instance8,9. Red grains are in direct contact 
with the external source of energy coming from the boundaries ( γb , T1(L) ) while the green ones are in contact 
with the bulk bath, which is switched off in the NHHP.
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correlations in the cooling state. We note that the two correlation matrices have a different mathematical struc-
ture. The consequences of that together with some properties of the cooling state are discussed in the SM (S4) 
while in the next paragraphs we will neglect Ĉ concentrating on the NESS. Defining σ̂ (t ′) = limt→∞ σ̂ (t + t ′, t) 
and through Eqs. (6) and (7b) it is also possible to evaluate the single particle autocorrelation function 
Ŵj(t

′) ≡ σjj(t
′)/σjj(0):

from which is clear that, as expected for a linear system, the autocorrelation function is a sum of exponential 
terms with different characteristic times that are given by the inverse of the eigenvalues τk = 1/�k.

We will derive σjm in a specific case where the diagonalisation of Â can be done analytically and then follow 
a numerical technique of diagonalisation42 to show the robustness of our main results i.e. power law decay of 
spatial correlations. Before doing that, we briefly review what techniques have been used to solve similar problems 
highlighting the differences with the present case.

These kinds of lattice models, and also more complex ones (with higher dimension and second order dynam-
ics), when translational invariance holds, can be mapped in a system of independent equations for the modes 
in the Bravais lattice allowing a full solution6. However, our model (both NHHP and HHP) has not periodic 
boundary conditions and the bath parameters depend on the particular site position. Assuming translational 
invariance would mean giving up some crucial aspects of our investigation. To keep a reasonable connection 
with dense granular matter it is important to have a source of energy that acts differently at the boundary and 
in the bulk of the system. Nevertheless, in the next section we will discuss some common aspects between the 
HHP and translational invariant systems.

We also point out that the continuous limit of Eq. (1a) leads to the following equation for the velocity field: 
∂t v(x, t) = −γav(x, t)+ ∂xxv(x, t)+

√
2Taγaξ(x, t) with �ξ(x, t)ξ(x′, t′)� = δ(x − x′)δ(t − t ′) . Equations of this 

form applied on a density field describe a diffusion process with traps and noise. The variation of the field at the 
point x is indeed given by a noise, a diffusive term and a loss term ( −γav(x, t) ) that represents the possibility for 
the particles to be permanently trapped. These processes can be used to describe the dynamics of mobile defects 
in crystals where translational invariance is assumed and the problem can be easily solved in Fourier space43. Our 
case where external thermostats are necessary to keep stationary the system and break translational invariance 
is different. In the general case with space-dependent parameters, correlations can be studied diagonalising the 
matrix Â or by exploiting Eq. (5) combined with physical constraint on σ̂ . The former strategy, used by us and 
recently applied in22,25, when possible, is more convenient because it gives access also to time-dependent proper-
ties. The latter has been used to study temperature profiles in non-equilibrium harmonic chains20 . It is important 
to stress that a crucial difference between the present work and the aforementioned ones is that we deal with 
interactions acting on relative velocities and not (only) on displacements. Indeed, we have a direct competition 
between baths γa(b) and interaction γ in Â , while in heated harmonic chains only the coupling constants appear 
in the interaction matrix.

Toeplitz condition.  In order to obtain an explicit form of Eq. (6) we consider the case of γb = γ + γa so that 
β = 1+ α making Â a Toeplitz matrix whose eigenvalues and eigenvectors are respectively:

where � = π/(L+ 1) . Replacing these in Eq. (7b) and taking t = s → ∞ , Eq. (6) becomes:

where �(α) = 2+ α . The sums run from 1 to L and:

We point out that Eq. (10) is symmetric with respect the center of the lattice (i.e. σ1m = σL(L+1−m) ) if the coef-
ficients bn are too.

