
Evolutionary Graph Classification Systems by
Granular Computing based Embedding

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica

Dottorato di Ricerca in Information and Communication Technologies –
XXXIV Ciclo

Candidate

Luca Baldini
ID number 1348590

Thesis Advisor

Prof. Antonello Rizzi

23rd January 2022

Thesis defended on 21 February 2022
in front of a Board of Examiners composed by:

Prof. Marco Re (chairman)
Prof. Giovanni Costantini
Prof. Leila Guerriero

Evolutionary Graph Classification Systems by Granular Computing based Em-
bedding
Ph.D. thesis. Sapienza – University of Rome

© 2022 Luca Baldini. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: luca.baldini@uniroma1.it

mailto:luca.baldini@uniroma1.it

iii

Contents

Abstract xi

1 Introduction 1
1.1 Graph and Structured Domain . 1
1.2 Pattern Recognition and Computational Intelligence in Graph Domain 2
1.3 Aim and Objectives . 5
1.4 Thesis Organization . 5

2 Pattern Recognition in Graph Domain 7
2.1 Preliminary Definitions . 7
2.2 Mainstream Methods . 13

2.2.1 Custom Dissimilarities in the Input Domain 13
2.2.2 Graph Neural Network Methods 15
2.2.3 Implicit Graph Embedding 16
2.2.4 Explicit Graph Embedding 17

3 Granular Approach for Labelled Graphs 21
3.1 Introduction . 21
3.2 Core Dissimilarity in Graph Domain 22
3.3 Building Blocks . 23

3.3.1 Substructures Extraction . 23
3.3.2 Granulation Technique . 24
3.3.3 Embedding with Symbolic Histograms 25
3.3.4 Classification in Embedding Space 26

3.4 Automatic Learning Graph Representation with Evolutionary Algorithm 26
3.4.1 Alphabet Synthesis . 27
3.4.2 Feature Selection . 28

3.5 Synthesized Classification Model and Test Phase 29

4 Studies and Novelties for Granular Graph Embedding 31
4.1 Stochastic Substructures Extraction 32

4.1.1 Clique Extraction . 35
4.2 Class-Aware Granulation . 36

4.2.1 Limitations and Solutions . 38
4.3 Class-specific Metric Learning for Graph Embedding 39

4.3.1 Evolutionary strategy for class-specific metric learning 41
4.4 Soft Symbolic Histogram based Embedding Strategies 44

iv Contents

4.5 Multi Objective Optimization for Granular Graph Embedding 46
4.5.1 Selection of Solutions from the Pareto Front 48
4.5.2 Ensemble of Classifiers for Test Phase 49

5 Evolutive Agent Based Framework for Granular Graph Embed-
ding 51
5.1 Introduction . 51
5.2 High Level Framework Description 53

5.2.1 Data Granulation . 54
5.2.2 Agents and Swarms Organization 55

5.3 Evolutionary Agent Based Classifier in Vector Space 56
5.3.1 Proof of Concept . 57

5.4 Designing an Agent Based Classifier in Non-Geometric Space 61
5.4.1 Granulator Agent Task Definition 62
5.4.2 Granulator Agent Swarm Behaviour 63
5.4.3 Symbol Consensus . 64
5.4.4 Alphabet Selector Agent Behaviour 64
5.4.5 Alphabets Evaluation . 65
5.4.6 Agents and Symbols Quality Propagation 67
5.4.7 Evolving Agents . 69
5.4.8 Test Set Evaluation in Embedding Spaces 70

5.5 Limitations and Discussion with GRALG Approach 71

6 Experiments 75
6.1 Dataset Description . 75
6.2 Tests and Results for GRALG Classifier 77

6.2.1 Stochastic Extraction Method Evaluation 77
6.2.2 Class-Aware Granulation Performances 80
6.2.3 Class Specific Metric Learning Performances 84
6.2.4 Soft Symbolic Histogram Variants Evaluation 92
6.2.5 Multiobjective Optimization Method Evaluation 93
6.2.6 Comparison Against State of the Art Classifiers 103

6.3 Tests and Results for Graph E-ABC Classifier 105
6.3.1 Sensitivity Analysis . 106
6.3.2 Comparison Against Current Granular Approaches for Graph

Classification . 107
6.3.3 Comparison Against State of the Art Graph Classifiers 109

7 Conclusions 111

A Pareto Frontiers with TOPSIS Selection 115

Bibliography 121

v

List of Figures

2.1 Statistical and Structural representation of a diatom image 10

3.1 Schematic representation of Alphabet Synthesis phase in GRALG. . 28
3.2 Schematic representation of test phase in GRALG. 29

5.1 Schematic view of a multi-agent system organization 52
5.2 Multi-view schematic description of a complex system architecture . 53
5.3 Schematic diagram for the granulation swarms of agent in E-ABC . 63
5.4 Schematic diagram for the Selector Agents population 66

6.1 Accuracy results for different extraction strategies 79
6.2 Running times for different extraction strategies 80
6.3 Optimal alphabet cardinality for different extraction strategies . . . 81
6.4 Accuracy comparison for the 4 Class-Aware granulation configurations 83
6.5 Running times comparison for the 4 Class-Aware granulation configu-

ration . 84
6.6 Alphabet size comparison for the 4 Class-Aware granulation configu-

ration . 85
6.7 Class specific metric learning system average accuracy 86
6.8 Class specific metric learning system average number of selected

symbols (after feature selection) . 86
6.9 Class specific metric learning system embedding space visualization

with t-SNE . 87
6.10 GRALG embedding space visualization with t-SNE 88
6.11 Relaxed symbolic histogram embedding technique results at 10%

subsampling rate . 89
6.12 Relaxed symbolic histogram embedding technique results at 30%

subsampling rate . 90
6.13 Relaxed symbolic histogram embedding technique results at 50%

subsampling rate . 91
6.14 3D Pareto Front for Letter-H and pairwise 2D projections 95
6.15 3D Pareto Front for Letter-M and pairwise 2D projections 96
6.16 3D Pareto Front for Letter-L and pairwise 2D projections 96
6.17 3D Pareto Front for AIDS and pairwise 2D projections 97
6.18 3D Pareto Front for GREC and pairwise 2D projections 97

vi List of Figures

6.19 Ensemble of classifier performances with uniform weighting in terms
of accuracy on test set, number of symbols for embedding , structural
complexity of the classifier . 98

6.20 Ensemble of classifier performances with no weight to structural
complexity (Case Study A) in terms of accuracy on test set, number
of symbols for embedding , structural complexity of the classifier . . 101

6.21 Ensemble of classifier performances with no weight to sparsity (Case
Study B) in terms of accuracy on test set, number of symbols for
embedding , structural complexity of the classifier 102

6.22 Ensemble of classifier performances with priority to accuracy perfor-
mances (Case Study C) in terms of accuracy on test set, number of
symbols for embedding, structural complexity of the classifier 103

6.23 Graph E-ABC sensitivity analysis (average accuracy on the test set). 108

A.1 AIDS dataset Pareto Frontiers for different TOPSIS weighting schemes
and SVM kernels . 116

A.2 GREC dataset Pareto Frontiers for different TOPSIS weighting schemes
and SVM kernels . 117

A.3 Letter-L dataset Pareto Frontiers for different TOPSIS weighting
schemes and SVM kernels . 118

A.4 Letter-M dataset Pareto Frontiers for different TOPSIS weighting
schemes and SVM kernels . 119

A.5 Letter-H dataset Pareto Frontiers for different TOPSIS weighting
schemes and SVM kernels . 120

vii

List of Tables

4.1 Summary of novel methods and techniques introduced in GRALG. . 32

6.1 Characteristic of IAM datasets . 75
6.2 Exhaustive number of subgraphs extracted for granulation phase . . 77
6.3 Results of the Baseline cases. 99
6.4 Comparison between GRALG and State-of-the-Art graph classifica-

tion system . 104
6.5 Comparison between Graph E-ABC and Granular Computing based

graph classification methods . 107
6.6 Comparison between Graph E-ABC and State-of-the-Art graph clas-

sification systems . 110

ix

List Of Acronyms

k-NN k Nearest Neighbor.

BFS Breadth First Search.

BSAS Basic Sequential Algorithmic Scheme.

DFS Depth First Search.

E-ABC Evolutionary Agent Based Classifier.

GED Graph Edit Distance.

GRALG Granular Computing Approach for Labelled Graph.

GrC Granular Computing.

MAS Multi Agent System.

MinSOD (element that leads to the) Minimum Sum of Distances (syn. medoid).

MOO Multi-Objective Optimization.

nBMF Node Best Match First procedure.

NSGA Non Dominated Sorting Algorithm.

PCA Principal Component Analysis.

RBF Radial Basis Function.

SVM Support Vector Machine.

t-SNE t-Distributed Stochastic Neighbor Embedding.

TOPSIS Technique for Order Preference by Similarity to the Ideal Solution.

xi

Abstract

Graphs have gained a lot of attention in the pattern recognition community thanks
to their ability to encode both topological and semantic information. Despite their
invaluable descriptive power, their arbitrarily complex structured nature poses serious
challenges when they are involved in learning systems. Typical approaches aim at
building a vectorial representation of the graph in a suitable embedding space by
leveraging on the selection of relevant prototypes that enable the use of common
pattern recognition methods. An interesting paradigm able to synthesize prototypes
in a data-driven fashion can be found in Granular Computing.

This thesis investigates and develops novel techniques for graph embedding
methods based on Granular Computing and Multi-Agent based systems in order to
solve Pattern Recognition problems. Initially, the proposed methods aim at improving
different aspects of an established Granular Computing-based framework designed
for graph classification concerning the computational complexity, granulation and
embedding ability and optimization problem of the training phase. A lightweight
stochastic procedure for the selection of prototypes has been designed in order to
mitigate the computational burden of the algorithm. Other proposed techniques focus
on improving the granulation phase of the framework by selecting detailed granules
of information that characterize the classes of the problem at hand. Concerning
the embedding phase, six different graph embedding techniques inspired by the
dissimilarity space embedding are proposed to represent graphs into meaningful
embedding spaces. Concerning the optimization phase, a novel evolutionary-based
approach has been designed for equipping the framework with a class-specific metric
learning strategy together with a reformulation in a multi-objective fashion of the
problem which aims at jointly optimizing the performance of the classifier, the number
of information granules and the structural complexity of the classification model.
In the second part of the work, a novel prototypical system for graph classification
problems inspired to Multi-Agent Systems principles has been presented. The
proposed system investigates a cooperative approach between different groups of
agents for synthesizing meaningful granules of information and in turn enabling
the graph embedding process via the Granular Computing paradigm. Different
publicly available real-world benchmark datasets have been selected in order to
show the effectiveness of the proposed methods in comparison with state-of-the-art
graph-based classification systems.

1

Chapter 1

Introduction

1.1 Graph and Structured Domain
In a wide range of scientific areas, interesting systems and phenomena are frequently
represented according to a structured prospective. The structural facet stems from
the fact that a thorough insight of a system behavior or specific phenomenon can
emerge only by considering the interactions of single parts composing the whole. A
suitable definition of structured information has been expressed by Foggia et al. in
[62]:

Complex information which can be seen as made of simple parts
suitably interconnected.

Time Series, Sequences and Strings are typical examples of structured information
that emerge in many real-world applications: individually, each instance of such
structured data is composed by a collection of inputs that are sequentially connected
together with a specific relation. In bioinformatics, complex sequences of biological
material naturally arise as strings of DNA and RNA or proteins [124]. From a point
of view of Natural Language Processing, sentences can be analyzed as sequences of
words in order to provide a structural and semantic description [127]. In Economics,
the market behavior can emerge by inspecting the financial time series of transactions
and stock prices in order to find meaningful trends [123].

In principle, from an algorithmic perspective, any structured information in-
cluded those discussed above, can be represented as an instance of a specific data
structure, namely the graph. The outstanding representational power of graphs has
attracted scholars from many different disciplines. In the philosophic manuscript
"The mathematical structure of the world", Randal Dipert1 highlights the importance
of graphs for the comprehension of real-world phenomena [57]:

The concrete world is a single, large structure induced by a single,
two place, symmetric relation, and thus best analyzed as a certain sort of
graph. Every concrete entity in the world is a part of this structure and

1Randall Roy Dipert (1951–2019) was an American philosopher and professor of philosophy
at the State University of New York at Fredonia, the United States Military Academy, and the
University at Buffalo where he retired as the C. S. Peirce Chair of American Philosophy. Source:
Wikipedia.

2 1. Introduction

is a structure (subgraph) in its own right. (...) Both reality and thoughts
are structures of certain sorts and, then, by arguing that the correct or
most perspicuous portrayal of this structure is purely relational and, in
fact, best portrayed by graphs.

Graphs are ubiquitous mathematical entities which provide a rich representation
of many objects and complex systems. In its simplest form, a graph can be defined
as a set of nodes (or vertices) and a set of edges (or arcs) which define whether there
exist a connection between objects in the set of nodes, thus describing a network of
relationships between entities. Even more expressive graph types are the so-called
labelled graphs: along with the sets of nodes and edges, the graph can be enriched with
additional information by means of arbitrary data structures defining individually
the nodes properties and the relation characteristics, respectively the node and
edges labels. These aspects allows graphs to capture two levels of information: the
topological information [183], by encoding the interaction between its constituent
parts and the arising structure, and the semantic information, according to the
arbitrarily complex attributes with which the constituent parts are equipped, i.e. the
node attributes. Thanks to this dual abstraction power, graphs can be considered
as the most general data structure in the field of Computer Science [33]: a scalar
can be modeled as a single node labeled by the scalar value; a time series can be
represented as a graph that contains one node per time step, and consecutive steps
are linked by an edge; a string is a graph in which each node represents a character,
and consecutive characters are connected by an edge [26]. For the generalization
characteristics that graphs possess, they have found widespread application in many
different fields, typically related (but not limited) to complex networks. For example,
in bioinformatics and chemoinformatics [3, 78, 55, 65, 176, 171, 98], the application
of graphs has been intensively studied thanks to the straightforward representation
of molecular compounds as interacting systems in the graph domain. Graph-based
representations have been also employed for applications in the fields of computer
vision and image recognition [1, 131, 180, 147, 107, 73, 156], anomaly detection
[4], web content mining [33], speech recognition [94], natural language processing
[50, 121] and energy distribution networks [144].

1.2 Pattern Recognition and Computational Intelligence
in Graph Domain

The ability in recognizing patterns from the surrounding environment is an essential
aspect characterizing the highly performative human cognitive function. Indeed,
human knowledge and reasoning are fundamentally based on the investigation of
such patterns and on their suitable aggregation which defines concepts and rules.
Common and relatively simple pattern recognition problems which unconsciously
humans solve in every day life include the recognition of written and spoken words,
understanding the meaning of traffic signals, the identification of a friend face
[155, 151]. Unaccustomed readers may legitimately ask what is meant by the word
pattern and consequent definition of pattern recognition. According to Theodoridis
and Koutroumbas [172]:

1.2 Pattern Recognition and Computational Intelligence in Graph Domain 3

Pattern recognition is the scientific discipline whose goal is the clas-
sification of objects into a number of categories or classes. Depending on
the application, these objects can be images or signal waveforms or any
type of measurements that need to be classified. We will refer to these
objects using the generic term "patterns" .

From this definition, patterns are generic observations of a generating process
P : X → Y . The process P is intended as an idealization of any concrete or abstract
system that provides a specific output according to the input. From this prospective,
the input space X is the formal domain in which the patterns are effectively repre-
sented according to a suitable mathematical idealization. Consequently, Y is the
corresponding output space where the recognition happens. Synthesizing a predictive
model P̂ of the generation process P is the foundation of all the natural sciences
and engineering disciplines as well. In analytical or theory-driven approaches, the
synthesis of P̂ is performed by human field experts which, according to the observa-
tions of the process output in response to suitable inputs, identify the most relevant
quantities and their relation according to mathematical equations. On the other
hand in data-driven methods, the model synthesis phase is carried on automatically
by any sort of computational unit according to a series of finite operations, i.e. the
algorithms, analyzing a finite set of patterns sampled from P , namely the dataset D
[115, 113]. The ultimate goal of pattern recognition is to provide powerful algorithms
able to efficiently approximate the generation process P .

Parallel to the development of Pattern Recognition methods, Soft Computing
emerged as a discipline encompassing a set of biologically inspired problem solving
strategies for dealing with complex environments [199]. Pattern Recognition and Soft
Computing are nowadays intimately connected disciplines whose methods interact
together and are recognized under an hybrid term "Computational Intelligence".

Nonetheless, a wide range of established Computational Intelligence techniques
demand n-uples of real numbers as input data structure. The motivation behind
this design choice stems from the fact that vector input spaces (where X ⊆ Rn)
are far more tractable from an algorithmic perspective with respect to structured
domains such as the graph domain. Vector domains like Euclidean spaces provide a
rich set of algebraic operations that are typically involved in the algorithmic tools,
such as the summation or product of two elements. On the contrary, the graph
domain is devoid of these essential operations and also lack of a meaningful geometric
interpretation, two non-negligible aspects that have strongly limited the proliferation
of Computational Intelligence methods addressing the graph domain. Nonetheless,
from a representational power point of view, vectors are not able to convey the same
amount of information when compared with graphs, as already mentioned in Section
1.1. Indeed, vectors are static entities representing a fixed set of pattern features
and they can not describe by no means the interaction between different components
of the pattern. Graphs, as instead, are not constrained to a fixed size, but can be
adapted to the complexity of each specific considered pattern [151]. On the other
hand, this flexibility is counterbalanced in generally expensive procedures from a
computational point of view. For example, a simple comparison between two graphs
requires to identify all the common parts, hence considering all the possible O(2n)
subsets of nodes leading to an exponential complexity, whilst the same operation

4 1. Introduction

in Euclidean space is linear with respect to the number of features [32]. A nice
quotation from Borgwardt [26] summarizes the controversial aspects when dealing
with graphs:

Graphs are prisoners of their own flexibility

Graph Embedding techniques emerged as promising solutions for dealing with
most of the limitations when the graph domain is chosen as the input space for
Computational Intelligence methods. Basically, an embedding of graphs into a vector
space allows access to the rich repository of algorithmic tools for pattern recognition.
The overall objective of all graph embedding techniques is to condense the high
representational power of graphs into a computationally efficient and mathematically
convenient feature vector [155]. In these approaches, the input pattern from the
structured graphs domain G is explicitly mapped into an embedding (feature) space F
according to a suitable mapping function φ : G → F with F ⊆ Rn. The design of φ is
obviously crucial and some efforts must be ensured to fill the informative and semantic
gap between the two domains. There are several ways to perform explicit embedding
in either naïve or automatic approaches. Naïve approaches usually leverage on
feature engineering (also known as feature generation), in which the data analyst
manually designs the mapping function φ by extracting numerical features from the
(structured) pattern at hand and concatenates them in a vector form. Amongst
the automatic approaches, graph neural networks emerged as a deep learning-based
methods for automatically learning low-dimensional graph embeddings [35]. However,
as common in deep architectures, the model interpretability is a delicate issue whose
addressing is still out of reach [188]. Another automatic approach for explicit graph
embedding which, at the same time, returns a fully interpretable model is based on
Granular Computing [16].

Granular Computing emerged within the field of computational intelligence as
an information processing paradigm able to deal with uncertainties in the data. The
rationale behind this approach is inspired by the human problem solving strategies
in complex situations and problems with partial knowledge and certainties, where
approximations and simplifications are practically needed for making decisions
[194, 192]. The fundamental aspect of Granular Computing resides in the definition
of information granules which can be described as atomic data entities that condense
relevant information on the problem (or system), synthesized at a particular level
of abstraction. Indeed, granules must reflect common properties related to an
aggregation of data in terms of proximity, functionality and similarity according
to the indistinguishability rule [58]. Generally speaking, in recent years, Granular
Computing has been a dynamic paradigm for synthesizing advanced machine learning
and pattern recognition systems both under a practical (see e.g. [104, 105, 115,
157]) and methodological viewpoint (see e.g. [27, 42, 54, 185]). The appeal of
Granular Computing-based pattern recognition systems stems from their ability to
automatically design (in a data-driven manner) the mapping function. Furthermore,
these systems are human-interpretable, as the automatically-extracted information
granules can provide field-experts with further knowledge about the modelled system.

1.3 Aim and Objectives 5

1.3 Aim and Objectives

The aim of this work regards the investigation and development of efficient graph
embedding methods based on Granular Computing for solving pattern recognition
problems. Starting from an established framework designed for graph classification
called GRALG, novel techniques are discussed addressing a wide range of aspects in
order to overcome limitations and to improve crucial issues:

• Designing a lightweight stochastic procedure for the selection of candidate
information granules that is able to mitigate the computational complexity of
the training procedure.

• Investigating different topologies as candidates information granules and their
impact on the classification performances

• Improving the granulation phase with a class-aware approach in order to select
detailed granules of information related to the problem classes.

• Proposing novel embedding techniques based on dissimilarity space embedding

• Designing an evolutionary scheme for the optimization procedure able to pro-
vide class-specific dissimilarity measures overcoming the limitation of GRALG
in finding only a global dissimilarity measure valid for the whole data space.

• Reformulating the optimization problem in a multi-objective fashion taking
into account the learning performance and the structural complexity of the
classifier together with the number of granules employed in the embedding
phase.

• Introducing a novel prototypical system for graph classification specifically
designed for labelled graphs inspired to Multi-Agent Systems. The proposed
system leverages on a cooperative mechanism between two groups of agents
that are individually in charge of discovering granules of information and then
enabling the graph embedding procedure, as opposed to an individualistic
approach followed by GRALG.

Different publicly available real-world benchmark datasets have been selected in order
to show the effectiveness of the proposed methods in comparison with state-of-the-art
graph-based classification systems.

1.4 Thesis Organization

This thesis consists in seven chapters and is organized as follows:

• In Chapter 2, the reader will be introduced to pattern recognition in the
graph domain. Specifically, in Section 2.1 some preliminary definitions about
common learning paradigms and graph theoretical notions are provided whilst
in Section 2.2 the discussion focuses on the State-of-the-Art strategies for
dealing with pattern recognition in the graph domain.

6 1. Introduction

• In Chapter 3, the graph classification framework based on Granular Computing,
i.e. GRALG, is introduced and described thoroughly.

• The discussion moves on Chapter 4, where novel techniques for improving
GRALG are proposed. Specifically, in Section 4.1 three strategies for extracting
candidate granules of information are provided. In Sections 4.2 and 4.4, different
granulations and embedding strategies are proposed. Next, a novel evolutionary
scheme enabling a class-specific metric learning is presented in Section 4.3.
Finally, in Section 4.5 a multi-objective optimization is investigated in order to
analyze the resulting embedding space under three different perspectives, i.e.
the classification performances, the number of information granules required in
the embedding process and the structural complexity of the selected classifier.

• Chapter 5 describes the novel graph classification system, namely E-ABC,
providing motivations and limitations of the proposed system.

• Chapter 6 presents the computational results on benchmark datasets: in
Section 6.2 the discussion focused on the validation of the methods proposed in
Chapter 4, whereas in Section 6.3 preliminary results for E-ABC are provided.

• Conclusions are finally drawn in Chapter 7.

• Additionally in Appendix A are shown further graphical results regarding tests
carried on for multi-objective optimization described in Section 4.5.

7

Chapter 2

Pattern Recognition in Graph
Domain

2.1 Preliminary Definitions
The automatic discovery of regularities in data and the use of these regularities
to make decisions is at the basis of pattern recognition activities. The process of
discovery is performed by means of computer algorithms that motivate the automatic
characteristic of the discovery [24]. Specifically, from a set of training data D(tr) the
system tries to learn an approximation P̂ of the oriented process P : X → Y which
generates D(tr). This phase is often referred to as training phase (or learning phase)
since a specific model P̂ is trained (or learned) starting from the available data. The
model P̂ can be employed to predict a target value y ∈ Y for a pattern x ∈ X which
usually belong to an independent test set D(ts). The correct recognition of previously
unseen patterns, i.e. test set data not used to train the model, is a fundamental goal
in pattern recognition, which usually aims at quantifying the generalization ability
of the trained model.

Generally speaking, pattern recognition activities are usually divided in different
categories according to the information carried along with the training examples:

• Supervised Learning: training data D(tr) comprises a set of target labels which
are associated to patterns in the training set. That is, each pattern belonging
to the training set is provided in the form (x, y), where y = P (x) is an
a-priori information available for pattern x. Two specific problems can be
identified in supervised learning: classification and functional approximation
(or regression). The former encompasses a class of problems in which the output
value y belongs to a finite set of categories (e.g. recognize spam or not spam in
email classification, fault or non-fault device in anomaly detection). The latter,
instead, identifies those problems where y is a continuous variable (e.g. predict
the solubility of a chemical compound, the stock price in financial markets). It
is worth noticing that according to these definitions, the output domain Y of
classification problems is a non-normed space. Specifically, it is not possible to
establish an order between the pattern labels and a possible concept of distance
between categories. Conversely, output values in approximation problems are
drawn from domains endowed with a suitable norm.

8 2. Pattern Recognition in Graph Domain

• Unsupervised Learning: as opposed to supervised learning, the training set
lacks of any a-priori information about the class of each pattern, that is no
label y for pattern x is available. Hence in this class of problems, the goal is
to unravel the underlying similarities between patterns in order to discover
groups of data that share similar characteristics. These groups are usually
known as clusters and the process of finding a division between similar and
dissimilar patterns is commonly referred to as clustering 1. The caveat with
such approaches is that the possible emerging structures and partitions may
not properly be natural, that is, they may not represent the real data division,
rather they are artificially imposed by the clustering method. Indeed, clustering
algorithms output is highly sensitive to hyper-parameters and initialization
conditions whose variations can lead to completely different partitions. More
important, the definition of a procedure able to measure the dissimilarity (or
similarity) between patterns is often not trivial and the most suitable choice
depends on the specific application.

• Reinforcement Learning: in this particular class of problems, the learning
algorithm does not rely on both examples or optimal output in contrast
to the two approaches discussed above. Rather, an agent has to learn an
optimal policy by interacting with the surrounding environment in order to
take reasonable actions in response to a specific state. Hence, the agents
shall determine sequences of actions that lead to a success according to a
feedback signal provided by the environment usually referred to as reward.
Reinforcement learning has successfully applied in a wide range of complex
domains such as game playing, robotics, communication networks and biology
[103, 87, 100, 169].

It is worth noticing that the discussed above methods should not be necessary
intended as "stand-alone" or independent solutions. Efficient and effective pattern
recognition systems rather use together the techniques inherited from all the learning
methodology especially in hard problems with possible deficiency of labelled data.
Indeed, in semi-supervised learning settings, the training dataset D(tr) can be
partially annotated with the target labels, that is not all data samples x ∈ D(tr)

have a corresponding y label [39, 175].
The problem of representing patterns in a suitable formalism such that the

pattern recognition system can perform a learning task is of paramount importance.
As already introduced in Section 1.2, the selection of a candidate data structure to
feed the automatic system is often driven by different factors:

• Information conveyed by the chosen representation

• Computational complexity of the procedures involved for dealing with the
selected data structure

Another very important aspect to consider is the notion of dissimilarity (or
similarity) measure available in the input space for mutually compare patterns,

1In principle, unsupervised learning is not bounded to clustering [24]. Other approaches usually
encompass a set of techniques for dimensionality reduction that comes at hand for data visualization
[148, 81].

2.1 Preliminary Definitions 9

a task which is very common in pattern recognition algorithms. The following
properties allow to formally define a dissimilarity measure:

Definition 2.1.1 (Dissimilarity Measure). Let X be a generic input space. A
function d : X × X → R+

0 is a dissimilarity measure if the following conditions hold:

∃d0 ∈ R such that −∞ < d0 ≤ d (x1, x2) <∞ (2.1)
d (x1, x2) = d0 (2.2)

d (x1, x2) = d (x2, x1) (2.3)

for any x1, x2 ∈ X . In case d meets also the following conditions:

d (x1, x2) = d0 if and only if x1 = x2 (2.4)
d (x1, x3) ≤ d (x1, x2) + d (x2, x3) (2.5)

for any x1, x2, x3 ∈ X , then d is metric dissimilarity measure.

Hence, X is a non-metric space if the function d measuring the pairwise dissimilar-
ities between elements in X does not satisfy at least one of Eqs. (2.1)-(2.5). In such
case, an intuitive concept such as the "position" of the pattern in input space is not
available because elements belonging to X lack of a geometric interpretation. Most
of the effort in pattern recognition has been directed to the design of algorithmic
tools conceived for vector input spaces X ⊆ Rn which are usually endowed with
metric dissimilarity measures such as the Euclidean distance.

Statistical Pattern Recognition is the specific branch of Pattern Recognition
that deals with vector data structures for representing patterns. Formally, in this
context, a pattern is intended as a feature vector x ∈ Rn of n observation or
measurements, i.e. x =

[
x(1), . . . , x(n)

]
. As opposed, Structural Pattern Recognition

comprises a set of techniques specifically designed for dealing with structured
information. In Figure 2.1, it is provided a graphical description of statistical
and structural representation for a simple image. As introduced in Section 1.1,
graphs generalize the concept of structured data thus Structural Pattern Recognition
scholars have widely focused their research activity toward algorithmic solutions in
graph domain G. Indeed, common structured data such as sequences and trees can be
considered as particular cases of graphs: sequences are directed graphs whose nodes
are consecutively connected by an edge, whilst in trees any two nodes are connected
by exactly one path [155]. In order to appreciate the advantages of graph-based
representations, a formal definition of a labelled graph is provided:

Definition 2.1.2 (Labelled Graphs). A labelled graph G is a four tuple G =
(V, E ,Lv,Le), where:

1. V is the set of edges

2. E ⊆ V × V is the set of nodes

3. Lv is the set of node attributes

4. Le is the set of edge attributes

10 2. Pattern Recognition in Graph Domain

Statistical Description Structural Description

Figure 2.1. Statistical and Structural representation of a diatom image. In the statistical
description, the object is represented as a collection of characteristics formally described
as a feature vector. The structural description provides instead more information
about the object under analysis: functional and relevant components of the diatom are
highlighted with different colours and position vectors (semantic level) which define
the node labels. Furthermore, the interactions between these parts is revealed by the
emerging graph topology (topological level). Images has been taken from [34]

and exists two labelling functions µ : V → Lv and ν : V × V → Le that respectively
assign a node v ∈ V to an element of Lv and an edge (u, v) ∈ E to an element of Le

Analogously, subgraphs can be defined as subsets of a parent graph:

Definition 2.1.3 (Subgraph). Let G1 = (V1, E1,Lv,Le) and G2 = (V2, E2,Lv,Le)
bet two labelled graph. G1 is a subgraph of G2 if the following hold:

1. V1 ⊆ V2

2. E1 ⊆ E2 ∩ V1 × V1

when E1 = E2 ∩ V1 × V1 holds in place of #2, G1 is known as induced subgraph of
G2.

In Definition 2.1.3, the subgraph G1 is assumed to keep the same node and edge
labels of the parent subgraph G2. The sets Lv and Le are the nodes and edges label2
domains whose elements are defined with arbitrary data structures. For example,
nodes can be equipped with vectors such that Lv ⊆ R2 and edge set is neglected,
hence Le = ∅. In this case, elements in Lv may represents a specific position of the
node in a 〈x, y〉-plane, offering the chance to visualize the graph in the Cartesian
coordinate system. Usually, the number of nodes q = |V| of the graph G is referred
to as order (or the size) of G. Notable special cases of graphs can be recognized:

2The term "feature" is also adopted to indicate the properties annotated on nodes and edges.
Often, it is preferred to "label" term especially in node classification problems in order to avoid
ambiguity between the target label of the nodes and its properties.

2.1 Preliminary Definitions 11

• unlabelled graphs arise when both nodes and edges have no attributes, that is
Lv = Le = ∅

• directed graphs (also known as digraph), where elements of the edge set E are
ordered pairs of nodes. Hence for directed graphs in general (u, v) 6= (v, u)
with u, v ∈ V.

When compared to a feature vector representation, a labelled graph offers two
major advantages from a Pattern Recognition point of view:

1. The ability of representing both semantic and topological information of the
pattern

2. The flexibility in modeling complexity in data.

Concerning #1, the set of nodes V identifies the components of a specific
structured pattern G according to the definition given in Def. 2.1.2,. Furthermore,
the node label space Lv denotes the semantic level providing a meaningful description
of each component. Alongside that, a binary interactions between two entities
u, v ∈ V are expressed with an edge (u, v) ∈ E . Consequently, the edge set E conveys
the topological information by collecting all the mutual interactions between the
graph nodes. When a set of graphs is organized for training and testing a learning
system, different patterns in both D(tr) and D(ts) can generally show different sizes
(both in terms of number of nodes and edges) keeping unaltered the nature of the
input space X = G. On the contrary, varying the number of features in a vectorial
representation of the data sample from n to m implies an alteration of the input
domain from X = Rn towards X = Rm. Hence, the flexibility advantage stressed
in #2 regards the possibility in adapting each individual pattern with a suitable
level of complexity according to a specific number of components (the nodes) and
relations (the edges) without affecting the learning process.

A natural question that arises when departing from a vectorial representation
in favor of the graph domain regards the evaluation of the similarity between two
graphs. In literature, this problem is usually addressed by employing a graph
matching procedure. Exact graph matching methods are better defined as graph
isomorphism procedures that check whether two graphs share the same node sets
and corresponding labels while preserving the edge structure [151]:

Definition 2.1.4 (Graph Isomorphism). Let G1 = (V1, E1,Lv,Le) and G2 =
(V2, E2,Lv,Le) be two labelled graphs with node and edge labelling functions respec-
tively µ1, µ2 and ν1, ν2. A graph isomorphism is a bijective mapping f : V1 → V2
such that the following hold:

1. µ1(u) = µ2(f(u)) ∀u ∈ V1

2. e1 = (u, v) ∈ E1 =⇒ e2 = (f(u), f(v)) ∈ E2 such that ν1(e1) = ν2(e2) ∀e1 ∈
E1

3. e2 = (u, v) ∈ E2 =⇒ e1 = (f−1(u), f−1(v)) ∈ E2 such that ν1(e1) =
ν2(e2) ∀e2 ∈ E2

G1 and G2 are isomorphic if exist an isomorphism f between node sets V1 and V2.

12 2. Pattern Recognition in Graph Domain

If on one hand this approach can rely upon well-defined mathematical foundations,
it is often ineffective in real-world cases where corrupted or noisy graphs can be
found. Inexact graph matching (also referred to as error-tolerant graph matching)
approaches address this problem by relaxing the constraints and tolerating errors
introduced by noise and distortions when measuring the similarity between any two
graphs. An intuitive method consists in measuring how much two graphs G1 and
G2 share according to a notion of maximum common subgraph. Unfortunately, this
process involved a subgraph isomorphism that, as opposed to a graph isomorphism,
is know to be an NP-complete problem thus not feasible from a computational
complexity point of view. Another well-known approach for dealing with inexact
graph matching relies on Graph Edit Distances (GED) [63, 151, 44, 166], which
can be view as a reformulation of the well-known edit distance for strings, i.e. the
Levenshtein distance, in the graph domain.

The GED is a dissimilarity measure d between two graph G1 and G2 defined
directly into the graph domain G, that is d : G × G → R+

0 . Intuitively, this method
quantifies the dissimilarity between two graphs as the amount of both structural
and labels distortions needed to transform G1 into G2 according to a set of edit
operations that comprise insertions, deletions, and substitutions of both nodes and
edges.

Definition 2.1.5 (Edit Path). A possible sequence ofM edit operations (ε1, . . . , εM)
which enables the transformation of G1 in G2 is called edit path.

According to Def. 2.1.5, let also Ω (G1, G2) be the set of all edit paths between
G1 and G2. In order to find the most suitable edit path among Ω (G1, G2), each
edit operation ε is associated with a specific cost function c(ε) that evaluate the
magnitude of the corresponding operation. The idea of such a cost is to define
whether or not an edit operation ε represents a strong modification of the graph
[151]. The GED between two labelled graphs G1 and G2 can be defined as follow:

Definition 2.1.6 (Graph Edit Distance). Let G1 = (V1, E1,Lv,Le) and G2 =
(V1, E1,Lv,Le) be two labelled graphs. Let also (ε1, . . . , εM) be a generic sequence
of M edit operations that turns G1 in G2. The GED defines the dissimilarity
d : G × G → R+

0 between G1 and G2 as:

d(G1, G2) = min
(ε1,...,εM)∈Ω(G1,G2)

∑k

i=1
c (εi) (2.6)

The exact computation of Eq. (2.6) is generally approached by employing specific
searching methods. For example, A* is a best-first search algorithm able to always
provide a solution (if exists) without overestimating the cost necessary to meet the
target thanks to a suitable organization of the solution space in an ordered tree-like
fashion. Unfortunately, the main drawback of such procedures is the exponential
computational complexity with respect to the number of nodes involved, thus limiting
the chance to employ GED only for small graphs. Indeed, the exact computation of
the GED is known to be an NP-Hard problem [201] hence most of the strategies
deployed in real-world applications are based on suboptimal solutions of Eq. (2.6).

2.2 Mainstream Methods 13

2.2 Mainstream Methods

In general, problems on graphs can be broadly divided into the following families
[206]:

• node-level tasks: the input data is a graph (which is supposed to be partially
known) and the learning task regards node classification, node regression or
node clustering. In classification and regression approaches, the model has to
predict respectively the class of a node and attributes from continuous values.
In node clustering, the goal is to partition the graph into subgraphs (clusters)
so that the nodes in the same cluster are ‘close’ to each other than to those in
other clusters.

• edge-level tasks: as in the previous case usually the input data is a single graph
and the learning task focuses on edge classification or link prediction, where
respectively the model requires to predict the edge attributes or whether an
edge exists between two given nodes.

• graph-level tasks: in this case, the problem is defined by a pair of datasets
(namely the training and the test set), where each record is a graph, each
associated with a given class label. The tasks, i.e. classification and regression,
consist in synthesizing a model relying on training data in order to classify
or predict numerical attributes of previously unseen graphs belonging to the
test set. An example of a classification task is the prediction of a particular
molecule activity against a pathogen, whilst for regression task is the prediction
of molecular physical properties such as solubility.

In this section, the mainstream pattern recognition approaches for graph-level tasks
are discussed being the core of this work. Four main groups have been identified
whose relevant characteristics are discussed in the following sections.

2.2.1 Custom Dissimilarities in the Input Domain

A variety of efficient pattern recognition techniques can not be straightforwardly em-
ployed in the graph domain due to the lack of fundamental mathematical operations.
Notable examples are Bayes Classifiers and Multi Layer Perceptron which leverage
on the possibility in multiplying patterns by a constant and/or the summation
between elements. On the other hand, the availability of a dissimilarity measure
defined directly on the graph domain mitigates this issue enabling the application of
particular supervised and unsupervised learning techniques.

The k-Nearest Neighbor (k-NN) [172, 47] is a training-less classifier that only
requires the definition of dissimilarity between data in the input space X for making
its decisions about unseen patterns. Given a set of training data D(tr), k-NN evaluates
the pairwise distances between a test pattern x(ts) ∈ D(ts) that has to be classified
and every sample in D(tr). Then, the classification is performed by assigning to x(ts)

the most frequent label among its k nearest training patterns. Formally speaking, let
N = {(x1, y1), . . . , (xk, yk)} ⊆ D(tr) be the set of k nearest patterns to x(ts) whose
distances are evaluated according to a dissimilarity measure d : X ×X → R+

0 defined

14 2. Pattern Recognition in Graph Domain

in the input space X . Then, the k-NN classifier P̂ : X → Y is defined as follows:

P̂ (x(ts)) = arg max
y∈Y

|{(xi, yi) ∈ N : yi = y}| (2.7)

Hence, k-NN must be informed only about the dissimilarity measure d available in
the input domain in order to accomplish the classification. From this point of view,
k-NN is a straightforward choice for classification in the graph domain as there exist
a great number of dissimilarity measures (such as GED-based methods defined in
Def. 2.1.6) while well-defined algebraic operations are missing [155].

