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ABSTRACT
Water ice is a unique material presenting intriguing physical properties, such as negative thermal expansion and anomalous volume isotope
effect (VIE). They arise from the interplay between weak hydrogen bonds and nuclear quantum fluctuations, making theoretical calculations
challenging. Here, we employ the stochastic self-consistent harmonic approximation to investigate how thermal and quantum fluctuations
affect the physical properties of ice XI with ab initio accuracy. Regarding the anomalous VIE, our work reveals that quantum effects on hydro-
gen are so strong to be in a nonlinear regime: When progressively increasing the mass of hydrogen from protium to infinity (classical limit),
the volume first expands and then contracts, with a maximum slightly above the mass of tritium. We observe an anharmonic renormalization
of about 10% in the bending and stretching phonon frequencies probed in IR and Raman experiments. For the first time, we report an accurate
comparison of the low-energy phonon dispersion with the experimental data, possible only thanks to high-level accuracy in the electronic
correlation and nuclear quantum and thermal fluctuations, paving the way for the study of thermal transport in ice from first-principles and
the simulation of ice under pressure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062689

I. INTRODUCTION

Water is essential for life. It is ubiquitous on Earth in all
states of aggregation and influences the climate,1 refrigeration,
and transportation system. Ice is a molecular crystal composed
of individual water molecules held to one another by hydro-
gen bonds, whose importance ranges from biology to astro-
physics. Ice exhibits the polymorphism typical of molecular crys-
tals. It has been found so far in 17 different crystalline structure
phases, embodying the most complex phase diagram known in the
literature.2–10 In each phase, the oxygen atoms are long-range
ordered in a specific symmetry with the hydrogen atoms arranged
around the oxygen according to the Bernal–Fowler ice rules.11 Of
the 17 ice phases, some are proton-disordered, while the others are
proton-ordered. In this work, we focus on the XI phase,3 that is,
the proton-ordered counterpart of the ordinary ice Ih,2 which is

stable below T = 72 K and was discovered by calorimetric measure-
ments on KOH doped ice Ih.12–14 This makes ice XI a prototype
system for phase Ih. Ice XI has an orthorombic structure with space
group Cmc21.

Liquid and crystalline water have been extensively studied in
the last decades. Besides its pivotal role in biological processes,
researchers have focused on the investigation of water because of
its anomalous properties that attract scientific attention and make
theoretical predictions challenging. The great difference in strength
between the intermolecular hydrogen bonds and the intra-molecular
covalent OH bonds produces a vibrational spectrum with a wide
energy range, from low-energy rotons to high energy vibrons.15–17

The stretching vibrational modes of the water molecule have an
energy of 3400 cm−1, which requires a temperature of 4900 K to pop-
ulate the first excited state. Thus, the nuclear motion at room tem-
perature is completely quantum mechanical. Anharmonic effects
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play a key role in ice, determining, for example, its anomalous
thermal expansion18–20 at low temperatures, the inverse volume
isotope effect (VIE)21–23 and the shifts in the vibrational spectra.
The thermodynamic properties of ice have been investigated by
using several approximations. Force-field and first-principles based
path integral molecular dynamics (PIMD) and quasi-harmonic
approximation (QHA)21–26 were employed to describe the nega-
tive thermal expansion and VIE, enlightening the strong depen-
dence of the results on the force field or the density functional
theory (DFT) functional used as well as some discrepancies of the
QHA at high temperatures and the improvement of the simula-
tions of water and ice obtained by including long-range van der
Waals interactions.27–30 The vibrational properties of ice have been
widely investigated by using mainly Raman, Infrared, and neu-
tron spectroscopy.31–45 Alongside experimental works, several the-
oretical studies focused on the librational modes46–49 and on the
OH stretching bands,50,51 where the authors were able to calculate
linewidths in good agreement with experimental data but shifted
peak positions. The low-energy modes computed using standard
ab initio techniques display a severe disagreement with experi-
ments. This prevents the study of thermal transport properties in
ice ab initio and its characterization under pressure, an area of
extensive experimental research.52–58 An accurate description of
atomic vibrations is of paramount importance to reproduce ther-
modynamic and dynamical properties. In this work, we overcome
the intrinsic limitations of other methodologies by using the self-
consistent harmonic approximation (SSCHA),59–62,82 which exploits
a full-quantum variational principle on the free energy to account
for the effect of anharmonicity arising from thermal and quantum
fluctuations.

In Sec. II, we revise the methodology we employed in the sim-
ulations. In Sec. III A, we report the temperature evolution of vol-
ume (thermal expansion), internal geometry, and bulk modulus.
We analyze the volume as a function of isotope mass in Sec. III B.
Sections III C–III E deal with phonon dispersion, overtones and
combination modes in the phonon spectrum, and the infrared and
Raman vibrational spectrum of ice, respectively. In Sec. IV, we
summarize the results and draw the conclusions.

II. METHODS
We work within the Born–Oppenheimer (BO) approxima-

tion63 to separate electronic and nuclear degrees of freedom.
The total electronic energy at fixed nuclei is calculated using a
Neural Network Potential (NNP) developed in Ref. 64, trained
on the revPBE065–67 functional with Grimme D3 dispersion
correction67,68 to properly account for long-range van der Waals
interactions.

We solve the nuclear BO Hamiltonian using two different
approximations: the quasi-harmonic approximation (QHA) and the
self-consistent harmonic approximation (SSCHA).

In the QHA, the BO energy surface is expanded as a quadratic
function around its minimum at each volume. The free energy is the
sum of the BO energy V(R,{a⃗i}) at fixed nuclear position R and
cell parameters {a⃗i}, and the harmonic vibrational contribution,

FQHA(R,{a⃗i}) = V(R,{a⃗i}) + Fvib(R,{a⃗i}), (1)

where

Fvib(R,{a⃗i}) =
1

Nq
∑

q∈BZ

3N

∑
μ=1
[ h̵ωH

qμ(R,{a⃗i})
2

+ 1
β

ln(1 − e−βh̵ωH
qμ(R,{a⃗i}))]. (2)

Here, Nq is the number of q points in the Brillouin zone,
β = (kBT)−1, and ωH

qμ are the volume dependent harmonic frequen-
cies in the q point for the μ mode. However, as in the harmonic
model, the frequencies show no temperature dependence for a fixed
volume.

The vector R describes the positions of the N nuclei in the
periodic cell (or supercell), while {a⃗i} are the unit cell vectors.