Results
Power–law correlations and slow time scales in the NHHP.  We first study the NHHP so we put 
γa = 0 and use the Toeplitz condition that now reads γb = γ so β = 1 . Exploiting the limit for large systems 
( L ≫ 1 ), we can exchange sums with integrals as �

∑k=L
k=1 f (k�) →

∫ π

0 dzf (z) . We note that in Eq. (10), when 
γa = 0 , the sum over n is actually made of two terms. The one multiplied by γbTL has a sign that depends on the 
parity of l and k and this brings to a subleading contribution if one considers L ≫ 1 and j,m ≪ L (see S1 in the 
SM). Neglecting it and defining

(8)Ŵj(t
′) = 1

σjj

∑

k

qjkS
+
kj e

−�kt
′
, qjk =

∑

ls

SjlS
+
ksSslb

2
s

�l + �k

(9)�j = γ (2+ α − 2 cos(j�)), Sjm =
√

2�

π
sin

(

jm�
)

(10)σjm(α) =
2�2

γπ2

∑

lk

sin
(

jl�
)

sin (mk�)
[
∑

n b
2
n sin(ln�) sin(kn�)

]

�(α)− cos (k�)− cos (l�)
,

(11)b2n =
{

2(γ + γa)T1, n = 1
2γaTa, 1 < n < L
2(γ + γa)TL, n = L.
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we obtain the covariance matrix for the NHHP:

The integral contained in �jm(0) is difficult to be explicitly evaluated but the following asymptotic behaviors can 
be derived in the limit L ≫ m ≫ 1 : 

 As explained in the SM (S2), these results are obtained by expressing σNHHP
jm  as a power series of (jm)−1 by mul-

tiple integration by parts and estimating opportune upper bounds. The limit L ≫ m ≫ 1 is important because 
we want to study the asymptotic behavior of the correlations in the range for which they are not affected by the 
opposite boundary of the system. This is the reason why we predict just a decay for the variance σmm even if it 
must grow approaching the Lth site if TL  = 0 . This growth for large m is given by the term proportional to γbTL 
that we have neglected going from Eqs. (10) to (13).

Equation (14c) clearly states that the bulk sites are correlated with the first (heated) one by a power law decay 
with exponent 2. Regarding the correlations between particles in the bulk, they show a decay even slower than a 
power law. We discuss them in the last paragraph of this section. Regarding time scales, looking at Eq. (8) and at 
the specific form of the eigenvalues of Â in Eq. (9) for α = 0 , we see that, when j/L ≪ 1 , the slowest time scales 
in the single particle autocorrelation function behave as:

where τ = 1/γ . We note that the emergence of characteristic times that scale with the system size together with 
scale free correlations is fully consistent. Thus, the information that influences the dynamics of every particle 
comes from all across the system and so the time to receive it must increase with the system size.

Finite correlation length and times in the HHP.  The emergence of scale free correlations is often con-
sidered a remarkable fact in physical systems. Nevertheless, we are now dealing with a model so it is important to 
understand if this result is found just by an algebraic coincidence or if it is consistent with the usual framework 
in which scale free correlations are understood i.e. a particular limit for which a finite correlation length diverges. 
The study of the HHP comes into play to provide an evidence of this last scenario. We point out that by studying 
the HHP with periodic boundary conditions, and therefore assuming translational invariance (i.e. extending Eq. 
(1a) to all the particles in the system), it is quite easy to derive an exponential decay for the stationary spatial 
correlation function. This can be done by expressing Eq. (1a) in the Bravais lattice or by studying the continuous 
limit of σ̇jm = �vjv̇m + vmv̇j� = 0 . Nevertheless, we want to study the passage from the HHP to the NHHP when 
γa → 0 so we proceed with space dependent parameters from Eq. (10). This expression, in the HHP, contains all 
the contributions given by Eq. (11). Performing the large system limit and taking into account just the leading 
terms we arrive at the following expression for the covariance matrix in the HHP (see S3 in the SM for details):

where we see that for α = 0 Eq. (13) is recovered. It is important to note that trying to express the above 
equation as a power series of (m)−1 one finds that all the coefficients are zero signaling a decay faster than 
every power law. In order to go straight to the result we consider homogeneous amplitude of noises i.e. 
T1 = TL = Taγa/(γ + γa) so that the second term of Eq. (16) vanishes. In this condition the matrix B̂ is pro-
portional to the identity so the system can reach thermodynamic equilibrium. We then take the Fourier transform 
σ̃jω(α) =

∫

dm exp(iωm)σHHP
jm (α) and study the limit ω ≪ 1 ( m ≫ 1):

whose inverse Fourier transform for m > j is proportional to an exponential with characteristic length 
√
α , so 

we have that σHHP
jm (α) ∼ exp(−√

αm) . This last result is valid for a generic j ≪ L so it holds also for particles in 
the bulk. We note that α → 0 is a singular limit because the pole of the last term of the above equation tends to 
the real axis. Regarding variances that we need to calculate ζjm we can write :

(12)�jm(α) =
∫ π

0
dzds

sin(jz) sin(ms) sin(z) sin(s)

�(α)− cos (z)− cos (s)

(13)σNHHP
jm = 4T1

π2
�jm(0).