Following the same rationale of the discussion above, custom dissimilarity meth-
ods are very appealing in the context of unsupervised learning. A large class of
clustering methods relies specifically on two distinct concepts: dissimilarity measure
for grouping similar patterns together in the same cluster and a cluster representative,
that is a prototype pattern that synthesize the group characteristic. Probably the
most used technique in the vector domain is the k-means algorithm where patterns
x ∈ Rn are assigned to the nearest cluster C evaluated according to Euclidean
distance, whose representative is the centroid element x:

x = 1
|C|

∑
x∈C

x (2.8)

On the other hand, the application of k-means for graph-related problems is not an
option: both the multiplication of a graph by a constant and the summation of graphs
are not valid operations in the graph domain being a non-metric space. Hence, the
definition of a cluster representative is a delicate issue to consider in this scenario. A
possible solution is to take advantage of MinSOD (MinSOD) representative [52, 97].
Formally:

Definition 2.2.1 (MinSOD). Let D ⊂ X be a finite set of elements and let d : X ×
X → R+

0 a dissimilarity measure in the input space X . The MinSOD representative
element x∗ ∈ D is evaluated as:

x∗ = arg min
xi∈D

∑
xj∈D

d (xi, xj) (2.9)

From Eq. (2.9), it is possible to spot that the MinSOD does not depend on any
mathematical operation other than a suitable dissimilarity measure in the input
space. Whenever the MinSOD is chosen as cluster representative in place of centroid
in k-means, the clustering procedure becomes available also in the graph domain and
is usually referred to as k-medoids. Notably, any other clustering method which is
based on distance notion and a cluster representative can be extended without much
effort in the graph domain. The class of free clustering methods encompasses typical
algorithmic solutions that follow the aforementioned rationale. Basic Sequential
Algorithmic Scheme (BSAS) [172], as opposed to k-mean/k-medoid, does not need
any prior assumption on the number of clusters to find in the dataset leveraging
instead on a threshold of inclusion which establishes whether or not a pattern can
be part of a specific cluster according to the pattern-to-representative distance.

2.2 Mainstream Methods 15

2.2.2 Graph Neural Network Methods

Graph neural network architectures [189, 205, 187, 29, 164, 204] typically implement
convolution layers resembling the well-known convolutional neural networks for
image recognition applications. In this case, convolutional neural networks leverage
trainable localized filters which scan the images in order to extract high-level
features by analyzing pixel relationships in the grid-like structure. On the other
hand, the caveat with graphs is their generally irregular structure that makes the
convolution operation a challenging aspect [204]. One approach consists in defining
the convolution operation in the spectral domain according to eigenvalues and
eigenvectors of the graph Laplacian matrix [51, 31, 22]. Let L be the normalized
Laplacian matrix defined as [25]:

L = In −D−
1
2 AD−

1
2 (2.10)

where In ∈ Rn×n is the identity matrix and D ∈ Rn×n and A ∈ Rn×n are respectively
the degree and adjacency matrix of a graph G with |V| = n. Let also be Lv = Rd
and Le = ∅, then let x ∈ Rd be a node features vector defined for a vertex v ∈ V
also known as graph signal3. The convolution operation f ∗ x between a filter f and
the graph signal x in the spectral domain is then defined as follow:

f ∗ x = UfU>x (2.11)

where U is the matrix whose columns are the eigenvectors of L. All Graph Con-
volutional Neural Networks spectral methods share the definition of convolution
operation provided in Eq. (2.11) differentiating each other on how the filter f (whose
coefficient are learned by the network) is implemented [40, 206].

However, it is still nontrivial to transfer the spectral-based graph convolutional
network models learned on one graph to another graph whose eigenfunctions are
different. To address this issue, filtering and convolution operations are generalized
in spatial-based approaches. Typically, these methods perform recursive steps of
node features propagation towards the neighbor vertices according to the topological
structure. Then, each node aggregates all the information gathered from its neighbors
in order to evaluate its own new feature vector [189, 85, 130]. Formally, the node
feature representation x(l+1)

i of ith vertex in the l + 1 layer is evaluated as follow [7]:

x(l+1)
i = Γ(l+1)

(
x(l)
i ,Ψ

(
{γ(l+1)

(
x(l)
j

) ∣∣j ∈ Ω(i)}
))

(2.12)

where Γ(l+1) and γ(l+1) are arbitrary non-linear transformations of the input data
e.g. multi-layer perceptron, Ψ is a permutation invariant function e.g. sum, mean,
or max, and Ω(i) is the neighbor indices of node i. In Eq. (2.12) it is possible to
spot two relevant operations: Ψ

(
{γ(l+1)

(
x(l)
j

) ∣∣j ∈ Ω(i)}
)
resembles an aggregation

phase where the information about the neighbor node features are combined together
according to Ψ in a message mΩ(i). Later on, the update phase is carried on by
combining the current node feature vector x(l)

i with the message mΩ(i) according to
3For the sake of simplicity, the discussion is limited to graph with only node labels, albeit in

principle it can be extended to a more general formulation addressing also edge labels [7]

16 2. Pattern Recognition in Graph Domain

Γ(l+1). The whole graph representation in the geometric space can then be obtained
through pooling operations by combining in a suitable way the representation vectors
of all nodes in the graph [102].

2.2.3 Implicit Graph Embedding

Implicit graph embedding is the embedding technique that leverages on the idea of
kernel methods. Instead of representing individually each pattern directly into a
vector space, implicit methods encode the information about data into the pairwise
similarities. In other words, a kernel κ : X × X → R+

0 is a real-valued similarity
function that represent the input space X in an implicit fashion according to the
kernel matrix K:

Definition 2.2.2 (Kernel Matrix). Let κ : X × X → R+
0 be a kernel function and

let D ⊂ X be a finite set of patterns such that N = |D|. The kernel matrix K is an
N ×N matrix that reads as:

K =

κ11 κ12 . . . κ1N
κ21 κ22 . . . κ2N
...

...
κN1 κN2 . . . κNN

 (2.13)

where κij with 1 ≤ i, j ≤ N is the kernel function κ(xi, xj) evaluated between
xi, xj ∈ D

According to the data representation provided by K as defined in Eq. (2.13),
pattern recognition methods can be reformulated in terms of kernel matrix (or more
in general in terms of dot product as it will be clear soon) in order to operate on the
pairwise kernel values in place of the pattern itself. Such methods are extensively
applied in a large set of both supervised and unsupervised learning techniques
such as Support Vector Machines (SVM) for classification tasks and k-means and
Principal Component Analysis (PCA) for clustering and dimensionality reduction
[75, 88, 170, 106].

When a specific kernel satisfies the positive definite condition they are usually
called valid kernels:

Definition 2.2.3 (Positive Definite Kernel). A kernel function κ : X × X → R+
0 is

positive definite if, and only if, ∀N ∈ N the following hold:

N∑
i,j=1

cicjκ(xi, xj) ≥ 0 (2.14)

for all ci, cj ∈ R and for all xi, xj ∈ X

The importance of valid kernels in pattern recognition is highlighted by a relevant
result which is usually referred to as kernel trick [172, 24]:

2.2 Mainstream Methods 17

Theorem 2.2.1. Let κ : X × X → R+
0 be a valid kernel defined on the input space

X . There exists a possibly infinite-dimensional Hilbert space 4 F and a mapping
function φ : X → F such that:

κ(xi, xj) = 〈φ(xi), φ(xj)〉 (2.15)

for all xi, xj ∈ X where 〈·, ·〉 denotes the dot product in a Hilbert space F .

Theorem 2.2.1 really encloses the essence of implicit graph embedding and
thoroughly explains the power of kernel methods: every valid kernel κ resembles
a dot product 〈·, ·〉 in some (implicitly existing) feature space F also known as
Reproducing Kernel Hilbert Space. Hence, knowing an explicit representation of the
pattern in such space according to the mapping function φ(·) is unnecessary from
the point of view of kernel machines since it is sufficient to evaluate only the kernel
function κ(·, ·) in the input space X that in turn corresponds to the inner product in
F . Eventually, it is possible to say that the Hilbert space F is not known explicitly
but rather through the concept of dot product induced by the kernel function κ
[155].

So far, no prior assumption has been made regarding the nature of the input
domain X for what concerns the validity of the kernel trick. In fact, Theorem 2.2.1
clearly relies on a simple yet restrictive hypothesis, that is kernel function κ must
be part of the class of positive definite kernel as defined in Def. 2.2.3. Hence, the
validity of Theorem 2.2.1 is still intact also in the graph domain (and in all other
structured domains) making available a large set of algorithmic tools for performing
graph classification and graph clustering. Thus, graph kernels are raised as specific
similarity functions κg : G × G → R+

0 evaluated in the graph domain.

2.2.4 Explicit Graph Embedding

In Section 2.2.3, graph kernel methods have been introduced as possible solutions
for using kernel machines in the graph domain by implicitly mapping a graph in
a Hilbert space F . The implicit term stems from the fact that target space F is
not known but its existence is guaranteed by Th. 2.2.1 assuming κg a valid kernel
satisfying Eq. (2.2.3). On the other hand, the possibility to explicit map graphs
towards a vector space automatically makes available all the arsenal of pattern
recognition techniques without limitations. Formally speaking, an (explicit) graph
embedding consists in designing a mapping function φ : G → Rn which maps graphs
from the input domain X = G towards a suitable vector space Rn. In general,
the most challenging aspect concerns the realization of φ in order to generate an
embedding space semantically sound with respect to the original graph domain. In
other words, an ideal embedding process would be able to preserve entirely both
the topological and semantic information into F . In practice, mapping entities from
a structured toward a vector domain is by no means a lossless operation. In this
section, different embedding techniques are presented underlining the approaches
pursued for preserving the largest amount of information in the embedding process.

4Hilbert spaces can be roughly defined as a generalization of vector spaces with possible infinite
dimension equipped with a suitable notion of dot product allowing the definition of mathematical
concept such as angles and lenghts.[134]

18 2. Pattern Recognition in Graph Domain

Feature Engineering

The most natural way to construct explicit embedding spaces is to start from numer-
ical features extracted from the graph dataset (e.g., entropy, centrality, modularity,
enumeration of graph properties), which in turn can be combined in order to build a
handcrafted mapping function φ. Although these feature generation-based methods
can be very effective, they often either require a deep knowledge about the domain
and the problem at hand or undergo computationally expensive trial-and-error stages
in order to select the most informative numerical features. Examples of explicit
feature-engineered embedding procedures exploit statistics of nodes’ attributes [70],
histograms encoding topological and semantic attributes [101], lexicon matching [168],
topological data analysis [119], spectral properties [116] and community embedding
[37].

Dissimilarity space embedding

This approach stems from the seminal works of Pekalska and Duin [59] that intro-
duced the concept of dissimilarity representation. In pattern recognition problems,
the common way for representing patterns is to collect a set of measurements for
a specific object and represent it as a point into a vector space whose coordinate
determines the numerical values of such features. As opposed, a dissimilarity repre-
sentation proposes to represent a given object according to the pairwise dissimilarities
between other objects. That is, a dissimilarity measure is firstly imposed for the
problem at hand and thereafter each object is represented as the vector whose
components are individually the distances between all the objects in the dataset.
In light of this discussion, the feature vector approach can be seen as an absolute
representation while the dissimilarity representation can be interpreted as a relative
representation of the underlying patterns [155, 95].

The extension of such approach for graph domain is simple and intuitive: a
single graph is represented as a vector with n components evaluated as the pairwise
dissimilarity from a reference set of n objects, usually know as prototypes. Formally:

Definition 2.2.4 (Dissimilarity Embedding). Let G ∈ D be a labelled graph such
that D ⊂ G is a finite set of N = |D| graphs. Let P = {p1, . . . , pn} ⊆ D be the set
of prototype graphs with n ≤ N . The mapping function φP : G → Rn is defined as:

φP (G) = [d (G, p1) , . . . , d (G, pn)] (2.16)

where d(G, pi) is any graph dissimilarity measure between graph G and the ith
prototype graph.

From the above definition, it is clear that the graph G is represented as a vector
whose component values are defined as the distances between a specific prototype
p ∈ P and the original graph G according to a notion of dissimilarity d : G×G → R+

0 .
Hence, any kind of dissimilarity measure defined in the graph domain can be exploited
for the embedding phase such as the GED defined in Eq. (2.6).

The identification of a suitable prototype set P is an important aspect that
must be faced in dissimilarity space embedding methods. As can be observed from
Eq. (2.6), the prototype set cardinality determines the dimensionality n of the

2.2 Mainstream Methods 19

resulting embedding space which is known to be a crucial aspect that can affect
the performance of pattern recognition algorithms. A naive approach that can be
pursued consist in electing all graph from D to prototype, that is |P| = N . When
dealing with large sets D, graphs will be embedded in high-dimensional spaces
meeting the well known curse of dimensionality in learning system. For such reason,
most of the state-of-the-art method focuses on heuristics that empirically suggest
how to pick enough elements from the graph set D in order to reflect the underlying
distribution of data and at the same time removing unnecessary, redundant and, in
general, uninformative prototypes.

Embedding via Information Granulation

In the fields of Computational Intelligence and Soft Computing, Granular Computing
(GrC) emerged as a novel paradigm able to deal with complex systems inspired by
the human abilities to unravel complex situations in environments characterized by
uncertainties and with limited knowledge [77, 194]. Indeed, the process of granulation
can be referred to as the set of techniques that leads to the emergence of meaningful
aggregated data at different levels of abstraction known as information granules. As
a human-thinking problem-solving process, the GrC approach consists in observing
and considering the problem at various levels of granularity, retaining only those that
are relevant for the task at hand, therefore discarding unnecessary and superfluous
information and make the problem tractable for decision making activities [139].

The importance of information granules resides in the ability to underline prop-
erties and relationships between data aggregates. These entities can be synthesized
according to the so-called indistinguishability rule, that is, elements that share
enough similarity, structural or functional properties can be condensed into the same
group [200], with the goal to pursue a semantic discrimination of the information
residing in the data at hand [137].

Furthermore, data can be represented using different levels of ’granularity’ and
thus different peculiarities of the considered system can emerge [140, 178, 190,
196, 195]. The selection of the most adequate granularity level is one of the most
important issue when designing GrC-based systems, being strongly influenced by
nature of the problem. Indeed, by varying the resolution at which the problem is
observed, the level of abstraction varies accordingly: the higher the resolution, the
less the level of abstraction and finer details emerge. Conversely, low resolution or
low granularity levels correspond to high level of abstraction where less, but more
populated information granules are likely to emerge.

Different approaches can be considered in order to accomplish the process of
information granulation. Notable frameworks represent information granules as
mathematical entities relying on set theory: fuzzy sets, rough sets and probabilistic
set [135, 58, 92, 203]. A straightforward method for the synthesis of meaningful
information granules can be found amongst unsupervised learning methods which
have been widely explored in the context of GrC [136, 138, 143]. Indeed, clustering
algorithms have a direct connection with the concept of ’granules-as-groups’, since
these methods use to combine similar data into the same cluster according to a notion
of proximity. Notwithstanding that, clustering methods must be properly designed
in order to unravel groups and regularities in a multi-perspective view according

20 2. Pattern Recognition in Graph Domain

to the GrC principles. Typically, three main factors may affect the resulting data
partitioning from a GrC viewpoint [56]:

• (dis)similarity measure, which serves as the main function in order to determine
the degree of proximity between data elements

• threshold of inclusion, which determines whether a given pattern can be
included in a specific group (cluster) according to the level of (dis)similarity

• cluster representative, which is the pivotal element that compresses the infor-
mation contained in a cluster.

A typical clustering algorithm that directly relies on the aforementioned param-
eters is the BSAS algorithm that performs a so-called ’free clustering procedure’.
When the input space of the problem corresponds to the graphs domain, the above
discussed clustering parameters must be carefully tuned in order to deal with struc-
tured nature of data involved. As already discussed in Section 2.2.1, an effective
approach involves the MinSOD (see Eq. (2.9)) as the representative element of a
cluster, since its evaluation can be performed just in light of the pairwise dissimi-
larities between the patterns belonging to the cluster itself, overcoming the lack of
algebraic structures which characterize non-geometric spaces.

The clusters representatives from the resulting partition, synthesized in GrC
fashion, can be considered as symbols belonging to an alphabet A = {s1, ..., sn}.
These elements are retained as pivotal elements on the top of which structured data
will be mapped in a vector space by means of the symbolic histograms paradigm
[53], hence performing an explicit graph embedding. It is worth underlining that
the alphabet set is composed of information granules elaborated according to an
algorithmic implementation of the indistinguishability rule. Hence, they are effec-
tively semantically sound constructs synthesized for the problem at hand which a
field expert could examine for gaining more insights about the underlying process
[96]. According to symbolic histograms, a graph can be mapped into an embedded
space by building an n-length integer valued vector whose ith component counts
the number of occurrences of the symbol si belonging to the alphabet A within the
graph to be embedded. The resulting embedding space is inherently endowed with
well-defined distance measures, such as the Euclidean distance or the dot product,
effectively enabling the application of many standard classification systems developed
for geometric spaces.

21

Chapter 3

Granular Approach for Labelled
Graphs

3.1 Introduction
In the previous Section 2.2.3, the explicit graph embedding method based on
information granulation emerged as an interesting technique from two points of view:

• The ability in automatically extract the pivotal information enabling the graph
embedding

• The interpretability of the synthesized embedding model according to the
extracted granules

In this chapter, GRanular Computing Approach for Labelled Graph (GRALG)
[23] is introduced as a graph classification system based on information granulation
graph embedding. Indeed, GRALG relies on the automatic synthesis of information
granules extracted from a training set D(tr) ⊂ G collected in a suitable alphabet
of symbols 1 A. The symbols are intended as frequent and meaningful subgraphs
emerged as representative elements of compacted and populated clusters. In turn,
these clusters are the product of a clustering ensemble procedure driven by BSAS
algorithm.

At the core of GRALG lies a parametric GED adopted for evaluating the pairwise
dissimilarities directly in the graph domain that are required for the granulation
process. Alongside, other relevant parameters are involved in the clustering procedure
which are rarely know a-priori. For these reasons, the algorithm training phase is
carried out in order to automatically determine an optimal embedding space by
tuning the crucial parameters involved in the granulation stage for synthesizing
an optimal alphabet. The objective function pursued during the optimization is
the accuracy of a classifier trained in the emerging embedding space. That is, the
graph training set D(tr) is embedded on a vector space by building the corresponding
symbolic histograms and a suitable classifier is trained accordingly. In order to
avoid bias and overfitting, a validation set D(vs) ⊂ G such that D(tr) ∩ D(vs) = ∅ is
embedded as well in the resulting vector space in order to test the classifier accuracy.

1Hereinafter, the terms "granule" and "symbol" are used interchangeably.

22 3. Granular Approach for Labelled Graphs

A second stage of optimization is in charge of compressing the optimized alphabet
by removing unnecessary symbols and reducing the complexity of the learned
model. The selection criteria, i.e. the optimization objective function, is based
on the classification accuracy on the validation set and an additional term which
discourages alphabets with high cardinality. After the whole optimization is over, the
final optimal alphabet can be exploited for embedding both the training and disjoint
test set D(ts) ⊂ G in order to evaluate the final performance of the classification
system.

The remainder of this chapter will explain in detail the work flow of the graph
classification: in Section 3.2 the definition of the core dissimilarity measure is
given. In Section 3.3, the individual description of the building blocks enabling
the graph embedding is provided. Finally in Section 3.4.1 and Section 3.4.2, the
optimization stages are described thoroughly according to the interaction of the
system components.

3.2 Core Dissimilarity in Graph Domain
The core dissimilarity measure adopted in GRALG is a GED. As discussed in
Section 2.1, given a set of edit operations defined on nodes and edges (i.e., deletion,
insertion and substitution), a GED evaluates the dissimilarity between two graphs
as the minimum cost set of operations needed to turn the first graph into the
other.A suitable heuristic that considers a suboptimal solution of Eq. (2.6), namely
Node Best Match First procedure (nBMF) is adopted in GRALG in order to
overcome the impracticability arisen from the intrinsic computational complexity.
Let G1 = (V1, E1,Lv,Le), G2 = (V2, E2,Lv,Le) be two fully labelled graphs with
nodes and edges labels set Lv and Le where in general, G1 and G2 might have
different sizes in terms of both nodes and edges hence |V1| 6= |V2| and |E1| 6= |E2|.
Additionally, let dΠv : Lv ×Lv → R and dΠe : Le×Le → R be two custom functions
that enable the evaluation of dissimilarities between nodes’ and edges’ attributes,
possibly depending on some real-valued parameter tuple Πv and Πe. The procedure
is divided in two consecutive routines that evaluate the costs on nodes and edges.
The first procedure greedy matches the nodes in graph G1 with nodes in G2 according
to dΠv , that is, the first node from V1 is assigned to the most similar node from V2.
The selected pairs are stored in a set of matched nodes R and neglected in the next
rounds of nodes evaluations. The routine evaluates node operations costs as follows:

• according to dΠv , each match contributes to the overall node substitution cost

• if |V1| > |V2|, then |V1| − |V2| counts as node insertions

• if |V1| < |V2|, then |V2| − |V1| counts as node deletions.

Once the set of matched nodes R is returned, the second routine takes place by
matching induced edges. Specifically, by relying on the set R, the procedure checks
whether an edge exists in both E1 and E2. For example, let us suppose (v1, u1) ∈ R
and (v2, u2) ∈ R be two pairs of matched nodes, where v1, v2 ∈ V1 and u1, u2 ∈ V2.
Let also be (v1, v2) ∈ E1 an edge of G1. Then, the procedure checks whether an edge
(u1, u2) exists in G2 as well, being u1 and u2 the nodes that have been matched

3.3 Building Blocks 23

to v1 and v2, namely the nodes that compose the edge in G1. In general, the edit
operation costs are evaluated as follow:

• if the edge exists on both E1 and E2, this counts as an edge substitution and
its cost is given by the dissimilarity between edges according to dΠe ;

• if the two nodes are connected on G1 only, this counts as an edge insertion;

• if the two nodes are connected on G2 only, this counts as an edge deletion.

The overall dissimilarities between nodes and edges, say dV(V1,V2) and dE(E1, E2),
can be defined as:

dV(V1,V2) = wsubnode · csubnode + winsnode · cinsnode + wdelnode · cdelnode
dE(E1, E2) = wsubedge · csubedge + winsedge · cinsedge + wdeledge · cdeledge

(3.1)

where csubedge, cinsedge, cdeledge, csubnode, cinsnode, cdelnode are the costs associated to the edit
operations on nodes and edges and wsubnode, wsubedge, winsnode, winsedge, wdelnode, wdeledge are the
six weights which reflect the importance of each operation individually. For ease of
notation, the latter are collected in a tuple W ∈ [0, 1]6, that is:

W =
(
wsubnode, w

sub
edge, w

ins
node, w

ins
edge, w

del
node, w

del
edge

)
(3.2)

In order to avoid skewness due to the different sizes between G1 and G2, dissimi-
larities in Eq. (3.1) are normalized as follows:

d′V(V1,V2) = dV(V1,V2)
max(o1, o2)

d′E(E1, E2) = dE(E1, E2)
1
2 (min(o1, o2) · (min(o1, o2)− 1))

(3.3)

and finally:
d(G1, G2) = 1

2
(
d′V(V1,V2) + d′E(E1, E2)

)
(3.4)

For ease of notation, the overall GED parameters, i.e. the nBMF cost weights and
the node/edge dissimilarity parameters, are collected in a vector w which completely
define the parametric dissimilarity measure dw : G × G → R+

0 in the graph domain
G:

w = [W Πv Πe] (3.5)

3.3 Building Blocks

3.3.1 Substructures Extraction

The purpose of this block is dedicated to the identification of a substructures set S
from a graph set D. Indeed, the Extractor block implements the operations needed
to expand a graph G ∈ D in a set of subgraphs G′ in order to compose S = ∪Ni=1G

′
i,

where N = |D| is the number of graph in the dataset. As it will be clear in next

24 3. Granular Approach for Labelled Graphs

sections, S is intended as the set of candidate structures to become meaningful
granules of information.

The main issue of this procedure is the high memory footprint and computational
complexity necessary for expanding the parent graph in all possible substructures.
Indeed, a graph with q vertices can have almost 2(q

2) subgraphs [61, 84] making
the extraction unfeasible for networks that exhibit high number of nodes and for
large graph datasets as well. Often, when dealing with an expansion task, one is
interested in enumerating all subgraphs avoiding possible repetitions of the same
substructure. Consequently, a test of isomorphism should be implemented in order
to decide whether the subgraph just discovered has been found in previous iterations.
This aspect further exacerbates the demanding computational complexity due to
the NP-completeness required for solving the graph isomorphism problem [150].

For the above reasons, in the first GRALG approach [23], the extraction problem
had been relaxed by fixing the subgraphs order with an arbitrary parameter o.
That is, instead of trying to decompose the graph in all its possible subgraphs,
the procedure limits the exploration to those substructures with number of nodes
q = 1, . . . , o. On the other hand, the uniqueness of subgraphs in G′ has been
preserved leveraging on a suitable hash table that keeps track of the previously
explored substructures. Along with the cost necessary for repetitively check the
subgraph presence in the hash table, this approach still requires an expensive memory
usage that hinder the procedure feasibility.

3.3.2 Granulation Technique

The granulation process is carried out after the set of atomic entities S has been
provided by the Extractor block as defined in Section 3.3.1. This block aims
at building a set of relevant symbols, namely the alphabet A, by means of an
unsupervised learning approach performed on the subgraphs set S. In the spirit of
GrC, each symbol si ∈ A is an highly informative mathematical entity following the
principle of justifiable granularity related to the specific level of abstraction at which
the problem has been observed. In the literature, many authors have given several
different definitions of information granule: fuzzy sets, rough sets and shadowed
sets [141] are just few examples on how granules can be practically formalized. The
method adopted in GRALG is a clustering-based approach for formally defining a
granule of information [181, 56].

In principle, there is no limitation about which clustering algorithm has to
be employed as granulation method. Nonetheless, free clustering based methods
can be very effective for the granulation information since they directly relies on
resolution parameters that can be exploited in order to change the granularity
level. For the discussed reasons, the BSAS algorithm has been chosen as the core
granulation method of GRALG. Furthermore, the sequential scheme followed by
BSAS allows to limit the number of pattern-to-representative distance evaluations
reducing the overall computational effort. On the other hand, this approach makes
the partitioning outcome dependent to different presentation ordering of the patterns.
Specifically, BSAS relies on:

• U : the maximum number of allowed clusters

3.3 Building Blocks 25

• θ: the dissimilarity threshold for pattern inclusion in the nearest cluster

In particular, the θ parameter impacts on the resolution adopted during the clustering
procedure affecting consequently the granularity level of the synthesized symbols.
Additionally, the dissimilarity measure dw serves as the main function in order to
determine the degree of proximity between data elements for aggregating patterns
in meaningful clusters.

The clustering algorithm will return a partition Pθ = {C1, . . . , Ck} emerged by
employing a particular θ value. Thanks to a binary search method, an ensemble of
partitions Pθ1 , . . . ,Pθh

can be generated according to θ1, . . . , θh resolution parameters.
For every cluster C in the resulting partitions, a cluster quality index F (C) is defined
as:

F (C) = η · Φ(C) + (1− η) ·Θ(C) (3.6)

where the two terms Φ(C) and Θ(C) are defined respectively as:

Φ(C) = 1
|C| − 1

∑
g∈C

d(g∗, g) (3.7)

Θ(C) = 1− |C|
|S|

(3.8)

where, g∗ is the MinSOD element of cluster C and gi the ith pattern in the cluster.
Both the clustering algorithm and Eq. (3.7) rely on the GED dissimilarity measure
(i.e. the nBMF) described in Section 3.2. The quality index defined in Eq. (3.6)
reads as the linear convex combination between compactness Φ(C) and cardinality
Θ(C) as defined in Eqs. (3.7) and (3.8), respectively, where η ∈ [0, 1] weights the
importance of the two terms. For all partitions in the ensemble, each cluster is
filtered thanks to a given threshold τF , which aims at selecting only relevant clusters
according to the quality index F . In this way, only well-formed clusters (i.e., compact
and populated) contribute to shape the alphabet set A. For ease of notation, the
granulation stage parameters p can be expressed in more compact way:

p = [U τF η] (3.9)

3.3.3 Embedding with Symbolic Histograms

The Embedding step defines the operations needed to perform the mapping function
φ : G → F from the graph domain towards a feature space F ⊆ Rn. The block
aims at building the vectorial representation of a graph, i.e. the symbolic histogram,
relying on the alphabet A = {s1, . . . , sn} provided by the Granulator. Formally, let
G be the graph for which the embedding is required and let G′ = {g1, . . . , gm} be
a suitable decomposition of G in atomic units. Hence, G′ is the set of subgraphs
emerged from G according to the extraction block discussed in Section 3.3.1.

In general, the symbolic histogram h ∈ Rn of graph G can be evaluated by an
embedding block which takes as input the alphabet A and G′. Hence, this block
implements the mapping function φA (G′) defined as follows:

26 3. Granular Approach for Labelled Graphs

h = φA
(
G′
)

=
[
occ

(
s1, G

′) , . . . , occ (sn, G′)] (3.10)

where the function occ : A×G → N counts the occurrences of si ∈ A with i = 1, . . . , n
among the set of subgraphs G′ that compose G:

occ
(
si, G

′) =
∑
g∈G′

Γ (si, g) (3.11)

where

Γ (si, g) =
{

0 if dw (si, g) > ζ

1 if dw (si, g) ≤ ζ
(3.12)

and ζ = Φ(Csi) · ξ is a symbol-dependent threshold, where Csi is the cluster whose
minSOD is the symbol si and ξ serves as a tolerance parameter for scoring the
match.

3.3.4 Classification in Embedding Space

After having synthesized the candidate alphabet A, each graph from the dataset D
can be embedded toward the resulting embedding space F spanned by the symbolic
histograms emerged from the application of the mapping function φA as described
in Section 3.3.3. In this way, it is possible to build a |D| × |A| embedding matrix F
whose rows are the symbolic histograms related to each graph G ∈ D.

A natural question that arise is how to determine the quality of the emerging
embedding space F in order to evaluate the goodness of A. The solution explored in
GRALG consists in training a classifier c directly in the resulting embedding space
and evaluating a performance measure J : D → R of c in classifying a validation set.
In this way, J can be interpreted as a critic asserted by c about the effectiveness of
the embedding space F .

As already discussed, the graph embedding strategies have the undoubted ad-
vantage to enable a plethora of well-established pattern recognition tools such as
SVM, Neural Networks, Random Forests and many others. Hence in GRALG as
well, the choice of the classifier c that will be used is completely arbitrary.

3.4 Automatic Learning Graph Representation with Evo-
lutionary Algorithm

In Section 3.3, the building blocks for embedding a set of graph according to the
symbolic histograms paradigm have been thoroughly described. In the discussion,
the granulator (see Section 3.3.2) and the embedder blocks (see Section 3.3.3)
emerge as key components for correctly embedding the graph into a feature space
F . Nonetheless, the granulator block relies on the clustering algorithm ability
in discovering effective group of data at different levels of abstraction which is
strongly influenced by the power of the dissimilarity measure in capturing the
proximity of semantically closed patterns, whilst the embedding phase relies on
the same dissimilarity measure which in this case serves for evaluating whether
there is a match between a symbol and a subgraph. Consequently, the selection of

3.4 Automatic Learning Graph Representation with Evolutionary Algorithm27

suitable parameters involved in these phases is crucial for building semantically sound
embedding spaces with respect to the input space, i.e. the original graph domain.
In GRALG, this task is achieved with two sequential automatic procedures based
on a genetic algorithm: a first alphabet optimization select the crucial parameters
for each block separately and a features selection optimization selects only relevant
symbols for the problem at hand. The procedures relies on three disjoint sets D(tr),
D(vs) and D(ts) namely training, validation and test set.

3.4.1 Alphabet Synthesis

Each individual from the evolving population considers the set of subgraphs S(tr)

extracted from D(tr) and runs several BSAS procedures with different threshold
values θ1, . . . , θh. Regardless of the θ value under analysis, at most U ∈ p clusters
can be discovered in each run and the dissimilarity between graphs is evaluated using
the nBMF procedure as in Section 3.2 by considering the six weights W ∈ w and the
parameters Πv,Πe ∈ w . It is worth recalling that the latter is only applicable if the
vertices and/or nodes dissimilarities are parametric themselves. At the end of the
clustering procedures, each cluster is evaluated thanks to the quality index in Eq.
(3.6) using the parameter η ∈ p for weighting the convex linear combination. Hence,
clusters whose F value lie above τF ∈ p are discarded and their representatives will
not form the alphabet.

Once the alphabet A is synthesized, the Embedder (Section 3.3.3) receives the
substructure sets S(tr) and S(vs) and exploits the alphabet A in order to map both
the training set and the validation set towards the metric space F . Eventually,
the procedure leads to the generation of the training and validation sets vectorial
representation, i.e. F(tr) and F(vs), respectively an |D(tr)| × |A| and an |D(vs)| × |A|
matrix, whose rows are the symbolic histograms of each graph in D(tr) and D(vs).
It goes without saying that in the subgraph-symbol matching operation defined in
Eq. (3.12), the same GED previously used for BSAS will be deployed along with
the corresponding w parameters.

The definition of the genetic code stems from the previous discussion: both
granulator and the embedder leverage on the dissimilarity measure dw parametric
in w; the granulator instead requires also the fine tuning of additional parameters
for the clustering algorithm which are collected in p. Hence the search space for the
first genetic optimization reads as:

[w p] (3.13)

Finally, the classifier c can be trained on F(tr) where its performance measure J
is evaluated as the accuracy in correctly classifying each row of F(vs). The latter
serves as the fitness function f1 (to be minimized) for the individual itself:

f1 = 1− J (3.14)

Once the evolutionary strategy is completed, the optimal alphabet Ã is retained
together with the dissimilarity parameters w in the optimized genetic code. According
to Ã, it is possible to build the optimal vector representation of S(tr) and S(vs),
respectively F̃(tr) and F̃(vs). A schematic representation can be found in Figure 3.1

28 3. Granular Approach for Labelled Graphs

Granulator Embedder

Classifier
+

Fitness
Evaluation

Extractor Evolution

Figure 3.1. Schematic representation of Alphabet Synthesis phase. In the first stage, a
subgraph set S(tr) is extracted from training set D(tr). The granulator block provides
an alphabet A according to dissimilarity and granulation parameters, respectively w
and p. Both training and validation sets are embedded in corresponding matrices F(tr)

and F(vs) thanks to the embedder block equipped with w parameters. The classification
performance contributes to the fitness function f1 evaluation that in turn drives the
evolutionary algorithm for the genetic code optimization. At the end, the optimized
alphabet Ã and the best dissimilarity parameters w are retained.

3.4.2 Feature Selection

It is not rare that after the alphabet optimization described in the previous section,
the cardinality of the optima alphabet set ñ = |Ã| can be very large, that is Ã may
contain a large number of symbols and thus spanning vectors in high-dimensional
spaces since the genetic algorithm is mainly focused on the minimization of the error
rate (see (3.14)). A feature selection strategy can be deployed in order to remove
uninformative, redundant and in general not necessary features for the classification
task. In GRALG, the optimization process is applied on the alphabet set Ã in order
to select only those symbols that are relevant for the classification problem. The
benefits of this additional stage can be summarized in two distinct points:

• enhanced model interpretability: having less pivotal symbols fosters the model
interpretability since there will be less symbols to be analyzed by field-experts;

• a faster test phase: as will be stressed in Section 3.5, limiting the alphabet
cardinality impacts the number of dissimilarity evaluations needed to embed
a test pattern according the symbolic histogram as can be noticed from Eq.
(3.10)

A wrapper approach based on an evolutionary algorithm has been designed for
this purpose, where the genetic code of each individual is a binary mask m ∈ [0, 1]ñ
which allows the selection of a subset of features. Hence, each individual:

1. reads F̃(tr) and F̃(vs)

2. according to the 0’s in m, the corresponding columns of F̃(tr) and F̃(vs)

are removed, leading to projected matrices F̃′(tr) ∈ R|D(tr)|×n′ and F̃′(vs) ∈
R|D(vs)|×n′ where n′ =

∑ñ
i=1 mi

3.5 Synthesized Classification Model and Test Phase 29

Extractor Embedder Classifier

Figure 3.2. Schematic representation of test phase. A previously unseen pattern G(ts)

is first decompose in atomic substructures collected in G′(ts). The embedder block
provides the symbolic histogram h for G by leveraging on the optimal alphabet set and
dissimilarity parameters, respectively A∗ and w. The classifier trained in the embedding
space emits the label y for G(ts).

3. a classifier c is trained on F̃′(tr) and its own performance measure J is computed
as the accuracy on correctly classifying F̃′(vs)

The objective function (to be minimized) is then defined as:

f2 = (1− σ) · (1− J) + σ · n
′

ñ
(3.15)

which reads as a convex linear combination between the error rate (1− J) on the
validation set (leftmost term) and the ratio of selected symbols (rightmost term),
weighted by a user-defined trade-off parameter σ ∈ [0, 1].

Once the optimization is completed, the optimal mask m∗ is retained with
F∗(tr) ∈ R|D(tr)|×n∗ , F∗(vs) ∈ R|D(vs)|×n∗ as well, where n∗ =

∑ñ
i=1 m∗i . Accordingly,

the optimal alphabet A∗ ⊂ Ã is created by selecting the features indicated by the
1’s in m∗.

3.5 Synthesized Classification Model and Test Phase

From the two genetic optimization procedures, the optimized alphabet A∗, the
dissimilarity measure parameters w and the classifier c trained on F∗(tr) are the main
actors which completely characterize the classification model. Let G(ts) ∈ D(ts) be a
previously unseen graph belonging to a test set D(ts). It can be classified according
to the following procedure (a schematic representation of the test phase is proved in
Figure 3.2):

1. Expand G(ts) in the subgraph set G′(ts);

2. Determine the symbolic histogram h related to G′(ts) by running the Embedder
block equipped with the optimal alphabet A∗, where w will be exploited in
the symbol-subgraph matching procedure as depicted in Eqs (3.10) and (3.12).

3. The classifier c trained with F∗(tr) is now able to predict a label y for the
embedded graph h

30 3. Granular Approach for Labelled Graphs

It is worth to notice that the classification problem takes place in the embedding
space spanned by F∗(tr), that is Rn∗ . Hence, the test graph G(ts) is coherently
embedded according to A∗ giving rise to a symbolic histogram h ∈ Rn∗ . Accordingly,
the synthesized feature based classification model leverages on a fast computation
scheme since it is driven by a lower number of dissimilarity computations involved
in the embedding process. Indeed, the procedure for classifying a single graph G(ts)

requires to match |A∗| symbols with the subgraphs set |G′(ts)| that make up the test
graph, leading to |A∗| · |G′(ts)| dissimilarity computations.

31

Chapter 4

Studies and Novelties for
Granular Graph Embedding

In this chapter, the novelties introduced for GRALG classification system are
discussed in depth. In particular, the chapter is organized as follows:

• In Section 4.1, a novel stochastic lightweight method for the subgraph ex-
traction is introduced to mitigate the high computational cost and memory
footprint witnessed in the original GRALG implementation due to the exhaus-
tive extraction procedure. Hence, the method concerns the design of a new
Extractor module (see Section 3.3.1) which implements a random subgraph
sampling according to a specific traversal strategy, i.e. Breadth First Search
(BFS) and Depth First Search (DFS). On the other hand, the aforementioned
traversal strategies limit the subgraphs extracted to path- and star-like topolo-
gies. For this reason, in Section 4.1.1, the extractor block has been further
revised in order to sample also clique-based subgraphs.

• In Section 4.2, a class-aware granulation procedure is proposed in order to
improve the quality of the synthesized granules of information. Indeed, in
the original GRALG version, the granulation method neglects the ground-
truth information carried on with the training set D(tr). Hence, the proposed
new Granulator block provides a specific set of symbols which characterized
individually the classes of the problem. Additionally, in Section 4.2.1, a
description of limitations for the proposed method is provided together with
possible solutions.

• In Section 4.3, an evolutionary swarm like optimization algorithm is designed
in order to enable a class-specific metric learning strategy that allows learning
different dissimilarity measures in the graph domain, each of which is specifically
tailored for a particular class of the problem at hand. This method overcomes
the main limitation of the GRALG optimization strategy described in Section
3.4.1 which leads to the definition of a single global dissimilarity measure valid
for all patterns regardless of the class they belong to.

• In Section 4.4, six different variants of the symbolic histogram embedding
method are explored. In particular, the evaluation of the occurrences for the

32 4. Studies and Novelties for Granular Graph Embedding

symbolic histogram is relaxed by using three different types of soft functions
(sum, mean and median). That is, instead of relying on counting the number
of occurrences with an hard-limiting function that triggers the counter whether
the dissimilarity measure between the specific prototype and a subgraph is
below a given threshold, the proper dissimilarity values is instead considered
when searching for granules occurrences within the graph to be embedded,
following the rationale behind dissimilarity space embedding [59].

• In Section 4.5, it is investigated a Multi-Objective Optimization approach for
the synthesis of a GRALG driven classification model that simultaneously
minimizes the misclassification error, the number of features (i.e., information
granules) and the structural complexity validated in the embedding space.
Indeed, in the original GRALG optimization strategy the ‘best’ embedding
space has always been addressed via single-objective evolutionary optimization
driven only by maximizing classifier’s accuracy on a validation set projected
onto the embedding space. If on one side the learning performance is an essential
aspect of a reliable classification system, on the other hand minimizing the
number of symbols and the structural complexity lead to models that are likely
to be more interpretable and more prone to generalize.