In principle, the QHA free energy is obtained by minimizing
the functional FQHA in Eq. (1) at fixed volume and temperature.
However, this minimization is computationally expensive for sys-
tems with many degrees of freedom like ice since it requires the
calculation of the harmonic phonon frequencies for each value of
the nuclear positions.

In this work (as commonly done), the QHA free energy is com-
puted in the minimum R0 of the BO energy V(R,{a⃗i}), obtained
by relaxing both the internal coordinates and the cell vectors without
vibrations at fixed pressure.

We overcome the intrinsic limitations of the QHA by employ-
ing a more sophisticated technique.

The self-consistent harmonic approximation (SSCHA) is a
quantum variational principle on the free energy, which accounts
for quantum and anharmonic effects on nuclei in a non-perturbative
way. Within the SSCHA, we optimize the quantum density matrix to
minimize the free energy, constraining the density matrix ρ̃ among
Gaussians, uniquely defined by the average atomic positions (cen-
troids) R and the quantum fluctuations around them (force con-
stant matrix) Φ, just like any Gaussian is defined by the average and
mean square displacements.

The SSCHA free energy is

FSSCHA[R, Φ] = ⟨V − VĤR,Φ⟩
ρ̂R,Φ
+ Fvib(R, Φ), (3)

where VĤR,Φ is the potential energy for a trial harmonic Hamilto-
nian ĤR,Φ and the vibrational term has the same functional depen-
dence as in Eq. (2). The average is computed in an ensemble of
configurations generated according to the density matrix ρ̃.

The time-dependent extension of the SSCHA (TD-SSCHA)60,62

gives the possibility to compute the dynamical properties (phonon
spectra).

The differences between the two approaches rely on three main
points:

(a) The centroid position R: As mentioned earlier, we cannot
optimize the centroids within the QHA at a reasonable com-
putational cost, so we employ their equilibrium value with-
out vibrations. In contrast, the minimization procedure in
the SSCHA allows us to fully optimize the geometry at any
temperature, including the average nuclear position R.

(b) The frequencies: In the QHA approach, they are the har-
monic frequencies. In the SSCHA framework, the frequencies
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are the eigenvalues of the dynamical matrix (the force con-
stant matrix divided by the square root of the masses),
obtained through the free energy minimization. Thus, they
account for anharmonic quantum and thermal fluctuations.

(c) The SSCHA explicitly accounts for deviation of the real
ionic energy landscape from the Harmonic approximation:
⟨V − VĤR,Φ⟩

ρR,Φ
in Eq. (3). The inclusion of this term makes

the SSCHA free energy variational with respect to the exact
one. This property is not shared by the QHA free energy.

Both the harmonic calculation and the SSCHA calculation are
performed in supercells with periodic boundary conditions.

In Appendix D, we report a detailed discussion about the con-
vergence properties in the SSCHA and QHA. We found that the
results are converged for a 3 × 3 × 2 supercell in the SSCHA and
a 14 × 14 × 14 supercell for the QHA.

Although an approximate technique, this self-consistent
approach revealed to perform quite accurately in describing free
energy differences (see Ref. 69) that determine the properties inves-
tigated in this paper. Moreover, the large amount of simulations
performed in our work prevents the use of more accurate path
integral methods. In addition, most of the properties, such as the
VIE, are studied at zero temperature, a limit that is computation-
ally very expensive and difficult to achieve through PI simula-
tions. Furthermore, PI is a static theory, and it requires alternative
formulations to describe dynamical spectral functions, while the
TD-SSCHA is a dynamical theory that grants direct access to the
spectral functions.

For each temperature, we estimated the equilibrium volume
Ωeq(T) as the one where the pressure, defined as the derivative of
the free energy with respect to a strain tensor ε, P = −1/Ω∂F/∂ε,
vanishes,

Ωeq(T) : P(Ωeq(T), T) = 0. (4)

In the SSCHA framework, we have an analytical equation to
compute the pressure for each simulation,61 while we employed the
finite difference approach for the QHA.

When an external pressure is applied to a solid, its volume
changes relatively; the bulk modulus is how a crystal withstands
modifications of volume under pressure,

B(T) = −Ωeq(T)
∂P(Ω, T)

∂Ω
∣
Ωeq(T)

. (5)

III. RESULTS
We report a detailed investigation of the phase XI of ice, the

proton-ordered phase of common ice,12 stable below 72 K. Quan-
tum anharmonic effects on the nuclei affect the properties of the
hydrogen bonds, producing exotic behaviors, such as negative ther-
mal expansion or anomalous VIE. Soft intermolecular hydrogen
bonds coexist with harder intra-molecular covalent OH bonds pro-
ducing phonons with a very wide energy range, heavily impacted by
anharmonicity.

It is known in the literature that the commonly used QHA
produces accurate predictions of thermodynamic properties at low

temperatures (T ≤ 100 K), manifesting instead some inaccuracies at
higher temperatures. Therefore, we are using both the QHA and
the SSCHA, a more sophisticated technique to account for quan-
tum fluctuations, to simulate the system, and to compare their
outcomes.

Section III A is dedicated to the anomalous thermal expansion
of ice, the bulk modulus, and the temperature dependence of the
crystalline properties.

A. Thermodynamic properties
The absolute value of the equilibrium volume per H2O

molecule is in Fig. 1(a). We notice a considerable effect of the

FIG. 1. Equilibrium volume per H2O molecule of ice as a function of tempera-
ture. (a) Comparison of the absolute value of the volume in the SSCHA (black
circles) and QHA (solid red line) with the experimental measurements in Ref. 19
(blue dotted line). The classical equilibrium volume, where thermal and quantum
fluctuations are neglected, is the green dotted-dashed line. (b) The normalized
equilibrium volume Ωeq(T)/Ωeq(T = 0) in the SSCHA (black circles) and QHA
(red solid line) is compared to the experiment (blue dotted line).
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zero point motion that shifts the curves one respect to the other.
The zero-temperature equilibrium volumes predicted by the differ-
ent theories and their percentage shift with respect to the classical
limit are reported in the first part of Table I. The agreement with
experiment is much better in the SSCHA than in the QHA picture.
These data are discussed in detail in Sec. III B, concerning the iso-
tope volume effect. Since Ωeq(T = 0) is theory dependent, to com-
pare the thermal expansion, in Fig. 1(b), we report the normalized
volume Ωeq(T)/Ωeq(T = 0).