(14a)σNHHP
mm ∼ 1

m2

(14b)σNHHP
1m ∼ 8T1

πm3

(14c)ζNHHP
1m ∼ 1

m2

(15)τNHHP
j = 1/�j ∼ τL2

(16)σHHP
jm (α) = 2αTa

π

∫ π

0
dz

sin(jz) sin(mz)

�(α)− 2 cos(z)
+ 4T1

π2

[

1+ α

(

1− Ta

T1

)]

�jm(α)

(17)σ̃jω(α) ∝
∫ π

0
dz

δ(ω − z) sin(jz)

�(α)− 2 cos(z)
∼ sin(jω)

α + ω2
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as we expect, in the HHP the asymptotic temperature is a constant that we explicitly calculate in the SM (S3). We 
point out that this variance has two reasonable limiting cases: for α = 0 it is o(m−1) consistently with the NHHP 
while limα→∞ σHHP

mm (α) = Ta representing the condition for which the external bath overcomes the interaction 
so that the variables are in equilibrium with the thermostats.

From this and by the definition of Eq. (4) we can conclude that spatial correlations in the HHP follow an 
exponential decay with a finite characteristic length scale ξ:

In the SM (S3) we show that this trend holds also without equal noise amplitudes so it is not strictly related to 
the equilibrium condition. We note that looking at this result in the framework of critical phenomena we would 
have a critical point at αc = 0 and a correlation length that diverges as ξ ∼ (α − αc)

−ν with a critical exponent 
ν = 1/2 . This critical point would then coincide with the NHHP. Indeed, in this phase, the system behave as in a 
critical regime where spatial correlations exhibit a power low decay. Nevertheless, we make clear that this is just 
an analogy and we do not interpret our results as a phase transition. Moreover, it is important to remind that an 
equivalent equilibrium phase transition governed by temperature could not occur because we are considering a 
1D system. In equilibrium cases there is actually a transition at zero temperature but it coincides with a physi-
cal state with no dynamics. In other words, the model described by Eq. (1) cannot be mapped into an Ising or 
Heisenberg-like Hamiltonian system maintaining the same properties. We also note that the same scaling relation 
between correlation length and characteristic time of the bath has also been found in dilute granular systems 
with an hydrodynamic approach44 and in dense active systems26. Nevertheless in these two translational invariant 
systems the equivalent limit for α = 0 is meaningless because in the first case it removes the driving while in the 
second one it implies a deterministic constant self propulsion. In Fig. 3 we show that the exponential to power 
law crossover and the scaling for ξ derived in the large system limit are clearly visible also for finite size lattices.

In order to discuss also the characteristic time scales in the HHP, we note from Eq. (9) that �j > γa ∀ j and 
so for finite α and j/L ≪ 1 we have that:

This result is consistent with the fact that being correlated with a finite fraction of the system implies a finite time 
to receive the information that effectively determines the dynamics.

To conclude the comparison between HHP and NHHP, we stress that the difference between the two phases 
is originated in the structure of the eigenvalues of Â . In particular, for both space and time correlations, the 
crucial ingredient is that the spectrum of Â accumulates in γa for L ≫ 1 (Eq. 9). Consequently it accumulates to 

(18)σHHP
mm (α) = 2αTa

π

∫ π

0
dz

sin2(mz)

�(α)− 2 cos(z)
= Ta

√

α

4+ α
+ o(m−1), m ≫ 1

(19)ζHHP
jm ∼ e−m/ξ m ≫ 1, ξ = α−1/2.

(20)τHHP
j ∼ 1/γa = τa.