Table 4.1. Summary of novel methods and techniques introduced in GRALG.

Name Section Block involved Limitation Addressed

Stochatic Subgraph Sampling 4.1 Extractor Running Times and
Memory Footprint

Class-Aware Strategy 4.2 Extractor and
Granulator

Loss of ground-truth
information in
granulation

Class Specific Metric Learning 4.3 All Single dissimilarity
measure optimization

Relaxed Symbolic Histograms 4.4 Embedder Expressiveness of the
hard-limit symbolic
histogram

MOO optimization 4.5 Optimizer Considering error rate as
the only performance
measure for a
classification system

4.1 Stochastic Substructures Extraction

The extraction phase discussed in Section 3.3.1 is of utmost importance in granular
graph embedding approaches based on GRALG. Indeed, the subgraph set S is the
key component defining the candidate granules of information for the alphabet
generation carried out by the granulator block. As already detailed in Section
3.3.1, the extractor block has a primary influence in the computational and memory
footprint problems of the whole algorithm which derived respectively from graph
isomorphism complexity and the large number of possible subgraphs that can be
extracted from a single graph.

4.1 Stochastic Substructures Extraction 33

A lightweight stochastic extraction procedure has been proposed in [8] addressing
the discussed limitation of the exhaustive subgraph extraction. In this novel approach,
the problem is further relaxed by fixing the cardinality of the subgraph set S and
admitting simultaneously multiple repetitions of the same subgraphs in S. Hence,
the memory issues has been tackled by imposing a limitation on the number of
candidate subgraphs to be considered as prospective granules of information, whilst
the computational complexity has been coped by giving up the possibility of relying
on unique substructures. Two well-known traversal strategies, i.e. BFS and DFS
[46] are in charge of exploring the parent graph for building the substructures set.

In this procedure, a graph G = {V, E ,Lv,Le} is randomly drawn from the graph
set D where V and E indicate as usual the set of nodes and edges, respectively. Then,
a node v ∈ V is selected as seed node for a traversal strategy based on either BFS and
DFS in order to extract a subgraph g = {Vg, Eg,Lv,Le}. Both extractions (graph
G from D and node v from V) are performed with uniform random distribution.
Alongside o (maximum subgraph order), a new user-defined parameterW determines
the desired cardinality of the set of candidate substructure S for the granulation
phase.

The procedure can be summarized as follow:

1. Initialize S as an empty set

2. For each candidate subgraph order q = 1 . . . o

(a) Draw a random graph G from D
(b) Draw a random vertex v from V
(c) Traverse graph G starting from node root v until q vertices are found
(d) Collect edges and nodes traversed in a subgraph g
(e) Append g in S

3. Repeat step #2 until |S| = W

In step #2c, the graph traverse is performed by using one of two following well-known
algorithms:

Breadth First Search: starting from a node v, BFS performs a traverse through-
out the graph exploring first the adjacent nodes of v and then moving farther
only after the neighbourhood is totally discovered. A First-In-First-Out policy
is in charge to organize the list of neighbours for the considered vertex, in
order to give priority to adjacent nodes. The algorithm can be summarized as
follow:

1. Select the starting vertex v.
2. Push v in a queue list S(queue)

3. Pop u, the first element of the queue from S(queue)

4. For each neighbour t of u, push t in S(queue) if t is not mark as "visited"
5. Mark u as a "visited" vertex
6. Repeat 3-5 until S(queue) is empty.

34 4. Studies and Novelties for Granular Graph Embedding

Depth First Search: in this strategy, a given graph is traversed starting from a
seed vertex v, but unlike the BFS search, the visit follows a path with increasing
length from v and backtracks only after all the vertices from the selected path
are discovered. A Last-In-First-Out policy is in charge to organize the list of
neighbours for the considered vertex, in order to visit in-depth vertices first.
The steps of the algorithm are:

1. Select the starting vertex v

2. Push v in a stack list S(stack)

3. Pop u the last element from stack S(stack)

4. For each neighbour t of u, push t in S(stack) if t is not marked as "visited"

5. Mark u as "visited"

6. Repeat 3-5 until S(stack) is empty.

These methods are employed to populate the set of vertices Vg and edges Eg for the
subgraph g: a vertex is added to Vg as soon as it is marked as "visited", whereas
an edge is added to Eg by considering the current and the last visited vertices. A
complete pseudocode can be found in Algorithm 1

Notes on Subgraph Set for Embedding Phase

The original embedding procedure in GRALG (see Section 3.3.3) used to expand
the graph G in atomic substructures up to a defined order, following an exhaustive
extraction strategy (alike the Extractor block, see Section 3.3.1) and then compare all
the obtained subgraphs against all alphabet symbols in A via the GED dissimilarity.
However, this approach still unfeasible both in terms of running time and memory
footprint for medium/large graphs datasets hence a lightweight strategy has been
employed in order to avoid the issues related to an exhaustive expansion. The
algorithm starts either a BFS or DFS traversal according to the traverse strategy
selected for the Extractor block. A seed node v belonging to the node set V is chosen
in order to start the exploration for extracting a set of subgraphs up until a given
order o. In order to mitigate the number of subgraphs, when a new prospective seed
node u ∈ V is considered, the procedure firstly checks whether u already appeared
in one of the previously extracted subgraphs and eventually neglect it as starting
node for the traversal strategy. This procedure finally returns the expanded set of
subgraphs G′ whose cardinality is reduced with respect to an exhaustive expansion.

4.1 Stochastic Substructures Extraction 35

Algorithm 1 Lightweight stochastic subgraph extraction
procedure extract(Graph G = {V, E ,Lv,Le}, o maximum number subgraph
order)

Initialize subgraph g = {Vg, Eg,Lv,Le} with Vg = ∅ and Eg = ∅
Uniform at random extract a vertex v ∈ V
Set v as seed node for BFS/DFS strategy
repeat
{Vg, Eg} ← Traverse G using BFS/DFS

until |Vg| = o
return g

end procedure

4.1.1 Clique Extraction

In the stochastic extraction method discussed in Section 4.1, the extractor block has
become responsible of the topology that characterized the granules of information.
In other words, the subgraph collected in S as well as the symbols appearing in the
alphabet A will show star- or path-like topologies according to the traversal strategy
adopted respectively BFS and DFS. Even though this point can give flexibility to
our approach, the selection of an appropriate traversal algorithm is not trivial and
likely influences the performance of a graph classification system driven by finding
meaningful subgraphs for graph embedding purposes since the topological properties
of the original graphs must be reflected in the subgraphs to be extracted.

In [10], the extraction strategy has been adapted in order to explore only the
maximal clique subgraph from all the graph in D in order to address whether
this particular topology can be interpreted as meaningful information granules for
synthesizing an embedding space for graph classification purposes. Cliques originate
in social sciences indicating groups of individuals who interact with one another and
share similar interests [162, 173]. The seminal work [99] has brought widespread
use of the term ’clique’ in graph theory and network analysis, where the authors
used complete subgraphs to model (social) cliques in social networks. In fact, this
is the current definition of a (graph) clique: a subset of vertices forms a clique if
the induced subgraph is complete (i.e., every two distinct vertices in the clique are
adjacent). The same does not hold in other type of subgraphs such as graphlets
(induced subgraphs) and motifs (partial subgraphs). Theoretically speaking, the
number of maximal cliques (i.e., cliques that cannot be made any larger) goes like
O(3q/3) in the worst-case scenario [126] for an q-vertex graph: this result suggests
that the number of prospective information granules is way lower with respect to the
paths case. Furthermore, despite being a well-known NP complete problem, finding
the maximal cliques in a graph can be pursued in exponential time, for example
thanks to the Bron-Kerbosch algorithm [28].

This method has been employed as core algorithm in the extractor proposed,
which uses a recursive backtracking strategy that looks for all maximal cliques. In
order to describe the method, let R, P , and X, be three disjoint vertices sets. In
each recursion step, R stands for the set containing a possible maximal clique, P
makes note of not yet visited vertices, whereas X keeps track for the already visited

36 4. Studies and Novelties for Granular Graph Embedding

nodes in earlier steps that serves for avoiding a clique is repeated in the backtracking
mechanism. In every call to the main function, the procedure checks whether R is
maximal by looking at the set P ∪X. Since this set is made up by the vertices which
are adjacent to R (a potential maximal cliques), P ∪X 6= ∅ proves that R is not
maximal. In practice, the method works by calling recursively the main procedure
for all v ∈ P for the clique R ∪ {v} and restricting P and X to the neighborhood
Ω (v). When a cliques R is signed as maximal, the algorithm backtracks by swapping
the vertex v from P to X guaranteeing that a clique is not enumerated multiple
times.

The designed Extractor takes as input a graph G for which is required to
enumerate the maximal cliques. Then, when the Bron-Kerbosch algorithm finds a
maximal clique in G, a subgraph g = {Vg, Eg} with the vertices Vg ≡ R is created in
order to save the corresponding clique subgraph. The set C contains all maximal
cliques found in G.

4.2 Class-Aware Granulation
The Granulator block introduced in Section 3.3.2 plays a fundamental role in the
whole graph embedding procedure. Indeed, it is responsible in the synthesis of
meaningful symbol composing the alphabet set A upon which the model synthesis
occurs. The relevant parameters needed to the granulator are optimized according
to a genetic algorithm in order to generate a suitable alphabet of symbols effective
for the graph embedding, as already discussed in Section 3.4.1. In this phase, each
individual in the population receives the set of candidate substructure S(tr) from
which the information granules are extracted according to their genetic codes. Hence,
S(tr) shall convey the maximum amount of information in order to put the granulator
in condition of synthesizing valuable alphabets.

Nonetheless, the granulation block described in Section 3.3.2 has been designed
without properly considering all the information contained in the subgraph set
S(tr). Indeed, the training set D(tr) from which S(tr) is extracted carries also the
information related to the ground-truth classes about patterns, which is completely
neglected during the process of granulation, missing the opportunity to exploit
information potentially useful for this task. In other words, this a-priori information
about the data can be used by the Granulator for synthesizing specific symbols for
each of the problem-related classes and hopefully improve the overall quality of the
alphabet [145]. To this end, the Extractor block defined in Section 4.1 has been
revisited as well, being the core module in charge of forwarding an appropriate set
of subgraphs S(tr) which is essential for the granulation phase.

The subgraphs extraction has been redesigned in a stratified (class-aware) [14]
way that takes into account the frequency of the classes in the training set and,
consequently, populate different target sets S(tr)

l for l = 1, . . . , L with L being the
number of classes in the dataset. The frequency measure serves for keeping unaltered
the class distribution of subgraphs with respect to that of the starting set D(tr).
This class-aware extraction, described in detail in Algorithm 2, can be summarized
as follows:

1. For each class l with l = 1, . . . , L in the dataset D(tr), evaluate the absolute

4.2 Class-Aware Granulation 37

frequency fl, namely the number of patterns of class l, such that
∑L
l=1 fl =

|D(tr)|;

2. LetW be the user-defined desired cardinality of S(tr), then evaluate the number
of subgraphs to be extracted for each class as Nl = fl

|D(tr)| ·W ;

3. Extract Nl subgraphs by performing the stochastic procedure from Section 4.1
on graphs belonging to l-th class only and collect them in S(tr)

l .

4. Repeat from Step #2 for l = 1, . . . , L

Algorithm 2 Enhanced Extractor
procedure ClassAwareExtr(Graph Set D = {G1, . . . , Gn}, W max size of
subgraphs set Sl, o max order of extracted subgraph)
Sl: initially empty set of class specific subgraphs
L: number of target classes in the problem
for class l = 1 . . . L do

Evaluate class frequency fl
Compute target number of subgraphs per class Nl = fl

|D| ·W
while |Sl| ≤ Nl do

for order q = 1 . . . o do
Random extract a graph G from D
if G belongs to class l then

g = Extract(G, q) . Extraction as defined in Alg. 1
Sl = Sl ∪ g

end if
end for

end while
end for
return L class specific subgraph sets {S1, . . . ,SL}

end procedure

After the extraction phase has completed, the class-aware granulation can take
place. Recall that S(tr)

l is the set of subgraphs extracted from graphs from D(tr)

belonging to the l-th class: the Class-Aware Granulator performs L different BSAS-
driven clustering ensemble procedures by considering the class-specialized set of
subgraphs S(tr)

l . In this way, each instance of a clustering procedure outputs his
own alphabet, say Al, whose cardinality may differ for each class. Since in this
novel method the clustering algorithms are fed with class-specific subgraphs set, the
granulation process should be able in principle to discover more accurate granules of
information characterizing in details the class itself. When all of the L granulation
stages have been completed, the alphabet A collects all symbols in the L alphabets
Al returned so far and the synthesis moves towards the Embedder block and the
symbolic histograms evaluation thanks to φA(·). A detailed description of the
proposed procedure is listed in Algorithm 3.

38 4. Studies and Novelties for Granular Graph Embedding

Algorithm 3 Class Aware Granulator

procedure Granulate(L subgraph sets S(tr)
l , θ vector of thresholds, U max

number of cluster)
A: initially empty set of overall alphabet
Al: initially empty set of class related alphabet
g∗: minSOD subgraph cluster representative
L: number of target classes in the problem
for all class l = 1 . . . L do

partitions = clusteringEnsemble(S(tr)
l ,θ, U)

for all cluster C in partitions do
if F (C) ≥ τF then

Append g∗ in Al
end if

end for
end for
Merge all Al in A
return A

end procedure

4.2.1 Limitations and Solutions

The main drawback of the Class-Aware Granulator is an augmented complexity of
the underlying model in terms of cardinality of the symbols alphabet A.It is worth
recalling that the BSAS ensemble clustering procedure employed in the Granulator
block relies on two parameters, U (maximum number of allowed clusters) and
θ1, . . . , θh (different threshold dissimilarity parameters under which a pattern is
included into a cluster determining P1, . . . ,Ph partitions). Furthermore, in the
optimization phase, the genetic algorithm described in Section 3.4.1 takes care of
selecting a suitable value of U in a defined range U ∈ [1, Umax], where Umax is
user-defined. Since the Granulator block generates an ensemble of partitions for each
θ1, . . . , θh, the number of clusters for a single granulation can be at most O(h ·Umax),
where h trivially depends on depth level of the binary-search for the clustering
ensemble procedure. Consequently, when the Class-Aware Granulator is employed,
the cardinality |A| for the alphabet can be at most O(L · h · Umax). This may lead
to very high-dimensional embedding spaces, especially when the number of classes of
the problem at hand is large, affecting also the computational time required to build
the symbolic histograms. In order to face this problem, two different approaches
have been investigated in order to reduce the model complexity by bounding the
maximum values of Umax according to the number of classes involved.

Class-Aware Granulator with Uniform U Scaling

The first method is a simple uniform scaling of Umax with respect to the L classes
for the classification problem at hand. That is, when the l-th granulation occurs,
U is bounded in range U ∈ [1, Umax/L], for all of the L classes in the dataset. Of
course, this reduces the prospective number of symbols by shrinking the range of

4.3 Class-specific Metric Learning for Graph Embedding 39

admissible values for U and therefore limits the cardinality of A. In plain words,
[1, Umax/L] are the genetic algorithm lower and upper bounds for the U parameter
involved in Algorithm 3.

Class-Aware Granulator with Frequency-based U scaling

If on one hand the previous approach may work well for balanced dataset, the
uniform scaling may not work properly when the classes in dataset are not equally
distributed. Indeed, the number of subgraphs to be extracted for each class is
proportional to the frequency of the class itself. For this reason, a different strategy
is deployed to scale U in a class-aware fashion as well by considering the frequency
fl of the l-th class in the training set:

1. For each class l with l = 1 . . . L in D(tr), evaluate the absolute frequency fl
such that

∑L
l=1 fl = |D(tr)|;

2. For each class l with l = 1 . . . L evaluate the scaled value U lmax = fl

|D(tr)| ·Umax;

3. Perform the Class-Aware Granulator for class l with U ∈
[
1, U lmax

]
Therefore, each time a partition has to be built, a class-specific value U lmax is selected
for the related U range by the Class-Aware Granulator. It is worth noting that for
this specific method, the length of the genetic code differ from what described in
Section 3.4.1. Indeed, when the frequency-based U scaling is employed, we need
to optimize L different U values for each Class-Aware Granulator instance: this
inevitably results in an increased genetic code length by a factor of L−1 with respect
to the former case (cf. Eq. (4.24)). In this case, the granulator parameter vector
reads as follow:

p = [U1 . . . UL τF η] (4.1)

4.3 Class-specific Metric Learning for Graph Embed-
ding

The recognition ability of the graph classification system based on a granular graph
embedding approach (i.e. GRALG) introduced in Chapter 3 extensively relies on a
suitable notion of parametric dissimilarity dw working on the graph domain. Indeed,
the GED heuristic adopted (see Section 3.2) appears in different crucial aspects of
GRALG:

• In the granulation step dw serves as core method for aggregating similar
subgraphs together in order to synthesize meaningful clusters which are essential
for composing the alphabet set A (see Section 3.3.2).

• In the embedding phase depicted in Section 3.3.3, the counting function
occ(·) relies on the dissimilarity measure dw in order to determine whether a
subgraph-symbol match occurs (see Eq. (3.12)).

40 4. Studies and Novelties for Granular Graph Embedding

On the other hand, the ability of dw in correctly capturing the proximity of
semantically closed pattern is strongly influenced by the set of GED parameters w
which are typically problem dependent and hardly ever are know a-priori. Deploying
an effective strategy that automatically tailors these parameters on the specific data
and problem under analysis can positevely impact on the learning abilities of the
classification system.

In literature, this task is usually referred to as metric learning [19, 177]. Many
methods approach the problem from the point of view of mathematical optimization,
attempting to find a single global metric that maximize an objective function (see
e.g., [38, 167, 191, 197]). In this case, a single instance of the dissimilarity measure
parameters is learned and the metric is valid for the whole input space of the model
and for all the decision regions (one for each class). More often, the underlying data
distribution can be extremely complex and heterogeneous, where a single global
metric could not provide enough semantic description. In such situations, learning
different metrics from data can help in improving the recognition abilities of the
whole system [128, 20, 142]. Generally, this approaches can be classified in two
categories:

• local metric learning, where different regions of the input space can be charac-
terized by specific metrics. For example, if decision regions are described and
approximated by a set of clusters, each cluster is characterized by a possibly
specific instance of the dissimilarity measure parameters;

• class-specific metric learning, where each decision region can be characterized
by a specific instance of the dissimilarity measure parameters. The set of
clusters describing a decision region associated to a given class label will share
the same metric.

Although GRALG already envisages an automatic mechanism for learning suit-
able dissimilarity measure parameters, it neglects the potential information carried
by classes individually. The alphabet optimization procedure described in Section
3.4.1 eventually provides the final genetic code of a single best individual evaluated
in the whole evolution in which is encoded the optimal dissimilarity parameter set w
(see Eq. (3.13)), hence it considers only a global solution. The evolutionary strategy
can instead be designed ad-hoc in order to equip GRALG with class-specific metric
learning capabilities [11]. In a more practical setting, this means that rather than
learning a global GED parameters set (see Eq. (3.5)), suitable cost weights W and
dissimilarity measure parameters (Πv and Πe) have to be learned in a class-aware
fashion:

{〈W1,Πv
1,Πe

1〉, . . . , 〈WL,Πv
L,Πe

L〉} (4.2)

with L being the number of problem-related classes. Therefore, it is possible to
define a class-related dissimilarity measure dl : G × G → R+

0 expressed as follow:

dl (G1, G2) = d (G1, G2)
∣∣
w=wl

(4.3)

where wl = [Wl,Πv
l ,Πe

l] is the set of parameters tailored for the target class l.

4.3 Class-specific Metric Learning for Graph Embedding 41

4.3.1 Evolutionary strategy for class-specific metric learning

The problem of both local metric learning and optimal alphabet synthesis is faced
according to a swarm-like optimization: L swarms (one for each class label) learn
concurrently optimal parameters with the goal to individually synthesize a class-aware
alphabet.

Initially, each individual in the l-th swarm receives:

• S(tr)
l namely the set of subgraphs extracted from training patterns belonging

to class l.

• a re-labelled version of the training and validation sets, respectively D(tr) and
D(vs) in a One-vs-All fashion, where the l-th label is considered as positive
and all other labels are considered as negative.

This operations enable each group of individuals, i.e. the swarms, in working
exclusively on the data related to their own l-th class. In other words, the l-th
swarm of individual focuses on the optimization of an alphabet Al composed by
symbols which are extracted from the class-aware set of candidate subgraphs S(tr)

l .
Therefore, each individual in l-th swarm moves on performing the granular graph
embedding procedure:

1. a single individual runs the Granulator on S(tr)
l by exploiting the dissimilarity

measure dl with wl and pl, where pl is the class aware critical parameters
characterizing the clustering procedure:

pl = [Ul τl ηl] (4.4)

Each cluster returned by the l-th Granulator, regardless of its partition, is
evaluated by the following internal quality measure Fl (C):

Fl (C) = ηl · Φl(C) + (1− ηl) ·Θl(C) (4.5)

By spotting Eq. (4.5), it can be noticed that this formulation is the class-aware
analogous of the cluster quality index introduced in Eq. (3.6), where Φl(C)
and Θl(C) are respectively the average dispersion and the coverage of the
cluster:

Φl(C) = 1
|C| − 1

∑
g∈C

dl(g∗, g) (4.6)

Θl(C) = 1− |C|
|S(tr)
l |

(4.7)

The subgraphs set S(tr)
l is processed according to dl and pl tailored for the class

l. The set of partitions Pl ={Pθ1 , . . . ,Pθh
}(l) contains the clusters emerged

by varying the clustering resolution θ1, . . . , θh. Thanks to the class-dependent
threshold τl, low quality clusters according to their corresponding Fl are
discarded whilst the remaining are promoted to be symbols. That is, the
MinSoDs of the clusters preserved after applying the threshold τl are collected
together in class-aware alphabet Al = {s1, . . . , sn}(l), regardless of the partition
Pθ ∈ Pl they belong to.

42 4. Studies and Novelties for Granular Graph Embedding

2. The resulting alphabet Al synthesized by a single individual is then processed
by the Embedder for building the vectorial representation hl of each graph
G in the training and validation set. Accordingly, this block receives dl, that
is the core dissimilarity measure with which Al has been synthesized. In this
way, the emerging symbolic histogram hl of graph G is conveniently built by
exploiting the representational power conveyed in dl according to the semantic
content in Al. For this reasons when G actually belongs to the class l, the
symbols-subgraphs matches is expected to occur frequently since dl should
emphasizes the similarity between entities in class l, encouraging a match as
defined in Eq. (3.12). By inspecting Eq. (3.10), the corresponding symbolic
histogram should consequently count high occurrences of symbols in G′ when
Al is considered and when G (hence G′) belongs to class l. Otherwise, if G
does not belong to class l, the counting procedure should return low values.

3. Eventually, the embedding phase carried on by the individual enable to build
two matrices F(tr)

l and F(vs)
l , respectively an |D(tr)| × |Al| and an |D(vs)| × |Al|

matrix, whose rows are the symbolic histograms hl of each graph in D(tr) and
D(vs)

4. The individually trains a binary classifier on F(tr)
l and validates its performance

on F(vs)
l ;

5. Eventually, each individual evaluates its fitness f1 for the optimization problem.

The fitness function, to be minimized, for a given individual reads as the following
convex linear combination

f1 = 1− J1 (4.8)

where J1 ∈ [0, 1] is defined as the (normalized) informedness [146]:

J1 = Sensitivity + Specificity
2 (4.9)

This formulation for the objective function stems from the following observation: the
informedness is known to be among the most reliable performance indices for binary
classification problems, especially when classes are unbalanced. The latter scenario
is indeed common in One-vs-All learning systems. At the end of the evolution, the
l-th swarm returns the optimal solution[

w̃l p̃l
]

(4.10)

along with the alphabet Ãl synthesized thanks to the best genetic code and the
embedded versions of training and validation sets against the best alphabet, say
F̃(tr)
l and F̃(vs)

l , respectively an |D(tr)| × |Ãl| and |D(vs)| × |Ãl| matrix.
However, let recall that the above procedure holds for a single swarm. After all

swarms converge to their respective solutions, the output of the training procedure
results as:

• a set of class-aware optimal alphabets Ãl|Ll=1

4.3 Class-specific Metric Learning for Graph Embedding 43

• a set of class-aware dissimilarity measure parameters w̃l|Ll=1

• a set of embedded training data F̃(tr)
l |Ll=1,

• a set of embedded validation data F̃(vs)
l |Ll=1

Without loss of generality, the alphabets Ãl|Ll=1 returned from described opti-
mization can be concatenated together in order to return the final, optimal alphabet:

Ã =
[
Ã1, . . . , ÃL

]
(4.11)

where |Ã| =
∑L
l=1 |Ãl|. However, the size of the overall alphabet Ã can be further

reduced by applying a feature selection phase, also driven by an evolutionary strategy.
Let

F̃(tr) =
[
F̃(tr)

1 , . . . , F̃(tr)
L

]
(4.12)

and
F̃(vs) =

[
F̃(vs)

1 , . . . , F̃(vs)
L

]
(4.13)

be the concatenation of the class-aware embedded versions of training and validation
data, coherently with Eq. (4.11). Hence, F̃(tr) and F̃(vs) are respectively |D(tr)|× |Ã|
and |D(vs)| × |Ã| matrices.

This second evolution is in charge of discarding unpromising symbols among the
ones contained in Ã, hence the genetic code reads as a binary mask, say m ∈ {0, 1}|Ã|.
The procedure is equivalent to the feature selection discussion hold in Section 3.4.2.
For sake of clarity, the objective function has been reported in this Section as well:

f2 = σ · J2 + (1− σ) · n
′

ñ
(4.14)

where n′ =
∑ñ
i=1 mi and ñ = |Ã|, respectively the number of feature selected and

the cardinality of Ã. It is worth noting that this second optimization phase exploits
the training and validation data with their respective original labels, with no binary
relabelling involved, and the error rate J2 ∈ [0, 1] refers to the plain multi-class error
rate (i.e., the ratio of incorrectly classified patterns)

At the end of this second optimization stage, the resulting optimal mask m∗
helps in reducing the size of the starting alphabet Ã, hence returning:

A∗ = [A∗1, . . . ,A∗N] (4.15)

where A∗l ⊆ Ãl for all l = 1, . . . , L, along with a projected training set, say F∗(tr),
i.e. an |Dtr| × |A∗| matrix with which a classifier c is trained.

The finalization of the training stage leads to the synthesis of a classification
model characterized by the optimized alphabet A∗, along with the set of locally
learnt metrics dl|w=w̃(l) with l = 1, . . . , L.

44 4. Studies and Novelties for Granular Graph Embedding

4.4 Soft Symbolic Histogram based Embedding Strate-
gies

From Section 3.3.3, let recall the original symbolic histogram. In short, it aims at
representing the graph to be embedded as a vector collecting (in the ith position) the
number of occurrences of the ith symbol from the alphabet A within the graph to
be embedded G, with the latter being properly decomposed in G′ = {g1, . . . , gm} to
facilitate the search-and-matching procedure. It is clear that the original symbolic
histogram reads as an integer-valued vector, where the proper symbol-to-subgraphs
dissimilarity values, i.e. d(si, g)1, in Eq. (3.12) are not taken into account. Inspired by
dissimilarity spaces (see Dissimilarity Space Embedding in Section 2.2.4), where the
dissimilarity value amongst data is the core of the embedding procedure, here below
six different strategies are presented in order to populate the symbolic histogram,
while at the same time taking into account the dissimilarities between symbols in
the alphabet and the constituent parts of the graph to be embedded [13].

Sum

The sum strategy aims at collecting, in the ith position of the symbolic histogram,
the sum of distances between the ith symbol in the alphabet and the constituent
parts of the graph to be embedded. Formally,

h = φA
(
G′
)

=
[
sum

(
s1, G

′) , . . . , sum (sn, G′)] (4.16)

where the sum : A× G → R operator reads as

sum(si, G′) =
∑
g∈G′

d(si, g) (4.17)

Mean

The sum strategy is characterized by a couple of caveats: a) dissimilarity values are
summed up regardless of their magnitude, b) the number of dissimilarities that are
summed up is not taken into account. Especially in light of the second caveat, the
mean strategy accounts for the mean of distances between the ith symbol in the
alphabet and the constituent parts of the graph to be embedded. Formally,

h = φA
(
G′
)

=
[
mean

(
s1, G

′) , . . . ,mean
(
sn, G

′)] (4.18)

where the mean : A× G → R operator reads as

mean(si, G′) = 1
|G′|

∑
g∈G′

d(si, g) (4.19)

It is worth noting that |G′| varies on a graph-based fashion (i.e., each symbolic
histogram has its own scaling factor as it depends on the graph G to be embedded)
and it is not equivalent to a constant scaling of all symbolic histograms.

1For sake of clarity, the notation dw used to indicate the GED has been avoided since in this
section the edit operation parameters w are not relevant for the discussion

4.4 Soft Symbolic Histogram based Embedding Strategies 45

Median

It is well known that outliers might have a non-negligible impact on the mean of a
set of scalar values. In our case, this reflects on very high or very low dissimilarities
that might skew the mean value. In order to mitigate this effect, a more robust
statistic based on the median value is considered. Formally,

h = φA
(
G′
)

=
[
median

(
s1, G

′) , . . . ,median
(
sn, G

′)] (4.20)

where the median : A× G → R operator reads as

median(si, g) =

d |G′|

2
if |G′| is even

d |G′|−1
2

+d |G′|+1
2

2 if |G′| is odd
(4.21)

and d ∈ R1×|G′| is a vector that collects the pairwise dissimilarities between si and
all items in g ∈ G′, sorted in ascending order.

Thresholded-Sum

The three strategies discussed so far in Sections 4.4–4.4 aim at aggregating, according
to different operators, the pairwise symbol-to-subgraphs dissimilarities for populating
a given entry of the symbolic histogram. Yet, as introduced in Section 4.4, all
dissimilarities (regardless of their magnitude) are entitled to contribute to a given
entry of the symbolic histogram vector. Taking inspiration from the original symbolic
histogram (Section 3.3.3), the dissimilarities contribute to a given operator if and
only if their magnitude is below a given threshold.

As the sum operator is concerned, in Eq. (4.16), the sum(·, ·) operator, formerly
Eq. (4.17), is replaced by the following thresholded sum (or, for short, t-sum :
A× G → R) operator

t-sum(si, G′) =
∑
g∈G′

d(si,g)≤ζi

d(si, g) (4.22)

where, recall, ζi is a symbol-aware inclusion threshold.

Thresholded-Mean

The thresholded mean follows the same rationale behind t-sum(·, ·): only dissim-
ilarities below a given threshold are entitled to contribute to the mean value for
populating the symbolic histogram entries. That is, the mean(·, ·) operator defined
in Eq. (4.19) to be plugged into the symbolic histogram (see Eq. (4.18)) is replaced
by the following thresholded mean (or, for short, t-mean : A× G → R) operator

t-mean(si, G′) =

∑
g∈G′

d(si,g)≤ζi

d(si, g)

|{g : d(si, g) ≤ ζi,∀g ∈ G′}|
(4.23)

46 4. Studies and Novelties for Granular Graph Embedding

Thresholded-Median

Finally, the thresholded median (or, for short, t-median : A× G → R) reads as the
median(·, ·) operator in Eq. (4.21). The major difference is that the (sorted) vector
d will only contain dissimilarities below the symbol-related thresholds ζi.

4.5 Multi Objective Optimization for Granular Graph
Embedding

As discussed in Section 3.3.4, the classification stage is performed in a suitable
vectorial space F ⊆ Rn spanned by the symbolic histogram according to the number
of symbols n synthesized in the alphabet setA enabling the chance to employ common
machine learning and pattern recognition classifiers which were not available for
structured domain such the graph domain G.

While the classifying method is no doubt arbitrary, the specific choice can
influence different aspects of the whole algorithm:

• Alphabet sparsity

• Structural complexity

Regarding the alphabet sparsity, the embedding space and thus the alphabet set A
that had generated it are indirectly evaluated by means of the performance measure
J obtained by the classifier trained on F(tr) and tested on the embedded validation
set F(vs). During the evolution for the alphabet optimization (see Section 3.4.1),
different kind of classifiers may require larger set of symbols for attaining good
performances in terms of J , eventually impacting on the cardinality of the final
alphabet Ã. On the other hand, one of the most intriguing aspect of the GrC
embedding method relies on the chance of analyzing the information granules by
field expert enabling a knowledge discovery phase [43, 17, 93]. For this reason,
typically the optimization aims at selecting the smallest subset of symbols that
simultaneously maximize the pattern recognition system performances [111, 113, 9].
For what concerning the structural complexity, it plays a vital role in terms of
classification performance: most challenging problems usually require more complex
model able to approximate possibly non-linear decision boundaries in order to attain
higher classification performance, e.g. more hidden layers and neurons in Neural
Network, large number of support vector in SVM, high number of neighbors to
consider in k-NN classifier. Nonetheless, complex models likely have generalization
drawbacks that lead to overfit the data hand [24, 172]. According to the selected
classifier hyperparameters, it is clear that a correct balance between the classification
performance and the model complexity must be carefully addressed.

In [9], GRALG has been equipped with several supervised classifiers in the
embedding space namely, k-NN [47], SVMs [165] and Neuro-Fuzzy Min-Max Clas-
sifiers [158]. Comparison amongst classifiers regards their performance on the test
set, their structural complexity and the alphabet sparsity as well. However, the
search for a suitable set of information granules in GRALG that leads to the ‘best’
embedding space (i.e., in which classification is more promising) has been addressed
via single-objective evolutionary optimization (i.e., maximization of the accuracy of

4.5 Multi Objective Optimization for Granular Graph Embedding 47

the classifier in the embedding space). Therefore, the structural complexity and the
alphabet sparsity emerge as consequences of the maximization of the performance
on the validation data and does not play any role in the optimization procedure.
After these considerations, some natural questions arise:

• Can the three relevant quantities, i.e. the classification performance, the
sparsity of the alphabet and the structural complexity be optimized simultane-
ously?

• How do these three quantities compete against each other?

• Furthermore, is there any correlation between the low-dimensional space and
the smoothness of the decision boundary?

A possible approach to rigorously answer these questions consists in designing
suitable fitness functions that consider individually the discussed quantities on a
Multi-Objective Optimization (MOO) problem [12]. Multi-Objective Optimization
is an area of mathematical optimization that regards problems with more than
one objective function, to be optimized simultaneously [120, 5, 108, 182]. Under
a decision making viewpoint, MOO is particularly suited where optimal decisions
must be taken by considering trade-offs amongst conflicting objective functions. The
caveat with MOO is that (for non-trivial problems, at least) there is no single solution
that simultaneously optimizes each objective function, due to their conflicting nature.
As instead, the set of (usually finite) non-dominated solutions, namely solutions for
which it is impossible to improve one of the objective functions without degrading
some of the other objective function values, populate the so-called Pareto Front (or
Frontier) [129].

For the sake of description, the critical parameters to be optimized in the proposed
MOO optimization are given in a schematic fashion according to the procedures
and/or functional blocks in which they are employed:

nBMF: the 6 weights for the edit operations W (deletions, insertions and substi-
tutions of nodes and edges) and the additional parameters Πv, Πe for the
node\edge distances: w = [W,Πv,Πe] (see Section 3.2).

Granulation: U the maximum number of admissible cluster for the BSAS proce-
dure; τF the quality threshold for promoting a MinSoD to a symbol; η trade-off
parameter that weights compactness and cardinality collected in p (see Section
3.3.2);

Classifier: the set of hyperparameters for a ν-SVM classifier collected in c according
to kernel employed:

• Linear: only the regularization term ν ∈ (0, 1];
• Radial Basis Function (RBF): along with ν ∈ (0, 1], the kernel shape
γ ∈ (0, 100] is tuned as well.

Hence, the variable space for the MOO problem reads as follows:

s = [w p c] (4.24)

48 4. Studies and Novelties for Granular Graph Embedding

The set of parameters collected in s drives the pipeline of granulation, embedding
and classification described in Section 3.3. Specifically, the MOO optimization
technique leverage on the Non Dominated Sorting Genetic Algorithm II (NSGA)
[198] algorithm which individuals in the corresponding population:

1. Run the granulation procedure on the set of subgraphs S(tr) extracted by
following the stochastic variant described in Section 4.1 using the BFS extrac-
tor. The dissimilarity measure parameters for the clustering algorithm are
determined by w and p. The granulator parameters (i.e. U , τ and ρ) are
employed as well for building the alphabet A;

2. Both D(tr) and D(vs) can now be embedded in F(tr) and F(vs) according
to symbolic histogram paradigm exploiting the current alphabet A. The
dissimilarity measure parameters w and p are thus employed for the evaluation
of Eq. (3.12);

3. The set of classifier hyperparameters c are exploited for training c on F(tr).
Finally, the performance J

(
F(vs)

)
is returned.

The three objective functions are formalized as follows:

f1 = J
(
F(vs)

)
(4.25)

f2 = SV

|D(tr)|
(4.26)

f3 = |A|
|S(tr)|

(4.27)

The first objective function f1 ∈ [0, 1] in Eq. (4.25) is defined as the error rate of the
classifier c in predicting F(vs). The second objective function in Eq. (4.26) is defined
as the ratio between the number of support vectors (SV) used in the classification
problem and the cardinality of the training set and accounts for the structural
complexity of the classification model. In this way f2 is bounded in [0, 1] as well,
being |D(tr)| the maximum number of admissible support vectors (i.e., all training
patterns are elected as support vectors). Finally, the third objective function f3
in Eq. (4.27) reads as the ratio between the alphabet cardinality and the number
of subgraphs employed during the granulation phase. In this way, f3 is bounded
in [0, 1] since |S(tr)| is the cardinality of the largest alphabet derivable from S(tr)

(i.e., all candidate information granules are promoted as information granules). The
optimization problem will therefore aim at performing a joint minimization of f1, f2
and f3.

4.5.1 Selection of Solutions from the Pareto Front

At the end of the optimization phase, NSGA-II returns a set of N non-dominated
solutions X = {s1, . . . , sN}. More in details, in a multi-objective minimization
problem a solution si is said to be dominated by sj if the following hold [60]:

fm(sj) ≤ fm(si) ∀m ∈ {1, . . . ,M}
∃m ∈ {1, . . . ,M} : fm(sj) < fm(si)

(4.28)

4.5 Multi Objective Optimization for Granular Graph Embedding 49

where, recall, M is the number of objective functions. Practically speaking, since
X contains the observed non-dominated solutions, it is actually approximating the
Pareto front of the multi-objective problem, which can not be known in closed-form
in the context of machine learning. The Pareto front can then be viewed as the set
of compromise solutions that are trying to optimize simultaneously all the objective
functions. It goes without saying that, in light of Eq. (4.28), a solution si ∈ X can
not be preferred to any other sj ∈ X without further indications [83]. On the other
hand, in real applications it is often mandatory to select a single suitable solution or a
group of efficient alternatives. Multi-criteria decision making helps in proposing a set
of methods in order to possibly overcome this problem. A very popular procedure in
multi-criteria decision making is Technique for Order Preference by Similarity to the
Ideal Solution (TOPSIS) [79] which has shown good reliability, low computational
cost and an intuitive logical reasoning [160, 182]. Starting from the decision matrix
D ∈ RN×M , i.e. the matrix whose ith row is the vector [f1 (si) , . . . , fM (si)], TOPSIS
ranks elements in X according to their Euclidean distance to the positive-ideal and
negative-ideal solutions. That is, the optimum will be chosen as the solution that is
simultaneously showing the smallest distance from the positive-ideal and the largest
distance from the negative-ideal. Additionally, TOPSIS allows to weight individually
the importance of each objective function in the ranking process by scaling each
rows of D according to a weight vector u ∈ RM .

4.5.2 Ensemble of Classifiers for Test Phase

In light of the discussion in Section 4.5.1, the top K solutions
X∗ = {s∗1, . . . , s∗K} ranked by TOPSIS according to the weight vector u are re-
tained from the optimization stage. Alongside, the corresponding alphabets A∗ =
(A∗1, . . . ,A∗K) and the training embedded matrices T ∗ =

(
F∗(tr)1 , . . . ,F∗(tr)K

)
obtained

by embedding D(tr) thanks to the alphabets in A∗ are retained as well. In order to
exploit simultaneously the information carried by the K solutions, an ensemble of
classifiers C addresses the final performance on the test set D(ts). The design of C
goes as follows:

1. For each alphabet A∗i ∈ A∗, the vectorial representation F(ts)
i of D(ts) is built

according to the symbolic histogram paradigm;

2. From each solution s∗i ∈ X∗, the hyperparameters c∗i of the optimized classifier
is retrieved;

3. The classifier ci ∈ C is trained with F∗(tr)i ∈ T ∗ with hyperparameters c∗i ;

4. All the trained classifiers ci with i = 1, . . . ,K are collected in the stack C.

It is worth remarking that each classifier ci operates in a specific embedding space
(to which F∗(tr)i and F∗(ts)i belong) generated by the alphabet A∗i emerged from the
solution s∗i .