In the low-temperature regime, T ≤ 50 K, the predictions for
the normalized equilibrium volume in the QHA and SSCHA are
very similar and match experiment19 closely. For higher temper-
atures, essential differences between the two theories arise. The
SSCHA agrees with experimental measurements within a 0.1% up
to 200 K. The QHA, otherwise, deviates from the experimental
data above 100 K. This establishes that SSCHA theory is able to
accurately describe the thermal expansion of ice, overcoming the
limitations of commonly used techniques based on the harmonic
approximation.

Equation (5) suggests a direct dependence between equilib-
rium volume and bulk modulus. The absolute value and the nor-
malized one B(T)/B(T = 0) of the bulk modulus are reported in
Fig. 2. Already at T = 0 K, the bulk modulus is strongly renormal-
ized by ionic quantum fluctuations by 22% and 15% in the QHA
and SSCHA, respectively [Fig. 2(a)].

The bulk modulus has an anomalous strong temperature
dependence; experimental data19 show a 20% reduction from 0 to
300 K. The SSCHA reproduces this behavior excellently [Fig. 2(b)],
while the QHA overestimates the bulk modulus reduction by 10%.
This strong temperature dependence originates by 64% from volume
expansion and the remaining 36% from vibrational free energy. We
refer to Appendix E for further details.

This result is fundamental to geophysics, where the compress-
ibility of a solid is of paramount importance for studying the inner
composition of Earth.70,71 The combined employment of high accu-
racy in the electronic exchange-correlation and the accurate descrip-
tion of quantum nuclear motion provided by the SSCHA correctly
describe the thermodynamics properties of ice beyond the accuracy
of quasi-harmonic simulations.

TABLE I. The first part reports the equilibrium volume per water molecule of ice at
T = 0 K. In the first row, there is the comparison of the volume computed in the QHA
and SSCHA with the experiment19 and with the classical result, where quantum and
thermal fluctuations are neglected. In the second row, we report the percentage shift
with respect to the classical volume. The second part shows the equilibrium volume
per water molecule in the QHA when free energy of Eq. (1) is computed using the
SSCHA equilibrium positions {R}SSCHA or using both the SSCHA positions and
frequencies and their error with respect to the SSCHA result.

Classic QHA SSCHA Expt.19

Ωeq (Å3) 31.771 32.555 32.207 32.055
% 0 2.47 1.38

QHA @ {R}SSCHA QHA @{R, ω}SSCHA

Ωeq (Å3) 32.613 32.068
Δ (Å3) 32.068 −0.139

FIG. 2. (a) Temperature dependence of the bulk modulus. The QHA (red solid
line) and SSCHA (black circles) results are compared with the experiment19 (blue
dashed line). The green dotted-dashed line is the classical value for the bulk mod-
ulus, obtained by neglecting thermal and quantum fluctuations. (b) Comparison
of the normalized bulk modulus B(T)/B(T = 0) in QHA and SSCHA with the
experiment. The bulk modulus is computed as in Eq. (5).

The SSCHA also provides information about the geometry of
ice. We report the temperature dependence of the average covalent
bond length OH in Fig. 3. We refer to Appendix E for the description
of the hydrogen bond.

Counterintuitively, the water molecules shrink upon heating at
high temperatures (Fig. 3). This is only marginally a consequence
of intermolecular hydrogen bond weakening due to the increasing
distance between molecules with temperature, but rather a complex
effect of anharmonicity triggered by molecular vibration. If we relax
the structure with static nuclei at the SSCHA equilibrium volume for
each temperature (Fig. 3, red squares), we explain only 15% of this
effect.
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FIG. 3. Temperature dependence of the covalent bond length. The SSCHA bond
length (black circles) is compared with the classical result (red squares), computed
from the minimization of the BO energy V(R,{a⃗i}), where the effect of the ther-
mal expansion is introduced by fixing the volume to be the SSCHA equilibrium one
at each temperature, in order to point out the contribution of thermal and quantum
fluctuations.

Since the vibration that deforms the water molecule is a
stretching mode, with ω ≃ 3400 cm−1 and excitation temperature
T ≃ 4900 K, this large temperature dependence can only be
explained by the anharmonic interaction between translational
molecular modes, the only ones whose population changes in this
temperature range, and the stretching mode that affects the OH
bond length.

B. Volume isotope effect
According to classical mechanics, the equilibrium volume does

not depend on the mass of the atoms, and, thus, it is isotope inde-
pendent. Quantum effects overturn this simple situation. In most
crystalline systems, the heavier the isotopes, the smaller the equilib-
rium volume. In rare exceptions, like ice, by substituting hydrogen
with deuterium the equilibrium volume increases.21,22 This is known
as anomalous volume isotope effect.

In Table I, we report the equilibrium volume per water
molecule at zero temperature with protium mass of hydrogen,
computed without thermal fluctuations, with quantum effects and
harmonic phonons (QHA), and with full anharmonic quantum
zero point motion (SSCHA) compared with the experiment in
Ref. 19.

As seen, the quantum anharmonic theory is the closest match
with the experiment, with an error smaller than 0.5%. The dis-
crepancy between the SSCHA results and those obtained within
the QHA, which account for volume effects but not for vibrational
anharmonicity, is comparable in size to neglecting ionic motion
altogether.

Anharmonicity affects the results in two ways: It changes the
average position of nuclei (see Fig. 3) and modifies the vibrational
frequencies. To shed light on which effect dominates the volume
expansion, we repeated the harmonic calculation by fixing nuclear

positions to the SSCHA result (QHA @ {R}SSCHA) and by employ-
ing also the frequencies shifted by the anharmonicity (QHA @
{R, ω}SSCHA). The results are reported in the second part of Table I.
The last row indicates the volume difference with respect to the full
anharmonic theory.

This analysis reveals the origin of the discrepancies between a
quasi-harmonic approach and a full non-perturbative anharmonic
treatment of nuclear vibrations, unveiling how the key role played
by anharmonicity is on the frequency renormalization rather than
the significative structural changes.

Having elucidated the crucial role of anharmonicity in cor-
rectly describing the volume expansion, we systematically explore
the effect of varying the masses of both the hydrogen and the oxygen
isotopes on the volume.