Figure 3.   (a) Spatial correlation function calculated via Eq. (4). The entries of σ̂ are obtained from Eq. (6) with 
t = s ≫ 1 and diagonalising Â . The parameters of the system are: L = 500 , γ = 5 , β = 1+ α (i.e. Toeplitz 
condition) and α ∈ [0.002, 5] . We observe an exponential decay with a growing correlation length that turns 
into a power law when α = 0 . (b) Scaling of the correlation length obtained from an exponential fit of ζHHP

1m  
for different combinations of parameters. We can see that the relation ξ = α−1/2 does not depend on the 
microscopic details of the system. Quasi–Toeplitz cases are discussed in the next paragraph. In both panels we 
used T1 = Ta = 0.001 and TL = 0.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14206  | https://doi.org/10.1038/s41598-021-93091-1

www.nature.com/scientificreports/

a finite value in the HHP and to zero in the NHHP. The crossover between the two phases is then governed by 
the limit α → 0 that brings to diverging correlation lengths and times.

Beyond the Toeplitz case.  Up to now we have considered the special case β = 1+ α for which Â is a 
uniform Toeplitz matrix. Now we want to study the system with a general viscous constant γb  = γ + γa at the 
boundaries. Are the results obtained in the previous paragraphs still valid also in this more general case? In order 
to answer this question, we follow a procedure, systematically explained in42, to diagonalise quasi-uniform Toe-
plitz matrices i.e. matrices that deviates from the Toeplitz form just for few external borders. It does not give an 
analytical expression of the eigenvalues and eigenvectors but assures some constraints on their form and allows 
to find their values by numerically solving a set of transcendental equations. In order to uniform our notation 
with42 we note that Â = γ (2+ α)Î − γ Â′ where:

and x = 1− β + α so that for β = 1+ α we recover the Toeplitz case. Once defined �′j ( S′ij ) as the eigenvalues 
(eigenvectors) of Â′ , then �j = γ (2+ α)− γ �′j and Sjm = S′jm . If the eigenvalues are parametrized as �′j = 2 cos(kj) 
then we can find them by solving:

that determine the allowed values of kj . The entries of the eigenvector matrix Ŝ can then be directly obtained 
starting from the numerical solution of Eq. (22)42.

Once calculated all the �j and the Sjm we can use Eq. (7b) in the stationary case to obtain the covariance matrix 
and consequently the correlation functions. In Fig. 4 we show the correlation function for some quasi-Toeplitz 
cases for both the HHP and the NHHP finding the same asymptotic behavior obtained for the Toeplitz one in 
Fig. 3a. Also the scaling for ξ in the HHP does not change (see Fig. 3b). We note that the difference in terms of 
parameters between Toeplitz and quasi-Toeplitz cases is that in the former we have just one adimensional ratio 
between viscous constants i.e. α = γa/γ while in the latter we can independently fix β = γb/γ and α.

Given the form with which eigenvalues are parametrized they can take values only in the band �′j ∈ [−2, 2] 
and equivalently �j ∈ [γa, 4γ + γa] . Nevertheless, for absolute values of x large enough, out-of-band eigenvalues 
can occur42. This fact would compromise the existence of a stationary state in the NHHP because Â would cease 
to be positive semi-definite. A more refined inspection of the spectral properties is then needed. Being β > 0 by 
definition we are sure that x ∈ [−∞, 1) in the NHHP. For L ≫ 1 and |x| > 1 two out-of-band eigenvalues �out1,2  
emerge converging to a common value given by �out1,2 = γ (2+ α − x − x−1) that, in our case, is strictly positive 

(21)Â′ =













x 1 0

1 0 1

. . .
. . .

. . .

1 0 1
0 1 x













(22)kj =
π j + 2φ(kj)

L+ 1
, φ(k) = k − tan−1

(

sin(k)

cos(k)− x

)

Figure 4.   (a) Spatial correlation function for different quasi-Toeplitz cases in both HHP and NHHP. We can 
see that the two phases are stable also for large values of negative x. The entries of σ̂ are obtained from Eq. (6) 
for t = s ≫ 1 and diagonalising Â . (b) Spectra of Â for different values of x and α = 2.1 . The spectra always 
accumulate at the boundary of the band [γa, 4γ + γa] and out-of-band eigenvalues can occur only for |x| > 1 . 
We also note that in the range of interest for the NHHP ( x ∈ [−∞, 1] ) the spectra are always positive assuring 
the stability of the system. In both panel, we used L = 500 , γ = 5 , T1 = Ta = 0.001 and TL = 0.
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preventing any problem of stability (see Fig. 4b). Moreover, as shown in the same panel, we can see that the 
spectrum of Â always accumulates at the boundary of the band independently from the value of x. This is also 
clear by taking j/L ≪ 1 or ∼ 1 in Eq. (22) and verifying that kj tends respectively to 0 or π . Consequently the �′j s 
always accumulate in 2 and the �j s in γa . This generalizes our result about the power law decay in the NHHP (i.e. 
with γa = 0 ) for any γb > 0 because, as explained in the previous paragraphs, its origin relies in the accumulation 
of the �j spectrum in zero (see also Fig. 4).