This approach allows to establish a common Winner-Takes-All policy when
predicting a single pattern from the test set. Let Gk ∈ D(ts) be the kth graph in the
test set; the steps that lead to the prediction of its class label by the ensemble C go
as follow:

50 4. Studies and Novelties for Granular Graph Embedding

1. let
(
h(k)

1 , . . . ,h(k)
K

)
be the vectorial representations of Gk in K different em-

bedding spaces F1, . . . ,FK , where in general Fi 6= Fj for all i 6= j. This step
corresponds in gathering the kth rows of

(
F∗(ts)1 , . . . ,F∗(ts)K

)
;

2. each classifier ci ∈ C individually predicts the label y(k)
i for h(k)

i (for i =
1, . . . ,K);

3. all predicted labels are collected in the output stack
(
yk1 , . . . , y

k
K

)
;

4. the most frequent label in
(
yk1 , . . . , y

k
K

)
is finally chosen as the predicted class

for Gk.

However, especially in multi-class problems, ties between different labels can occur
in the voting process. For this reason, it is necessary to define a suitable decision
rule acting as a tie-breaker which eventually leads to a single label output. This
problem have been approached by defining a confidence measure γi (yl) of classifier
ci in predicting a specific label yl 2, where l = 1, . . . , L, being L the number of
classes. The confidence γi (yl) for class yl is chosen as the (multi-class) precision
score obtained in classifying the training set F(tr)

i .
Let R be the subset of L classes that tie. The resolution of a dispute works as

follows:

1. Group the classifiers involved in the dispute according to the labels they
predict;

2. Ask each classifier its confidence about the prediction;

3. For each label in R (hence, for each group of classifiers), evaluate the average
within-group confidence;

4. Emit the final predicted label as the one with highest within-group confidence.

2With an abuse of notation, y1, . . . , yL are all the class labels for the problem at hand

51

Chapter 5

Evolutive Agent Based
Framework for Granular Graph
Embedding

5.1 Introduction

Multi-Agent Systems (MAS) [133] emerged in the last years as powerful approaches
able to solve complex pattern recognition problems. This is due to the innate nature
of multi-agent systems, where independent atomic computational units (i.e., the
agents) cooperate in order to solve a complex problem by a divide-and-conquer
approach.

The first immediate attractive characteristic of multi-agent systems is the dis-
tributed organization of the entities which locally interact together without a cen-
tralized control. This aspect offers the opportunity to employ such systems in highly
parallel hardware architectures looking for relevant information also in large datasets.
Indeed, MAS can be an efficient approach for facing the problems raised by the
Big Data advent [18, 179]. In such problems, the whole dataset can not be entirely
stored in a single memory device due to its large dimension, rather it has to be
decomposed towards several processing units which resemble the aforementioned
MAS characteristic.

When multi-agent systems are combined with an adaptive mechanism, the self-
organization aspects that arise can be very effective for solving real problems that
show high level of complexity. In MAS, the self-organization consists in several simple
elements that have limited information for adapting themselves in a specific possibly
dynamical environment where the optimization of agent abilities and qualities can
be accomplished only by local interactions with other elements [72]. In this context,
the interaction activity is an essential part of the learning process and is not only
considered as a mere exchange of data. Instead, it manifests itself in the form
of spirit of cooperation and collaboration during a negotiation phase between the
agents solutions which are found according to the knowledge acquired by each agent
individually. The interesting point is that MAS agents are organized in order to
accomplish a division of works and tasks under two usual different point of views,
i.e. functional and/or by data characteristics division [184]: the former is intended

52 5. Evolutive Agent Based Framework for Granular Graph Embedding

Figure 5.1. Schematic view of a multi-agent system organization [125].

to enable learning roles differentiation between groups of agents, the latter for
specializing agents in extracting knowledge from different data regions. In the
collaboration stage, the agent’s products collected according to the two aspects just
described in the moment of investigation are then mutually exploited improving
the ability to unravel the complexity of the problem. The described features and
capabilities of MAS drive the development of a new granular computing system that
address the challenges of complex systems modeling tasks.

The basic rationale behind the development of a new approach for modeling
complex problems starts from the main hypothesis that complexity demands com-
plexity. The most straightforward example can be found in the biological brain that
can be seen as a complex system that has evolved in harmony with the surrounded
complexity of the world around. Due to its nature, there is no a clear definition of
complex system that is jointly accepted in all the disciplines [76, 122]. Nonetheless,
most of the different views agree that a complex system is characterized by some
basic properties [90]:

• It is the ensemble of many atomic interacting elements.

• Atomic elements perform a functional role (a physical causal relationship, or
even a computation task) whose mutual interactions are nonlinear in nature.

• The network of these relationships contains loops and feedback.

• Show self-organization properties of the atomic entities in possible hierarchical
groups.

The atomic entities are subsystem components that perform simple tasks with
respect to the global system behaviour. For example, entities in the biological brain
could be represented by the neurons, each one performing a non-linear simple task.
On the other hand, the mutual interactions between such entities give rise to complex
cognitive abilities, that is the emergent behaviour of the complex system. Loops and
feedbacks define how each part of the system will change in time according to other
components. That is, the behaviour of a group or single entity at a specific time

5.2 High Level Framework Description 53

Figure 5.2. Multi-view schematic description of a complex system architecture. The
hierarchical organization is highlighted in the vertical axis. Image taken from https:
//www.idiagram.com/examples/complexity.html

is influenced by its neighbor behaviour and by the mutual interactions happened
previously. Usually, behaviors defining each atomic element generate collectively
some form of self-organization, giving rise to a hierarchical structure, built as a
sequence of functional (and semantic) layers. Each layer is composed by entities
consisting of an aggregation of previous level entities. The overall system is thus
organized as a nested system of systems, each one being a time-variant, nonlinear,
dynamical one. Two schematic representation of the discussed characteristics of
complex system are depicted in Figures 5.1 and 5.2. In light of this observations,
GrC propose a way of thinking that fit very well with the hierarchical and nested
nature of complex systems. Indeed, from a philosophical perspective, GrC underlines
the urgency to apply a structural approach in the representation process of a problem
in order to reflect the multiple level organization of the system [193].

Emerging behaviors arising from complex systems are predictable, to some extent,
if the modeled system is able to automatically synthesize a hierarchy of information
granules, organized in successive semantic levels, following an information granulation
approach, and possess the ability to identify useful patterns in higher semantic levels
that have a predictive value. Building predictive models of such complex systems is a
challenging task, yet of utmost importance for advancements in natural sciences, as
well for achieving technological goals, e.g., cybersecurity, biological systems, natural
language processing, clinical diagnostic systems, precision medicine, smart grids,
intelligent transportation system [113, 161, 86, 82].

5.2 High Level Framework Description

In this section, a novel framework conceived for modeling complex systems that
follows the principle of Granular Computing and Multi Agent Systems named
Evolutionary Agent Based Classifier (E-ABC) is introduced. As discussed in Section

https://www.idiagram.com/examples/complexity.html
https://www.idiagram.com/examples/complexity.html

54 5. Evolutive Agent Based Framework for Granular Graph Embedding

5.1, the granular information processing approach aims at unraveling the complexity
of the system by extracting suitable granules of information which in our framework
will be used for inferring properties about the problem at hand. That is, the
whole framework has the final purpose to build an efficient classification system
which leverage on the granules of information synthesized during the training phase
according to a multi-level analysis.

5.2.1 Data Granulation

Initially, the system comprises raw data acquired by the observation of the process
under investigation. The nature of the data clearly depends on the specific application
field and thus can be represented with different data structures. This is a critical
facet for the development of our system since it influences how the patterns can be
compared together during the granulation phase. Indeed, from our point of view,
the granulation procedure is performed by means of a clustering algorithm which
commonly relies on a dissimilarity measure that must be able to correctly grab the
proximity of semantically close pattern for grouping data in meaningful clusters.
Typically, data distribution is complex and not homogeneous in the input space,
hence using a fixed dissimilarity might be inefficient to enable the emergence of
relevant information. On the other hand, by letting the distance be parameterized, it
is possible to select suitable values tuned accordingly to the data itself, an approach
commonly known as metric learning. In a global metric learning context, a single
dissimilarity measure valid for all the decision regions would be learned, that is only
a single set of w will be found, possibly neglecting the high heterogeneity of the
data distribution. In this case, a local metric learning approach can be preferred:
different regions of the input space will be characterized by specific metrics. In case
decision regions are described and approximated by a set of clusters, in local metric
learning framework it is possible to learn different dissimilarity measures, one for
each cluster, each of which minimize the pairwise dissimilarity between elements
belonging to the same cluster. The most straightforward example of local metric
learning when the input space X = Rn lies on subspace clustering [2, 74], where
different clusters might lie in different subspaces so the target of the learning system
is to jointly find clusters and the subspace Rm with m < n, in which they lie.

From this perspective, the granulation procedures aims at finding relevant infor-
mation each of which is matched with an instance of the dissimilarity measure dw
employed for the clustering algorithm at hand. According to the latter, the data is
aggregated in a multi-level fashion according to the GrC perspective. The modalities
with which different abstraction levels and granularity are explored depends on the
specific design choice about the clustering methods to exploit. For example, hier-
archical clustering algorithms are the most straightforward approaches in granular
computing by clustering due to their ability in highlighting the dependencies between
granules. On the other hand, these approaches often show possible computational
drawbacks, whilst another class of clustering methods, i.e. free clustering algorithms,
provides low computational complexity solutions and could explore different granu-
larity levels by varying the resolution for including patterns in the same clusters. As
opposed to hierarchical methods, free clustering algorithms does not provide a clear
relation between clusters in the arisen partitions.s Let s be a symbol, that is the

5.2 High Level Framework Description 55

representative element of a specific cluster emerged for an instance of the granulation
phase. This entity is thought as the result of the first computational layer that has
the scope to raise the level of abstraction from the lowest (the raw data) to the
very next one, that is, data aggregated by means of distance and compressed in the
cluster representative element.

In the next layer, the granularity level is increased by generating an aggregation
of symbols s1, . . . , sn into the alphabet set A. Hence, the classification model built
upon A provides a performance measure J evaluated in a supervised way in order to
have a direct external critic about the synthesized group of granules, i.e. a supervised
feedback of the alphabet effectiveness.

According to this discussion, a symbol s carries three types of information:

• The MinSod representative of the emerged cluster

• The dissimilarity measure dw parameterized in w with which it has been found

• The quality attribute Qs build upon a reward-based criteria assigned according
to the performance measures J observed for all alphabets A to which the
symbol s belongs.

5.2.2 Agents and Swarms Organization

Having introduced the two level of abstraction from the granulation point of view,
i.e. symbols and alphabets, the discussion can be moved towards the organization of
main actors responsible for generating them.

The atomic entity is the Granulator Agent which is enlisted to work on the raw
data for making symbols. These agents are organized in different swarms U , i.e.
groups of agents, each of which is in charge to analyze a specific portion of the dataset.
Hence, in the spirit of MAS approach, the work division in this layer is oriented to
refine the agents ability to extract information and knowledge from a specific data
subset, which can be determined for example by the pattern labels of the training
dataset. Notably, each agent is directly matched with a specific dissimilarity measure
it employed in the granulation phase. That is, each agent carries the information
about a specific dissimilarity measure by exploring the space parameters w in order
to find the most reliable ones for synthesizing suitable symbols. Needless to say, in
turns the symbols inherit dw information by its own agent parent. By this means,
each swarm synthesizes a set of promising symbols H at which we will referred to as
swarm candidate symbols. This terminology is driven by the nature of these symbols,
that is, they are relevant information emerged in the first computational layer which
potentially can be part of a single or more alphabets. Symbols in H undergo a
consensus phase, which can be seen as a form of collaboration and negotiation
between agents in U . Indeed, the goal of this phase is devoted to compare the agents
results in order to emphasize those symbols who looks similar in the same parameter
space w. The rationale behind this procedure is that if two or more agents agree
about the parametric dissimilarity measure dw, than it is possible to advance the
hypothesis that w is an interesting set of values for our problem. Accordingly, similar
symbols are interpreted as real informative granules hence they are rewarded by
increasing their qualities Qs. In such way, it is possible to emphasize the importance

56 5. Evolutive Agent Based Framework for Granular Graph Embedding

of both symbol and dissimilarity measure according to the parameter space w in
which they have been found.

At the next hierarchical level, a new swarm of agents Z called Alphabet Selector
Agents is in charge to select symbols for the alphabet formation phase. By observing
the performance measure J obtained by an alphabet A, a single agent in Z tries to
aggregate symbols that positively impact on J in novel sets, so that more efficient
alphabets could emerge.

The granulator agents in U are then judged according to the information perceived
by the swarm Z during the classification phase in the form of supervised performance
J and an internal cluster validity measure F (·). Hence, the granulator agent quality
Qa reflects both its own perception about the symbol validity via F (·) and the symbols
relevance it synthesized intended as component of valuable alphabets according to J .
From the MAS philosophy perspective, U and Z respect the principle of work division
by role separation: the former, working on a first abstraction level, synthesizes the
granules which in turns are managed by the latter for alphabet formation. Hence,
such alphabets serves for achieving the final scope of the system, i.e. the design of
performing classification models whose refinement is realised through an exchange
of information according to the feedback signal J towards the symbols and in turns
towards the agents. The whole system optimization is conceived as an evolutionary
strategy which drives the first swarm of agents U towards promising parameters w
and refine their granulation abilities, whilst the evolution of the second swarm Z is
designed in order to maximize the alphabets performances J when they are used as
starting point for a classification model.

5.3 Evolutionary Agent Based Classifier in Vector Space

Initially, E-ABC has been conceived as an unsupervised algorithm able to perform
subspace clustering [112], i.e. a form of local metric learning for problem where
input space coincides with Rn. Each agent is entailed to run a clustering algorithm
on a subset of data sampled from the training set S(tr). With the goal of exploring
suitable subspaces, the dissimilarity measure employed in the clustering algorithm is
evaluated as a weighted Euclidean distance:

dw(a,b) =

√√√√ n∑
i=1

wi (ai − bi)2 (5.1)

In this way, the parameter vector w ∈ {0, 1}n act as a binary mask used for
projecting a,b ∈ Rn into a lower dimensional vector space where the comparison
between the two patterns a,b by means of dw takes place. The agents fitness is
designed according to an internal quality measure which is a linear combination
between the average clusters compactness and cardinality. Hence, the agents param-
eters, i.e. clustering parameters and w are optimized by means of an evolutionary
algorithm in order to maximize the agent fitness.

A first attempt to extend this framework towards supervised learning tasks can
be found in [68]. In this work, the algorithm relies on two separated phases whose
contributions are differently weighted: initially, the procedure is devoted to synthesize

5.3 Evolutionary Agent Based Classifier in Vector Space 57

promising clusters according to an internal quality measure, i.e. compactness
and cardinality, equivalently to as the previous unsupervised version of E-ABC;
later on, well-formed discovered clusters are used as starting point for building
a classification model, i.e. decision cluster classifier [89, 202]. According to this
discussion, each cluster is evaluated simultaneously according to its performance
as part of a classification model and to its internal quality measure. The evolution
orchestration is driven by a genetic algorithm in charge to select suitable clustering
parameters and subspaces for improved agents. Although the procedure shown
promising results from recognition point of view and metric learning capabilities,
the authors noticed a bias in the selection of informative subspaces. Indeed plain
genetic algorithms are usually unable to discover multiple different solutions in the
landscape, rather they return a single (sub-) optimum. In [67], a multi-modal genetic
optimization [186, 91, 71] has been tested in order to encourage the population
of individuals in exploring heterogeneous subspaces according to fitness sharing
technique [163, 132, 49]. Following this approach, agents act as if they were sharing
limited resources, hence close agents (in terms of search subspace) are penalized.
The more agents share the same subspace, the more their fitness values are reduced.
In this way, agents are compelled to explore new subspaces that no other are
investigating. Additionally, in the same work, the authors assessed the algorithm
scalability using parallel strategies in multi-core architectures.

5.3.1 Proof of Concept

Starting from the architectures and properties of the above described E-ABC frame-
work, a new scheme has been designed by introducing a feedback mechanism devoted
to back propagate the cluster effectiveness information as component of a classifica-
tion model to its quality and a consensus strategy enabling the collaboration between
agents. Furthermore, the system relies on different swarms which individually works
on a specific region of dataset establishing a task division from the data point of
view. In light of these observations, this latest implementation reflects most of the
properties described in Section 5.2 and can be considered as the first proof of concept
to assess the proposed framework in problems whose input domain X = Rn, that is
Euclidean spaces. As in the other implementations, the core dissimilarity is chosen
as the parametric Euclidean distance as defined in Eq. (5.1).

Bootstrap Phase

In the bootstrap phase, the swarms are entailed to synthesize relevant information
from the data at hand that later serves for building a classification model. According
to the number of classes L in the problem, U1, . . . ,UL swarms receive each a class
stratified training set D(tr)

1 , . . . ,D(tr)
L . As discussed in Section 5.2, these swarms are

composed by granulation agents which are in charge to raise the level of abstraction
from raw data to candidate symbols collected in class specific sets H. Hence, with
the scope of building a specific bucket of class l, i.e. Hl, each agent a ∈ Ul performs
the following operations:

1. Extracts a sample S(tr) from D(tr)
l

58 5. Evolutive Agent Based Framework for Granular Graph Embedding

2. Setup the dissimilarity measure according to the binary mask w

3. Runs a clustering algorithm and searches the best partitions

4. Evaluates the reliability (to be maximized) of each cluster F (C) extracted by
the agent:

F (C) = η · Φ(C) + (1− η) ·Θ(C) (5.2)

In Eq. (5.2), Φ and Θ are respectively the cluster compactness and cardinality
whose importance is weighted by a trade-off parameter η:

Φ(C) = 1− 1
|C|

∑
x∈C

dw(x, µ) (5.3)

Θ(C) = |C|
|S(tr)|

(5.4)

where µ is the centroid of cluster C.

5. Promotes the clusters with sufficient reliability according to a threshold τ and
inserts them in Hl.

In point 3, the clustering algorithm employed is the Reinforcement Learning
variant of BSAS (RL-BSAS) [157], which aims at removing uninformative spurious
clusters from the final partition according to a rewarding mechanism. RL-BSAS
relies on two fundamental parameters: δ, the reward-forgetting ratio value for
strengthening or removing clusters and θ, the maximal cluster representative-to-
pattern distance for including the pattern into the cluster. Even though δ is selected
by means of the deployed evolutionary strategy, θ is optimized autonomously by
the agent with a specific heuristic. When all swarms have finished their tasks,
each bucket Hl undergoes a consensus strategy that highlights clusters identified
simultaneously by different agents in the same swarm by enhancing their quality Qc.
The procedure goes as follow:

1. Group the clusters according to their binary mask w

2. Evaluate the pairwise distances dw (µi, µj), where µi, µj are respectively the
centroids of cluster Ci, Cj in the same group

3. According to a threshold τfus, merge the two clusters in a new cluster Ck and
evaluate the new centroid µk. The new cluster quality Qc(Ck) read as follows:

Qc (Ck) = Qc (Ci) +Qc (Cj) (5.5)

The relevance of this procedure is two fold: by merging the clusters into a novel
data agglomeration, we are limiting the memory footprint carried by Hl that in large
datasets and complex problems can be a critical facet; more importantly, the system
exploits a collaborative approach for evaluate the information extracted by the
agents. Indeed, when two or more agents agree they have found essentially similar
information, the system gives value to these results by combining the agents product
into a novel and enhanced granule represented by Ck. Later on, the improved quality
with respect to the native clusters will positively impact the parents qualities giving
them more chance to survive at the next evolution.

5.3 Evolutionary Agent Based Classifier in Vector Space 59

Classification Model Synthesis

After the class-aware buckets of symbols H1, . . . ,HL are ready, the synthesized
information is exploited for building several classification systems by means of
decision clusters. This type of classifier relies on a set of clusters which are labelled
with a specific class of the problem at hand according to the set Hl from which they
are extracted. Hence, the construction of a classification modelM is evaluated as
follows:

1. Determine the maximum number of clusters zmax ∈ N that can be extracted
from each set of candidate symbols Hl as:

zmax = min{|H1|, . . . , |HL|} (5.6)

2. Determine the number of clusters zl ∈ N to extract from Hl by drawing uniform
at random zl ∈ [1, zmax]

3. For l = 1, . . . , L, draw uniform at random without replacement zl clusters from
the set of candidate symbols Hl and insert them inM.

The classification model M endows an inference mechanism which allows to
assign one label amongst the L that characterized the problem to an unseen pattern
x given in input toM.

Quality Assignment

The classification model is evaluated according to a performance measure J :
M×D → R which assesses the effectiveness ofM in a supervised way. The model
M is evaluated on a validation set Dvs composed by previously unseen pattern
where J is defined as the accuracy ofM in classifying Dvs. The feedback received
byM in the form of J can be used to define the quality Qc of each cluster C ∈M.
The cluster quality Qc is updated as follows:

Qc (C)(new) = Qc (C)(old) + α (5.7)

The right-most term denoted with α in Eq. (5.7) is the reward value that is
determined according to J ∈ [0, 1]:

α =

−1 if J ≤ 0.5
1 if 0.5 < J ≤ 0.9
10 if J > 0.9

(5.8)

Given M classification models M1, . . . ,MM , the cluster qualities composing
each model are thus determined by applying Eqs. (5.7) and (5.8). It is worth to
notice that a single cluster C can appear in different models, hence its quality Qc
will change in line with different performances J observed. Notably, those clusters
whose quality is negative will be removed from their respective H set.

From our point of view, the agent quality Qa is intended as a measure determining
the agent ability in extracting relevant information with prediction capabilities. Since
the classification model core elements are identified with the clusters discovered by

60 5. Evolutive Agent Based Framework for Granular Graph Embedding

the agents, the evaluation of Qa reflects the overall cluster qualities it synthesized.
The quality of agent a is updated with the following rule:

Qa(a)(new) = Qa(a)(old) + β (5.9)

where β represents the rewarding factor considering the Na clusters discovered by a:

β = 1
Na

Na∑
i=1

Qc(Ci) (5.10)

By investigating Eqs. (5.9) and (5.10), it is clear that the agent quality is updated
according to the mean quality value obtained by the Na clusters whose a is the
owner.

Evolution

The initial evolution generations gbst are solely spent in the bootstrap phase which is
addressed in discovering the most informative clusters in unsupervised way. That is,
the evolution is totally driven by the cluster reliability F (C) defined in Eq. (5.2)
and the agent fitness in the bootstrap step Fbst(a) is defined as the best cluster
reliability:

Fbst(a) = max{F (C1), . . . , F (CNa)} (5.11)

The motivation behind this approach is that in the early stages the information
synthesized might not be informative enough to be safely exploited in a classification
model. This is because at early stages the rewards mechanism is still not effective
in producing meaningful clusters, and only unsupervised quality measures, such as
compactness and separability of clusters, can be taken into account. Consequently,
these clusters could have poor performance when used in a classification system
based on decision clusters. Hence, the agents are firstly trained in order to improve
their abilities in discovering well-formed clusters and only after that the system
moves on the model synthesis phase. In this step, the agent fitness Fpred is then
evaluate as:

Fpred(a) = Q̂a(a) (5.12)

where Q̂a(a) is the agent quality Qa(a) properly scaled in [0, 1] according to the agent
qualities in the swarm. Each agent genetic code is composed by the main clustering
parameter δ and the vector w identifying the binary mask for the dissimilarity
measure dw. The genetic algorithm aims at maximizing the two mentioned fitness
functions depending on the stage in which the system is in by leveraging on standard
genetic operators between genetic codes, i.e. mutation, crossover, elitism and
selection.

In each generation, the system selects the best-so-far M∗1, . . . ,M∗K classifica-
tion models with K < M by exploiting a greedy approach. At the generation
g, M1, . . . ,MM are compared with M∗1, . . . ,M∗K by ranking the K + M models
according to the performances attained on the validation set. Hence, the top-K
models are retained for the next g+ 1 generation where possibly substitution caused
by the observation of better performances in the newest M models can take place.

5.4 Designing an Agent Based Classifier in Non-Geometric Space 61

Test Phase

The swarm training phase (bootstrap and model synthesis) ends after a number
of predefined generations gstop where gstop > gbst. In this generation,M∗1, . . . ,M∗K
represents the best classification models synthesized during the training phase. In
order to exploit most of the information retained by these classifiers, we build an
ensemble of classifier C composed byM∗1, . . . ,M∗K for testing the final performance
on a test set D(ts). The ensemble receives in input a pattern x ∈ D(ts) for which
is asked to emit a class prediction ω amongst l = 1, . . . , L label in the problem.
In turns, x is individually classified by the K models whose class estimations are
collected in a vector of prediction [y1, . . . , yk]. The final prediction ω̂ is obtained by
counting the most frequent label according to a Winner Takes All policy where ties
are broken randomly between the group of label assigned by the classifiers involved in
the dispute. The system performance is evaluated as the ensemble classifier accuracy
J C

(
D(ts)

)
in classifying patterns in the test set D(ts).

5.4 Designing an Agent Based Classifier in Non-Geometric
Space

In this section, Graph E-ABC [15] is proposed as a graph classification system
which aims at extending the vector classifier (i.e. E-ABC) discussed in Section 5.3
toward the graph domain. If on one hand Graph E-ABC and E-ABC share the same
principles and most of the designing scheme, the main purpose of Graph E-ABC
is to build meaningful embedding spaces where the graphs are mapped in a vector
representation. Hence, it is possible to spot two major differences between Graph
E-ABC and its vector counterpart:

1. Different stage for selection of candidate substructures

2. Introduction of an alphabet synthesis phase for graph embedding

The rationale behind the approach followed by Graph E-ABC is to identify relevant
substructures in order to exploit the Symbolic Histogram paradigm where granules,
i.e. relevant substructures, collected in the alphabet set A are the key components of
the procedure. Hence, the agents in charge for granulating data require an extractor
block in order to sample candidate subgraphs from the data at hand. From this
perspective, the optimization carried on by Graph E-ABC aims at building optimal
alphabet sets in order to improve the quality of the embedding space according to
the performance of a suitable classification model synthesized in the corresponding
embedding space. Conversely, in the plain E-ABC approach, granules are intended as
clusters of patterns that are directly sampled from the data without employing any
substructure extraction since no embedding procedure is necessary. Nonetheless, at
the heart of both systems relies a reward base mechanism for determining the quality
of each agent activities. In both case, the agent quality Qa is indeed conceived as
measure that try to track the quality of the agents product, i.e. a cluster quality
Qc or a symbol quality Qs respectively for E-ABC and Graph E-ABC. Both the
qualities are in turn determined by a feedback signal that reflect the performance of
the model in which they appear in.

62 5. Evolutive Agent Based Framework for Granular Graph Embedding

The remainder of this section concerns the discussion of the Graph E-ABC scheme
by describing in detail the main agents groups and the tasks assigned necessary for
the synthesis and the optimization of the embedding spaces.

5.4.1 Granulator Agent Task Definition

The first action performed by a granulator agent a is to gather a set of subgraphs
S(tr) sampled from graphs from the training set D(tr), where the number of subgraph
W = |S(tr)| is a user-defined parameter. The sampling process can be designed
according to different graph traversal strategies which define the topology of the
resulting subgraphs similar to those introduced in Section 4.1.

Once S(tr) is ready, a can start the data mining process. The information
extraction is performed according to the BSAS clustering algorithm working directly
in the graph domain.

The adopted dissimilarity measure is the GED based nBMF algorithm as de-
scribed in Section 3.2. Let recall w = [W Πv Πe] that defines the overall dis-
similarity parameters with W ∈ {0, 1}6 is the tuple containing nodes and edges
insertion, deletion, substitution weights, whereas Πv, Πe are the two tuple of binary
parameters for the dissimilarity measures between nodes and edges (if applicable)1.
The agent runs BSAS according to dw and U , generating {P1, . . . ,Ph}, i.e. a set of
partitions, each of which is obtained for a given θi|hi=1.

Each cluster C ∈ Pi undergoes the evaluation phase which determines the
reliability F (C) of the cluster according to two internal properties, namely its
compactness Φ(C) and its cardinality Θ(C):

Φ (C) = 1− 1
|C|

∑
g∈C

d (g, g∗) (5.13)

Θ (C) = |C|
|S(tr)|

(5.14)

where g∗ is the cluster representative of C, i.e. the MinSOD of the cluster. The
reliability F (C) reads as follows:

F (C) = η · Φ(C) + (1− η) ·Θ(C) (5.15)

where η is a trade-off parameter that weights the importance of compactness against
cardinality. According to a threshold τF , g∗ can be promoted to be a symbol s or
simply discarded as not relevant information. The evaluation phase is repeated for
every cluster in every partition Pi, leading to a set of symbols B = {s1, . . . , sM}
discovered by agent a, where M depends on the number of symbols survived in the
evaluation stage. For ease of notation, the granulation parameters are expressed in
a more compact way in the vector p = [U τF η].

5.4 Designing an Agent Based Classifier in Non-Geometric Space 63

Figure 5.3. Schematic diagram for the granulation swarms of agent. Each swarm of
granulator agents U1, . . . ,UL generates a class specific sets of symbols H1, . . . ,HL by
merging all the agents symbols B1, . . . ,BS .

5.4.2 Granulator Agent Swarm Behaviour

Individually, each swarm of agents operates on a class stratified training set of
graphs D(tr)

1 , . . . ,D(tr)
L , where L is the number of classes available in the problem

and
⋃L
l=1D

(tr)
l = D(tr). Then, a single agent a ∈ Ul with l = 1, . . . , L, receives a set

of subgraphs S(tr) sampled from D(tr)
l which will be employed for the synthesis of

information granulates as described in Section 5.4.1. It is worth noting that agents
belonging to the same swarm Ul perform their granulation tasks relying on different
subgraph sets, that is, they do not share the same view of the dataset but rather
observe different aspects of the problem by drawing at random the sampled set of
subgraphs S(tr) with uniform distribution.

Once all the agents in a specific swarm Ul have completed their granulation and
validation tasks, the symbols set extracted B1, . . . ,BS are finally collected in the
class specific bucket Hl, where S is the number of agents in the swarm. These sets
will later serve as starting point for a distinct swarm of agent in charge of selecting
key symbols that enable the embedding procedure by means of symbolic histograms.
A schematic representation of the granulation agent swarm partitioning is given in
Figure 5.3.

The agents separation in different teams combined with the definition of a
single agent task (see Section 5.4.1) guarantee two fundamental aspects of a multi-
agent based system: firstly, each agent is performing a very simple task from both a
computational and data mining point of view; secondly, the agents have an incomplete
knowledge of the other team’s members. The former respects the autonomy principle
typical of MAS and allows each agent to be easily implemented in a single processing

1Unlike the definition given in Section 3.2, in Graph E-ABC the parameters W, Πv and Πe

involved in the dissimilarity measure are binary valued elements in order to simplify the consensus
strategy described in Section 5.4.3

64 5. Evolutive Agent Based Framework for Granular Graph Embedding

unit in order to exploit the parallelism of a possible multi/many core architecture.
The latter aspect is a crucial characteristic that a MAS should guarantee. Indeed,
in case all agents had a clear view of the other agents’ results and behaviour, they
could in principle act in synchronous way, as if they were organized by a master
controller [133].

5.4.3 Symbol Consensus

As discussed in the previous section, agent-based systems provide a certain degree of
autonomy to the actors in play which have an incomplete view of the environment
as well as the other agents results. Nonetheless, a communications mechanism is
of utmost importance since it enables the cooperation between agents in order to
improve the individual abilities by learning from each other relevant discoveries.

The candidate symbols collected in H1, . . . ,HL and synthesized according to the
discussion hold in Section 5.4.2 undergo a consensus phase which aims at exchanging
information about the cluster validity and the dissimilarity parameter spaces w in
which they are found. Initially, symbols belonging to a class specific bucket Hl are
grouped together according to their w. This is a mandatory step since symbols
can be compared each other only if they share the same dissimilarity measure dw.
Indeed, in case two symbols have been found with two different w parameters, this
situation would arise an ambiguity in choosing the correct notion of dissimilarity to
exploit for matching the select symbols. After that, the procedure moves to the next
step, that consists in the definition of a matrix M that gives the information about
the pairwise distances between the grouped symbols. Hence, M is an n× n matrix
where n is the number of symbols in the selected group and Mij = dw (si; sj). By
means of a threshold τcns, two symbols si, sj are considered similar if the following
constraint holds:

Mij ≤ τcns (5.16)
Since in principle dw is not a metric, the symmetry condition might not hold, leading
to the situation where Mij 6= Mji. Clearly, this would lead inconsistent situations
in case Eq. (5.16) holds for Mij but not for Mji. For this reason, M is forced to be
symmetric by applying the following transformation [113, 41]:

Mij = Mji = Mij + Mji

2 (5.17)

Finally, si and sj are equally rewarded with a fixed value α by means of the following
updating rule:

Qs (si)(new) = Qs (si)(old) + α

Qs (sj)(new) = Qs (sj)(old) + α
(5.18)

Eventually, the procedure is repeated for those pair of symbols Eq. (5.16) holds. A
complete pseudocode can be found in Algorithm 4.

5.4.4 Alphabet Selector Agent Behaviour

Once every granulator agent in the swarms U|Ll=1 has completed its data mining
process, a class specific set of symbols is returned. The sets of symbols B synthesized

5.4 Designing an Agent Based Classifier in Non-Geometric Space 65

Algorithm 4 Reward similar symbols according to GED params
Input: Hl: a set of symbols belonging to class l
Output: void
α := reward to assign to matched symbols
τ := define the minimum distance for matching two symbols
w := GED weights with which a symbol had been found
dw := dissimilarity measure in graph domain parametric with w

1: procedure consensus(Hl)
2: groups := group symbol ∈ Hl according to w
3: for each group in groups do
4: M = Pairwise distance matrix evaluate with dw between symbols in
group

5: Find i, j pairs satisfying Mij ≤ τ
6: Qs (si)(new) = Qs (si)(old) + α

7: Qs (sj)(new) = Qs (sj)(old) + α
8: end for
9: end procedure

by each agent in a specific swarm Wl can be merged in a class-specific (i.e., swarm-
specific) bucket of symbols Hl|Ll=1. In other words, Hl contains the collective
information gathered by agents working on class l.

The procedure moves to the generation of candidate alphabets leveraging the
buckets Hi in order to enable the graph embedding stage. This process is addressed
by a separated population Z of N individuals, whose actions can be summarized as
follows:

1. The agent z ∈ Z evaluates the maximum number of symbols per class t = T/L
that can be extracted according to a user-defined bound T

2. The agent explores the buckets Hl and extracts uniformly at random at most
t symbols

3. When all the classes are explored, the selected symbols are collected into the
multi-class alphabet of symbols Az.

The procedure is repeated for all the individuals z ∈ Z belonging to the selector agent
swarm. In this way, each agent synthesizes a candidate alphabet set Az that enables
a graph embedding procedure. In particular, being N the number of individual in
Z, the procedure leads to the synthesis of A1, . . . ,AN candidate alphabets.

5.4.5 Alphabets Evaluation

According to the symbolic histogram approach (see Section 3.3.3), the alphabets
can now be exploited for building the vectorial representation of both training and
validation sets (D(tr) and D(vs)). Building the symbolic histograms of all graphs in
D(tr) and D(vs) leads to the definition of F(tr)

i and F(vs)
i , respectively an |D(tr)|× |Ai|

and an |D(vs)| × |Ai| matrix, whose rows are the symbolic histograms obtained with

66 5. Evolutive Agent Based Framework for Granular Graph Embedding

Embedding

Classification

Figure 5.4. Schematic diagram for the selector agents population. Agents z1, . . . , zN gener-
ates A1, . . . ,AN alphabets by sampling symbols from class-specific buckets H1, . . . ,HL.
The new alphabets are exploited for embedding training and validation set, respectively
D(tr) and D(vs) into N different embedding spaces. N classifiers are trained in the
corresponding vector spaces and their performances J1, . . . ,JN on classifying D(vs) are
retained.

the ith alphabet, for i = 1, . . . , N . A set of classification models c1, . . . , cN can be
build according to specific embedding spaces:

1. Train a classifier ci in the respective embedding space Fi spanned by the
symbolic histograms matrix F(tr)

i

2. Test the classifier by predicting the embedded validation set F(vs)
i

3. Evaluate the performance measure Ji of ci in classifying F(vs)
i as the following

linear convex combination:

Ji = σ · ωi + (1− σ) ·
(

1− |Ai|
|Amax|

)
(5.19)

In Eq. (5.19) is possible to spot two terms weighted by the σ parameter that
contribute in the definition of Ji: the left-most takes into account the accuracy ωi
obtained by the ci classifier in correctly classifying F(vs)

i . The right-most term, as
instead, is a correction factor that emphasizes alphabets with lower symbols. Indeed,

5.4 Designing an Agent Based Classifier in Non-Geometric Space 67

the alphabet cardinality |Ai| determines the dimensionality of the embedding space
where the classifier is trained, i.e. the number of features employed for the vector
representation of a graph. The term |Amax| is defined instead as the cardinality of the
largest alphabet being part of the elite pool Z∗ of selector agents Z. That is, Z∗ is
a set containing the top-Z most performative alphabets observed so far. In this way,
Ji is simultaneously measuring the classification performance and the embedding
space sparsity in which the classifier has been trained and tested. Eventually, the
resulting classifiers, c1, . . . , cN are retained together with their performance measures
J1, . . . ,JN .

5.4.6 Agents and Symbols Quality Propagation

The quality of a single symbol Qs(s) shall reflect the performances J of the alphabets
in which the symbol s under analysis appears in. A lookup table is built in order to
indicate the update value β that will be assigned to s via the following two steps:

1. Since the performance measure assumes values in range [0, 1], the [0, 1] range
is uniformly discretized into a finite number of bins

2. each performance bin is mapped with a reward value, also uniformly discretized
into the same number of bins, where the admissible range [βmin, βmax] is user-
configurable.

The quality update strategy works as follows:

1. Select the candidate alphabet A

2. Select the symbol s ∈ A

3. Find the performance bin in which J lies and gather the corresponding reward
value β

4. Reward the symbols by applying the following update rule:

Q(new)
s (s) = Q(old)

s (s) + β (5.20)

5. Repeat from step 2 for all symbols in the selected alphabet A.

6. Repeat from step 1 for all the alphabets under evaluation.

In this approach, we interpret the performance J as a critic about the effectiveness of
the embedding space spanned by the alphabet A. In this way, the quality Qs(s) can
be seen as a measure for determining if the symbol s is useful for building a valuable
alphabet which can attain high level of performance. The complete pseudo-code can
be found in Algorithm 5

The agent quality measureQa is defined according to the qualitiesQs(s1), . . . , Qs(sM)
and the reliabilities F (C1), . . . , F (CM), where C1, . . . , CM are the clusters related to
s1, . . . , sM symbols the agent a has found (see Section 5.4.1). The overall procedure
for assigning Qa can be break down in the following steps:

1. Select the agent a from Ul

68 5. Evolutive Agent Based Framework for Granular Graph Embedding

2. According to the agent set of symbols B, evaluate the mean quality:2

QB = 1
|B|

∑
s∈B

Qs(s) (5.21)

3. According to the agent set of symbols B evaluate the mean reliability:

FB = 1
|B|

∑
C∈B

F (C) (5.22)

4. Set agents quality Qa as follow:

Qa(a) = ρ ·QB + (1− ρ) · rB (5.23)

5. Repeat from step 1 for all agents a ∈ Ul with l = 1, . . . , L.

In Eq. (5.23), ρ weights the importance between the symbols qualities and its
reliabilities. In particular, in the early generations of the evolution, we give more
importance to the right hand term in order to initially synthesize well-formed clusters.
Next, the quality of an agent shall be better described as its ability in finding
informative symbols according to Qs, since the final scope of the whole procedure is
devoted to synthesize meaningful alphabets employed for the classification problem.
Indeed, this information is contained in symbols qualities Qs whose values are
actually backtracked in the agent quality Qa.

Algorithm 5 Symbols reward routine
Input: alphabets: a list of alphabets, performances: a list of performances

associated to each element of alphabets
Output: void
βmin := reward value lower bound
βmax := reward value upper bound
d := number of reward value in the table

1: procedure reward_symbols(alphabets,performances)
2: V = [βmin, . . . , βmax] ∈ Rd . Equally space d-length vector of

rewards/penalties
3: T = [0, . . . , 1] ∈ Rd . Equally space d-length vector for looking up the

reward to assign
4: for alphabet,J in (alphabets, performances) do
5: for each symbol s in alphabet do
6: Find i such that T [i− 1] < J ≤ T [i] with i = 1, . . . , d− 1
7: β = V [i]
8: Q

(new)
s (s) = Q

(old)
s (s) + β

9: end for
10: end for
11: end procedure

2Qs is normalized in [0, 1] according to the symbols qualities observed in Hl.