At first, we investigate the dependence of the equilibrium
volume at T = 0 K on the hydrogen mass; numerical simula-
tions give the possibility to modify this parameter without lim-
itations, while experiments are available only for hydrogen and
deuterium.18,19

In Fig. 4, we compare the equilibrium volumes per water
molecule obtained at different levels of the theory with two exper-
imental measurements.18,19 The solid line is the classical limit used
as a reference. The numerical values for the volume difference at
T = 0 K in the theoretical models and the experiments are reported
in Table II. The anharmonic theory (SSCHA) correctly predicts
the sign of the VIE, while the quasi-harmonic approach fails, pre-
dicting a volume reduction. However, the SSCHA heavily overesti-
mates the experiment, resulting in a volume difference from 3.8 to
6.7 larger than the measured data.

Experimental data are measured on hydrogen-disordered sam-
ples of ice Ih, while the simulation is performed on the hydrogen-
ordered ice XI. To unveil the role of hydrogen ordering, we repeated
the calculation of the VIE in a hydrogen-disordered structure for ice

FIG. 4. Dependence of the equilibrium volume per water molecule of ice on the
hydrogen mass at T = 0 K. The results obtained in the QHA (red squares) and
in the SSCHA (black circles) are compared with two experimental results (yellow
triangles and blue diamonds).18,19 The mass independent classical equilibrium
volume is reported as a reference (green solid line).
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TABLE II. Equilibrium volume per water molecule difference ΩD2O −ΩH2O at T = 0 K.
The SSCHA and QHA results computed in the converged meshes are compared with
two experimental measurements.18,19 The last column shows the volume difference
computed in the SSCHA by using the NNP RPBE-D3 functional devised in Ref. 64 in
order to analyze the dependence of the VIE on the functional used.

SSCHA QHA Expt.19 Expt.18 SSCHA RPBE-D3

ΔΩ (Å3) 0.112 −0.075 0.017 0.029 0.156

Ih. We generated disordered cells containing 24 atoms, and we ran
convergence tests (not shown here) using supercells containing up
to 432 atoms (144 water molecules). We found converged proper-
ties for supercells with 192 atoms (64 molecules). This result is in
agreement with previous theoretical works,64,72 where 64 molecules
simulation cells are used to attain convergence.

We obtained a difference in volume, which deviates by 3.5%
from that observed for the hydrogen-ordered structure, unveil-
ing that hydrogen ordering does not significantly affect the VIE,
and it is not the origin of the discrepancy between theory and
experiments.

Our calculation’s most relevant source of error is in the
electronic correlation: We repeated the simulation employing a
different electronic energy engine (a neural network trained
on Revised Perdew-Burke-Ernzerhof (RPBE) with Grimme D3
dispersion correction64). We obtained a difference in volume,
deviating by 38% from the original simulation, giving a rough
estimate of the error introduced by the DFT functional.

The QHA and SSCHA volumes are different for the physical
isotopes of hydrogen (protium, deuterium, and tritium). The differ-
ence disappears as we increase the hydrogen mass. This derives from
the reduced role of anharmonicity for higher mass where quantum
fluctuations at zero temperature are smaller. The crossover above
which the QHA correctly reproduces the VIE occurs for an isotope
mass of five times the hydrogen’s one, not a stable isotope. This
means that the quantum regime of protium, deuterium, and tritium
is anharmonic, beyond the range of validity of the quasi-harmonic
theories.

In Fig. 5, we show the equilibrium volume of the solid when the
mass of each atomic species (hydrogen and oxygen) is varied sepa-
rately until the classical limit of infinite mass is reached, as well as
the evolution of the equilibrium volume when the mass of the whole
molecule is increased. Obviously, there are only few of these com-
binations in nature that are stable, but we can infer the quantum
nature of each element from this plot.

By increasing the mass of the whole solid, we man-
age to approach the classical limit (the continuous line) for
m/mH2O ≳ 10 000.

The largest natural atomic species weighs only 238 times the
mass of protium. This unveils how quantum effects on nuclei,
usually neglected in atomistic calculations, are of paramount
importance even with “heavy” atoms. This is further proved by
the isotope volume effect of oxygen that, scaled to its much
lower mass ratio between its natural isotopes, is bigger than
hydrogen.

Figure 5 reveals a nonmonotonous volume expansion com-
pared with quantum fluctuations for the hydrogen isotopes. First,
the equilibrium volume expands when we increase the mass,

FIG. 5. Volume isotope effect for all the atomic species in ice XI in the SSCHA
framework at T = 0 K. The black circles indicate the equilibrium volume per H2O
molecule when the hydrogen mass is increased by keeping the oxygen mass fixed
to its 16O isotope value. The red diamonds show the equilibrium volume when the
oxygen mass is varied with fixed hydrogen mass. The blue squares stand for the
equilibrium volumes when the mass of the entire water molecule is increased until
reaching the classical limit shown as a reference (green solid line).

reaching the maximum value for m ≃ 5mH ; then, we observe a
contraction to the classical value for bigger masses. This behavior
explains that the VIE is due to a crucial nonlinear regime of quan-
tum fluctuations in ice, overturning the hypothesis of a monotonous
volume reduction due to quantum effects. This exotic behavior
cannot be explained in a quasi-harmonic picture, as evident from
Fig. 4.

C. Phonon dispersion
The coexistence of strong intra-molecular and weak inter-

molecular bonds in ice produces a vast vibrational spectrum. To
compare with experimental results, we computed the real phonons
from the dynamical interacting Green function within the time-
dependent SSCHA60,62,82 (TD-SSCHA) to account for dynamical
quantum anharmonic effects (see Appendices A and F for fur-
ther details). We employed the static approximation of the self-
energy for the low-energy modes, as described in Appendix A and
Refs. 60 and 73.

We compare the harmonic phonons and the anharmonic
(SSCHA) phonons for D2O ice at T = 140 K and P = 0.05 GPa with
the experiment55 in Fig. 6. The details on the computation are given
in Appendix F.

The harmonic acoustic phonons are in good agreement with
the experiment and deviate significantly from experimental data
at high frequency (ω ≥ 120 cm−1). Anharmonic effects correct the
deviation, obtaining an excellent match between theory and exper-
imental data. The harmonic energy of the lowest acoustic branch
overestimates the speed of sound of 20%, introducing a substan-
tial error in the determination of thermal transport properties, fur-
ther stressing the fundamental role of anharmonicity in thermal
conductivity.
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FIG. 6. Comparison of the low-energy phonon dispersion (molecular transla-
tions) with the experiment55 (blue circles) for deuterated ice at T = 140 K and
P = 0.05 GPa. Harmonic (red dashed lines) and anharmonic phonons (black solid
line) computed as the poles of the interacting one-phonon Green function in the
static limit (using the hybrid revPBE0-D3 functional fitted with the NNP64) are
shown. The effect of the DFT functional on the harmonic phonon dispersion is
reported by showing the harmonic dispersion calculated with the PBE74 functional
(green dotted-dashed lines).