Correlations in the bulk and finite size effects.  In previous paragraphs we focused on the correlation 
function with respect to the first site ζ1m in the limit L ≫ m ≫ 1 . These conditions, particularly in the NHHP, 
were crucial ingredients for calculations. Moreover, in Figs. 3a and 4a we have always shown the correlation 
function in the case of TL = 0 in order to treat cases more compatible with our calculations where the terms 
proportional to TL ∼ O(1/L) are neglected. In this condition the only source of stochasticity is the bath on the 
first site so the finite size effects do not substantially affect the shape of ζ1m . Thus, the power law regime in the 
NHHP spans almost all the system size.

Here we want to discuss the behavior of spatial correlations between particles in the bulk (i.e. ζjm with 
1 ≪ j,m ≪ L ) and the finite size effects for TL  = 0 . In Fig. 5 we show ζj(j+m−1) with j = 1, L/2 for different values 
of L and α . In all the cases we have T1 = Ta = TL �= 0 . The correlation function with respect L/2 is representa-
tive for the bulk and we can see from Fig. 5 that in the HHP it presents an exponential decay with a correlation 
length independent from L while in the NHHP it decays slower than a power law: ζNHHP

L/2(L/2+m−1) remains essen-
tially constant up to a sharp cutoff that increases by raising L. Regarding ζNHHP

1m  for TL  = 0 , we can still observe 
the power law decay ∼ m−2 predicted in the previous paragraphs but with a sharp cutoff that occurs when m 
is large enough and depending on L. In Fig. 5b we show the same curves as a function of m/(L/2) and we note 
that the cutoffs of the correlation functions in the NHHP collapse signaling that their size scales linearly with 
L. In other words this confirms that, also when the boundary effects affect the shape of ζjm , the NHHP presents 
scale-free correlations. Indeed the only typical correlation length that one can define grows with system size. As 
we expect, the correlation functions in the HHP separate when plotted as a function of m/(L/2) because their 
decay is strictly defined by α regardless of L.

Discussion
We studied spatial and temporal correlations in the NESS reached by a velocity field with viscous interactions 
defined on the lattice and coupled with Brownian baths. The model reproduces three main characteristics of 
vibrated granular matter at high density i.e. dissipative forces, permanent contacts and non-homogeneous energy 
injection. The typical correlation lengths and times have a finite characteristic scale when the bulk particles are 
coupled to an external bath (HHP regime); however such a scale diverges with the system size, as in a scale-free 
scenario, when the thermal bath is removed from the bulk particles and kept acting on the boundary sites only 
(NHHP regime). Solving this model as a diagonalisable multivariate Ornstein-Uhlenbeck process, we unveiled 
the role of non-homogeneous heating in the development of slow and collective dynamics. We conclude that 
keeping the bath only at the boundaries allows to have a driven NESS in which the internal (deterministic) 
dynamics—and the corresponding propagation of information and fluctuations—is not hindered by external 
disturbances. From a mathematical point of view this is reflected in the spectral properties of the interaction 
matrix that accumulates in zero also in the presence of noises at the boundaries of the lattice. Our findings 

Figure 5.   (a) Spatial correlation function with respect to the site j = 1, L
2
 for β = 2 , T1 = Ta = TL = 0.001 and 

different values of α and L. The entries of σ̂ are obtained from from Eq. (6) for t = s ≫ 1 and diagonalising Â . 
(b) Same curves shown in the left panel but as a function of the rescaled distance m/(L/2). The collapse of the 
cutoffs is a signature of scale-free correlations13.
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provide an example of a mechanism for which power law decays of correlations can occur out of equilibrium, 
shedding light on the emergence of collective behavior in dense granular matter. Further investigations of this 
model, considering both harmonic and viscous interactions, are promising steps towards the understanding of 
more general non-equilibrium systems such as active matter and biological assemblies.
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