5.4 Designing an Agent Based Classifier in Non-Geometric Space 69

5.4.7 Evolving Agents

The agents optimization of swarms U|Ll=1 is driven by a genetic evolution. As stated
in Section 5.4.1, each swarm U must be able to synthesize a candidate set of symbols
H that will be later employed in the formation of pivotal alphabets A. For this
reason, the genetic code acode of each agent reads as follows:

acode = [p w] (5.24)

which summarizes the crucial parameters for the information extraction described in
Section 5.4.1. Agents in the same swarm follow a classic (µ+λ) selection scheme [21],
where λ offsprings are generated according to common genetic operators applied
to the parents population µ, i.e. mutation, crossover and random spawn of new
individuals. The optimization aims at maximizing the agent fitness function fa
defined as the quality Qa given in Eq. (5.23):

fa(a) = Qa(a) (5.25)

The classification models optimization is an evolutionary-like procedure specif-
ically designed according to the unconventional nature of the individual’s genetic
code zcode. Indeed, zcode is a direct representation of a specific alphabet A, whose
cardinality is not fixed a priori, rather depends on a uniformly distributed at random
variable bounded in R ∈ [L, T]. The genetic code zcode reads as follow:

zcode = A = [s1, . . . , sR] (5.26)

where R = |A|. The fitness function fz(z) reflects the critic obtained by the classifier
c trained in the embedding space built according to A, i.e. the performance measure
J the classifier c attained on the validation set:

fz(z) = J (zcode) = J (A) (5.27)

Given the set of elite individuals Z∗, i.e. top-Z individuals evaluated so far, the
offspring Ẑ is generated according to custom operators defined as follows:

Crossover: two individuals zi and zj are selected uniformly at random from Z∪Z∗.
A cut point is determined according to the shortest code between the two and
a new individual is created according to a one-point crossover operator.

Union: two individuals zi and zj are selected uniformly at random from Z ∪ Z∗
and eventually a new individual is defined as the union set zi ∪ zj .

Mutation: a single individual zi is uniformly at random extracted from Z ∪ Z∗.
With a given probability pmut, each symbol s ∈ zi has the chance to be swapped
with a symbol belonging to a randomly extracted individual zj ∈ Z ∪ Z∗.

The recombination process is repeated until Ẑ is populated with K different in-
dividuals. The whole evolutive orchestration can be schematically described as
follows:

1. Run the granulator agent swarms U|Ll=1 according to Section 5.4.1

70 5. Evolutive Agent Based Framework for Granular Graph Embedding

2. Collect the agent symbols into H|Ll=1 class-specific buckets

3. Perform symbol consensus according to Section 5.4.3 for each class-specific
bucket H|Ll=1

4. Generate the current selector agent swarm Z according to Section 5.4.4

5. Generate Ẑ by recombination of Z and Z∗

6. Evaluate Z and Ẑ according to Section 5.4.5

7. Reward the symbols in Z ∪ Ẑ according to Section 5.4.6

8. Evaluate the agents fitnesses for the swarms U|Ll=1 according to Eq. (5.25)

9. Evolve the granulator agent swarms U|Ll=1

10. Replace Z∗ by selecting the top-Z individuals amongst Z ∪ Ẑ ∪ Z∗ according
to Eq. (5.27)

The latter procedure highlights how the two different swarms U|Ll=1 and Z cooperate
together. To summarize, the agents in the swarms observe new sampled data at
each iteration in order to detect useful information and improve their ability thanks
to genetic optimization that tries to maximize the quality of the agents’ output, i.e.
their symbols. On the contrary, the population Z explores possible combinations of
agents’ outputs for testing prospective embedding spaces and simultaneously provides
a supervised critic about the quality of the agents’ output. The recombination of
Z with Z∗ can be considered as an exploitation phase where the most effective
individuals observed so far are mixed with just-explored ones in order to possibly
generate improved alphabets. Finally, Z∗ is intended to be created according to the
selection pressure held by the limited environment space, that is, only the best Z
individuals survive and will be part of the next generation.

5.4.8 Test Set Evaluation in Embedding Spaces

After the evolution converges and/or reach the maximum number of generations
Nstop, the final elite population Z∗ can be exploited for evaluate the solutions
obtained on a graph test set D(ts). Recalling that each z∗code ∈ Z∗ is an alphabet of
symbols A, it is possible to build the symbolic histogram matrix F(ts) of test set and
train a classifier c according to F(tr), where as usual F(tr) and F(ts) are respectively an
|D(tr)|×|A| and an |D(ts)|×|A| matrix. By repeating the embedding procedure for all
the solutions in Z∗, c1, . . . , cZ classifiers are placed in ensemble in order to possibly
exploit simultaneously all the information carried by the different embedding space
spanned by the symbolic histograms matrices. The final performance of the system
is obtained by equipping the ensemble with a winner-takes-all policy rule. That is,
each classifier in ensemble emits the label for the symbolic histogram belonging to
the test set under analysis. Afterwards, the most voted label is retained as the final
prediction.

5.5 Limitations and Discussion with GRALG Approach 71

5.5 Limitations and Discussion with GRALG Approach
In this chapter, Graph E-ABC has been presented as a prototypical architecture
following the MAS philosophy. From the discussion held in Section 5.2, it is possible
to spot relevant analogies with the methodology followed by GRALG (see Chapter
3).

In the first place, it is worth noticing that both systems show a common trait
of flexibility under different point of views. The most fascinating facet of both
systems is their adaptability to different input domains. The approach followed
by GRALG specifically for the graph domain has been revisited for dealing with
heterogeneous input spaces in order to solve different problems such as sequence
and text classification, time-series predictions and hypergraphs embedding [159,
110, 36, 123, 114]. Similarly, E-ABC can also deal with different data structures
since it shares most of the building blocks with GRALG: substructure extractor,
granulator and an embedding phase. The chance of achieving such a high level
of generalization is readily explainable by the embedding strategy both systems
share, i.e. the symbolic histograms paradigms [53]. Furthermore, both GRALG
and E-ABC are highly customisable algorithms thanks to their modular design:
the granulator block can be expressed with a variety of different methods not
limited to clustering provided that a dissimilarity measure in the input domain
and the granule type is still reasonably provided; the classification block in the
vector space can be chosen freely since it has only to provide a suitable performance
measure. Another important similarity that can be noticed regards the adoption
of Granular Computing paradigm. Indeed, E-ABC shares with GRALG the idea
that relevant information can be synthesized by exploring the data at different
level of abstraction according to the Granular Computing paradigm. Hence, both
E-ABC and GRALG rely on pivotal structures, i.e. the granules or symbols, that
can be combined together into the alphabet with the ultimate goal to enable the
systems with prediction capabilities. Additionally, when compared to other State of
the Art methods for graph classification, Graph E-ABC and in general GrC based
techniques as GRALG, can be exploited for building efficient mapping functions
based on automatically-extracted information granules able to reflect the information
carried by the structured data into a vector space and, at the same time, build an
interpretable model for field experts. Granular Computing based techniques are able
to merge the most desirable facets among current approaches for graph classification:
building the embedding space is automatic (e.g., as in deep learning-based models and
conversely to the feature engineering case), the embedding space is also interpretable
(e.g., as in dissimilarity spaces and conversely to deep learning-based models) and
the embedding space is explicit (e.g., conversely to kernel methods). Finally, it is
worth stressing the main two-fold advantages of GrC-based embedding with respect
to the plain dissimilarity representation one:

1. in the embedded space synthesized via GrC, meaningful dissimilarity measures
can be defined even in the case it is needed to compare pairs of graphs with a
large difference in their number of nodes and/or edges;

2. meaningful symbols used for embedding can greatly improve the knowledge
discovery capability of the overall classification system.

72 5. Evolutive Agent Based Framework for Granular Graph Embedding

Another important aspect the two methods have in common is the automatic selection
of the correct dissimilarity dw intended as a form of metric learning. Intuitively,
this commonality is determined by noticing that both approaches share the same
interpretation of GrC which extensively relies on the notion of a dissimilarity measure
for determining the correct level of abstraction. On the other hand, E-ABC introduces
several peculiarities mostly inherited from the MAS paradigm that in GRALG are
not present:

1. Agents cooperation against individualistic behavior

2. Task Agent Separations

3. Local Metric Learning versus Global/Class Specific Metric Learning

Concerning #1, E-ABC follows a ‘cooperative approach’, where different swarms of
agents exploit independent portions of the dataset in order to search for suitable
symbols and later they join forces via another set of agents for building the classifi-
cation model. This aspect clearly reflects the important MAS facet which envisages
that the agents do not share the same view of the surrounding environment. On the
contrary, the GRALG perspective follows a more ‘individualistic approach’ where all
individuals start their granulation process from the same data shard sampled from
the training set that does not change throughout the evolution. Furthermore, each
individual independently looks for suitable granules of information, build its own
model and trains the classifier accordingly. With such approach, in GRALG, the
fitness function can be determined straightforwardly by the classifier performances
since it is unambiguously matched with individual in the genetic algorithms popula-
tion. Nevertheless, the individuals will only focus in improving their granulation
abilities and model performances according to a fixed granulation bucket, limiting
the exploration aspect of the evolutionary strategy. In E-ABC, the advantage of
continuously exploring a possibly dynamic environment comes at the cost of a more
complex procedure for establishing the alphabet effectiveness and consequently agents
work evaluation. Indeed, agents need to deploy specific strategies of negotiation
and cooperation between each other for grabbing additional information that can
reinforce and expand the knowledge about the problem at hand. This aspect is
achieved through a specific consensus mechanism that highlights which granules
of information are valuable and affordable according to different agents opinion.
Additionally, the task separation in #2 between groups of agents deployed in Graph
E-ABC introduced an interesting novelty regarding the optimization scheme. Recall
that GRALG is characterized by two sequential different levels of optimization,
that are the alphabet synthesis (see Section 3.4.1) and the selection of relevant
symbols for the classification task (see Section 3.4.2). On the contrary, Graph
E-ABC leverages on a group of agents (the alphabet selector agents defined in
5.4.4) that are specialized in generating alphabets by considering simultaneously the
performance in the resulting embedding space and the corresponding dimension (cf.
Eq. (5.19)). Hence, the feature selection is no longer performed in a distinct phase
rather it is carried on to some extent by the alphabet selector agents concurrently
with the alphabet synthesis. As the #3 is concerned, the first proposed version
of GRALG described in Chapter 3 and in [23] performed a global metric learning

5.5 Limitations and Discussion with GRALG Approach 73

method based on a plain genetic optimization. That is, it is able to discover a
single set of dissimilarity parameters valid for all the data at hand. Later on, we
proposed the variant described in Section 4.3, where the system has been upgraded
by enabling a class-specific metric learning approach. On the contrary in E-ABC,
each symbol carries on the information about the dissimilarity dw with which it has
been found, moving closer to a local metric learning paradigm that allows a finer
characterization of the symbols composing the final classification model.

However, it is worth to underline the prototypical aspect of the discussed im-
plementation. Indeed, Graph E-ABC should be considered as a first attempt to
condense the MAS general principles with explicit graph embedding method based
on information granulation. In light of these observations, the design of some specific
building blocks has been intentionally kept simple in order to evaluate the system as
a whole. For example, the consensus strategy described in Section 5.4.3 is based on
the mutual distances between symbols sharing the same dissimilarity parameters
w. However, the possibility of grouping symbols together according to w has been
possible only by simplifying the parameter space from real-valued to binary weights.
If on one hand this allows to easily group symbols together according to w, on
the other hand it could negatively impact on the description power of the graph
dissimilarity measure. Further, another delicate aspect which should be investigated
relates to how the quality of the symbols is evaluated. In fact (recall from Section
5.4.6), the quality of each symbol is evaluated independently to the one of other
symbols: this approach does not allow to capture the correlation amongst symbols,
that is, whether there exist ‘groups of symbols’ that are responsible for a fruitful
embedding space. Another point which deserves attention regard the definition of
the symbol reward (see Section 5.4.6). In fact, suitable reward values may change
drastically from one dataset to another and a poor user-defined choice can undermine
not only the symbol quality (see Eq. (5.20)), but also the agent quality (see Eq.
(5.23)). A suitable countermeasure would be using adaptive strategies for populating
the reward values in the lookup table. This would also limit the huge number of
free-parameters to be defined by the end-user.

75

Chapter 6

Experiments

6.1 Dataset Description
For the experimental validation of the proposed methods, six publicly available
datasets taken from the IAM repository [152] are employed. Each dataset is split in
three disjoint training, validation and test sets, which have been kept unchanged
with respect to the ones available in the data repository. Brief statistics about the
datasets can be found in Table 6.1. Since graphs are labelled both on nodes and edges
with arbitrary data structures, in the following the node and edge dissimilarities for
each of the six datasets is formally described.

The aids dataset consists in a set of graphs describing molecular compounds
that show activity or not against HIV. Node labels contain data about the chemical
symbol Schem, numbers of charge Nch and a vector v of (x, y)-coordinates, whilst
edges are labelled with the valence of the linkage. Node dissimilarity is thus defined
as:

dv(v(a), v(b)) = ‖v(a) − v(b)‖2 + |N (a)
ch −N

(b)
ch |+ ds(S(a)

chem, S
(b)
chem)

where ds(S(a)
chem, S

(b)
chem) = 1 if S(a)

chem = S
(b)
chem, 0 otherwise. Conversely edge informa-

tion is discarded since not useful for the classification task.
grec represents graphs from architectural and electronics drawing symbols. Each

node is equipped with the information containing the type of structures (type) that
compose the drawing and a 2-dimensional vector v which assesses its corresponding
positions. Conversely, edges encode the information about the connection between
the structure with a pair (type,angle): a string value (line or arc) and a real number,

Table 6.1. Characteristic of IAM datasets used for testing: size of Training (tr), Validation
(vl) and Test (ts) set, number of classes (# classes), types of nodes and edges labels,
average number of nodes and edges, whether the dataset is uniformly distributed amongst
classes or not (Balanced).

Database size (tr, vl, ts) # classes node labels edge labels Avg # nodes Avg # edges Balanced

Letter-L 750, 750, 750 15 R2 none 4.7 3.1 Y
Letter-M 750, 750, 750 15 R2 none 4.7 3.2 Y
Letter-H 750, 750, 750 15 R2 none 4.7 4.5 Y
GREC 286, 286, 528 22 string + R2 tuple 11.5 12.2 Y
AIDS 250, 250, 1500 2 string + integer + R2 integer 15.7 16.2 N
Mutagenicity 1500, 500, 2337 2 strings integer 30.3 30.8 N

76 6. Experiments

respectively. Additionally, a frequency attribute freq defines the number of pairs
which appear in the edge label. Custom dissimilarities on both nodes and edges for
grec are defined as follows:

dv(v(a), v(b)) =

(1− χ1) · 1√

2‖v
(a) − v(b)‖2

if type(a) = type(b)

χ1 + (1− χ1) · 1√
2‖v

(a) − v(b)‖2
otherwise

1. If freq(a) = freq(b) = 1

de(e(a), e(b)) =

χ2 · dline(angle(a), angle(b))
if type(a) = type(b) = line

χ3 · darc(angle(a), angle(b))
if type(a) = type(b) = arc

χ3 otherwise

2. If freq(a) = freq(b) = 2

de(e(a), e(b)) =

χ2
2 · d

line(angle(a)
1 , angle

(b)
1)+

+χ3
2 · d

arc(angle(a)
2 , angle

(b)
2)

if type(a) = type(b) = line
χ2
2 · d

line(angle(a)
2 , angle

(b)
2)+

+χ3
2 · d

arc(angle(a)
1 , angle

(b)
1)

if type(a) = type(b) = arc

χ3 otherwise

3. If freq(a) 6= freq(b)

de(e(a), e(b)) = χ4

where dline and darc are module distances normalized in [−π, π] and [0, arcmax]
respectively. Additionally, Πv = {χ1} and Πe = {χ2, χ3, χ3, χ4} are the sets of
real-valued parameters ranging in [0, 1] for nodes and edges dissimilarity needed for
evaluating the GED as described in Section 3.2.

The three Letter datasets contain undirected graphs representing drawing
of Roman capital letters with increasing amount of distortion: low (Letter-l),
medium (Letter-m) and high (Letter-h). Node features are 2-D real-valued
vectors v which define the node positions in a reference system, whilst edges are not
labelled. Hence, only the node dissimilarity has to be defined:

dv(v(a), v(b)) = ‖v(a) − v(b)‖2
Finally, Mutagenicity is a set of graphs representing molecular compound

whose classes are their mutagenicity tendencies. Nodes are chemical symbols Schem
and edges the valence number Bval of the linkage.

dv(v(a), v(b)) =
{

1 if S(a)
chem = S

(b)
chem

0 otherwise

6.2 Tests and Results for GRALG Classifier 77

Table 6.2. Exhaustive number of subgraphs extracted from D(tr).

Type Letter-L Letter-M Letter-H GREC AIDS Mutagenicity

Path (o = 5) 8193 8582 21165 27119 35208 652642
Clique 2377 2398 2493 3321 3961 48234

de(e(a), e(b)) =
{

1 if B(a)
val = B

(b)
val

0 otherwise

6.2 Tests and Results for GRALG Classifier

6.2.1 Stochastic Extraction Method Evaluation

In this section, the proposed lightweight extractors are evaluated and compared
against the original exhaustive implementation discussed in Section 3.3.1. In par-
ticular, both BFS and DFS extractors (see Section 4.1) and clique extractor (see
Section 4.1.1) are considered for the tests. The sample size W for the subgraph set
S(tr) is chosen as follow:

• for BFS and DFS, letW = 10%, 30%, 50% of the number of subgraphs extracted
exhaustively

• for cliques, let W = 40%, 60%, 80% of the number of maximal cliques enumer-
ated using Bron-Kerbosch

where the total numbers of subgraphs extracted exhaustively are shown in Table 6.2.
From this table, it is possible to observe a clear-cut reduction in the total number of
subgraphs when cliques are selected as candidate substructures. This consideration
justifies the different sampling rates W used for the comparison.

It is worth remarking that when a BFS or DFS strategy is employed, an additional
parameter o is needed, which defines the maximum order for the subgraphs to
be extracted. Conversely, when the extractor is based on maximal cliques, this
parameter is unnecessary since the Bron-Kerbosch procedure returns a complete
clique decomposition where clique orders are strictly topology-related rather than
user-defined.

For the classification block in the embedding space (see Section 3.3.4) a k-NN
classifier is selected. Due to the intrinsic randomness in the training procedures,
results herein presented have been averaged across 10 runs. Other relevant parameters
are chosen as follows:

• k = 5 (number of neighbours for k-NN)

• o = 5 maximum subgraph order for BFS and DFS extractors

• 20 individuals per population (both genetic algorithms)

• 20 generations (first genetic algorithm – alphabet optimization)

78 6. Experiments

• 100 generations (second genetic algorithm – feature selection)

• σ = 0.99 in the fitness function for the second genetic algorithm (very minor
weight to sparsity)

• ξ = 1.1 as tolerance value for the symbolic histograms evaluation.

• Umax = 500 upper bound for BSAS maximum number of clusters.

In order to investigate how the subsampling rates and the subgraph topologies
impacts on GRALG, the analysis takes into account three different performance
measures:

• Accuracy in correctly classifying D(ts) in the optimized embedding space shown
in Fig. 6.1

• Wall clock running times1 of the overall optimization, shown in Fig. 6.2

• Optimal alphabet cardinality |A∗| shown in Fig. 6.3 which corresponds to the
optimized embedding space dimensionality.

By matching Figures 6.1a and 6.1b, it is possible to see that BFS and DFS
strategies lead to comparable results (in terms of accuracy) with those obtained by
the exhaustive procedure for every value of W . The only remarkable shift can be
observed for Grec (approximately 7%). It is worth remarking that the performances
of the classification block are strongly influenced by the efficiency of the mapping
function in preserving the graph input space properties into the embedding space.
This can be achieved only if the information granules extracted are indeed meaningful
representatives of the considered dataset(s). For most of the datasets, clearly some
properties emerge even by performing a strong subsampling of the prospective
subgraphs.

For what concerns the clique extraction strategy, in Fig. 6.1c, AIDS and Letter-
L show comparable levels of accuracy with respect to both BFS and DFS extractors,
respectively in Fig. 6.1a and Fig. 6.1b. Two remarkable results should be underlined:
in Grec and Mutagenicity datasets, it is possible to spot a generally increased
accuracy for any considered sample rate. Indeed, for Grec an improvement of
about 8% is achieved by the clique extractor, whereas Mutagenicity witnessed
a benefit of 4% suggesting that cliques are a relevant topology for these problems.
Conversely, when the clique extractor acts on Letter-M and Letter-H, the
accuracy is strongly worsen, suggesting that topologies emerging from BFS and DFS
extractor are better than cliques when it comes to identify useful symbols for these
problems. In fact, medium/high level of distortion (i.e., adding or removing vertices)
in handwritten letters might destroy useful cliques to characterize letters (e.g., the
triangle in ’A’).

From the point of view of running times, the introduction of sampling strategies
show their effectiveness by observing Fig. 6.2a and Fig. 6.2b. This is due to the

1In order to guarantee fair running times comparison, all tests have been performed on the
same workstation running Linux Ubuntu 18.04 equipped with hyperthreaded 4-core Intel i7-3770K
@3.50GHz and 32GB of RAM.

6.2 Tests and Results for GRALG Classifier 79

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(a) BFS
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(b) DFS

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(c) Clique

Figure 6.1. Accuracy results for different extraction strategies. Blue, red and yellow bars
correspond to W = 10%, 30%, 50% sampling rates for BFS and DFS extractor whilst
they represent W = 40%, 60%, 80% for clique extractor. Purple bars refer to exhaustive
procedures.

lower number of subgraphs returned by the Extractor driving mainly the Granulator
and due to the traverse strategy adopted by the Embedder before the evaluation of
the symbolic histograms. Recalling Section 3.4.1, the genetic algorithm must repeat
several times the entire procedure of granulation, embedding and classification in
order to optimize the parameters involved. This task involves the GED computation
many times, which can be very intensive and time consuming. By matching Table
6.1 and Figures 6.2a–6.2b, clearly the advantages of subsampling are more and
more evident as the dataset size increases and/or in presence of complex semantic
information on nodes/edges, as their dissimilarity measures impact the overall GED
computational burden.

A major improvement achieved by the clique extractor can be spotted by ob-
serving results in Fig. 6.3c in all configurations (i.e., regardless of the subsampling
percentage from the set of all maximal cliques). The number of symbols is signifi-
cantly reduced when compared to BFS and DFS extractors respectively in Fig. 6.3a
and Fig. 6.3b. Considering that every symbol in the alphabet must be matched

80 6. Experiments

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

100

200

300

400

500

600

700

800

900

1000

T
im

e
[m

in
]

(a) BFS
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
[m

in
]

(b) DFS

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

2

4

6

8

10

12

T
im

e
[m

in
]

(c) Clique

Figure 6.2. Running times for different extraction strategies. Blue, red and yellow bars
correspond to W = 10%, 30%, 50% sampling rates for BFS and DFS extractor whilst
they represent W = 40%, 60%, 80% for clique extractor. Purple bars refer to exhaustive
procedures.

with all subgraphs that compose a graph to be embedded (see Section 3.3.3), a
straightforward revenue can be observed as running times are considered: by match-
ing Fig. 6.2c with Fig. 6.2a and 6.2b, the clique-based extractor outperforms the
other strategies for each subsample size W , showing an heavy reduction on the wall
clock time even when all the maximal cliques are employed for the granulation phase.
Besides the time improvements, another remarkable result achieved thanks to the
low-cardinality alphabet is the interpretability of the trained model. Indeed, starting
from a reduced set of symbols in the alphabet for the training stage, the following
feature selection phase further shrinks the alphabet cardinality, leading to a more
explainable learning system.

6.2.2 Class-Aware Granulation Performances

In this section, the Class Aware Granulation strategy discussed in Section 4.2 is
evaluated. Specifically, the main purpose is to validate the goodness of the enhanced
Granulator and the scaling solutions proposed for limiting the alphabet cardinality.

6.2 Tests and Results for GRALG Classifier 81

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

100

200

300

400

500

600

A
lp

h
ab

et
 C

ar
d

in
al

it
y

(a) BFS
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

100

200

300

400

500

600

A
lp

h
ab

et
 C

ar
d

in
al

it
y

(b) DFS

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

100

200

300

400

500

600

A
lp

h
ab

et
 C

ar
d

in
al

it
y

(c) Clique

Figure 6.3. Optimal alphabet cardinality for different extraction strategies. Blue, red
and yellow bars correspond to W = 10%, 30%, 50% sampling rates for BFS and DFS
extractor whilst they represent W = 40%, 60%, 80% for clique extractor. Purple bars
refer to exhaustive procedures.

Hence, the tests have been conducted by levaraging on four different configurations:

Configuration 1 (Baseline): No Class-Aware Granulation

Configuration 2 (CA): Class-Aware granulation without U scaling as described
in Section 4.2

Configuration 3 (CA-US): Class-Aware granulation with Uniform U Scaling (see
Section 4.2.1)

Configuration 4 (CA-FS): Class-Aware granulation with Frequency-based U
Scaling (see Section 4.2.1)

In the Baseline benchmark (configuration #1), results are obtained by considering
the same GRALG configuration employed in Section 6.2.1 with the sampling strategy
based on BFS extractor. That is, the sampling strategy is enabled for populating
the set of subgraph for the (non-stratified) clustering ensemble and the embedding

82 6. Experiments

phase. Conversely the CA configurations (#2,#3,#4) follow the stratified random
extraction procedure described in Section 4.2, by setting up the maximum number
of allowed subgraphs W equal to a given percentage of the number of subgraphs
emerging from the exhaustive extractor. In order to guarantee fair comparison,
both baseline and all CA configurations have been tested with the same sets of
W parameters. The traversal strategy deployed in both extraction and embedding
phase is the BFS according with the Baseline configuration. This choice stems from
the results obtained in previous section, where no clear winner emerged between
BFS and DFS traversal strategies in terms of performances and running times for
the considered datasets, hence the choice has been considered arbitrary.
The algorithm parameters are set as follows:

– W = 10%, 30%, 50% of the total number of subgraphs extract exhaustively
with o = 5 as shown in Tab. 6.2

– Umax = 500 is the upper bound value for BSAS U parameter

– o = 5 the maximum order of the extracted subgraphs

– 20 individuals for the population of both genetic algorithms

– 20 generations for the first genetic algorithm (alphabet optimization)

– 100 generations for the second genetic algorithm (feature selection)

– σ = 0.99 in the fitness function for the second genetic algorithm (no weight to
sparsity)

– k = 5 for the k-NN classifier

– ξ = 1.1 as tolerance value for the symbolic histograms evaluation

As highlighted in Figures 6.4–6.6, three different aspects has been considered in
order to compare the four strategies:

1. Accuracy on the Test Set

2. Overall running times (including training and test phases) 2.

3. Total number of symbols in the alphabet at the end of the alphabet synthesis
phase 3

Due to the intrinsic randomness in the training procedures, results herein pre-
sented have been averaged across 10 different runs. The random extraction procedure
has been tested with three different values of W and up to a maximum subgraph
order o.

When the Class-Aware is employed, in any of its configurations, Figures 6.4b-
6.4c-6.4d show improved results with respect to the non-stratified version in Fig.

2In order to guarantee fair running times comparison, all tests have been carried on the same
workstation deployed for tests in Section 6.2.1.

3This number refers to the alphabet before the feature selection phase in order to have a fair
comparison, free of biases from the second genetic algorithm.

6.2 Tests and Results for GRALG Classifier 83

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(a) Configuration Baseline
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(b) Configuration CA

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(c) Configuration CA-US
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(d) Configuration CA-FS

Figure 6.4. Accuracy comparison for the 4 configurations. Blue, red and yellow bars
correspond to W = 10%, 30%, 50% sampling rates.

6.4a. Indeed, results for Grec and Letter-H improved by 4%-5% and 8%-9% in
terms of accuracy, respectively, followed by Letter-M that gains a 3%-4% accuracy
boost.

On the other hand, when no scaling method is considered, the Class-Aware
procedure worsen the dimensionality of the embedding space as shown in Fig. 6.5b.
An explanation of this behaviour may be found by considering the Embedding
procedure in Section 3.3.3: when a graph has to be embedded in the vector space,
every symbol of the alphabet A has to be matched with the set of subgraphs drawn
from the graph itself and therefore the computational complexity can grow rapidly if
both the subgraphs and the alphabet set become too large, as in the case explained
in Section 4.2, where the above-mentioned set cardinality can assume values to
O(L · |θ| · Umax) being L and θ respectively the number of classes in the problem
and the BSAS thresholds of inclusion. It is not difficult to see this phenomenon by
comparing Fig. 6.6a with Fig. 6.6b, where the latter shows a clear-cut augmentation
of symbols in the alphabet for almost all of the considered datasets. The results
obtained when U scaling methods are employed, show that they are effective in
reducing the cardinality of the alphabet A, as it is possible to spot by comparing

84 6. Experiments

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

50

100

150

200

250

300

T
im

e
[m

in
]

(a) Configuration Baseline
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

50

100

150

200

250

300

T
im

e
[m

in
]

(b) Configuration CA

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

50

100

150

200

250

300

T
im

e
[m

in
]

(c) Configuration CA-US
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

50

100

150

200

250

300

T
im

e
[m

in
]

(d) Configuration CA-FS

Figure 6.5. Running times comparison for the 4 configurations. Blue, red and yellow bars
correspond to W = 10%, 30%, 50% sampling rates.

Fig. 6.6b with Fig. 6.6c-6.6d. As a consequence, in Figs. 6.5c-6.5d running times
for the configuration with the aforementioned methods scale down comparably to
the base configuration in Fig. 6.5a

6.2.3 Class Specific Metric Learning Performances

In this section, the Class Specific Metric Learning approach introduced in Section
4.3 is analyzed. The performance of the proposed method are addressed under two
different aspects: the learning performances (i.e., accuracy on the test set) and the
cardinality of the alphabet after the features selection stage. Indeed, the latter is the
crucial set that allows the embedding from the graph domain towards the geometric
space and thus can affect both the model complexity and its interpretability.

GRALG equipped with lightweight extractor as described in Section 4.1 has
been chosen as baseline method for comparison and assessment of the improvements.
Indeed, the selected baseline GRALG version performs a global metric learning
strategy by means of a single population of individuals for its evolutionary strategy
and thus avoiding all the class stratification necessary for the class-specific metric

6.2 Tests and Results for GRALG Classifier 85

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

200

400

600

800

1000

1200

A
lp

h
ab

et
 C

ar
d
in

al
it

y

(a) Configuration Baseline
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

500

1000

1500

2000

2500

3000

3500

4000

A
lp

h
ab

et
 C

ar
d
in

al
it

y

(b) Configuration CA

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

200

400

600

800

1000

1200

A
lp

h
ab

et
 C

ar
d
in

al
it

y

(c) Configuration CA-US
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

200

400

600

800

1000

1200

A
lp

h
ab

et
 C

ar
d
in

al
it

y

(d) Configuration CA-FS

Figure 6.6. Alphabet size comparison for the 4 configurations. Blue, red and yellow bars
correspond to W = 10%, 30%, 50% sampling rates.

learning approach. Hence, a single subgraph set S(tr) is extracted from graphs
in the training set regardless of its class label. A single individual is in charge
of synthesizing an alphabet A from S(tr) thanks to the Granulator block with
parameters p that exploits the clustering ensemble method and consequently builds
the vectorial representation of F(tr) and F(vs) thanks to the Embedder block equipped
with A. Needless to say, all blocks use the same dissimilarity measure with the same
parameters w without class distinction.

Both systems are equipped with the stochastic subgraph Extractor (see Section
4.1) which allows to limit the set of subgraphs S(tr) with a user-defined cardinality
W , whose subgraphs have a fixed order o. BFS has been selected as the traversal
strategy for Extractor and Embedder block, both in the baseline GRALG and in
the proposed variant. Relevant parameters have been selected as follows:

– W = 10%, 30%, 50% of the exhaustive number of subgraphs (see Table 6.2)

– o = 5 the maximum order of the extracted subgraphs

– σ = 0.9 in Eq. (4.14)

86 6. Experiments

– ξ = 1.1 as tolerance parameter for subgraph occurrences count

– the classifier is a k-NN classifier with k = 5

– 20 generations in the evolutionary strategy for alphabet optimization

– 100 generations in the evolutionary strategy for feature selection.

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(a)
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(b)

Figure 6.7. Average system accuracies on test set. Plain GRALG and proposed approach
results respectively in Fig. 6.7a and Fig. 6.7b. Blue, red and yellow bars correspond to
W = 10%, 30%, 50% sampling rates.

AIDS GREC Letter-L Letter-M Letter-H Mutagenicity
0

100

200

300

400

500

600

A
lp

h
ab

et
 C

ar
d
in

al
it

y

(a)
AIDS GREC Letter-L Letter-M Letter-H Mutagenicity

0

100

200

300

400

500

600

A
lp

h
ab

et
 C

ar
d
in

al
it

y

(b)

Figure 6.8. Average number of selected symbols (after feature selection). Plain GRALG
and proposed approach results respectively in Fig. 6.8a and Fig. 6.8b.Blue, red and
yellow bars correspond to W = 10%, 30%, 50% sampling rates.

Since GRALG relies on stochastic routines, results shown in Fig. 6.7, Fig. 6.8 have
been averaged across 10 different runs. By comparing Fig. 6.7a and Fig. 6.7b,
it is possible to spot the major improvements in terms of learning performances
(i.e., accuracy on the test set). The proposed approach outperforms the baseline
method for letter-m and letter-h, whereas it holds similar accuracy on the
remaining datasets. On the other hand, the class-specific variant clearly improves

6.2 Tests and Results for GRALG Classifier 87

-40 -30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

40

(a) AIDS
-30 -20 -10 0 10 20 30

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) GREC
-50 -40 -30 -20 -10 0 10 20 30 40 50

-80

-60

-40

-20

0

20

40

60

(c) Mutagenicity

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

(d) Letter-L
-50 -40 -30 -20 -10 0 10 20 30 40 50

-60

-40

-20

0

20

40

60

(e) Letter-M
-40 -30 -20 -10 0 10 20 30 40 50

-50

-40

-30

-20

-10

0

10

20

30

40

50

(f) Letter-H

Figure 6.9. Two dimensional embedding space using t-SNE for dimensionality reduction
obtained with the graph embedding method equipped with class-specific learning. For
each dataset, different colours denote different classes.

the numbers of synthesized symbols, as shown when compared Fig. 6.8a against
6.8b. In particular, by matching Figs. 6.8a and 6.8b, it is possible to see that
the proposed class-specific metric learning variant outperforms the plain GRALG
version in building the alphabet all the datasets considered. In general, in case
of alphabets with lower cardinality, the final model benefits in a two-fold fashion.
First, from the interpretability point of view: the symbols contained in the alphabet
are meaningful subgraphs required for the classification task that can be analyzed
by field experts to figure out what are the meaningful features that characterize
a particular problem-related class. Even though this can be achieved also by the
plain version of GRALG (i.e., with no class-specific learning), the class specific
approach aims to go even further in terms of interpretability thanks to its ability
in selecting suitable metric parameters which increase the characterization among
different classes. Second, the testing phase for previously-unseen test patterns is
faster since there are less symbols to match the test data against (cf. Section 3.5)).

Embedding Visualization

A major benefit of graph embedding strategies for classification problems is the
flexibility of the embedding space. Being vector spaces, they are naturally equipped
with well-known distance measures such as the Euclidean distance, which allows the
use of many machine learning tools. Additionally, this facet enables the opportunity
to take advantage of a plethora of dimensionality reduction techniques which can
help in visualizing the data at hand. t-Distributed Stochastic Neighbor Embedding
(t-SNE) [174] is a powerful method that performs a non-linear mapping from a

88 6. Experiments

-50 -40 -30 -20 -10 0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

10

20

30

40

(a) AIDS
-50 -40 -30 -20 -10 0 10 20 30 40

-40

-30

-20

-10

0

10

20

30

(b) GREC
-60 -50 -40 -30 -20 -10 0 10 20 30 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) Mutagenicity

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

(d) Letter-L
-40 -30 -20 -10 0 10 20 30 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(e) Letter-M
-50 -40 -30 -20 -10 0 10 20 30 40

-60

-40

-20

0

20

40

60

(f) Letter-H

Figure 6.10. Two dimensional embedding space using t-SNE for dimensionality reduction
obtained with the baseline method (GRALG). For each dataset, different colours denote
different classes.

high-dimensional space into a lower dimensional one, while retaining both local and
global relationships among data by preserving their mutual distances in the reduction
process. The latter is possible thanks to the evaluation of the similarity between
the two probability distributions (i.e., in the original and reduced space), hence
solving an optimization problem which aims at minimizing the Kullback-Leibler
divergence between the two probability distributions. t-SNE has been exploited in
order to visualize the resulting embedding spaces in a 2-dimensional space for the
six datasets. For the sake of comparison, for each dataset, the t-SNE embedding of
GRALG (baseline method) and the class-specific metric learning are provided in
Figures 6.10 and 6.9, respectively.

For aids, an interesting plot emerges: the low dimensional space depicted in
Figure 6.9a features well-separated and homogeneous clusters, if compared with
the baseline counterpart shown in Figure 6.10a. Since t-SNE focuses on distance
preservation in the mapping process, this phenomenon can be considered as an
evidence of effectiveness for the class-specific metric learning strategy. Nonetheless,
the two classes are still easily separable in both cases, as confirmed by the accuracy
values in Figures 6.7b and 6.7a.

On the other hand, grec and mutagenicity do not show relevant information
about data distribution in the low dimensional space build by t-SNE, whilst letter-l
shows good separability with both approaches.

Finally, both letter-m and letter-h benefit from the use of the proposed
method. Specifically, for letter-m, by comparing Figure 6.9e with Figure 6.10e,
we can see how patterns in same classes appear more compact, with lower level of

6.2 Tests and Results for GRALG Classifier 89

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

0.93

0.81

0.66

0.92

0.79

0.91

0.66

0.76

0.96

0.66

0.93

0.96

0.89

0.87

0.66

0.93

0.89

0.88

0.66

0.81

0.89

0.88

0.67

0.89

0.97

0.92

0.91

0.97

0.91

0.99

0.92

0.9

0.83 0.82

0.97

0.98

0.97

0.99

0.83

0.97

0.92

0.69

(a) Accuracy on the Test Set
Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

82.67

143

86.67

121

160.3

333.7

121

213

68.67

84

144.3

10

295.7

116.7

168.7

260

306

234.3

360

166

354.7

45.67

308.3

104

326.3

8

90.33

132

175

427

123.7

262.3

121

196.3

217.7

378.3

116

253

182

275.7

316

450.3

(b) Embedding space dimensionality before
Feature Selection

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

14.33

52.33

5.67

30.67

39.33

83.33

23.33

63.33

6.33

20.67

34.33

1

77.33

13.33

22

43

66.67

157

14.67 18

74.67

105.3

4

127

61.33

120

1

164.7

50

84.33

131.7

75.33

101.3

113.3

147

76

209.7

116.3

23.33

112

23.33

153

(c) Embedding space dimensionality after Fea-
ture Selection

Figure 6.11. Results at 10% subsampling rate. Color maps are normalized row-wise (i.e.,
independently for each dataset), with a white-to-blue range mapping smallest-to-largest
values.

dispersion with respect to the baseline method. The same effect is also prominent
for letter-h, as depicted in Figures 6.9f and 6.10f where, in the former case, classes
are also more overlapped with respect to its counterpart. It is worth noting that
letter-m and letter-h, namely the two datasets that show the most benefit in
terms of t-SNE separability are the ones that show the greater accuracy boost with
respect to the plain GRALG version (see Figures 6.9 and 6.10).

In conclusion, visualizing the embedding spaces with a dimensionality reduction
technique such as t-SNE has confirmed the validity of the results obtained in the
previous section. Indeed, performance boosts observed in terms of accuracy are
graphically reflected with a clear-cut class distribution in the low dimensional space
(letter-m and letter-h), whist graphics are similar in problems where no major
improvements can be observed.