We report an excellent agreement between experimental data
and a simulation of ice with ab initio accuracy for the first time.
This result has a profound impact, enabling the first-principles sim-
ulation of thermal transport, where an accurate description of the
acoustic phonons is required. Moreover, low-energy phonons are
the only modes detectable at high pressure; our work paves the way
to characterize ice under pressure further.

The astonishingly good agreement we achieve is merit of the
combined effect of the correct treatment of anharmonicity and
of the electronic functional adopted for the calculation: The har-
monic phonons with Perdew–Burke–Ernzerhof (PBE), the common
choice in ab initio atomistic simulations of water,22,75,76 are reported
in Fig. 6 (green dotted-dashed lines), offering a comparison with
phonons computed with NN-revPBE0 (employed in our work). We
notice a considerable dependence on the DFT functional. The use
of the NNP improves the PBE harmonic dispersion, where the error
committed approximating the experimental points ranges from 30%
to 36%, e.g., in the A point.

D. Spectral function
The phonon spectral function σ(q, ω) gives access to the

quasiparticles’ energies and lifetime. The spectral function is pro-
portional to the signal probed in scattering experiments, as neutron
or x-ray scattering, and it is computed from the diagonal elements
of the dynamical one-phonon Green function G(q, ω),

σ(q, ω) = −ω
π

Tr ImG(q, ω). (6)

The details for the calculation are reported in Appendix B.

The phonon density of states (DOS) computed with the
SSCHA dynamical matrix at equilibrium (without the self-energy
correction) describes anharmonic non-interacting phonons, while
the dynamical spectral function encapsulates all the effects of
phonon–phonon interactions, where the addition of the self-energy
term [Eq. (A7)] may produce a combination of modes [see Eqs. (A4)
and (A5) in Appendix A].

In Fig. 7, we report the comparison between the phonon DOS
and the spectral function at Γ of H2O ice to enlighten the presence of
combination modes and anharmonic overtones (D2O is described
in Appendix G). We reveal the presence of two structures in the
spectral function that are absent in the DOS: One occurs at ener-
gies between the bending and stretching bands, the other occurs at
twice the frequency of the stretching modes.

The origin of the observed combination modes is investigated
in detail in Appendix G. Specifically, we find that the first combi-
nation mode originates from the interaction between the libration
and bending bands, while the anharmonic overtone emerges from
the interaction of the stretching modes with themselves.

From the spectral function, we can extract the real phonon
energies and their lifetimes, as shown in Appendix A. We report in
Table III the phonon energies and their linewidths for few selected
intense modes at T = 0 K and T = 300 K in the Brillouin zone
center.

We observe an essential reduction of the lifetime increasing the
temperature. The phonon energies are less temperature-dependent
than their lifetime. Stretching modes gain energy upon heating,
while all the others become softer.

E. Spectroscopy
Anharmonicity shifts the frequencies of phonons and

introduces a finite lifetime. Here, we simulate the Raman and IR

FIG. 7. Comparison of the density of states and spectral function at Γ. H2O ice
at T = 200 K and ambient pressure. The spectral function (black solid line) and
DOS (red dashed line) are shown. The DOS is computed by using the SSCHA
dynamical matrix at equilibrium without the inclusion of the self-energy term and
by adding an artificial smearing factor of 20 cm−1. The blue arrows indicate the
combination modes and anharmonic overtones.
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TABLE III. Peak frequency and linewidths of some selected intense modes in H2O
ice at ambient pressure for two values of temperature, T = 0 and 300 K at Γ. The first
column indicates to which band the modes belong. See Appendix A for details about
the calculations of frequencies and linewidths.

T = 0 K T = 300 K

(cm−1) Γμ (cm−1) (cm−1) Γμ (cm−1)

tr. 208 12 211 75
326 11 311 52

lib.

602 4 557 20
740 5 682 43
851 12 808 47
968 16 940 54

1565 16 1551 31

bend. 1606 20 1594 40
3102 13 3080 68

str. 3207 16 3237 77
3399 47 3439 97

vibrational spectroscopy on ice, adequately accounting for quantum
and thermal anharmonic nuclear motion.

Raman scattering and infrared absorption are complementary
tools to probe phonon energies at Γ. The former is based on an
inelastic scattering process that detects modes due to changes in the
polarizability, while the latter relies on the absorption process and
the vibrations detected involve modifications of the dipole moment.
Consequently, the selection rules for the two spectroscopies are
different, and often active IR modes are Raman inactive (or vice
versa).

Appendix C and Refs. 62 and 77 describe the relationships
between the Raman and IR signals and the anharmonic phonon
Green functions.

In Fig. 8(a), we compare the simulated Raman spectra with the
experiment42 for the same geometry c(a, ∗)b (see Appendix C) in
H2O ice XI at T = 65 K. We report deuterated ice at T = 269 K in the
c(a, a)b geometry37 in Fig. 8(b).

The result obtained in the anharmonic dynamical theory
(TD-SSCHA) matches excellently with the experimental results, cor-
recting a shift of the harmonic phonon energy in the stretching
modes of about 10% (7%) of the energy in H2O (D2O) ice. The the-
ory can predict the presence of the combination mode [indicated by
the blue arrow in Fig. 8(a)] for H2O ice in the considered geome-
try. Instead, this mode has very low intensity in the experimental
geometry of D2O ice.

Finite linewidths in the harmonic model are for presentation
purposes only, as harmonic phonons have infinite lifetimes.

Phonon vibrations impact the low-energy optical properties of
any material. In Fig. 9, we report the imaginary part of the dielectric
function at 200 K of H2O ice. To include all the crystal orienta-
tions, we plot the trace of the dielectric tensor as in Eq. (C6). As for
the Raman, anharmonicity reduces by 10% the harmonic stretch-
ing band energy, providing excellent agreement with the experi-
ment.38 In addition, the combination mode located at 2300 cm−1

(highlighted by the blue arrow in Fig. 9) observed experimentally is
correctly reproduced by the anharmonic spectrum.