90 6. Experiments

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

0.92

0.67

0.92

0.67

0.77

0.96

0.67

0.91

0.79

0.89

0.87

0.67

0.91

0.8

0.89

0.88

0.8

0.96

0.9

0.88 0.88

0.67

0.82

0.97

0.93

0.92

0.81

0.97

0.93

0.91

0.99

0.93

0.91

0.97 0.97

0.68

0.98

0.68

0.99

0.82

0.97

0.92

(a) Accuracy on the Test Set
Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

138.7

86.67

106.3

123.7

191.7

180.3

101.3

139.7

172.3

171

11.67

290.7

121.7

234.7

237.7

237.7

304.7

312.3

142.7

494

8

151

340.3

28.33

233.7

151.7

252

231.7

348.7633.3 564.3

261

412

221.7

301

297

460.7

295.7

374.7

378.7

298.7

387.7

(b) Embedding space dimensionality before
Feature Selection

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

23.33

32

15.33

27.33

54

23.33

33

17.67

43.67

39

1

66.67

12

51.33

46

56 105.3

18.33

1

172.7

120.3

1

108.7

87.33

112.3

155.7175 171.3

65

201.7

27.67

111.3

144

84.33

251

123.7

161.3

203

29.33

108.3

163.3

30

(c) Embedding space dimensionality after Fea-
ture Selection

Figure 6.12. Results at 30% subsampling rate. Color maps are normalized row-wise (i.e.,
independently for each dataset), with a white-to-blue range mapping smallest-to-largest
values.

6.2 Tests and Results for GRALG Classifier 91

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

0.92

0.81

0.97

0.68

0.91

0.97

0.67

0.75

0.96

0.66

0.93

0.89

0.88

0.67

0.93

0.81

0.97

0.9

0.86

0.68

0.82

0.96

0.91

0.86

0.97

0.920.94

0.91

0.84

0.93

0.92

0.99

0.93

0.91

0.85

0.98

0.98

0.69

0.99

0.85

0.91

0.69

(a) Accuracy on the Test Set
Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

59

167.7

144.3

180

210.7

165

124.7

276.3

259

310.7

13

452.7

89

270.7

113.3

330.3

173.3

21.33

296.3

216

325.7

39.33

178.7

259

347

316.3407.7

264

319

287

564.3

271.7

366

359

386.3

275.7

356

400.3

403.3

317.7

386.3

531.7

(b) Embedding space dimensionality before
Feature Selection

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

5.33

44.33

10

37.33

60.67

76.67

52

50.33

12.33

60.33

60.67

59

1

115.3

6

54.67

59.67

22.67

53.33

148.7

177.7

24

1.67

143.3

116.7

147

2.33

97.67

154.7

108.3

295.3

42.67

148.3

152.3

80

151.7

202

179

46.33

138

263.3

43.67

(c) Embedding space dimensionality after Fea-
ture Selection

Figure 6.13. Results at 50% subsampling rate. Color maps are normalized row-wise (i.e.,
independently for each dataset), with a white-to-blue range mapping smallest-to-largest
values.

92 6. Experiments

6.2.4 Soft Symbolic Histogram Variants Evaluation

In this section, the symbolic histogram variants discussed in Section 4.4 are evaluated.
For this purpose, the GRALG classification system has been equipped with the
lightweight stochastic Extractor discussed in Section 4.1. The traversal strategy em-
ployed for the extraction stage and the graph expansion necessary for the embedding
block is the BFS.

The algorithm parameters are set as follows:

• maximum order o = 5 for populating the subgraph set S(tr) in the extraction
phase

• W = 10%, 30%, 50% of the exhaustive number of subgraphs (see Table 6.2)

• maximum number of 20 generations for both evolution stages (alphabet opti-
mization and feature selection)

• 20 individuals for the population of the first evolution (alphabet optimization)

• 100 individuals for the population of the second evolution (feature selection)

• σ = 0.99 in the fitness function f2 of the second genetic evolution (major
weight to performance)

• k-NN with k = 5 as classification system in the embedding space

• ξ = 1.1 as tolerance value for the symbolic histograms evaluation.

In Figures 6.11, 6.12 and 6.13, the results obtained by equipping the GRALG
classification system presented in Section 3 with the six different symbolic histograms-
inspired embedding methods as described in Section 4.4. Each figure corresponds to
either one of the three subsampling rates W in order to address the performances of
the system as a function of the candidate number of subgraphs for the granulation
phase. In order to account for the stochastic nature of the algorithm, results in
the following have been averaged across 10 different runs. The efficiency of the
proposed variants are evaluated under three different point of views, i.e. the classifier
performance measured on the test set S(ts) and the cardinality of the alphabet before
(|Ã|) and after (|A∗|) the feature selection phase (see Section 3.4.2) It is worth noting
that the performances on the test set are obtained by the classifier trained with
F∗(tr). Recall from Section 3.5 that the vectorial representation F∗(ts) of S(ts) is
obtained thanks to the selected embedding procedure using the optimized alphabet
A∗.

By comparing Figures 6.11a, 6.12a and 6.13a it is possible to spot the differences
in terms of accuracy. The results depicted in the first two columns (Mean and
Medium) witnessed that the selected embedding methods are reaching comparable
performances with respect to the Original symbolic histogram method equipped
with the hard-limiting function regardless of the number of candidate information
granules W . A note should be mentioned for Aids, which is arguably attaining
lower level of performances (6~7 %) when compared with the Original column. On
the other hand, the remaining four approaches, i.e. Sum, t-Mean, t-Median and

6.2 Tests and Results for GRALG Classifier 93

t-Sum, show (on average) worst performances when compared to Mean, Median
and Original. Again an exception can observed for Aids: when using the Sum
aggregation operator, it shows the highest result in terms of accuracy.

An interesting behaviour that emerge from the tests regards the number of
symbols that compose the alphabets A∗ and Ã. With respect to thresholded
methods (t-Mean, t-Median, t-Sum and Original), Mean, Median and Sum are by
far producing optimal alphabets with lower number of symbols, regardless of W .
This can be spotted by observing Figures 6.11c, 6.12c, 6.13c and their counterparts
before the feature selection phase (Figures 6.11b, 6.12b, 6.13b), suggesting that
such reduction in terms of number of features is not due to the feature selection
phase but is a proper characteristic of the aggregation function. With the exception
of Mutagenicity, all datasets show a clear-cut difference in terms of alphabet
cardinality when not-thresholded methods are exploited. It is possible to advance
the hypothesis that by using hard-limiting functions in the symbolic histograms, the
resulting dynamic of each vector component can be influenced by the choice of the
threshold. In fact, the set of parameters (notably those related to the dissimilarity
measure, i.e. w in Eq. 3.5) explored by the evolutionary algorithm might not
be suitable enough for imposing an expressive dissimilarity measure able to fairly
compare the symbols with the substructure set G′. In this particular situation,
most of the symbols would not be matched with substructures in G′, leading to
an uninformative embedding space spanned by flat vectors possibly having many
null components. On the other hand, the evolutionary algorithm in the attempt to
optimize the error rate might be tempted to relieve this issue by exploring granulation
parameters (i.e., p in Eq. 3.9) which allow larger alphabets with higher chances
of scoring matches between symbols and the substructures of the graphs to be
embedded. Clearly, this situation does not hold in non-thresholded methods, where
each match counts (albeit proportionally to its dissimilarity degree): in turn, this
means that a given symbol from the alphabet is (in very plain terms) ‘always found’
in the graph to be embedded which is therefore completely explored during the
embedding procedure.

6.2.5 Multiobjective Optimization Method Evaluation

In this section, experiments are carried out in order to study the relationship between
the three objective functions f1, f2 and f3 (respectively denoted as Performance,
Complexity and Sparsity in the following) according to the multiobjective strategy
discussed in Section 4.5 for the alphabet optimization.

The algorithm parameters have been set as follows:

• 100 individuals with a maximum number of 100 generations, in order to ensure
a reasonable tracking of the Pareto Frontier;

• early stop criterion if the change in the fitness values are below 0.0025 for 15
consecutive generations;

• W = 30% of the maximum number of subgraphs attainable from the training
set with an exhaustive extraction

94 6. Experiments

• a simple random walk is employed as graph traversing strategy for mining
subgraphs of maximum order o = 5 for the extraction phase (i.e., for populating
S(tr))4

• a BFS traversal strategy is employed for extracting subgraphs for the embedding
phase (i.e., for building G′)

• parameter θ in BSAS follows a binary search in range [0, 1];

• ξ is the symbol-dependent threshold for scoring a hit in the embedding proce-
dure (cf. Eq. (3.12)).

The tests are conducted by showing the Pareto frontiers obtained for five datasets
described in Section 6.1 and the pairwise 2D projections. Mutagenicity is not
reported due to the high running times necessary to complete the whole optimization
with the considered hyperparameters for NSGA-II.

The results are summarized individually for each dataset in Figures 6.14, 6.15,
6.16, 6.17 and 6.18, respectively for Letter-H, Letter-M, Letter-L, AIDS
and GREC, for both kernels (linear and RBF) used in SVM classifiers. To ensure
readability, axes have been scaled in terms of percentage.

A first immediate regular behaviour can be observed in the relation between
Sparsity and Performance. Indeed, for all Letter datasets, a clear inverse propor-
tionality between the two objective functions emerges from Figures 6.14c, 6.15c and
6.16c by using linear SVM. The same behaviour holds for its kernelized counterpart
as depicted in Figures 6.14g, 6.15g and 6.16g. A similar phenomenon, but slightly less
prominent, occurs for GREC dataset for both linear (Figure 6.18c) and RBF kernel
(Figure 6.18g). On the other hand, Aids dataset does not show any relevant trend
for the Sparsity-Performance pair due to the dense superposition of the solutions in
the Pareto frontier as can be noticed in Figure 6.17a (Linear-SVM) and Figure 6.17e
(RBF-SVM). These results entail a transparent relationship between the number of
symbols in the alphabet A necessary for attaining reliable performances in f1, i.e.
low level of error-rate on validation set.

From the Complexity-vs-Performance perspective, the computational results for
Letter-H show a clear inverse relation for both Linear and RBF kernels, respectively
depicted in Figure 6.14b and Figure 6.14f. In this particular problem, an elbow-like
behaviour for the two considered objective functions arise, suggesting that its decision
boundary can be well defined with an increasing number of support vectors. For the
remaining two Letter datasets, i.e. Letter-M (Figure 6.15b and Figure 6.15f)
and Letter-L (Figure 6.16b and Figure 6.16f), the projected Pareto frontiers are far
more chaotic limiting the possibility to draw reasonable conclusions. This is likely
due to the fact that Letter-M and Letter-L are easier classification problems to
solve with respect to Letter-H, so there exist solutions for which a lower number of
support vectors leads to reasonable performances: this is notably not true for harder
classification problems (i.e., Letter-H, in this case) for which a higher number of
support vectors are needed to draw a more accurate decision boundary. On the

4Since no relevant differences have been witnessed between BFS or DFS in terms of performances
and/or running times, the rationale behind choosing random walks is that there exist the possibility
of having both star-like and path-like subgraphs in S(tr).

6.2 Tests and Results for GRALG Classifier 95

other hand, for Grec dataset, the Linear-SVM projection in Figure 6.18b has a
firm decreasingly trend, whilst its kernelized counterpart in Figure 6.18f shows a
less compact behaviour but with a more defined point cloud in the upper-left region
of the plot. Again, no clear trend emerges from AIDS dataset due to the former
discussion about the superposition of the solutions.

The last aspect to consider regards the Complexity-vs-Sparsity projection. For
almost all datasets, i.e. Letter-H (Figure 6.14d and Figure 6.14h), Letter-M
(Figure 6.15d and Figure 6.15h), AIDS (Figure 6.17d and Figure 6.17h) and Grec
(Figure 6.18d and Figure 6.18h), no clear trends emerge between the number of
support vectors and the cardinality of the alphabets, being the Pareto fronts not
well shaped for both SVM configurations. A notable exception can be observed
for Letter-L, where the Complexity-vs-Sparsity projection leads to an ‘L-shaped’
frontier, especially for the Linear-SVM case (Figure 6.16d). This suggests that
limiting the number of support vectors is counterbalanced by a higher embedding
space dimensionality.

0

50

100

Performance
0

50

100

Complexity

0

5

10

S
p
ar

si
ty

(a)

0 20 40 60 80 100

Performance

0

20

40

60

80

100

C
o

m
p

le
x

it
y

(b)

0 20 40 60 80 100

Performance

0

2

4

6

8

10

S
p

ar
si

ty

(c)

0 20 40 60 80 100

Complexity

0

2

4

6

8

10

S
p

ar
si

ty

(d)

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p
ar

si
ty

(e)

0 20 40 60 80 100

Performance

0

20

40

60

80

100

C
o

m
p

le
x

it
y

(f)

0 20 40 60 80 100

Performance

0

5

10

15

S
p

ar
si

ty

(g)

0 20 40 60 80 100

Complexity

0

5

10

15

S
p

ar
si

ty

(h)

Figure 6.14. Dataset: Letter-H. 3D Pareto Front and pairwise 2D projections. Top panels
correspond to the Linear-SVM, bottom panels correspond to RBF-SVM.

Baseline Cases

In this section, the computational results obtained on the test phase with the
introduction of the ensemble of classifiers working on heterogeneous embedding
spaces (see Section 4.5.2) are evaluated. Let recall from Section 4.5.1 that TOPSIS
allows the ranking of the solutions according to a weight vector u.

At first, the baseline cases (see Table 6.3) are considered as the solutions in
X that achieve the best results in the three objective functions when considered
separately. The selection of the baseline solutions works by sorting the decision
matrix D according to each column (i.e., objective function) separately. After each
sort, the solution in X that corresponds to the top-ranked row in D is retained.
In particular, for each dataset and for each classifier, Table 6.3 features a 3 × 3

96 6. Experiments

0

50

100

Performance
0

50

100

Complexity

0

5

10

15
S

p
ar

si
ty

(a)

0 20 40 60 80 100

Performance

0

20

40

60

80

100

C
o

m
p

le
x

it
y

(b)

0 20 40 60 80 100

Performance

0

5

10

15

S
p

ar
si

ty

(c)

0 20 40 60 80 100

Complexity

0

5

10

15

S
p

ar
si

ty

(d)

0

50

100

Performance
0

50

100

Complexity

0

10

20

S
p
ar

si
ty

(e)

0 20 40 60 80 100

Performance

0

20

40

60

80

100

C
o

m
p

le
x

it
y

(f)

0 20 40 60 80 100

Performance

0

5

10

15

20

S
p

ar
si

ty

(g)

0 20 40 60 80 100

Complexity

0

5

10

15

20

S
p

ar
si

ty

(h)

Figure 6.15. Dataset: Letter-M. 3D Pareto Front and pairwise 2D projections. Top panels
correspond to the Linear-SVM, bottom panels correspond to RBF-SVM.

0

50

100

Performance
0

50

100

Complexity

0

2

4

6

S
p
ar

si
ty

(a)

0 20 40 60 80 100

Performance

0

20

40

60

80

100

C
o

m
p

le
x

it
y

(b)

0 20 40 60 80 100

Performance

0

1

2

3

4

5

6

S
p

ar
si

ty

(c)

0 20 40 60 80 100

Complexity

0

1

2

3

4

5

6

S
p

ar
si

ty

(d)

0
20

40
60

Performance
0

50

Complexity

0

1

2

S
p

ar
si

ty

(e)

0 20 40 60 80

Performance

0

10

20

30

40

50

60

C
o
m

p
le

x
it

y

(f)

0 20 40 60 80

Performance

0

0.5

1

1.5

2

S
p

ar
si

ty

(g)

0 10 20 30 40 50 60

Complexity

0

0.5

1

1.5

2

S
p

ar
si

ty

(h)

Figure 6.16. Dataset: Letter-L. 3D Pareto Front and pairwise 2D projections. Top panels
correspond to the Linear-SVM, bottom panels correspond to RBF-SVM.

sub-matrix which in position (i, j) shows the ith objective function value obtained
when selecting the solution in X that minimizes the jth objective function.

For the sake of argument, uniform weighting is considered as well: that is,
TOPSIS method ranks the solutions in X without introducing any preferences for
the three objective functions, i.e. u =

[
1
3

1
3

1
3

]
. The number of classifiers and

embedding spaces to consider in the ensemble is chosen according to the top-K
solutionsX∗ returned by TOPSIS5, withK = 10. In Figure 6.19, the results obtained

5In Appendix A, for the sake of completeness, we show the 3D Pareto fronts in which the
solutions belonging to X∗ are highlighted (Figures A.1a–A.1b for AIDS, Figures A.2a–A.2b for
GREC, Figures A.3a–A.3b for Letter-L, Figures A.4a–A.4b for Letter-M, Figures A.5a–A.5b for

6.2 Tests and Results for GRALG Classifier 97

0

10

20

Performance
0.8

1

1.2

Complexity

-1

0

1

S
p

ar
si

ty

(a)

0 5 10 15 20

Performance

0.8

0.9

1

1.1

1.2

C
o

m
p

le
x

it
y

(b)

0 5 10 15 20

Performance

-1

-0.5

0

0.5

1

1.5

S
p
ar

si
ty

(c)

0.8 0.9 1 1.1 1.2

Complexity

-1

-0.5

0

0.5

1

1.5

S
p
ar

si
ty

(d)

0

10

20

Performance
0

5

10

Complexity

-1

0

1

S
p

ar
si

ty

(e)

0 5 10 15 20

Performance

0

2

4

6

8

10

12

C
o
m

p
le

x
it

y

(f)

0 5 10 15 20

Performance

-1

-0.5

0

0.5

1

1.5

S
p
ar

si
ty

(g)

0 2 4 6 8 10 12

Complexity

-1

-0.5

0

0.5

1

1.5

S
p
ar

si
ty

(h)

Figure 6.17. Dataset: AIDS dataset. 3D Pareto Front and pairwise 2D projections. Top
panels correspond to the Linear-SVM, bottom panels correspond to RBF-SVM.

0

50

100

Performance
0

50

100

Complexity

0

2

4

S
p
ar

si
ty

(a)

0 20 40 60 80 100

Performance

0

20

40

60

80

100

C
o

m
p

le
x

it
y

(b)

0 20 40 60 80 100

Performance

0

1

2

3

4

S
p

ar
si

ty

(c)

0 20 40 60 80 100

Complexity

0

1

2

3

4

S
p

ar
si

ty

(d)

0
20

40
60

80

Performance
0

50

Complexity

0

1

2

S
p
ar

si
ty

(e)

0 20 40 60 80

Performance

0

20

40

60

80

C
o
m

p
le

x
it

y

(f)

0 20 40 60 80

Performance

0

0.5

1

1.5

2

2.5

S
p

ar
si

ty

(g)

0 20 40 60 80

Complexity

0

0.5

1

1.5

2

2.5

S
p

ar
si

ty

(h)

Figure 6.18. Dataset: GREC. 3D Pareto Front and pairwise 2D projections. Top panels
correspond to the Linear-SVM, bottom panels correspond to RBF-SVM.

by varying K = 1, . . . , 10 and observing the three main objective of interests are
shown: accuracy on test set of the ensemble (Figure 6.19a), the sum of symbols in
the alphabets A∗ (Figure 6.19b) and the sum of support vectors for the classifiers in
the ensemble C (Figure 6.19c).

When the Linear-SVM is considered, an interesting result for Letter-L emerge:
the best solution in terms of accuracy can be achieved by considering 4 classifiers
in the ensemble with a lower number of support vectors and symbols. Indeed, it
is possible to see that if the solution that minimizes the error rate are selected
regardless of the other two objective functions, the accuracy is 98% (see Table 6.3)

Letter-H).

98 6. Experiments

AIDS (RBF-SVM)

AIDS (Linear-SVM)

GREC (RBF-SVM)

GREC (Linear-SVM)

Letter-L (RBF-SVM)

Letter-L (Linear-SVM)

Letter-M (RBF-SVM)

Letter-M (Linear-SVM)

Letter-H (RBF-SVM)

Letter-H (Linear-SVM)

2 4 6 8 10

K

60

70

80

90

100

A
cc

u
ra

cy
 [

%
]

(a)

2 4 6 8 10

K

0

200

400

600

800

N
u

m
b

er
 o

f
S

y
m

b
o

ls
 f

o
r

E
m

b
ed

d
in

g

(b)

2 4 6 8 10

K

0

500

1000

1500

2000

N
u

m
b

er
 o

f
S

u
p

p
o

rt
 V

ec
to

rs

(c)

Figure 6.19. Uniform weighting results according to K number of classifiers in ensemble

whilst 4 classifiers in ensemble can obtain 96% of correct predictions on test set.
With this small difference of accuracy (≈ 2%), the ensemble requires 101 support
vectors and 90 symbols against 147 and 139, respectively, obtained with the best
solution in terms of error rate. Similarly, for Grec with Linear-SVM, comparable
accuracy performance can be obtained between the baseline solution that minimizes
the error rate and 3 classifiers in ensemble, respectively 92% and 87%. Despite 5%
of shift, the ensemble relies only on 57 symbols against 113 needed by the baseline
solution. On the other hand, the ensemble requires a considerably higher number
of support vectors (427 against 185). The same discussion does not hold for the
other datasets/configurations, where the shift in terms of accuracy is not sufficiently
counterbalanced by improvements in terms of alphabet cardinality and/or structural
complexity of the model.

Case Studies

In this section, three different case studies are considered in order to analyze the
behaviour of the ensemble of classifiers under different configurations for TOPSIS:
computational results are shown by assigning different priorities to each specific
function in the decision making process. At this purpose, three different choices for
the weighting vector u are considered:

a) totally neglect the structural complexity, giving equal weights to the other two
objectives;

b) totally neglect the number of symbols, giving equal weights to the other two
objectives;

c) give more importance to accuracy with respect to the other two objectives.

The rationale behind these three case studies stems from the observation that (in
real-world pattern recognition applications) the generalization capability is always
the first index to be considered when judging the synthesis of a classification model.
In plain terms, low accuracy undermines the trustworthiness of the model (regardless
of the features and regardless of the complexity of the model itself) and therefore
must always be preferred (or at least comparable to) other objectives. In light of

6.2 Tests and Results for GRALG Classifier 99

Table 6.3. Results of the Baseline cases.

AIDS
Linear-SVM RBF-SVM

min Error Rate min Complexity min Sparsity min Error Rate min Complexity min Sparsity
Accuracy 98% 80% 80% 99% 80% 80%
Complexity 3 2 2 29 2 2
Sparsity 1 1 1 1 1 1

GREC
Linear-SVM RBF-SVM

min Error Rate min Complexity min Sparsity min Error Rate min Complexity min Sparsity
Accuracy 92% 15% 15% 85% 50% 20%
Complexity 185 22 22 187 22 22
Sparsity 113 1 1 26 11 1

Letter-L
Linear-SVM RBF-SVM

min Error Rate min Complexity min Sparsity min Error Rate min Complexity min Sparsity
Accuracy 98% 68% 25% 97% 92% 24%
Complexity 147 15 676 50 15 15
Sparsity 139 5 1 48 11 1

Letter-M
Linear-SVM RBF-SVM

min Error Rate min Complexity min Sparsity min Error Rate min Complexity min Sparsity
Accuracy 94% 53% 11% 95% 70% 13%
Complexity 437 15 15 470 15 15
Sparsity 184 12 1 198 120 1

Letter-H
Linear-SVM RBF-SVM

min Error Rate min Complexity min Sparsity min Error Rate min Complexity min Sparsity
Accuracy 93% 50% 17% 92% 14% 14%
Complexity 479 15 733 549 15 15
Sparsity 224 175 1 290 1 1

these observations, any case study in which the weight given to the performance of
the classifier is smaller than the weight given to the other two objective functions
are deliberately not considered: in real-world applications, the machine learning
engineer will likely not accept solutions on the Pareto Frontier which feature a low
accuracy for any arbitrary low or high number of support vectors and/or number of
features.

Case Study A: No weight to model structural complexity. In this setting,
TOPSIS prioritizes the solutions that are showing simultaneously low error rate and
small number of symbols in the alphabets; that is, the objective functions f1 and f3
as described in Eq. (4.25) and Eq. (4.27), respectively. By letting u =

[
1
2 0 1

2

]
,

the ranking process will be not influenced by the objective function f2 in Eq. (4.26);
hence, no importance will be given to the model structural complexity. The impact
of the imposed condition can be observed by inspecting the positions of the marked
solutions on the Pareto Frontiers for both kernels: for Letter-H (Figures A.5c-
A.5d), Letter-M (Figures A.4c-A.4d), Letter-L (Figures A.3c-A.3d) and Grec
(Figures A.2c-A.2d), the retained solution by TOPSIS are mostly distributed in the
objective function space with minimal sparsity and accuracy performance with a
considerably large number of support vectors. On the other hand, for Aids dataset
(Figures A.1c-A.1d), all solutions are overlapped in few clusters, making less evident
the selected solution positions. As already noticed in Section 6.2.5, the introduction
of the ensemble of classifiers implies some benefits when compared to the baseline

100 6. Experiments

solutions shown in Table 6.3. In this setting, the compromise between Performance
and Sparsity introduced by weighting accordingly the different objective functions,
gives a clearer advantages in terms of number of symbols for a larger variety of
problems. The computational results by varying K are shown in Figures 6.20a, 6.20b
and 6.20c (accuracy on test set, number of symbols and number of support vectors,
respectively).

For both SVMs, Grec achieves the same performance on the test set if compared
to the baseline results (≈ 92% and ≈ 85% for Linear-SVMs and RBF-SVMs,
respectively) by using K = 4 classifiers in the ensemble. The major benefit regards
the number of symbols on which the ensemble leverages: for Linear-SVMs, the
ensemble outperforms the best accuracy solution using 43 against 113 symbols,
whilst for RBF-SVMs the results are comparable: 43 symbols in the ensemble and
26 for the baseline. Notably, the best ensemble configuration (K = 6) ensures better
performance accuracies for Linear-SVM with respect to the baseline, keeping at
the same time a lower sum of alphabet cardinalities, i.e. 78 symbols in alphabets.
Despite this beneficial effect, the structural complexity in the ensemble increases
rapidly, requiring already at K = 3 a way larger number of support vectors, i.e. 617
(Linear) and 543 (RBF) against 185 (Linear) and 187 (RBF) needed for the baseline
case.

The same discussion holds for Letter-L: when equipped with the linear kernel,
K = 2 classifiers already reach the same accuracy on the test set obtained by the
baseline (≈ 97%) involving 23 symbols against 50 using, on the other hand, a more
complex model.

A similar situation occurs for RBF kernel in Letter-M: K = 3 classifier in
ensemble yield a minor negative shift of 3% in accuracy, which is counterbalanced
by improved results under the number of symbols perspective. Indeed, the baseline
solution in accuracy attains 198 symbols in its alphabet, whereas the considered
ensemble of classifiers relies in total on 138 symbols.

Finally, with K = 4 classifiers, Letter-H achieves comparable performances
with respect to the baseline with a small accuracy shift (3%) for both linear and RBF
kernels. Again, a considerable lower number of symbols, 118 (Linear) and 190 (RBF)
against 224 (Linear) and 290 (RBF) can be observed if compared to the best solution.
Nonetheless, for both Letter-H and Letter-M, the reduced amount of symbols
is still compensated by a considerable higher number of support vectors. These
patterns of behaviour perfectly fit with the priority given to performance accuracy
and minimization of the alphabet cardinality fed to TOPSIS via the weighting vector
u.

Case Study B: No weight to sparsity. In this case study, the ensemble be-
haviour is investigated by choosing u =

[
1
2

1
2 0

]
. In this way, TOPSIS will drive

its preferences towards solutions with low error rate and minimal model structural
complexity, namely the objective functions f1 and f2 in Eqs. (4.25) and (4.26).
The weighting vector will give no importance to the objective function f3 (i.e.,
sparsity). The solutions selected by TOPSIS are marked on the Pareto Frontiers
for both kernel configurations: Letter-H (Figures A.5e-A.5f), Letter-M (Figures
A.4e-A.4f), Letter-L (Figures A.3e-A.3f), Grec (Figures A.2e-A.2f) and Aids

6.2 Tests and Results for GRALG Classifier 101

AIDS (RBF-SVM)

AIDS (Linear-SVM)

GREC (RBF-SVM)

GREC (Linear-SVM)

Letter-L (RBF-SVM)

Letter-L (Linear-SVM)

Letter-M (RBF-SVM)

Letter-M (Linear-SVM)

Letter-H (RBF-SVM)

Letter-H (Linear-SVM)

2 4 6 8 10

K

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(a)

2 4 6 8 10

K

0

100

200

300

400

500

600

N
u

m
b

er
 o

f
S

y
m

b
o

ls
 f

o
r

E
m

b
ed

d
in

g

(b)

2 4 6 8 10

K

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
 o

f
S

u
p

p
o

rt
 V

ec
to

rs

(c)

Figure 6.20. Case Study A (No weight to model structural complexity) results according
to K number of classifiers in ensemble

(Figures A.1e-A.1f). Since the sparsity is not considered in the decision making
process, the plots underline how the selected solutions are distributed in the region
with high level of sparsity, conversely to the minimal values of performance and
complexity. The performance on the test set, model structural complexity and
sparsity of the alphabet with respect to the number of classifier K in the ensemble
are shown respectively in Figures 6.21a, 6.21c and 6.21b.

For Grec, using the ensemble of classifiers does not introduce beneficial effects
since the baseline performances are way better (more than 10%) when compared
to the best ensemble configuration for both kernels, that is K = 10 for RBF and
K = 6 for Linear.

For Letter-L, the ensemble with K = 3 classifiers attains the same level of
accuracy on test set with respect to the baseline in Table 6.3: Linear-SVMs reaches
97% of accuracy (very close to the baseline solution, that scores 98%) by using 126
support vectors (ensemble) against 147 (baseline); similarly, RBF-SVM attains 98%
with a similar complexity with respect to the baseline, that is 45 support vectors
(ensemble) against 50 (baseline).

In Letter-M, a major improvement can be spotted by equipping the ensemble
with K = 4 classifiers and RBF kernel. In this configuration, with a small difference
in accuracy (4%), the ensemble drastically reduces the structural complexity by
using 268 support vectors against 549 employed by the best solution in terms of
accuracy.

For Letter-H, RBF kernel with K = 3 classifiers attained similar performances
with respect to the baseline, i.e. 89% (ensemble) against 93% (baseline). This result
come with a light improvement in terms of support vectors, i.e. 488 (ensemble)
against 549 (baseline).

Finally, Aids can be solved as efficiently as the baseline with Linear-SVMs.
Indeed, the same accuracy, i.e. 98%, can be attained by using K = 2 and 5 support
vectors. Conversely, the baseline scores a similar number of support vectors, i.e. 3.

As in the previous case study, no beneficial effects can be spot from the neglected
objective function point of view, that in this case coincides with the sparsity of
the alphabet. Indeed, all the aforementioned results come at cost of a considerable
higher number of symbols in the ensemble of classifiers.

102 6. Experiments

AIDS (RBF-SVM)

AIDS (Linear-SVM)

GREC (RBF-SVM)

GREC (Linear-SVM)

Letter-L (RBF-SVM)

Letter-L (Linear-SVM)

Letter-M (RBF-SVM)

Letter-M (Linear-SVM)

Letter-H (RBF-SVM)

Letter-H (Linear-SVM)

2 4 6 8 10

K

60

70

80

90

100

A
cc

u
ra

cy
 [

%
]

(a)

2 4 6 8 10

K

0

1000

2000

3000

4000

N
u

m
b

er
 o

f
S

y
m

b
o

ls
 f

o
r

E
m

b
ed

d
in

g

(b)

2 4 6 8 10

K

0

500

1000

1500

2000

N
u

m
b

er
 o

f
S

u
p

p
o

rt
 V

ec
to

rs

(c)

Figure 6.21. Case Study B (No weight to sparsity) results according to K number of
classifiers in ensemble.

Case Study C: Priority to accuracy performance. In the last case study,
TOPSIS exploits a weighting vector u =

[
1
2

1
4

1
4

]
. This configuration drives the

TOPSIS decision making process mainly toward solutions featured by low error
rate, that is, more priority is given to the minimization of f1 in the ranking process.
Nonetheless, structural complexity and sparsity of the alphabet are not totally
neglected as in the two previous case studies. As instead, f2 and f3 have the same
importance, being equally weighted in the selection phase. The Pareto Frontiers
with the highlighted selected solutions are shown for both Linear-SVM and RBF-
SVM: Letter-H (Figures A.5g-A.5h), Letter-M (Figures A.4g-A.4h), Letter-L
(Figures A.3g-A.3h), Grec (Figures A.2g-A.2h) and Aids (Figures A.1g-A.1h). The
results of the ensemble of classifiers in terms of accuracy on test set, model structural
complexity and sparsity of the alphabets are shown respectively in Figures 6.22a,
6.22c and 6.22b accordingly to the number of K of classifiers in the ensemble.

For Grec, already with K = 2 classifiers in ensemble, the same accuracy of
the baseline result can be achieved by using Linear SVM classifiers (≈ 92%). On
the other hand, the ensemble relies only on 35 symbols against 113 employed with
best solution in terms of accuracy. From the model complexity point of view, the
ensemble is not able to improve the baseline since it requires only 185 support vectors
against 332 needed for the ensemble. Notably, the ensemble outperforms the baseline
when more than K = 3 classifier are employed, where the best result, i.e. ≈ 95%, is
obtained with K = 4 classifiers. Even though this improvement comes at the cost of
an higher structural complexity, as long as the number of classifiers is limited below
K = 8, the ensemble still exploits a lower number of symbols. Nonetheless, in the
considered problem, the SVM with RBF kernel is able to reach the performance of
the baseline (≈ 85% at K = 4) without improving any of the two other objective
functions.

For Letter-L, the benefit of the ensemble can be summarized as follows: in
case of linear kernel, K = 3 classifiers are able to perform equally to the baseline
(≈ 98%) with improvements in terms of sparsity, i.e. 85 symbols for ensemble against
139 for the baseline. Conversely, no major benefits are witnessed under the model
structural complexity point of view. When equipped with RBF kernel, the ensemble
with K = 3 classifiers achieved similar results to the baseline, respectively 96% and

6.2 Tests and Results for GRALG Classifier 103

97% of accuracy. Similarly to the linear case, the only improvement regards the
sparsity, where the classifier shows a minimal boost, i.e. 29 symbols against 48 in
the baseline.

For Letter-M, the results are quite similar to Letter-L. If Linear-SVMs are
considered, the ensemble attained the same baseline results in terms of accuracy
with K = 3 classifiers, i.e. ≈ 94%, only improving the sparsity (160 symbols in
alphabet against 184 of the baseline). On the other hand, the kernelized SVM is
able to attain the best solution in terms of accuracy with K = 5 without improving
the other two objective functions.

For Letter-H, the linear kernel achieved similar performances with respect to
the baseline using K = 3 classifiers, respectively 91% and 93%. The sparsity of the
alphabet with such ensemble is comparable with the baseline, i.e ≈ 225 symbols,
whilst the structural complexity of the ensemble is considerably worsen. With K = 4,
the RBF kernel counterpart attained the baseline solution (≈ 91%) but no major
improvement can be observed in terms of number of support vectors and sparsity.

Finally, Aids dataset behave as the baseline solution with Linear-SVMs, ap-
proaching 98% of accuracy with same number of symbols and support vectors.
Conversely, when SVMs are equipped with the RBF kernel, the ensemble is consid-
erably less accurate of the best solution, showing more than 18% of performance
shift.

AIDS (RBF-SVM)

AIDS (Linear-SVM)

GREC (RBF-SVM)

GREC (Linear-SVM)

Letter-L (RBF-SVM)

Letter-L (Linear-SVM)

Letter-M (RBF-SVM)

Letter-M (Linear-SVM)

Letter-H (RBF-SVM)

Letter-H (Linear-SVM)

2 4 6 8 10

K

70

75

80

85

90

95

100

A
cc

u
ra

cy
 [

%
]

(a)

2 4 6 8 10

K

0

200

400

600

800

1000

1200

N
u

m
b

er
 o

f
S

y
m

b
o

ls
 f

o
r

E
m

b
ed

d
in

g

(b)

2 4 6 8 10

K

0

1000

2000

3000

4000

N
u

m
b

er
 o

f
S

u
p

p
o

rt
 V

ec
to

rs

(c)

Figure 6.22. Case Study C (Priority to accuracy performance) results according to K
number of classifiers in ensemble.

6.2.6 Comparison Against State of the Art Classifiers

In this section, state-of-the-art graph classification systems are compared with
different GRALG variants discussed. In Table 6.4, the accuracies on test set of the
considered methods are shown.

For sake of comparison, GRALG based variants in Table 6.4 are all equipped
with BFS lightweight extractor unless expressively stated otherwise. The results are
reported according to the following criteria:

a) Best result among sampling rate W for variants with sampling strategy

b) Best result among different U scaling strategies for class-aware granulation
methods

104 6. Experiments

Table 6.4. Comparison against state-of-the-art graph classification system in terms of
accuracy. Asterisks indicate that results refers to cross-validation rather than a separate
test set. Best accuracy among all subsampling values have been reported for methods
based on GRALG.

Technique AIDS GREC Letter-L Letter-M Letter-H Mutagenicity Reference

Bipartite Graph Matching + k-NN - 86.3 91.1 77.6 61.6 - [153]
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 74.9 [154]
Graph Edit Distance + k-NN 97.3 95.5 99.6 94 90 71.5 [152]

Graph of Words + k-NN - 97.5 98.8 - - - [69]
Graph of Words + kPCA + k-NN - 97.1 97.6 - - - [69]
Graph of Words + ICA + k-NN - 58.9 82.8 - - - [69]

Topological embedding 99.4 - - - - 77.2 [45, 168]
FMGE 99.0 - - - - 76.5 [45, 101]

Attribute Statistics 99.6 - - - - 76.5 [45, 70]
ODD ST+ kernel 82.06* - - - - - [48]

ODD ST TANH+ kernel 82.54* - - - - - [48]
Laplacian kernel 92.6 - - - - 70.2 [45, 30]
Treelet kernel 99.1 - - - - 77.1 [45, 64]

Treelet kernel with MKL 99.7 - - - - 77.6 [45, 66]
Weighted Jaccard Hypergraph kernel + SVM 99.5* - - - - 82* [117]

CGMM + linear SVM 84.16* - - - - - [6]
G-L-Perceptron - 70 95 64 70 - [109]
G-M-Perceptron - 75 98 87 81 - [109]

C-1NN - - 96 93 84 - [109]
C-M-1NN - - 98 81 71 - [109]

EigenGCN-1 - - - - - 80.1 [102]
EigenGCN-2 - - - - - 78.9 [102]
EigenGCN-3 - - - - - 79.5 [102]

GCN with logical descriptors - 96.93 96.64 85.27 79.91 - [80]
MPNN - 89.5 91.3 81.2 64.24 - [149]

MPNN (no set2set) - 92.98 94.8 86.1 75.7 - [149]
Hypergraph Embedding + SVM 99.3 - - - - 77.0 [114]

RECTIFIER + k-NN 99.07 95.57 97.12 92.16 91.60 - [118]
Dual RECTIFIER + k-NN 99.13 96.61 96.40 93.04 91.31 - [118]

GRALG (exhaustive extraction) 99.44 92.23 98.05 84.83 76.13 70.87 Fig. 6.1a
GRALG (clique extraction) 99.53 94.47 97.77 69.07 67.87 73.40 Fig. 6.1c

GRALG (stochastic extractor) 99.16 84.04 96.58 87.89 73.78 71.86 Fig. 6.1a
GRALG (class-aware granulation) 99.06 87.61 98.30 90.64 83.72 71.47 Fig. 6.4c
GRALG (mean symbolic histogram) 92 81 97 94 91 68 Fig 6.13a

GRALG (class-specific metric learning) 99.0 84.32 97.15 92.13 89.77 70.19 Fig. 6.7b)

c) Best result among all the configurations for soft symbolic histogram embedding

Specifically in b), uniform U scaling has been selected as the best class-aware
granulation option since it proved a good trade-off between accuracy, running times
and genetic code complexity according to the discussion hold in Section 6.2.2. For
what concern c), the selection of mean strategy is driven by the good results attained
in both accuracy on test sets and cardinality of the final alphabet A∗ as discussed
in Section 6.2.4.

Competitors span a variety of techniques including classifiers working on the top
of GEDs [152, 153], kernel methods [45, 48, 117], and several explicit embedding
techniques [45, 154, 69], including GrC-based [114, 118] and those based on neural
networks and deep learning [102, 6, 109, 80, 149].

Among the methods based on GRALG, the class-specific metric learning variant
emerges as an interesting choice. Indeed, this approach attained very good results in
almost all datasets when compared with other GRALG systems with the exception of
Grec and Mutagenicity. For the latter datasets, the clique extractor attained the
best results probably due to the fact that the selected topology better characterizes
the problems. On the other hand when compared to the other methods, the class-

6.3 Tests and Results for Graph E-ABC Classifier 105

specific metric learning strategy deployed offer considerable higher perspectives for
analytical investigation by field experts thanks to its interpretability advantages
given by the ability in building class-specific sets of information granules, each of
which characterized by a proper class-specific dissimilarity measure parameters.

By inspecting Table 6.4, it is possible to spot the GRALG performances with
respect to the main competitors. For Aids dataset, the vast majority of the solutions
reported can attain good accuracy values on the tests (≈ 99%). The same hold for
all GRALG variants with the exception of mean symbolic histogram configuration.
When Grec dataset is considered, GRALG equipped with the clique extractor is
able to attain similar results compared with the best choice in the State-of-the-Art
(Graph of Words + k-NN), respectively 94.47% and 97.5%. Concerning Letter-L
dataset, State-of-the-Art methods and GRALG have similar high performances in
the range of 98% – 99% correctly identified patterns. In the immediately harder
Letter problem, i.e. Letter-M, GRALG equipped with mean symbolic histogram
embedding strategy emerges as the second best option with 94% of accuracy whereas
the top solution (Lipschitz Embedding + SVM) attains 95.9%. Concerning the
hardest Letter dataset, i.e. Letter-H, Lipschitz Embedding + SVM is confirmed
as being the best solution with 92.5% of accuracy whereas GRALG with mean
symbolic histogram embedding strategy still provide comparable performances, that
is 91% of accuracy, similarly to the class-specific metric learning variant which
attained ≈ 90% of correctly identified pattern on test sets. For Mutagenicity
dataset, all GRALG variants are not able to compete with EigenGCN-1 method
which is the top solution obtaining ≈ 80% of accuracy6.

6.3 Tests and Results for Graph E-ABC Classifier

In this section, the performances of the proposed classifier Graph E-ABC (see
Chapter 5) are discussed. Amonst the large number of hyper-parameters, the first
test described in Section 6.3.1 aims at determining the most suitable values for a pair
of parameters that has been considered critical under the performance point of view:
the Granulator Agent sample sizeW (see Section 5.4.1) and T , the Alphabet Selector
Agents upper bound considered in the generation of new candidate alphabet (see
Section 5.4.4). In Section 6.3.2, the classifier performances are compared against a
selection of techniques that share with Graph E-ABC the graph embedding approach,
that is all methods involved in the comparison are based on graph embedding via
Information Granulation. Finally in Section 6.3.3, the proposed classification system
is compared with State-of-the-Art approaches.

In all the tests, the algorithm parameters are set as follows. For the orchestration
of agents in A:

• The sets of sampled subgraphs D(tr) is built accordingly to a random walk
extraction

6In Table 6.4, Weighted Jaccard Hypergraph kernel + SVM appears as the best solution. Nonethe-
less, the result is obtained with a cross-validation method, hence it has not been considered in the
comparison.

106 6. Experiments

• The BSAS resolution θ assumes linearly spaced values in range [0, 1] with step
size 0.1

• µ = 5 and λ = 15, the parents and offspring population sizes (respectively)

• η = 0.5, weight between compactness Φ and cardinality Θ in Eq. (5.4.1)

• σ = 0.9 weight between the accuracy of classifier and the sparsity of the
alphabet in Eq. (5.19)

• The maximum number of generation Nstop = 20.

For the orchestration of the model evolution:

• N = 10, the number of individuals in Z generated in each generation

• Z = 10, the number of best individuals in elite pool of agents Z∗

• K = 20, the number of recombined individuals populating Ẑ in each generation

Other parameters include:

• βmin = −10 and βmax = 10, respectively the maximum penalty and the
maximum reward values for updating the symbol quality Qs

• τcns = 0.1 as threshold of dissimilarity between symbols in Eq. (5.16) for the
consensus phase

• ρ assumes equally spaced values in the range [0, 1] with step size 1
Nstop

in Eq.
(5.23)

• The number of bins for the lookup table in Section 5.4.6 equals the number of
classes, so it changes in a dataset-dependent fashion

• ξ = 1.1 as tolerance value for the symbolic histograms evaluation in the
embedding phase.

The remaining two parameters (T and W) are subject to a sensitivity analysis, as
detailed in the following.

6.3.1 Sensitivity Analysis

Amongst the parameters that characterize Graph E-ABC, two of them has been
identified as critical for performances and need a careful tuning: the number of
subgraphs that Granulator agents need to extract before running BSAS (W) and
the maximum number of symbols Alphabet Selector Agent can include in a new
alphabet (T). In order to address how these two parameters affect the performances
of the overall system, a sensitivity analysis is performed via grid searching. In
particular, a set of candidate values are chosen for both T and W , namely T = W =
[10, 50, 100, 200]. For each 〈T,W 〉-pair, the accuracy on test set and the number of
symbols are recorded. In order to take into account the stochastic nature of the
algorithm results are average on 10 different runs.

6.3 Tests and Results for Graph E-ABC Classifier 107

In Figure 6.23, the sensitivity analysis of Graph E-ABC is shown with respect
to the grid over T ×W . From the sensitivity analysis emerges that T is the most
critical parameter affecting the performances: in particular, for Aids, Letter-L
and Mutagenicity, performances tend to deteriorate as T → 0, whereas for harder
classification problems such as Letter-M and Letter-H, performances tend to
deteriorate for larger T . As W is concerned, Letter-M is the only dataset which
shows an increasing trend in performances as W grows, whereas for the remaining
five datasets a clear trend does not emerge.

6.3.2 Comparison Against Current Granular Approaches for Graph
Classification

In order to compare the performances of Graph E-ABC, four suitable competitors are
selected. Like Graph E-ABC, the selected methods exploit the steps on information
granulation and graph embedding via symbolic histograms: the class-aware version
of GRALG (see Section 4.2), the Class Specific Metric Learning variant of GRALG
(see Section 4.3, the RECTIFIER and Dual-RECTIFIER classifiers proposed in
[118]. The major difference between Graph E-ABC and the four competitors is
that Graph E-ABC follows a ‘cooperative approach’, where different agents exploit
independent portions of the dataset in order to search for suitable symbols and
later they join forces (via another set of agents) for building the classification model.
GRALG, RECTIFIER and Dual-RECTIFIER, as instead, follow an ‘individualistic
approach’, where all individuals start from the same set of subgraphs extracted
from the training data that does not change throughout the evolution and each
individual independently looks for suitable granules of information, performs the

Table 6.5. Comparison against current approaches for graph classification system in terms
of accuracy on the test set and, in brackets, size of the embedding space (i.e., number
of symbols). For each dataset, we highlight in bold the most performing technique in
terms of accuracy (in case of ties, the size of the embedding space acts as a tiebreaker).

Technique Aids Grec Letter-L Letter-M Letter-H Mutagenicity

Graph E-ABC (best point) 98.07 (34) 80.09 (1284) 96.89 (2260) 86.27 (4407) 79.78 (2517) 66.13 (370)
Graph E-ABC (average) 96.95 (222) 74.56 (1748) 92.20 (1460) 81.79 (3879) 74.76 (4592) 64.12 (654)

RECTIFIER (5%)* 98.12 (6) 92.64 (87) 93.33 (23) 86.36 (52) 84.57 (90) -
RECTIFIER (10%)* 98.41 (8) 92.91 (169) 94.58 (32) 86.01 (71) 85.62 (145) -
RECTIFIER (30%)* 98.30 (9) 92.78 (415) 95.99 (79) 87.94 (173) 86.89 (300) -
RECTIFIER (50%)* 98.40 (16) 92.65 (439) 95.57 (81) 89.37 (232) 86.31 (431) -
RECTIFIER (80%)* 98.57 (16) 93.09 (741) 94.80 (157) 87.21 (294) 88.92 (668) -

Dual-RECTIFIER (5%)* 99.11 (6) 94.37 (67) 94.77 (19) 85.74 (27) 82.59 (49) -
Dual-RECTIFIER (10%)* 98.97 (9) 95.25 (77) 94.37 (22) 86.50 (42) 84.84 (86) -
Dual-RECTIFIER (30%)* 98.95 (11) 95.59 (173) 94.19 (29) 90.14 (77) 87.58 (162) -
Dual-RECTIFIER (50%)* 98.81 (13) 95.22 (264) 95.11 (35) 89.88 (104) 86.67 (177) -
Dual-RECTIFIER (80%)* 98.94 (37) 95.57 (215) 95.37 (50) 90.31 (136) 86.83 (275) -

Class-Aware GRALG (10%) † 98.98 (10) 87.55 (467) 98.20 (129) 90.64 (184) 82.92 (298) 70.47 (284)
Class-Aware GRALG (30%) † 99.04 (9) 87.61 (545) 98.30 (207) 90.28 (267) 83.29 (284) 71.15 (212)
Class-Aware GRALG (50%) † 99.06 (10) 87.37 (434) 98.16 (219) 89.53 (183) 83.72 (344) 71.40 (213)
Class-Aware GRALG (10%)‡ 98.99 (9) 88.36 (288) 98.25 (146) 89.00 (214) 83.29 (287) 70.67 (249)
Class-Aware GRALG (30%)‡ 99.11 (11) 86.96 (335) 98.28 (205) 88.77 (277) 83.05 (319) 71.46 (259)
Class-Aware GRALG (50%)‡ 99.11 (12) 87.15 (322) 98.37 (218) 89.40 (311) 83.47 (313) 70.20 (346)

Class-Specif Metric Learning GRALG (10%) 98.98 (2) 82.27 (87) 96.76 (24) 90.49 (45) 89.24 (83) 69.04 (113)
Class-Specif Metric Learning GRALG (30%) 98.98 (1) 82.85 (97) 96.93 (32) 92.13 (74) 88.27 (127) 70.20 (102)
Class-Specif Metric Learning GRALG (30%) 99.0 (2) 84.33 (127) 97.16 (43) 91.91 (82) 89.78 (133) 69.11 (150)
* Averaged across different trade-off values in the objective function.
† Class-Aware Uniform Scaling heuristic with BFS extractor for driving the granulation procedure.
‡ Class-Aware Frequency Scaling heuristic with BFS extractor for driving the granulation procedure.

108 6. Experiments

0

100

200

W
0

100

200

T

92

94

96

98

A
cc

u
ra

cy
 T

es
t

S
et

 [
%

]

(a) AIDS

0

100

200

W
0

100

200

T

70

75

80

A
cc

u
ra

cy
 T

es
t

S
et

 [
%

]
(b) GREC

0

100

200

W
0

100

200

T

70

80

90

100

A
cc

u
ra

cy
 T

es
t

S
et

 [
%

]

(c) Letter-L

0

100

200

W
0

100

200

T

60

70

80

90

A
cc

u
ra

cy
 T

es
t

S
et

 [
%

]

(d) Letter-M

0

100

200

W
0

100

200

T

65

70

75

80

A
cc

u
ra

cy
 T

es
t

S
et

 [
%

]

(e) Letter-H

0

100

200

W
0

100

200

T

62

63

64

65

66

A
cc

u
ra

cy
 T

es
t

S
et

 [
%

]

(f) Mutagenicity

Figure 6.23. Graph E-ABC sensitivity analysis (average accuracy on the test set).

6.3 Tests and Results for Graph E-ABC Classifier 109

embedding procedure and trains the classifier in the embedding space. GRALG
variants, Dual-Rectifier and Rectifier are driven by a single-objective unimodal
evolutionary procedure, hence the best individual is retained for the synthesis of the
final classification system, to be validated on the test set.

In Table 6.5 are shown the results of the comparison amongst Graph E-ABC,
GRALG, RECTIFIER and Dual-RECTIFIER in terms of accuracy on the test set
and resulting number of symbols (i.e., size of the embedding space). Results for
GRALG, RECTIFIER and Dual-RECTIFIER are reported as function of visited
symbols, expressed in percentage with respect to the maximum attainable number
of subgraphs that can be drawn from the training set. For Graph E-ABC, as instead,
the best point is selected on the grids in Figure 6.23 (that is, the 〈T,W 〉-pair) leading
to the maximum accuracy on the test set) and the average across all points in the grid.
In terms of accuracy, Graph E-ABC does not rank amongst the most performing
methods for any of the datasets. However, the following observations arise: for easy
classification problems such as Aids and Letter-L, the shift of Graph E-ABC (best
point) with respect to the best performing algorithm is negligible (≈ 1% and < 2%,
respectively). The same is not true for harder problems such as Grec and Letter-
H, where the accuracy shift with respect to the best point is approximately 15%
(Grec), 9% (Letter-H). For Letter-M, a mid-hardness classification problem,
the accuracy shift with respect to the best performing algorithm is approximately
4%.

In terms of alphabet size, Graph E-ABC ranks as the least suitable algorithm.
This is due to the ensemble-like nature of the synthesis of the model. In fact,
recall from Section 5.4.8, K different classifiers are in charge of classifying the
data in K different embedding spaces. Hence, if the size of each the K embedding
spaces is summed together, this inevitably leads to a drastically higher number of
symbols. However, if the average number of symbols that each model has to exploit
is considered (i.e., the sum of symbols divided by K models), it is possible to see
that the results are rather in line with the competitors for low subsampling rates
(i.e., more than 50%).

6.3.3 Comparison Against State of the Art Graph Classifiers

In this section, state-of-the-art graph classification systems are compared with
Graph E-ABC classifier. In Table 6.6, the accuracies on test set are shown with
competitors spanning different methodology for the graph classification. For Aids
dataset, most of the solutions reported achieved good accuracy values on the test
(≈ 99%). Similarly, Graph E-ABC achieved competitive performance on the test,
≈ 98% when the best point is considered.

Concerning the simplest case of Letter dataset, i.e. Letter-L, Graph E-ABC
with the best combination of W and T parameters has comparable accuracy (≈ 97%)
with respect to the State-of-the-Art classifiers which span in the range of 98% – 99%
correctly identified patterns. On the other hand, when the problems get harder the
performances slightly decreased when compared to the other methods. In Letter-
M, the proposed system attained approximately 86% whereas the best solution
reached by Lipschitz Embedding + SVM is able to identify correctly 95.9% of the
test data. Concerning Letter-H which is the dataset with the highest amount of

110 6. Experiments

Table 6.6. Comparison against state-of-the-art graph classification system in terms of
accuracy. Asterisks indicate that results refers to cross-validation rather than a separate
test set.

Technique AIDS GREC Letter-L Letter-M Letter-H Mutagenicity Reference

Bipartite Graph Matching + k-NN - 86.3 91.1 77.6 61.6 - [153]
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 74.9 [154]
Graph Edit Distance + k-NN 97.3 95.5 99.6 94 90 71.5 [152]

Graph of Words + k-NN - 97.5 98.8 - - - [69]
Graph of Words + kPCA + k-NN - 97.1 97.6 - - - [69]
Graph of Words + ICA + k-NN - 58.9 82.8 - - - [69]

Topological embedding 99.4 - - - - 77.2 [45, 168]
FMGE 99.0 - - - - 76.5 [45, 101]

Attribute Statistics 99.6 - - - - 76.5 [45, 70]
ODD ST+ kernel 82.06* - - - - - [48]

ODD ST TANH+ kernel 82.54* - - - - - [48]
Laplacian kernel 92.6 - - - - 70.2 [45, 30]
Treelet kernel 99.1 - - - - 77.1 [45, 64]

Treelet kernel with MKL 99.7 - - - - 77.6 [45, 66]
Weighted Jaccard Hypergraph kernel + SVM 99.5* - - - - 82* [117]

CGMM + linear SVM 84.16* - - - - - [6]
G-L-Perceptron - 70 95 64 70 - [109]
G-M-Perceptron - 75 98 87 81 - [109]

C-1NN - - 96 93 84 - [109]
C-M-1NN - - 98 81 71 - [109]

EigenGCN-1 - - - - - 80.1 [102]
EigenGCN-2 - - - - - 78.9 [102]
EigenGCN-3 - - - - - 79.5 [102]

GCN with logical descriptors - 96.93 96.64 85.27 79.91 - [80]
MPNN - 89.5 91.3 81.2 64.24 - [149]

MPNN (no set2set) - 92.98 94.8 86.1 75.7 - [149]
Hypergraph Embedding + SVM 99.3 - - - - 77.0 [114]

RECTIFIER + k-NN 99.07 95.57 97.12 92.16 91.60 - [118]
Dual RECTIFIER + k-NN 99.13 96.61 96.40 93.04 91.31 - [118]
Graph E-ABC (best point) 98.07 80.09 96.89 86.27 79.78 66.13 This work

distortion, Graph E-ABC has a negative shift in performance of approximately 12%
with respect to Lipschitz Embedding + SVM method, that it is confirmed as the
best solution for Letter problems with 92.5% of accuracy against ≈ 79% obtained
by Graph E-ABC.

For Mutagenicity dataset, the best solution is achieved by EigenGCN-1 (Graph
Convolutional Neural Network method) which show 80% of accuracy, whereas Graph
E-ABC is able to correctly recognize ≈ 66% of the test set data witnessing a negative
shift of 14%.

Finally for Grec dataset, Graph E-ABC performance is approximately 80% of
accuracy, with a negative shift of ≈ 17% when compared with the best State of the
Art method for this problem (Graph of Words + k-NN)) which achieved 97.5% of
correct identified patterns in test set.

The discussed results, where Graph E-ABC shows comparable performance with
respect to two datasets out of six, underline the prototypical facet of the proposed
method. As discussed in Section 5.5, different algorithmic aspect characterizing
Graph E-ABC, such as a more accurate method for defining the symbols/agents
qualities and an adaptive rewarding strategy, need to be investigate in order to
possibly improve the general performance.

111

Chapter 7

Conclusions

In this thesis, Granular Computing paradigm has been investigated for graph
embedding purposes in order to enable pattern recognition techniques in the graph
domain. GRALG has been introduced as a graph classification system leveraging
on the Information Granulation principles. The modular design of GRALG allows
exploring new possible solutions enhancing the system under different points of view
as the learning performances, the interpretability and computational aspects as well.
The GRALG framework and the novelties introduced have been used as starting
points for a novel graph classification system based on Multi-Agent System.

The first proposed technique presented in Section 4.1 addressed the possibility
of designing a Granular Computing-based classification system for labelled graphs,
i.e. GRALG, by performing stochastic extraction procedures on the training data in
order to improve the information granulation procedure in terms of running time
and memory footprint. The extractor is able to provide different subgraph topologies
according to the traversal strategies employed, namely Breadth First Search, Depth
First Search and a maximal clique enumeration method, i.e. Bron-Kerbosh algorithm.
The hypothesis behind a stochastic granulation procedure is that the information
(regularities), whether present in the dataset, can still be observed if only a randomly
chosen subset of the original training data is considered. Results show that sampling
subgraphs according to the proposed extraction methods drastically outperforms an
exhaustive procedure in terms of running times and, at the same time, keeps mostly
unaltered the classification performances achievable on the test set. Attained results
somehow prove our hypothesis, at least for the considered datasets, showing that
clustering techniques may be promising for synthesizing information granules even
with random subsampling.

Then in Section 4.2, a novel Class-Aware Granulator able to synthesize class-
specific symbols is proposed. The class-aware (stratified) granulation method lever-
ages on an enhanced extractor which operates in a class-aware fashion as well. The
hypothesis behind this method is that by composing different alphabets whose sym-
bols represent relevant and specific substructures for a given class, the embedding
space spanned by the symbolic histograms should exhibit a better separation amongst
the problem-related classes. Computational results show that the class-aware method
is effective (at least on the six considered datasets) by improving the classification
performances for most of the datasets when compared with the implementation

112 7. Conclusions

equipped with the stochastic extractor. Additionally, relevant improvements in
terms of accuracy can also be witnessed when compared with the baseline method
equipped with an exhaustive subgraphs extraction. If on one hand this method
shows interesting accuracy boosts, on the other hand rapid growth of the alphabet
cardinality is witnessed with respect to number of classes for the problem at hand.
To address this problem, two different approaches are investigated for bounding
the maximum number of clusters for each clustering ensemble procedure in the
Class-Aware strategy: a first method tries to limit the number of resulting clusters
by uniformly scaling the genetic algorithm upper bound for the maximum number of
clusters, where this scaled value is common to all granulation instances, regardless of
the class under analysis. A second method scales the upper bound in a class-aware
fashion as well by weighting the maximum number of clusters according to the
frequency of each class. Despite the latter case seems smarter and more suitable for
unbalanced classes, the resulting genetic code grows with respect to the former case
as each granulation instance will have its own bounds, increasing the search space.
The achieved results proved that both strategies are effective in synthesizing mean-
ingful embedding spaces while, at the same time, reducing the alphabet cardinality
and the computational time.

A novel optimization scheme is later introduced in Section 4.3 in order to
enable a class-specific metric learning for GRALG based classifier. Indeed, the
procedure relies on the same building blocks, yet it considers class-specific sets
of information granules, each of which is characterized by a proper class-specific
dissimilarity measure parameters as opposed to GRALG where a global optimization
strategy is deployed. Computational results show that while improving classification
performances with respect to plain GRALG equipped with a global metric learning
strategy, the proposed class specific metric learning variant provides a significant
reduction of pivotal information granules in the optimized alphabet, hence a more
interpretable model and a lower dimensional embedding space. The embedding
spaces returned by the proposed system have also been visually compared with the
previous work via t-SNE dimensionality reduction, thanks to which it is possible to
see that, on average, the class-specific metric learning variant leads to embedding
spaces with wider separation among patterns belonging to different classes, hence
with decision boundaries easier to approximate.

The dissertation then moved to Section 4.4, where six ‘relaxed’ variants of
symbolic histograms for graph classification purposes are proposed. Inspired by
the dissimilarity space embedding, the ‘relaxed’ variants take into consideration
the proper magnitude of the dissimilarities when matching the pivotal granules of
information against the constituent parts of the graphs to be embedded. Three
operators (mean, sum and median of distances) have been proposed to aggregate
such dissimilarity values, with additional three variants which include a thresholding
stage in order to account only for similarities that are ‘close enough’ with respect to
the information granule under analysis. The computational results corroborate the
effectiveness of the ‘relaxed’ variants. Especially when the thresholding stage is not
employed, the resulting set of pivotal symbols is drastically reduced with respect to
the thresholded variants (including the original symbolic histogram). In conclusion,
the non-thresholded mean and median emerged as the most interesting operators
in order to populate the (relaxed) symbolic histogram since they led to very small

113

embedding spaces while, at the same time, maintaining interesting performances in
terms of accuracy on the test set.

In Section 4.5, the synthesis of the optimal alphabet for the information gran-
ulation graph embedding procedure has been approached as a multi-objective op-
timization problem. Three independent objective functions drive the evolutionary
algorithm taking into account the performance of the classifier, the number of sym-
bols necessary for building the symbolic histograms and the structural complexity
of the SVM classifier. Furthermore, the possibility of selecting a small and finite
number of K Pareto-efficient solutions for building an ensemble of classifiers has
been explored. The peculiarity of the ensemble is that each classifier composing the
ensemble is a different solution drawn from the Pareto Frontier, hence operates in a
different embedding space and exploits different SVM hyperparameters, along with
different parameters for the dissimilarity measure. In order to study the behavior
of the ensemble (as a function of the number of classifiers), a uniform weighting
case alongside three different case studies (that differ on how much each objective
function weights in the selection of the solutions from the Pareto Frontier) and three
baseline cases (where three best solutions from the Pareto Frontier are the one that
minimizes each objective function, independently) has been investigated. According
to the computational results, Linear-SVMs are more suitable for being stacked in
the ensemble: in fact, RBF-SVMs require more classifiers in the ensemble to reach
a similar accuracy with respect to the baseline case. This, in turn, yields a higher
number of support vectors and a higher number of symbols. Another interesting
aspect that can be spotted from the attained results is that taking into account the
number of symbols rather than the number of support vectors has a more beneficial
impact on the performance of the classifiers: in fact, it has been observed that
joint optimization of performance and sparsity yields ensemble models that improve
against the baseline case in terms of the number of symbols and accuracy on the test
set. The same does not hold when TOPSIS selects Pareto optimal solutions by jointly
considering the number of support vectors and performance. Finally, results show
that there seem to exist a cut-off K value for which the ensemble is able to reach
the same performance of the baseline case that maximizes the accuracy: in many
cases, this yields an ensemble that shows a favorable behavior for another objective
function (be it the number of symbols or the number of support vectors). However,
once this cut-off K has passed, the growth of the number of support vectors and/or
symbols does not justify any possible improvements in terms of performance. Finally,
in Chapter 5, Graph E-ABC has been introduced as a graph classification system
inspired by GRALG framework. As opposed to GRALG, Graph E-ABC is designed
by following Multi-Agent System principles where two agent swarms collaborate
together by performing individually a two-fold optimization on the granulation phase
and alphabet synthesis. In this approach the division of tasks aimed at removing
the a-posteriori feature selection stage that in GRALG has been designed to run
after the alphabet synthesis phase. The granulation agents extract symbols from
a continuously different bucket of subgraphs, evaluating the results by addressing
also the opinion of other agents according to the consensus phase, as opposed to
the GRALG approach, where each individual leverage on a fixed set of candidate
granules. Furthermore, the alphabet of symbols in the final models, i.e. a set of
clusters, are individually extracted with a suitable parametric dissimilarity measure

114 7. Conclusions

pushing Graph E-ABC toward a local metric learning approach. Computational
results on open-access datasets show interesting results in terms of accuracy for 3
out of 6 datasets. However, these interesting accuracy results are counterbalanced
by a high dimensionality of the feature space. Despite promising, this prototypical
implementation has some drawbacks that might affect the behavior of Graph E-ABC.
Future works can be directed toward the investigation of good trade-off in the number
of model in the ensemble, that is, how the performance change as a function of Z. In
fact, while a higher number of models in the ensemble may lead to higher accuracy,
it also leads to a higher number of symbols (since, trivially, more embedding spaces
have to be tested). Another potential future work relates to the evaluation of symbol
qualities. In fact, the quality of each symbol is evaluated independently from other
selected symbols belonging to the same alphabet for embedding: this approach does
not allow to capture the correlation amongst symbols, that is, whether there exist
‘groups of symbols’ that are responsible for a fruitful embedding space.

115

Appendix A

Pareto Frontiers with TOPSIS
Selection

In this Appendix, we show the 3D Pareto Fronts (pairwise 2D projections are
omitted for brevity) highlighting the top K = 10 solutions returned by TOPSIS
under different weighting schemes. In particular, Figures A.1, A.2, A.3, A.4 and A.5
depict the Pareto Fronts for Aids, Grec, Letter-L, Letter-M and Letter-H,
respectively. Each Figure features a 4 × 2 layout, where each column correspond
to a classifier (Linear-SVM or RBF-SVM) and each row corresponds to a different
weighting scheme, according to the different scenarios presented in Section 6.2.5.
Selected solutions are highlighted via a color scale ranging from red (top ranked
solutions) to yellow (least ranked solutions), with the remaining solutions featuring
the ‘standard’ blue color (already in Figures 6.14–6.18). Worthy of attention is
Figure A.1 (dataset AIDS): in fact, since the N solutions are overlapping into two or
three points in the Pareto Front, selected solutions are overlapping to non-selected
solutions.

116 A. Pareto Frontiers with TOPSIS Selection

0

10

20

Performance
0.8

1

1.2

Complexity

-1

0

1

S
p

ar
si

ty

(a) Uniform weighting

0

10

20

Performance
0

5

10

Complexity

-1

0

1

S
p

ar
si

ty

(b) Uniform weighting

0

10

20

Performance
0.8

1

1.2

Complexity

-1

0

1

S
p

ar
si

ty

(c) Case Study A

0

10

20

Performance
0

5

10

Complexity

-1

0

1

S
p

ar
si

ty

(d) Case Study A

0

10

20

Performance
0.8

1

1.2

Complexity

-1

0

1

S
p

ar
si

ty

(e) Case Study B

0

10

20

Performance
0

5

10

Complexity

-1

0

1

S
p

ar
si

ty

(f) Case Study B

0

10

20

Performance
0.8

1

1.2

Complexity

-1

0

1

S
p

ar
si

ty

(g) Case Study C

0

10

20

Performance
0

5

10

Complexity

-1

0

1

S
p

ar
si

ty

(h) Case Study C

Figure A.1. Dataset: AIDS. Left panels correspond to Linear-SVM, right panels correspond
to RBF-SVM

117

0

50

100

Performance
0

50

100

Complexity

0

2

4

S
p

ar
si

ty

(a) Uniform weighting

0
20

40
60

80

Performance
0

50

Complexity

0

1

2

S
p
ar

si
ty

(b) Uniform weighting

0

50

100

Performance
0

50

100

Complexity

0

2

4

S
p

ar
si

ty

(c) Case Study A

0
20

40
60

80

Performance
0

50

Complexity

0

1

2
S

p
ar

si
ty

(d) Case Study A

0

50

100

Performance
0

50

100

Complexity

0

2

4

S
p

ar
si

ty

(e) Case Study B

0
20

40
60

80

Performance
0

50

Complexity

0

1

2

S
p
ar

si
ty

(f) Case Study B

0

50

100

Performance
0

50

100

Complexity

0

2

4

S
p

ar
si

ty

(g) Case Study C

0
20

40
60

80

Performance
0

50

Complexity

0

1

2

S
p
ar

si
ty

(h) Case Study C

Figure A.2. Dataset: GREC. Left panels correspond to Linear-SVM, right panels corre-
spond to RBF-SVM

118 A. Pareto Frontiers with TOPSIS Selection

0

50

100

Performance
0

50

100

Complexity

0

2

4

6

S
p

ar
si

ty

(a) Uniform weighting

0
20

40
60

Performance
0

50

Complexity

0

1

2

S
p

ar
si

ty

(b) Uniform weighting

0

50

100

Performance
0

50

100

Complexity

0

2

4

6

S
p

ar
si

ty

(c) Case Study A

0
20

40
60

Performance
0

50

Complexity

0

1

2

S
p

ar
si

ty

(d) Case Study A

0

50

100

Performance
0

50

100

Complexity

0

2

4

6

S
p

ar
si

ty

(e) Case Study B

0
20

40
60

Performance
0

50

Complexity

0

1

2

S
p

ar
si

ty

(f) Case Study B

0

50

100

Performance
0

50

100

Complexity

0

2

4

6

S
p

ar
si

ty

(g) Case Study C

0
20

40
60

Performance
0

50

Complexity

0

1

2

S
p

ar
si

ty

(h) Case Study C

Figure A.3. Dataset: Letter-L. Left panels correspond to Linear-SVM, right panels
correspond to RBF-SVM

119

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(a) Uniform weighting

0

50

100

Performance
0

50

100

Complexity

0

10

20

S
p

ar
si

ty

(b) Uniform weighting

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(c) Case Study A

0

50

100

Performance
0

50

100

Complexity

0

10

20
S

p
ar

si
ty

(d) Case Study A

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(e) Case Study B

0

50

100

Performance
0

50

100

Complexity

0

10

20

S
p

ar
si

ty

(f) Case Study B

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(g) Case Study C

0

50

100

Performance
0

50

100

Complexity

0

10

20

S
p

ar
si

ty

(h) Case Study C

Figure A.4. Dataset: Letter-M. Left panels correspond to Linear-SVM, right panels
correspond to RBF-SVM

120 A. Pareto Frontiers with TOPSIS Selection

0

50

100

Performance
0

50

100

Complexity

0

5

10
S

p
ar

si
ty

(a) Uniform weighting

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(b) Uniform weighting

0

50

100

Performance
0

50

100

Complexity

0

5

10

S
p

ar
si

ty

(c) Case Study A

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(d) Case Study A

0

50

100

Performance
0

50

100

Complexity

0

5

10

S
p

ar
si

ty

(e) Case Study B

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(f) Case Study B

0

50

100

Performance
0

50

100

Complexity

0

5

10

S
p

ar
si

ty

(g) Case Study C

0

50

100

Performance
0

50

100

Complexity

0

5

10

15

S
p

ar
si

ty

(h) Case Study C

Figure A.5. Dataset: Letter-H. Left panels correspond to Linear-SVM, right panels
correspond to RBF-SVM

121

Bibliography

[1] Abdullah, M. F. A., Sayeed, M. S., Muthu, K. S., Bashier, H. K.,
Azman, A., and Ibrahim, S. Z. Face recognition with symmetric local graph
structure (slgs). Expert Systems with Applications, 41 (2014), 6131.

[2] Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C., and Park,
J. S. Fast algorithms for projected clustering. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’99,
p. 61–72. Association for Computing Machinery, New York, NY, USA (1999).
ISBN 1581130848. doi:10.1145/304182.304188.

[3] Aittokallio, T. and Schwikowski, B. Graph-based methods for analysing
networks in cell biology. Briefings in Bioinformatics, 7 (2006), 243.

[4] Akoglu, L., Tong, H., and Koutra, D. Graph based anomaly detection
and description: a survey. Data Mining and Knowledge Discovery, 29 (2015),
626.

[5] Annamdas, K. K. and Rao, S. S. Multi-objective optimization of engineering
systems using game theory and particle swarm optimization. Engineering
Optimization, 41 (2009), 737. doi:10.1080/03052150902822141.

[6] Bacciu, D., Errica, F., and Micheli, A. Contextual graph markov model:
A deep and generative approach to graph processing. In 35th International
Conference on Machine Learning, ICML 2018, vol. 1, pp. 495–504 (2018).

[7] Bacciu, D., Errica, F., Micheli, A., and Podda, M. A gentle
introduction to deep learning for graphs. Neural Networks, 129 (2020),
203. Available from: https://www.sciencedirect.com/science/article/
pii/S0893608020302197, doi:https://doi.org/10.1016/j.neunet.2020.
06.006.

[8] Baldini., L., Martino., A., and Rizzi., A. Stochastic information granules
extraction for graph embedding and classification. In Proceedings of the 11th
International Joint Conference on Computational Intelligence - NCTA, (IJCCI
2019), pp. 391–402. INSTICC, SciTePress (2019). ISBN 978-989-758-384-1.
doi:10.5220/0008149403910402.

[9] Baldini., L., Martino., A., and Rizzi., A. Complexity vs. performance
in granular embedding spaces for graph classification. In Proceedings of the
12th International Joint Conference on Computational Intelligence - NCTA,,

http://dx.doi.org/10.1145/304182.304188
http://dx.doi.org/10.1080/03052150902822141
https://www.sciencedirect.com/science/article/pii/S0893608020302197
https://www.sciencedirect.com/science/article/pii/S0893608020302197
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.06.006
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.06.006
http://dx.doi.org/10.5220/0008149403910402

122 Bibliography

pp. 338–349. INSTICC, SciTePress (2020). ISBN 978-989-758-475-6. doi:
10.5220/0010109503380349.

[10] Baldini, L., Martino, A., and Rizzi, A. Exploiting cliques for granular
computing-based graph classification. In 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–9 (2020). doi:10.1109/IJCNN48605.
2020.9206690.

[11] Baldini, L., Martino, A., and Rizzi, A. A class-specific metric learning
approach for graph embedding by information granulation. Applied Soft
Computing, (2021), 108199.

[12] Baldini., L., Martino., A., and Rizzi., A. A multi-objective optimization
approach for the synthesis of granular computing-based classification systems in
the graph domain. SN Computer Science, (2021). Submitted for pubblication.

[13] Baldini., L., Martino., A., and Rizzi., A. Relaxed dissimilarity-based
symbolic histogram variants for granular graph embedding. In Proceedings
of the 13th International Joint Conference on Computational Intelligence -
NCTA,. INSTICC, SciTePress (2021).

[14] Baldini, L., Martino, A., and Rizzi, A. Towards a Class-Aware Infor-
mation Granulation for Graph Embedding and Classification, pp. 263–290.
Springer International Publishing, Cham (2021). ISBN 978-3-030-70594-
7. Available from: https://doi.org/10.1007/978-3-030-70594-7_11, doi:
10.1007/978-3-030-70594-7_11.

[15] Baldini., L. and Rizzi., A. A multi-agent approach for graph classification.
In Proceedings of the 13th International Joint Conference on Computational
Intelligence - NCTA,. INSTICC, SciTePress (2021).

[16] Bargiela, A. and Pedrycz, W. Toward a theory of granular computing for
human-centered information processing. IEEE Transactions on Fuzzy Systems,
16 (2008), 320. doi:10.1109/TFUZZ.2007.905912.

[17] Bargiela, A. and Pedrycz, W. Granular computing. In Handbook on
Computational Intelligence: Volume 1: Fuzzy Logic, Systems, Artificial Neural
Networks, and Learning Systems, pp. 43–66. World Scientific (2016).

[18] Belghache, E., Georgé, J.-P., and Gleizes, M.-P. Towards an
adaptive multi-agent system for dynamic big data analytics. In 2016
Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 753–758 (2016). doi:
10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0121.

[19] Bellet, A., Habrard, A., and Sebban, M. Metric learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 9 (2015), 1.

http://dx.doi.org/10.5220/0010109503380349
http://dx.doi.org/10.5220/0010109503380349
http://dx.doi.org/10.1109/IJCNN48605.2020.9206690
http://dx.doi.org/10.1109/IJCNN48605.2020.9206690
https://doi.org/10.1007/978-3-030-70594-7_11
http://dx.doi.org/10.1007/978-3-030-70594-7_11
http://dx.doi.org/10.1007/978-3-030-70594-7_11
http://dx.doi.org/10.1109/TFUZZ.2007.905912
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0121
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0121

Bibliography 123

[20] Bereta, M., Pedrycz, W., and Reformat, M. Local descriptors and
similarity measures for frontal face recognition: A comparative analysis. Jour-
nal of Visual Communication and Image Representation, 24 (2013), 1213 .
doi:10.1016/j.jvcir.2013.08.004.

[21] Beyer, H.-G. and Schwefel, H.-P. Evolution strategies – a comprehensive
introduction. Natural Computing, 1 (2002), 3. Available from: https://doi.
org/10.1023/A:1015059928466, doi:10.1023/A:1015059928466.

[22] Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. Graph neural
networks with convolutional arma filters. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, (2021), 1. doi:10.1109/TPAMI.2021.3054830.

[23] Bianchi, F. M., Livi, L., Rizzi, A., and Sadeghian, A. A granular
computing approach to the design of optimized graph classification systems.
Soft Computing, 18 (2014), 393.

[24] Bishop, C. M. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg (2006). ISBN
0387310738.

[25] Bollobás, B. Modern graph theory, vol. 184. Springer Science & Business
Media (2013).

[26] Borgwardt, K. M. Graph kernels. Ph.D. thesis, lmu (2007).

[27] Borowska, K. and Stepaniuk, J. A rough-granular approach to the
imbalanced data classification problem. Applied Soft Computing, 83 (2019),
105607. doi:10.1016/j.asoc.2019.105607.

[28] Bron, C. and Kerbosch, J. Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM, 16 (1973), 575. doi:10.1145/362342.
362367.

[29] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, 34 (2017), 18.

[30] Brun, L., Conte, D., Foggia, P., and Vento, M. A graph-kernel method
for re-identification. In Image Analysis and Recognition (edited by M. Kamel
and A. Campilho), pp. 173–182. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011). ISBN 978-3-642-21593-3.

[31] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203,
(2013).

[32] Bunke, H. Graph-based tools for data mining and machine learning. In
International Workshop on Machine Learning and Data Mining in Pattern
Recognition, pp. 7–19. Springer (2003).

http://dx.doi.org/10.1016/j.jvcir.2013.08.004
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1109/TPAMI.2021.3054830
http://dx.doi.org/10.1016/j.asoc.2019.105607
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1145/362342.362367

124 Bibliography

[33] Bunke, H. and Riesen, K. Recent advances in graph-based pattern recogni-
tion with applications in document analysis. Pattern Recognition, 44 (2011),
1057. Available from: https://www.sciencedirect.com/science/article/
pii/S003132031000542X, doi:https://doi.org/10.1016/j.patcog.2010.
11.015.

[34] Bunke, H. and Riesen, K. Towards the unification of structural and
statistical pattern recognition. Pattern Recognition Letters, 33 (2012),
811. Special Issue on Awards from ICPR 2010. Available from: https://
www.sciencedirect.com/science/article/pii/S0167865511001309, doi:
https://doi.org/10.1016/j.patrec.2011.04.017.

[35] Cai, H., Zheng, V. W., and Chang, K. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on
Knowledge & Data Engineering, 30 (2018), 1616. doi:10.1109/TKDE.2018.
2807452.

[36] Capillo, A., De Santis, E., Mascioli, F. M. F., and Rizzi, A. Mining
m-grams by a granular computing approach for text classification. In IJCCI,
pp. 350–360 (2020).

[37] Cavallari, S., Cambria, E., Cai, H., Chang, K. C.-C., and Zheng,
V. W. Embedding both finite and infinite communities on graphs [application
notes]. IEEE Computational Intelligence Magazine, 14 (2019), 39. doi:
10.1109/MCI.2019.2919396.

[38] Chang, C.-C. A boosting approach for supervised mahalanobis distance
metric learning. Pattern Recognition, 45 (2012), 844 . doi:10.1016/j.patcog.
2011.07.026.

[39] Chapelle, O., Scholkopf, B., and Zien, A. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural
Networks, 20 (2009), 542.

[40] Chen, X. Understanding spectral graph neural network. arXiv preprint
arXiv:2012.06660, (2020).