FIG. 8. (a) Raman scattering spectra at T = 65 K in H2O ice XI in the a(c,∗)b
geometry. The experimental spectrum42 (blue dotted line) is compared with the
harmonic (red dashed line) and the anharmonic phonons (solid black line), com-
puted in the SSCHA framework with the inclusion of the bubble term in Eq. (A7).
(b) Raman scattering spectra for deuterated ice at T = 269 K in the c(a, a)b geom-
etry. Comparison between harmonic (red dashed line) and anharmonic SSCHA
phonons with the bubble correction (solid black line) spectra, and the experiment37

(blue dotted line). Blue arrows indicate the position of the combination mode.
An artificial broadening is employed in the harmonic approximation to guide the
eyes in the comparison of the spectrum with experiment of 35 cm−1 (45 cm−1) in
D2O (H2O). Instead, the broadening of the anharmonic simulation is fully obtained
ab initio from phonon–phonon scattering.

Both the dielectric function of Fig. 9 and the Raman scatter-
ing spectra in Fig. 8 confirm the importance of anharmonicity. They
further demonstrate how it is fundamental to reproduce the exper-
imental results and provide the SSCHA (and its time-dependent
extension) as the best tool for ice simulation.
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FIG. 9. Imaginary part of the dielectric function of H2O ice at T = 200 K. The trace
of the dielectric tensor as in Eq. (C6) is reported to take into consideration all the
possible orientation of the crystal. The results within the harmonic approximation
(red dashed curve) and the anharmonic phonons (black solid line), computed in
SSCHA framework with the inclusion of the bubble term of Eq. (A7), are compared
with the experiment38 (blue dotted line). The blue arrow indicates a combination
mode. We employed an artificial broadening of 50 cm−1 in the harmonic spectrum.
Instead, the broadening of the anharmonic simulation is fully obtained ab initio from
phonon–phonon scattering.

IV. CONCLUSIONS
Exploring the thermodynamic structural and vibrational prop-

erties of ice XI (hydrogen-ordered counterpart of ordinary ice Ih), we
further elucidated the importance of quantum anharmonic effects.
The anomalous strong temperature dependence of the bulk modu-
lus, 20% variation from 0 to 300 K, is fully explained by thermal and
quantum anharmonic fluctuations, revealing the combined effect of
the vibrations (64%) and the thermal expansion (36%).

We highlight the inaccuracy of the quasi-harmonic approxi-
mation in reproducing the anomalous VIE. Only an anharmonic
treatment of quantum nuclear motion enables the reproduction of
the experimental results. In particular, we proved how the negative
VIE originates from a nonmonotonous volume expansion due to
quantum fluctuations. If we increase the mass of the hydrogen iso-
topes, the volume first expands, saturating slightly above the tritium
mass, and then contracts to the classical value. This means that the
VIE is due to a strongly nonlinear regime of quantum fluctuations in
ice, which commonly employed approximate theories (such as the
QHA) do not grasp. Notably, also oxygen is in a strong quantum
mechanical regime, being responsible for a 2% volume reduction in
the classical limit.

We observe an anharmonic renormalization of 8%–10% in the
bending and stretching modes that grants a good prediction of
Raman scattering spectra and the dielectric function of H2O and
D2O ice XI.

For the first time, the low-energy range of phonon dispersion
of deuterated ice at T = 140 K is excellently reproduced by the
anharmonic renormalized phonons and correct treatment of the
electron exchange and correlation. This result paves the way for the

study of thermal transport from first-principles and the simulation
of ice under pressure, where acoustic phonons are the only modes
detectable.

Our simulations deciphered the microscopic origin of many
anomalous properties of ice, proving how anharmonicity and quan-
tum fluctuations of ions are a mandatory ingredient to reproduce the
thermodynamic structural and vibrational properties of ice.
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APPENDIX A: THEORETICAL METHODS

In Sec. III C, we mentioned that the SSCHA dynamical matrix
is not suited to describe real phonons.60,62,82 This happens because
it is positive-definite by construction so that, for example, phonons
instabilities cannot occur. The eigenvalues of the Hessian matrix
of Eq. (A1) are the response to a static external perturbation and
describe the stability of the structure with respect to a spontaneous
symmetry breaking,

D(F) = 1√
M
⋅ ∂2F
∂R∂R

⋅ 1√
M

. (A1)

Here, F is a short-hand notation for the SSCHA free energy in
Eq. (3). The Hessian matrix can be written in terms of the third- and

fourth-order force constant matrices,
(3)
Φ ,
(4)
Φ , as in Refs. 60 and 82,

where
(n)
Φ = ⟨ ∂nF

∂R . . . ∂R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⟩

ρ̃R,Φ

.

In this work, we use the lowest order correction in the Hessian
matrix, the one containing the third-order force constant matrix,
after checking that the fourth-order contribution is negligible. In
these conditions, the free energy Hessian can be approximated as
in the following equation:

D(F) ≃ D(S) +
(3)
D : Λ[0] :

(3)
D , (A2)

where D(S) is the SSCHA dynamical matrix and the other term is
called the bubble correction (as, at lowest order perturbation the-

ory, it gives rise to the bubble diagram).60
(n)
D is the n-th order
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force constant matrix divided by the square root of the masses (the
superscript (2) is neglected for the second order SSCHA dynamical
matrix),

(n)
D =

(n)
Φ√

M . . .
√

M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

. (A3)

Λ[0] is the zero frequency value of the fourth-order tensor that
depends only on the eigenvalues ωμ and eigenvectors ϵμ of the SCHA
auxiliary dynamical matrix D(S),

(Λ[z])abcd =
3N

∑
μν=1

F(z, ωμ, ων)ϵa
νϵb

μϵc
νϵd

μ, (A4)

F(z, ωμ, ων) = −
1

4ωμων

(ωμ + ων)(nμ + nν + 1)
(ωμ + ων)2 − z2

+ 1
4ωμων

(ωμ − ων)(nμ − nν)
(ωμ − ων)2 − z2 . (A5)

The a, b, c, andd indices run over the atoms in the supercell and
the Cartesian coordinates.

The Λ tensor describes the propagation of the μν phonon
modes, whose interaction can give rise to combination modes, as
seen in Fig. 7. By restricting the sum in Eq. (A4), it is possible to
isolate the contribution of few selected modes to the free energy
Hessian.