[41] Chen, Y., Garcia, E. K., Gupta, M. R., Rahimi, A., and Cazzanti, L.
Similarity-based classification: Concepts and algorithms. Journal of Machine
Learning Research, 10 (2009).

[42] Chiaselotti, G., Ciucci, D., and Gentile, T. Simple graphs in granular
computing. Information Sciences, 340-341 (2016), 279 . doi:10.1016/j.ins.
2015.12.042.

[43] Cios, K. J., Pedrycz, W., and Swiniarski, R. W. Data mining methods
for knowledge discovery, vol. 458. Springer Science & Business Media (2012).

[44] Conte, D., Foggia, P., Sansone, C., and Vento, M. Thirty years
of graph matching in pattern recognition. International journal of pattern
recognition and artificial intelligence, 18 (2004), 265.

https://www.sciencedirect.com/science/article/pii/S003132031000542X
https://www.sciencedirect.com/science/article/pii/S003132031000542X
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2010.11.015
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2010.11.015
https://www.sciencedirect.com/science/article/pii/S0167865511001309
https://www.sciencedirect.com/science/article/pii/S0167865511001309
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2011.04.017
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2011.04.017
http://dx.doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.1109/MCI.2019.2919396
http://dx.doi.org/10.1109/MCI.2019.2919396
http://dx.doi.org/10.1016/j.patcog.2011.07.026
http://dx.doi.org/10.1016/j.patcog.2011.07.026
http://dx.doi.org/10.1016/j.ins.2015.12.042
http://dx.doi.org/10.1016/j.ins.2015.12.042

Bibliography 125

[45] Conte, D., Ramel, J.-Y., Sidère, N., Luqman, M. M., Gaüzère,
B., Gibert, J., Brun, L., and Vento, M. A comparison of explicit
and implicit graph embedding methods for pattern recognition. In Graph-
Based Representations in Pattern Recognition (edited by W. G. Kropatsch,
N. M. Artner, Y. Haxhimusa, and X. Jiang), pp. 81–90. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013). ISBN 978-3-642-38221-5. doi:10.1007/
978-3-642-38221-5_9.

[46] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Intro-
duction to algorithms. MIT press (2009).

[47] Cover, T. and Hart, P. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13 (1967), 21.

[48] Da San Martino, G., Navarin, N., and Sperduti, A. Ordered de-
compositional dag kernels enhancements. Neurocomputing, 192 (2016), 92
.

[49] Darwen, P. and Yao, X. Every niching method has its niche: Fitness
sharing and implicit sharing compared. In International Conference on Parallel
Problem Solving from Nature, pp. 398–407. Springer (1996).

[50] De Santis, E., Martino, A., and Rizzi, A. An infoveillance system for
detecting and tracking relevant topics from italian tweets during the covid-19
event. IEEE Access, 8 (2020), 132527.

[51] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional
neural networks on graphs with fast localized spectral filtering. Advances in
neural information processing systems, 29 (2016), 3844.

[52] Del Vescovo, G., Livi, L., Mascioli, F. M. F., and Rizzi, A. On
the problem of modeling structured data with the minsod representative.
International Journal of Computer Theory and Engineering, 6 (2014), 9.

[53] Del Vescovo, G. and Rizzi, A. Automatic classification of graphs by
symbolic histograms. In 2007 IEEE International Conference on Granular
Computing (GRC 2007), pp. 410–410. IEEE (2007).

[54] Dey, A., Broumi, S., Son, L. H., Bakali, A., Talea, M., and
Smarandache, F. A new algorithm for finding minimum spanning trees
with undirected neutrosophic graphs. Granular Computing, 4 (2019), 63.
doi:10.1007/s41066-018-0084-7.

[55] Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., and Giuliani,
A. Protein contact networks: an emerging paradigm in chemistry. Chemical
Reviews, 113 (2013), 1598.

[56] Ding, S., Du, M., and Zhu, H. Survey on granularity clustering. Cognitive
neurodynamics, 9 (2015), 561.

[57] Dipert, R. R. The mathematical structure of the world: The world as graph.
The journal of philosophy, 94 (1997), 329.

http://dx.doi.org/10.1007/978-3-642-38221-5_9
http://dx.doi.org/10.1007/978-3-642-38221-5_9
http://dx.doi.org/10.1007/s41066-018-0084-7

126 Bibliography

[58] Dubois, D. and Prade, H. Bridging gaps between several forms of granular
computing. Granular Computing, 1 (2016), 115.

[59] Duin, R. P. and Pękalska, E. The dissimilarity space: Bridging structural
and statistical pattern recognition. Pattern Recognition Letters, 33 (2012),
826.

[60] Emmerich, M. T. and Deutz, A. H. A tutorial on multiobjective optimiza-
tion: fundamentals and evolutionary methods. Natural computing, 17 (2018),
585.

[61] Entringer, R. and Erdös, P. On the number of unique
subgraphs of a graph. Journal of Combinatorial Theory, Series
B, 13 (1972), 112. Available from: https://www.sciencedirect.
com/science/article/pii/0095895672900470, doi:https://doi.org/10.
1016/0095-8956(72)90047-0.

[62] Foggia, P., Genna, R., and Vento, M. Symbolic vs. connectionist learning:
an experimental comparison in a structured domain. IEEE Transactions on
Knowledge and Data Engineering, 13 (2001), 176. doi:10.1109/69.917559.

[63] Gao, X., Xiao, B., Tao, D., and Li, X. A survey of graph edit distance.
Pattern Analysis and applications, 13 (2010), 113.

[64] Gaüzère, B., Brun, L., and Villemin, D. Two new graphs kernels
in chemoinformatics. Pattern Recogn. Lett., 33 (2012), 2038–2047. doi:
10.1016/j.patrec.2012.03.020.

[65] Gaüzère, B., Grenier, P.-A., Brun, L., and Villemin, D. Treelet kernel
incorporating cyclic, stereo and inter pattern information in chemoinformatics.
Pattern Recognition, 48 (2015), 356.

[66] Gaüzère, B., Brun, L., Villemin, D., and Brun, M. Graph kernels based
on relevant patterns and cycle information for chemoinformatics. In Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012), pp.
1775–1778 (2012).

[67] Giampieri, M., Baldini, L., De Santis, E., and Rizzi, A. Facing big
data by an agent-based multimodal evolutionary approach to classification. In
2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2020). doi:10.1109/IJCNN48605.2020.9206966.

[68] Giampieri, M., De Santis, E., Rizzi, A., and Mascioli, F. M. F. A
supervised classification system based on evolutive multi-agent clustering for
smart grids faults prediction. In 2018 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8 (2018). doi:10.1109/IJCNN.2018.8489145.

[69] Gibert, J., Valveny, E., and Bunke, H. Dimensionality reduction for
graph of words embedding. In Graph-Based Representations in Pattern Recog-
nition (edited by X. Jiang, M. Ferrer, and A. Torsello), pp. 22–31. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011). ISBN 978-3-642-20844-7.

https://www.sciencedirect.com/science/article/pii/0095895672900470
https://www.sciencedirect.com/science/article/pii/0095895672900470
http://dx.doi.org/https://doi.org/10.1016/0095-8956(72)90047-0
http://dx.doi.org/https://doi.org/10.1016/0095-8956(72)90047-0
http://dx.doi.org/10.1109/69.917559
http://dx.doi.org/10.1016/j.patrec.2012.03.020
http://dx.doi.org/10.1016/j.patrec.2012.03.020
http://dx.doi.org/10.1109/IJCNN48605.2020.9206966
http://dx.doi.org/10.1109/IJCNN.2018.8489145

Bibliography 127

[70] Gibert, J., Valveny, E., and Bunke, H. Graph embedding in vector
spaces by node attribute statistics. Pattern Recognition, 45 (2012), 3072.

[71] Goldberg, D. E., Richardson, J., et al. Genetic algorithms with
sharing for multimodal function optimization. In Genetic algorithms and their
applications: Proceedings of the Second International Conference on Genetic
Algorithms, pp. 41–49. Hillsdale, NJ: Lawrence Erlbaum (1987).

[72] Gorodetskii, V. Self-organization and multiagent systems: I. models of
multiagent self-organization. Journal of Computer and Systems Sciences
International, 51 (2012), 256.

[73] Guo, Y., Dibeklioglu, H., and Van der Maaten, L. Graph-based kinship
recognition. In 2014 22nd International Conference on Pattern Recognition,
pp. 4287–4292. IEEE (2014).

[74] Henni, K., Mezghani, N., and Mitiche, A. Cluster density properties
define a graph for effective pattern feature selection. IEEE Access, 8 (2020),
62841. doi:10.1109/ACCESS.2020.2981265.

[75] Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel methods in
machine learning. The annals of statistics, 36 (2008), 1171.

[76] Horgan, J. From complexity to perplexity. Scientific American, 272 (1995),
104.

[77] Howard, N. and Lieberman, H. Brainspace: Relating neuroscience to
knowledge about everyday life. Cognitive Computation, 6 (2014), 35. doi:
10.1007/s12559-012-9171-2.

[78] Huan, J., Bandyopadhyay, D., Wang, W., Snoeyink, J., Prins, J.,
and Tropsha, A. Comparing graph representations of protein structure for
mining family-specific residue-based packing motifs. Journal of Computational
Biology, 12 (2005), 657.

[79] Hwang, C.-L., Lai, Y.-J., and Liu, T.-Y. A new approach for multiple
objective decision making. Computers & Operations Research, 20 (1993), 889.
doi:10.1016/0305-0548(93)90109-V.

[80] Kajla, N. I., Missen, M. M. S., Luqman, M. M., and Coustaty, M.
Graph neural networks using local descriptions in attributed graphs: An
application to symbol recognition and hand written character recognition.
IEEE Access, 9 (2021), 99103. doi:10.1109/ACCESS.2021.3096845.

[81] Kaski, S. and Peltonen, J. Dimensionality reduction for data visualization
[applications corner]. IEEE signal processing magazine, 28 (2011), 100.

[82] Katina, P. F., Keating, C. B., Gheorghe, A. V., and Masera, M.
Complex system governance for critical cyber-physical systems. International
Journal of Critical Infrastructures, 13 (2017), 168.

http://dx.doi.org/10.1109/ACCESS.2020.2981265
http://dx.doi.org/10.1007/s12559-012-9171-2
http://dx.doi.org/10.1007/s12559-012-9171-2
http://dx.doi.org/10.1016/0305-0548(93)90109-V
http://dx.doi.org/10.1109/ACCESS.2021.3096845

128 Bibliography

[83] Kiani-Moghaddam, M., Shivaie, M., and Weinsier, P. D. Introduction
to Multi-objective Optimization and Decision-Making Analysis, pp. 21–45.
Springer International Publishing, Cham (2019). ISBN 978-3-030-12044-3.
doi:10.1007/978-3-030-12044-3_2.

[84] Kim, J. and Wilhelm, T. What is a complex graph? Physica A: Statistical
Mechanics and its Applications, 387 (2008), 2637.

[85] Kipf, T. N. and Welling, M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, (2016).

[86] Kolesnikova, O. Complex system view on natural language. POLIBITS, 62
(2020), 21.

[87] Kormushev, P., Calinon, S., and Caldwell, D. G. Reinforcement
learning in robotics: Applications and real-world challenges. Robotics, 2
(2013), 122.

[88] Kung, S. Y. Kernel methods and machine learning. Cambridge University
Press (2014).

[89] Kyriakopoulou, A. and Kalamboukis, T. Text classification using clus-
tering. In Proceedings of the Discovery Challenge Workshop at ECML/PKDD
2006, pp. 28–38 (2006).

[90] Ladyman, J., Lambert, J., and Wiesner, K. What is a complex system?
European Journal for Philosophy of Science, 3 (2013), 33.

[91] Li, X., Epitropakis, M. G., Deb, K., and Engelbrecht, A. Seeking mul-
tiple solutions: An updated survey on niching methods and their applications.
IEEE Transactions on Evolutionary Computation, 21 (2016), 518.

[92] Lin, T. Y., Yao, Y. Y., and Zadeh, L. A. Data mining, rough sets and
granular computing, vol. 95. Physica (2013).

[93] Liu, H. and Cocea, M. Granular computing based machine learning: a big
data processing approach. Springer (2018).

[94] Liu, Y. and Kirchhoff, K. Graph-based semisupervised learning for acoustic
modeling in automatic speech recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24 (2016), 1946.

[95] Livi, L. and Rizzi, A. The graph matching problem. Pattern Analysis and
Applications, 16 (2013), 253.

[96] Livi, L., Rizzi, A., and Sadeghian, A. Granular modeling and comput-
ing approaches for intelligent analysis of non-geometric data. Applied Soft
Computing, 27 (2015), 567.

[97] Livi, L. and Sadeghian, A. Data granulation by the principles
of uncertainty. Pattern Recognition Letters, 67 (2015), 113. Gran-
ular Mining and Knowledge Discovery. Available from: https://

http://dx.doi.org/10.1007/978-3-030-12044-3_2
https://www.sciencedirect.com/science/article/pii/S0167865515001257
https://www.sciencedirect.com/science/article/pii/S0167865515001257

Bibliography 129

www.sciencedirect.com/science/article/pii/S0167865515001257, doi:
https://doi.org/10.1016/j.patrec.2015.04.008.

[98] Lo, Y.-C., Rensi, S. E., Torng, W., and Altman, R. B. Machine
learning in chemoinformatics and drug discovery. Drug Discovery Today, 23
(2018), 1538.

[99] Luce, R. D. and Perry, A. D. A method of matrix analysis of group
structure. Psychometrika, 14 (1949), 95. doi:10.1007/BF02289146.

[100] Luong, N. C., Hoang, D. T., Gong, S., Niyato, D., Wang, P., Liang,
Y.-C., and Kim, D. I. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Communications Surveys &
Tutorials, 21 (2019), 3133.

[101] Luqman, M. M., Ramel, J.-Y., Lladós, J., and Brouard, T. Fuzzy
multilevel graph embedding. Pattern Recognition, 46 (2013), 551. doi:
10.1016/j.patcog.2012.07.029.

[102] Ma, Y., Wang, S., Aggarwal, C. C., and Tang, J. Graph convolutional
networks with eigenpooling. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, KDD ’19, p.
723–731. Association for Computing Machinery, New York, NY, USA (2019).
ISBN 9781450362016. doi:10.1145/3292500.3330982.

[103] Mahmud, M., Kaiser, M. S., Hussain, A., and Vassanelli, S. Appli-
cations of deep learning and reinforcement learning to biological data. IEEE
transactions on neural networks and learning systems, 29 (2018), 2063.

[104] Maiorino, E., Possemato, F., Modugno, V., and Rizzi, A. Information
granules filtering for inexact sequential pattern mining by evolutionary compu-
tation. In Proceedings of the International Joint Conference on Computational
Intelligence - Volume 1, IJCCI 2014, p. 104–111. SCITEPRESS - Science and
Technology Publications, Lda, Setubal, PRT (2014). ISBN 9789897580529.
doi:10.5220/0005124901040111.

[105] Maiorino, E., Possemato, F., Modugno, V., and Rizzi, A. Noise sensi-
tivity of an information granules filtering procedure by genetic optimization
for inexact sequential pattern mining. In Computational Intelligence (edited
by J. J. Merelo, A. Rosa, J. M. Cadenas, A. Dourado, K. Madani, and J. Fil-
ipe), pp. 131–150. Springer International Publishing, Cham (2016). ISBN
978-3-319-26393-9. doi:10.1007/978-3-319-26393-9_9.

[106] Mairal, J. and Vert, J.-P. Machine learning with kernel methods. Lecture
Notes, January, 10 (2018).

[107] Marino, K., Salakhutdinov, R., and Gupta, A. The more you know:
Using knowledge graphs for image classification. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 20–28 (2017).
doi:10.1109/CVPR.2017.10.

https://www.sciencedirect.com/science/article/pii/S0167865515001257
https://www.sciencedirect.com/science/article/pii/S0167865515001257
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2015.04.008
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2015.04.008
http://dx.doi.org/10.1007/BF02289146
http://dx.doi.org/10.1016/j.patcog.2012.07.029
http://dx.doi.org/10.1016/j.patcog.2012.07.029
http://dx.doi.org/10.1145/3292500.3330982
http://dx.doi.org/10.5220/0005124901040111
http://dx.doi.org/10.1007/978-3-319-26393-9_9
http://dx.doi.org/10.1109/CVPR.2017.10

130 Bibliography

[108] Marler, R. T. and Arora, J. S. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization, 26
(2004), 369. doi:10.1007/s00158-003-0368-6.

[109] Martineau, M., Raveaux, R., Conte, D., and Venturini, G. Learning
error-correcting graph matching with a multiclass neural network. Pattern
Recognition Letters, 134 (2020), 68 . Applications of Graph-based Techniques
to Pattern Recognition. doi:10.1016/j.patrec.2018.03.031.

[110] Martino, A., De Santis, E., and Rizzi, A. An ecology-based index for
text embedding and classification. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE (2020).

[111] Martino, A., Frattale Mascioli, F. M., and Rizzi, A. On the optimiza-
tion of embedding spaces via information granulation for pattern recognition.
In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2020). doi:10.1109/IJCNN48605.2020.9206830.

[112] Martino, A., Giampieri, M., Luzi, M., and Rizzi, A. Data Mining
by Evolving Agents for Clusters Discovery and Metric Learning, pp. 23–35.
Springer International Publishing, Cham (2019). ISBN 978-3-319-95098-3.
Available from: https://doi.org/10.1007/978-3-319-95098-3_3, doi:10.
1007/978-3-319-95098-3_3.

[113] Martino, A., Giuliani, A., and Rizzi, A. Granular computing techniques
for bioinformatics pattern recognition problems in non-metric spaces. In
Computational Intelligence for Pattern Recognition, pp. 53–81. Springer (2018).

[114] Martino, A., Giuliani, A., and Rizzi, A. (hyper) graph embedding and
classification via simplicial complexes. Algorithms, 12 (2019), 223.

[115] Martino, A., Giuliani, A., Todde, V., Bizzarri, M., and Rizzi, A.
Metabolic networks classification and knowledge discovery by information
granulation. Computational Biology and Chemistry, (2019), 107187. doi:
10.1016/j.compbiolchem.2019.107187.

[116] Martino, A., Maiorino, E., Giuliani, A., Giampieri, M., and Rizzi,
A. Supervised approaches for function prediction of proteins contact networks
from topological structure information. In Image Analysis (edited by P. Sharma
and F. M. Bianchi), pp. 285–296. Springer International Publishing, Cham
(2017). ISBN 978-3-319-59126-1. doi:10.1007/978-3-319-59126-1_24.

[117] Martino, A. and Rizzi, A. (hyper)graph kernels over simplicial complexes.
Entropy, 22 (2020). doi:10.3390/e22101155.

[118] Martino, A. and Rizzi, A. An enhanced filtering-based information gran-
ulation procedure for graph embedding and classification. IEEE Access, 9
(2021), 15426. doi:10.1109/ACCESS.2021.3053085.

[119] Martino, A., Rizzi, A., and Frattale Mascioli, F. M. Supervised
approaches for protein function prediction by topological data analysis. In

http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1016/j.patrec.2018.03.031
http://dx.doi.org/10.1109/IJCNN48605.2020.9206830
https://doi.org/10.1007/978-3-319-95098-3_3
http://dx.doi.org/10.1007/978-3-319-95098-3_3
http://dx.doi.org/10.1007/978-3-319-95098-3_3
http://dx.doi.org/10.1016/j.compbiolchem.2019.107187
http://dx.doi.org/10.1016/j.compbiolchem.2019.107187
http://dx.doi.org/10.1007/978-3-319-59126-1_24
http://dx.doi.org/10.3390/e22101155
http://dx.doi.org/10.1109/ACCESS.2021.3053085

Bibliography 131

2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2018). doi:10.1109/IJCNN.2018.8489307.

[120] Miettinen, K. M. Nonlinear Multiobjective Optimization, vol. 12 of Interna-
tional Series in Operations Research & Management Science. Springer Science
& Business Media, 1 edn. (1998).

[121] Mihalcea, R. and Radev, D. Graph-based Natural Language Processing
and Information Retrieval. Cambridge university press (2011).

[122] Mitchell, M. Complex systems: Network thinking. Artificial Intelli-
gence, 170 (2006), 1194. Special Review Issue. Available from: https://
www.sciencedirect.com/science/article/pii/S000437020600083X, doi:
https://doi.org/10.1016/j.artint.2006.10.002.

[123] Modugno, V., Possemato, F., and Rizzi, A. Combining piecewise lin-
ear regression and a granular computing framework for financial time series
classification. In IJCCI (ECTA), pp. 281–288 (2014).

[124] Molina-Lozano, H. A new fast fuzzy cocke–younger–kasami algorithm
for dna strings analysis. International Journal of Machine Learning and
Cybernetics, 2 (2011), 209.

[125] Monostori, L., Váncza, J., and Kumara, S. R. Agent-based systems for
manufacturing. CIRP annals, 55 (2006), 697.

[126] Moon, J. W. and Moser, L. On cliques in graphs. Israel Journal of
Mathematics, 3 (1965), 23. doi:10.1007/BF02760024.

[127] Mozer, M. C. A focused back-propagation algorithm for temporal pattern
recognition. Complex systems, 3 (1989), 349.

[128] Mu, Y., Ding, W., and Tao, D. Local discriminative distance metrics
ensemble learning. Pattern Recognition, 46 (2013), 2337 . doi:10.1016/j.
patcog.2013.01.010.

[129] Ngatchou, P., Zarei, A., and El-Sharkawi, A. Pareto multi objec-
tive optimization. In Proceedings of the 13th International Conference on,
Intelligent Systems Application to Power Systems, pp. 84–91. IEEE (2005).

[130] Niepert, M., Ahmed, M., and Kutzkov, K. Learning convolutional neural
networks for graphs. In International conference on machine learning, pp.
2014–2023. PMLR (2016).

[131] Nowozin, S. and Lampert, C. H. Structured Learning and Prediction in
Computer Vision. Now publishers Inc (2011).

[132] Oliveto, P. S., Sudholt, D., and Zarges, C. On the benefits and risks
of using fitness sharing for multimodal optimisation. Theoretical Computer
Science, 773 (2019), 53.

http://dx.doi.org/10.1109/IJCNN.2018.8489307
https://www.sciencedirect.com/science/article/pii/S000437020600083X
https://www.sciencedirect.com/science/article/pii/S000437020600083X
http://dx.doi.org/https://doi.org/10.1016/j.artint.2006.10.002
http://dx.doi.org/https://doi.org/10.1016/j.artint.2006.10.002
http://dx.doi.org/10.1007/BF02760024
http://dx.doi.org/10.1016/j.patcog.2013.01.010
http://dx.doi.org/10.1016/j.patcog.2013.01.010

132 Bibliography

[133] Panait, L. and Luke, S. Cooperative multi-agent learning: The state of
the art. Autonomous agents and multi-agent systems, 11 (2005), 387.

[134] Paulsen, V. I. and Raghupathi, M. An introduction to the theory of
reproducing kernel Hilbert spaces, vol. 152. Cambridge university press (2016).

[135] Pedrycz, A., Hirota, K., Pedrycz, W., and Dong, F. Granular repre-
sentation and granular computing with fuzzy sets. Fuzzy Sets and Systems,
203 (2012), 17.

[136] Pedrycz, W. Knowledge-based clustering: from data to information granules.
John Wiley & Sons (2005).

[137] Pedrycz, W. Human centricity in computing with fuzzy sets: an inter-
pretability quest for higher order granular constructs. Journal of Ambient
Intelligence and Humanized Computing, 1 (2010), 65.

[138] Pedrycz, W. Proximity-based clustering: a search for structural consistency
in data with semantic blocks of features. IEEE Transactions on Fuzzy Systems,
21 (2013), 978.

[139] Pedrycz, W. Granular computing: analysis and design of intelligent systems.
CRC press (2016).

[140] Pedrycz, W. and Homenda, W. Building the fundamentals of granular
computing: A principle of justifiable granularity. Applied Soft Computing, 13
(2013), 4209 . doi:10.1016/j.asoc.2013.06.017.

[141] Pedrycz, W., Succi, G., Sillitti, A., and Iljazi, J. Data description:
A general framework of information granules. Knowledge-Based Systems, 80
(2015), 98.

[142] Perrot, M., Habrard, A., Muselet, D., and Sebban, M. Modeling
perceptual color differences by local metric learning. In European Conference
on Computer Vision, pp. 96–111. Springer (2014).

[143] Peters, G. and Weber, R. Dcc: a framework for dynamic granular cluster-
ing. Granular Computing, 1 (2016), 1. doi:10.1007/s41066-015-0012-z.

[144] Possemato, F., Paschero, M., Livi, L., Rizzi, A., and Sadeghian,
A. On the impact of topological properties of smart grids in power losses
optimization problems. International Journal of Electrical Power & Energy
Systems, 78 (2016), 755 . doi:10.1016/j.ijepes.2015.12.022.

[145] Possemato, F. and Rizzi, A. Automatic text categorization by a granular
computing approach: Facing unbalanced data sets. In The 2013 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2013). doi:10.1109/
IJCNN.2013.6707082.

[146] Powers, D. M. W. Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2 (2011), 37.

http://dx.doi.org/10.1016/j.asoc.2013.06.017
http://dx.doi.org/10.1007/s41066-015-0012-z
http://dx.doi.org/10.1016/j.ijepes.2015.12.022
http://dx.doi.org/10.1109/IJCNN.2013.6707082
http://dx.doi.org/10.1109/IJCNN.2013.6707082

Bibliography 133

[147] Qi, S., Wang, W., Jia, B., Shen, J., and Zhu, S.-C. Learning human-
object interactions by graph parsing neural networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 401–417 (2018).

[148] Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput,
D. S., Srivastava, G., and Baker, T. Analysis of dimensionality reduction
techniques on big data. IEEE Access, 8 (2020), 54776.

[149] Riba, P., Dutta, A., Lladós, J., and Fornés, A. Graph-based deep
learning for graphics classification. In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol. 02, pp. 29–30 (2017).
doi:10.1109/ICDAR.2017.262.

[150] Ribeiro, P., Paredes, P., Silva, M. E. P., Aparicio, D., and Silva,
F. A survey on subgraph counting: Concepts, algorithms, and applications
to network motifs and graphlets. ACM Comput. Surv., 54 (2021). Available
from: https://doi.org/10.1145/3433652, doi:10.1145/3433652.

[151] Riesen, K. Structural pattern recognition with graph edit distance. In
Advances in computer vision and pattern recognition. Springer (2015).

[152] Riesen, K. and Bunke, H. Iam graph database repository for graph based
pattern recognition and machine learning. In Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR), pp. 287–297. Springer (2008).

[153] Riesen, K. and Bunke, H. Approximate graph edit distance computation by
means of bipartite graph matching. Image and Vision Computing, 27 (2009),
950 . 7th IAPR-TC15 Workshop on Graph-based Representations (GbR 2007).

[154] Riesen, K. and Bunke, H. Graph classification by means of lipschitz
embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39 (2009), 1472.

[155] Riesen, K. and Bunke, H. Graph classification and clustering based on
vector space embedding, vol. 77. World Scientific (2010).

[156] Rizzi, A. and Del Vescovo, G. Automatic image classification by a
granular computing approach. In 2006 16th IEEE Signal Processing Society
Workshop on Machine Learning for Signal Processing, pp. 33–38 (2006). doi:
10.1109/MLSP.2006.275517.

[157] Rizzi, A., Del Vescovo, G., Livi, L., and Frattale Mascioli, F. M.
A new granular computing approach for sequences representation and clas-
sification. In The 2012 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8 (2012). doi:10.1109/IJCNN.2012.6252680.

[158] Rizzi, A., Panella, M., and Frattale Mascioli, F. M. Adaptive
resolution min-max classifiers. IEEE Transactions on Neural Networks, 13
(2002), 402. doi:10.1109/72.991426.

http://dx.doi.org/10.1109/ICDAR.2017.262
https://doi.org/10.1145/3433652
http://dx.doi.org/10.1145/3433652
http://dx.doi.org/10.1109/MLSP.2006.275517
http://dx.doi.org/10.1109/MLSP.2006.275517
http://dx.doi.org/10.1109/IJCNN.2012.6252680
http://dx.doi.org/10.1109/72.991426

134 Bibliography

[159] Rizzi, A., Possemato, F., Livi, L., Sebastiani, A., Giuliani, A., and
Mascioli, F. M. F. A dissimilarity-based classifier for generalized sequences
by a granular computing approach. In The 2013 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8 (2013). doi:10.1109/IJCNN.2013.
6707041.

[160] Roszkowska, E. Multi-criteria decision making models by applying the
topsis method to crisp and interval data. Multiple Criteria Decision Making,
6 (2011), 200.

[161] Rylatt, R. M., et al. Exploring smart grid possibilities: A complex systems
modelling approach. (2015).

[162] Salkind, N. J. Encyclopedia of educational psychology. SAGE publications
(2008).

[163] Sareni, B. and Krahenbuhl, L. Fitness sharing and niching methods
revisited. IEEE transactions on Evolutionary Computation, 2 (1998), 97.

[164] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov,
I., and Welling, M. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference, pp. 593–607. Springer
(2018).

[165] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L.
New support vector algorithms. Neural computation, 12 (2000), 1207.

[166] Serratosa, F. Computation of graph edit distance: Reasoning about opti-
mality and speed-up. Image and Vision Computing, 40 (2015), 38.

[167] Shen, C., Kim, J., Liu, F., Wang, L., and van den Hengel, A. Efficient
dual approach to distance metric learning. IEEE Transactions on Neural
Networks and Learning Systems, 25 (2014), 394.

[168] Sidère, N., Héroux, P., and Ramel, J.-Y. Vector representation of
graphs: Application to the classification of symbols and letters. In 2009 10th
International Conference on Document Analysis and Recognition, pp. 681–685
(2009). doi:10.1109/ICDAR.2009.218.

[169] Silver, D., et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362 (2018), 1140.

[170] Soman, K., Loganathan, R., and Ajay, V. Machine learning with SVM
and other kernel methods. PHI Learning Pvt. Ltd. (2009).

[171] Takigawa, I. and Mamitsuka, H. Graph mining: procedure, application
to drug discovery and recent advances. Drug Discovery Today, 18 (2013), 50.

[172] Theodoridis, S. and Koutroumbas, K. Pattern Recognition, Fourth
Edition. Academic Press, Inc., USA, 4th edn. (2008). ISBN 1597492728.

http://dx.doi.org/10.1109/IJCNN.2013.6707041
http://dx.doi.org/10.1109/IJCNN.2013.6707041
http://dx.doi.org/10.1109/ICDAR.2009.218

Bibliography 135

[173] Tichy, N. An analysis of clique formation and structure in organizations.
Administrative Science Quarterly, 18 (1973), 194.

[174] Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal
of machine learning research, 9 (2008).

[175] Van Engelen, J. E. and Hoos, H. H. A survey on semi-supervised learning.
Machine Learning, 109 (2020), 373.

[176] Varnek, A. and Baskin, I. I. Chemoinformatics as a theoretical chemistry
discipline. Molecular Informatics, 30 (2011), 20.

[177] Wang, F. and Sun, J. Survey on distance metric learning and dimensionality
reduction in data mining. Data Mining and Knowledge Discovery, 29 (2015),
534. doi:10.1007/s10618-014-0356-z.

[178] Wang, G., Yang, J., and Xu, J. Granular computing: from granularity
optimization to multi-granularity joint problem solving. Granular Computing,
2 (2017), 105. doi:10.1007/s41066-016-0032-3.

[179] Wang, S., Wan, J., Zhang, D., Li, D., and Zhang, C. Towards smart
factory for industry 4.0: a self-organized multi-agent system with big data
based feedback and coordination. Computer networks, 101 (2016), 158.

[180] Wang, X. and Gupta, A. Videos as space-time region graphs. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 399–417 (2018).

[181] Wang, X., Pedrycz, W., Gacek, A., and Liu, X. From numeric data
to information granules: A design through clustering and the principle of
justifiable granularity. Knowledge-Based Systems, 101 (2016), 100.

[182] Wang, Z. and Rangaiah, G. P. Application and analysis of methods
for selecting an optimal solution from the pareto-optimal front obtained by
multiobjective optimization. Industrial & Engineering Chemistry Research, 56
(2017), 560. doi:10.1021/acs.iecr.6b03453.

[183] Wasserman, L. Topological data analysis. Annual Review of Statis-
tics and Its Application, 5 (2018), 501. Available from: https:
//doi.org/10.1146/annurev-statistics-031017-100045, arXiv:https:
//doi.org/10.1146/annurev-statistics-031017-100045, doi:10.1146/
annurev-statistics-031017-100045.

[184] Weiß, G. and Dillenbourg, P. What is’ multi’in multiagent learning.
Collaborative learning. Cognitive and computational approaches, (1999), 64.

[185] William-West, T. O. and Singh, D. Information granulation for rough
fuzzy hypergraphs. Granular Computing, 3 (2018), 75. doi:10.1007/
s41066-017-0057-2.

[186] Wong, K.-C. Evolutionary multimodal optimization: A short survey, pp.
1–15. Nova Science Publishers, Inc. (2015). ISBN 9781634826945.

http://dx.doi.org/10.1007/s10618-014-0356-z
http://dx.doi.org/10.1007/s41066-016-0032-3
http://dx.doi.org/10.1021/acs.iecr.6b03453
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1146/annurev-statistics-031017-100045
http://arxiv.org/abs/https://doi.org/10.1146/annurev-statistics-031017-100045
http://arxiv.org/abs/https://doi.org/10.1146/annurev-statistics-031017-100045
http://dx.doi.org/10.1146/annurev-statistics-031017-100045
http://dx.doi.org/10.1146/annurev-statistics-031017-100045
http://dx.doi.org/10.1007/s41066-017-0057-2
http://dx.doi.org/10.1007/s41066-017-0057-2

136 Bibliography

[187] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y.
A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, (2020).

[188] Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu, J.
Explainable ai: A brief survey on history, research areas, approaches and
challenges. In Natural Language Processing and Chinese Computing (edited
by J. Tang, M.-Y. Kan, D. Zhao, S. Li, and H. Zan), pp. 563–574. Springer
International Publishing, Cham (2019). ISBN 978-3-030-32236-6.

[189] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph
neural networks? In International Conference on Learning Representations,
pp. 1–17 (2019).

[190] Yang, J., Wang, G., and Zhang, Q. Knowledge distance measure in
multigranulation spaces of fuzzy equivalence relations. Information Sciences,
448 (2018), 18. doi:10.1016/j.ins.2018.03.026.

[191] Yang, L., Jin, R., Mummert, L., Sukthankar, R., Goode, A., Zheng,
B., Hoi, S. C. H., and Satyanarayanan, M. A boosting framework
for visuality-preserving distance metric learning and its application to med-
ical image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32 (2010), 30.

[192] Yao, Y. Perspectives of granular computing. In 2005 IEEE international
conference on granular computing, vol. 1, pp. 85–90. IEEE (2005).

[193] Yao, Y. Three perspectives of granular computing. Journal of Nanchang
Institute of Technology, 25 (2006), 16.

[194] Yao, Y. A triarchic theory of granular computing. Granular Computing, 1
(2016), 145. doi:10.1007/s41066-015-0011-0.

[195] Yao, Y. and Zhao, L. A measurement theory view on the granularity of
partitions. Information Sciences, 213 (2012), 1. doi:10.1016/j.ins.2012.
05.021.

[196] Yao, Y.-Y. The rise of granular computing. Journal of Chongqing University
of Posts and Telecommunications (Natural Science Edition), 20 (2008), 299.

[197] Yin, X., Shu, T., and Huang, Q. Semi-supervised fuzzy clustering with
metric learning and entropy regularization. Knowledge-Based Systems, 35
(2012), 304 . doi:10.1016/j.knosys.2012.05.016.

[198] Yusoff, Y., Ngadiman, M. S., and Zain, A. M. Overview of
nsga-ii for optimizing machining process parameters. Procedia Engi-
neering, 15 (2011), 3978. CEIS 2011. Available from: https://
www.sciencedirect.com/science/article/pii/S1877705811022466, doi:
https://doi.org/10.1016/j.proeng.2011.08.745.

http://dx.doi.org/10.1016/j.ins.2018.03.026
http://dx.doi.org/10.1007/s41066-015-0011-0
http://dx.doi.org/10.1016/j.ins.2012.05.021
http://dx.doi.org/10.1016/j.ins.2012.05.021
http://dx.doi.org/10.1016/j.knosys.2012.05.016
https://www.sciencedirect.com/science/article/pii/S1877705811022466
https://www.sciencedirect.com/science/article/pii/S1877705811022466
http://dx.doi.org/https://doi.org/10.1016/j.proeng.2011.08.745
http://dx.doi.org/https://doi.org/10.1016/j.proeng.2011.08.745

Bibliography 137

[199] Zadeh, L. A. Soft computing and fuzzy logic. In Fuzzy Sets, Fuzzy Logic, and
Fuzzy Systems: Selected Papers by Lotfi a Zadeh, pp. 796–804. World Scientific
(1996).

[200] Zadeh, L. A. Toward a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic. Fuzzy sets and systems, 90
(1997), 111.

[201] Zeng, Z., Tung, A. K., Wang, J., Feng, J., and Zhou, L. Comparing
stars: On approximating graph edit distance. Proceedings of the VLDB
Endowment, 2 (2009), 25.

[202] Zhang, B. and Srihari, S. N. Fast k-nearest neighbor classification using
cluster-based trees. IEEE Transactions on Pattern analysis and machine
intelligence, 26 (2004), 525.

[203] Zhang, Q., Zhang, Q., and Wang, G. The uncertainty of probabilistic
rough sets in multi-granulation spaces. International Journal of Approximate
Reasoning, 77 (2016), 38.

[204] Zhang, S., Tong, H., Xu, J., and Maciejewski, R. Graph convolutional
networks: a comprehensive review. Computational Social Networks, 6 (2019),
1.

[205] Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs: A survey.
IEEE Transactions on Knowledge and Data Engineering, (2020), 1. doi:
10.1109/TKDE.2020.2981333.

[206] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review of meth-
ods and applications. AI Open, 1 (2020), 57. Available from: https://
www.sciencedirect.com/science/article/pii/S2666651021000012, doi:
https://doi.org/10.1016/j.aiopen.2021.01.001.

http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1109/TKDE.2020.2981333
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
http://dx.doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001

	Abstract
	Introduction
	Graph and Structured Domain
	Pattern Recognition and Computational Intelligence in Graph Domain
	Aim and Objectives
	Thesis Organization

	Pattern Recognition in Graph Domain
	Preliminary Definitions
	Mainstream Methods
	Custom Dissimilarities in the Input Domain
	Graph Neural Network Methods
	Implicit Graph Embedding
	Explicit Graph Embedding

	Granular Approach for Labelled Graphs
	Introduction
	Core Dissimilarity in Graph Domain
	Building Blocks
	Substructures Extraction
	Granulation Technique
	Embedding with Symbolic Histograms
	Classification in Embedding Space

	Automatic Learning Graph Representation with Evolutionary Algorithm
	Alphabet Synthesis
	Feature Selection

	Synthesized Classification Model and Test Phase

	Studies and Novelties for Granular Graph Embedding
	Stochastic Substructures Extraction
	Clique Extraction

	Class-Aware Granulation
	Limitations and Solutions

	Class-specific Metric Learning for Graph Embedding
	Evolutionary strategy for class-specific metric learning

	Soft Symbolic Histogram based Embedding Strategies
	Multi Objective Optimization for Granular Graph Embedding
	Selection of Solutions from the Pareto Front
	Ensemble of Classifiers for Test Phase

	Evolutive Agent Based Framework for Granular Graph Embedding
	Introduction
	High Level Framework Description
	Data Granulation
	Agents and Swarms Organization

	Evolutionary Agent Based Classifier in Vector Space
	Proof of Concept

	Designing an Agent Based Classifier in Non-Geometric Space
	Granulator Agent Task Definition
	Granulator Agent Swarm Behaviour
	Symbol Consensus
	Alphabet Selector Agent Behaviour
	Alphabets Evaluation
	Agents and Symbols Quality Propagation
	Evolving Agents
	Test Set Evaluation in Embedding Spaces

	Limitations and Discussion with GRALG Approach

	Experiments
	Dataset Description
	Tests and Results for GRALG Classifier
	Stochastic Extraction Method Evaluation
	Class-Aware Granulation Performances
	Class Specific Metric Learning Performances
	Soft Symbolic Histogram Variants Evaluation
	Multiobjective Optimization Method Evaluation
	Comparison Against State of the Art Classifiers

	Tests and Results for Graph E-ABC Classifier
	Sensitivity Analysis
	Comparison Against Current Granular Approaches for Graph Classification
	Comparison Against State of the Art Graph Classifiers

	Conclusions
	Pareto Frontiers with TOPSIS Selection
	Bibliography