The eigenvalues of the Hessian matrix can be used to approx-
imate the real phonons in the low-energy regime, close to z = 0,
as in Fig. 6. However, physical phonons, those observed by exper-
imental probes like inelastic scattering and vibrational spectroscopy,
must be computed from the dynamical interacting Green function.
Within the SSCHA framework, the dynamical Green function G(z)
for the displacement normalized to the masses,

√
M(R −R), in

component free notation, is60,62,82

G−1(z) = z2𝟙 − (D(S) −Π(z)). (A6)

D(S) is the SSCHA dynamical matrix at equilibrium. The full
expression for the SSCHA self-energy Π(z) can be found in Refs. 60
and 82.

In this work, as for the free energy Hessian, we decide to keep

the lowest order of the self-energy correction, the bubble
(B)
Π (z),

Π(z) ≃
(B)
Π (z) =

(3)
D : Λ(z) :

(3)
D . (A7)

The real phonons associated are the poles of the dynamical
Green function (see Ref. 82, Sec. 4.3, for further details on the
computation of the poles and linewidths Γμ).

APPENDIX B: COMPUTATIONAL DETAILS

To simulate the thermodynamic properties, we computed the
harmonic free energy (relaxing the atomic position at fixed cell) at

120 volumes. The free energy is fitted with the Vinet equation of state
(EOS)78 to obtain the equilibrium volume and the bulk modulus for
any temperature as in Eqs. (4) and (5).

In contrast, for the SSCHA, we computed the pressure as
a function of temperature for six volumes. For each volume, we
relaxed the atomic positions accounting for quantum and ther-
mal anharmonic effects. We employed ensembles with as many
as 100 000 configurations in the converged supercell to reduce the
statistical noise. We evaluated the equilibrium volume and the
bulk modulus fitting the P(Ω) curve with the Vinet EOS at each
temperature.

For QHA simulations, we sampled phonons in a 14 × 14 × 14
mesh of the Brillouin zone; for the SSCHA ones, we employed a 3× 3
× 2 supercell. The convergence tests are reported in Appendix D.

The spectral properties are computed from the dynamical one-
phonon interacting Green function. The self-energy is approxi-
mated as in Eq. (A7), and it is computed integrating on a 14 × 14
× 14 k-grid in the reciprocal space.73 Furthermore, a smear-
ing factor δse is introduced to obtain converged results in the
computation,

Π(z) ≃
(B)
Π (z) =

(B)
Π (z + iδse). (B1)

Convergence is achieved for δse = 45 cm−1. The same value
holds for H2O and D2O ice. Consequently, all the SSCHA spectral
functions are computed with those values of smearing and integra-
tion of k-grid. Finite linewidths in the DOS and harmonic model are
for presentation purposes only.

APPENDIX C: RAMAN AND INFRARED

The Raman spectrum is proportional to the polarizability cor-
relation function ⟨α(t)α(0)⟩, where

αab(t) =
3N

∑
c=1

Aabcuc(t). (C1)

The Raman tensor Aabc is computed ab initio with Quantum
ESPRESSO79 in the SSCHA average centroid positions within the
local-density approximation (LDA). The electronic wave functions
were expanded in plane waves up to a cutoff of 120 Ry (960 Ry for
the electronic density), with a uniform grid of 4 × 4 × 4 for the Bril-
louin zone integrals. Here, a and b are the Cartesian indices and c is
a super-index running over the Cartesian coordinates and the atoms
in the supercell. We keep this notation in the following.

The intensity of the Raman signal has been evaluated as

IRaman(ω) ∝ (ω − ωL)4
3N

∑
a,b=1

A′aA′b√
MaMb

ImGab(ω), (C2)

where ωL is the frequency of the laser and A′ accounts for the
polarization of the incident (ϵin) and scattered (ϵout) light,37,41,42

A′ = ϵin ⋅ A ⋅ ϵout.

In most cases, the laser frequency is much bigger than the
phonon frequencies so that the approximation ∣ω − ωL∣ ≃ ωL holds.
This is not completely true in ice, where phonons can be very
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energetic (ω ≃ 3400 cm−1). Here, that difference provides a slight
reshaping of the spectra, and it is safer to avoid approximations.

The physical quantity determining the infrared absorption
is the dielectric function, and standard electromagnetism pro-
vides a simple relation between the dielectric tensor and the
susceptibility,

ϵ(ω) = 1 + 4πχ(tot)(ω) = ϵel + 4πχion(ω). (C3)

The electronic part ϵel is computed ab initio. The absence of
electronic transitions in the phonon energy range makes it real, and
it is frequency independent, ϵel = 1.65. The ionic susceptibility of
Eq. (C3) is the Fourier transform of the dipole–dipole correlation
function,

χion
ab (ω) = ∫ dte−iωt⟨Ma(t)Mb(0)⟩, (C4)

where Ma(t) = ∣e∣∑3N
b=1Zabub(t); the effective charges Z are com-

puted ab initio in Quantum ESPRESSO79 in LDA. The electronic
wave functions were expanded in plane waves up to a cutoff of
120 Ry (960 Ry for the electronic density), with a uniform grid of
4 × 4 × 4 for the Brillouin zone integrals.

We computed the dielectric function as

ϵαβ(ω) = ϵel
αβ + 4π∣e∣2∑

ab

ZαaZβb√
MaMb

Gab(ω) (C5)

and averaged over all possible orientation of the crystal,

ϵ(ω) = 1
3

3

∑
α=1

ϵαα(ω). (C6)

APPENDIX D: CONVERGENCE

Equations (1) and (3) depend on the number Nq of q points in
the Brillouin zone. We employ the supercell method that consists
in replicating an integer number of times N1 ×N2 ×N3 the unit cell
along the three Cartesian directions and imposing periodic bound-
ary conditions. The unit cell of ice XI has an orthorhombic structure
with the Cmc21 space group and contains four water molecules. In
Sec. III A, we pointed out that the thermodynamic properties in the
QHA are derived from the free energy, while in the SSCHA the pres-
sure has been used, thanks to the availability of a handy analytical
formula.61

Consequently, the converged supercells are chosen by looking
at the free energy in the QHA and at the pressure in the SSCHA. We
analyzed the convergence for the two extremal temperatures, T = 0 K
and T = 300 K, in Fig. 10. As a general trend, we notice that thermal
fluctuations slow down the convergence of both the free energy and
the pressure. The limited computational cost of the QHA does not
place any limitation on the mesh to use.

Moreover, we have the possibility to interpolate the dynam-
ical matrix to a finer mesh, as it has been done for the two big-
ger meshes, namely, the 10 × 10 × 10 and the 14 × 14 × 14. Hence,
by looking at Fig. 10(b), we decided to use the biggest grid we
analyzed.

FIG. 10. Convergence tests in the QHA and SSCHA. (a) Pressure within the
SSCHA framework computed as in Ref. 61 as a function of supercell dimension
for T = 0 K and T = 300 K. (b) Vibrational term of the QHA free energy in Eq. (1)
as a function of supercell dimension for T = 0 K and T = 300 K. Here, we use the
short hard notation N1N2N3 to indicate the N1 × N2 × N3 supercell. The dashed
lines in panels (a) and (b) are the converged results for the pressure or the free
energy at the given temperature.

Conversely, the challenging computational cost of the SSCHA
prevents the use of a big supercell. Figure 10(a) reveals as the
3 × 3 × 2 supercell grants at most 3% error with respect to the con-
verged mesh at high temperature. We are satisfied with this accu-
racy level. We compute the thermodynamic properties in this mesh.
Instead, to compute the phonon dispersion of Sec. III C, a 4 × 4 × 4
supercell has been used.

APPENDIX E: THERMODYNAMIC PROPERTIES

While the effect of anharmonicity on the covalent
bond length is counter intuitive as reported in Sec. III A
(Fig. 3), the hydrogen bond length follows the expected trend
(Fig. 11). Anharmonicity shrinks the H-bond length since
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FIG. 11. Temperature dependence of the hydrogen bond length. The SSCHA bond
length (black circles) is compared with the classical result (red squares), computed
from the minimization of the BO energy V(R,{a⃗i}), where the effect of the ther-
mal expansion is introduced by fixing the volume to be the SSCHA equilibrium one
at each temperature, in order to point out the contribution of thermal and quantum
fluctuations.

its widening upon heating explains thoroughly the volume
expansion.

The bulk modulus is computed from Eq. (5). The free energy
consists in a static and a vibrational term as in Eq. (1), so the same
is for the bulk modulus. In the QHA picture, the static part and the
vibrational part are in the following equations:

Bstat(T) = Ωeq(T)
∂2V(R,{a⃗i})

∂Ω2 ∣
Ωeq(T)

, (E1a)

Bvib(T) = Ωeq(T)
∂2Fvib(R,{a⃗i})

∂Ω2 ∣
Ωeq(T)

. (E1b)

The division of the bulk modulus into its two contributions
makes possible to individuate the origin of its strong temperature
dependence observed in Fig. 2.

Figure 12(a) shows the static bulk modulus, where fluctuations
are neglected. We computed the curves at the QHA and SSCHA
equilibrium volumes, in order to introduce the effect of thermal
expansion. The continuous line is the classic result, where quan-
tum and thermal effects are not included. The vibrational contribu-
tion of Eq. (E1b), for the QHA and SSCHA volumes, is reported in
Fig. 12(b). It is always negative, meaning that it would increase the
volume under compression.

Both the static modulus and the vibrational bulk modulus have
a non-negligible temperature dependence, contributing to the total
one for the 64% and 36%, respectively.

Moreover, the effect of different equilibrium volumes is almost
temperature independent in the vibrational term, being unable to
explain the different thermal behavior of the two theories, which can
instead be addressed partially to the effect of volumes in the static
bulk modulus as evident in Fig. 12(a).

FIG. 12. Analysis of the different contributions to the bulk modulus. (a) The static
QHA bulk modulus is computed at the QHA equilibrium volumes (solid red line)
and at the SSCHA equilibrium volumes (black circles). The green solid line is
the classical bulk modulus where fluctuations are neglected. (b) Vibrational QHA
bulk modulus computed at the SSCHA (black circles) and QHA (red solid line)
equilibrium volumes.

APPENDIX F: DISPERSION

Real phonon dispersion is calculated from the dynamical inter-
acting Green function as in Appendix A. Here, we show the density
of states (DOS) and dispersion for H2O ice at T = 200 K and D2O ice
at T = 140 K and P = 0.05 GPa, comparing the harmonic phonons
and the SSCHA auxiliary phonons in Fig. 13.

The harmonic dynamical matrix is computed with a 5 × 5 × 5 q
mesh, while for the SSCHA, we employed the 4 × 4 × 4 supercell.

As a molecular crystal, the phonon branches are well separated
in translational modes, librations, narrow bending, and stretching
from low to high energy. In Fig. 13(a), we report the hydrogen, and
in Fig. 13(b), we report the deuterium.
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FIG. 13. Phonon dispersion and density of states. (a) H2O ice XI at T = 200 K at
ambient pressure. (b) D2O ice XI at T = 140 K and P = 0.05 GPa. In both panels (a)
and (b), the harmonic results (red dashed line) are compared with the dispersion
and DOS in the SSCHA framework (black solid lines).

In the SSCHA, the harmonic translational and rotational modes
suffer a blue shift of the order of 4.2% (3.5%) and 8.2% (7.5%),
respectively, for H2O (D2O) ice. Instead, anharmonicity reduces the
frequencies of the most energetic modes. Both the harmonic bend-
ing and stretching band are red-shifted of about 3.1% (2.2%–2.5%)
in H2O (D2O) ice.

Acoustic modes play a major role in thermal transport. We
compared the simulated phonon dispersion of deuterated ice at
T = 140 K and P = 0.05 GPa in Fig. 6 with the experiment. For
a correct comparison, real phonons are needed. In the low-energy
regime, we can use the static approximation of the self-energy.60,62

We consider the lowest order self-energy correction, the bubble of
Eq. (A2). This approximation is reasonable and routinely employed
in many systems with hydrogen.80,81 In the present case, we checked
the approximation against the exact static self-energy, where phonon
energies change less than 1 cm−1.

While the harmonic phonons can be computed without effort
in the supercell described above, the computational cost of the bub-
ble term is huge, and it is not possible to perform the calculations in
the same supercell used for the SSCHA dynamical matrix D(S). To

overcome this problem, we first computed the bubble correction in
a smaller supercell, namely, a 3 × 3 × 2, and then, we interpolated it
to a finer supercell to obtain the Hessian matrix,

D(F)4x4x4 = D(S)4x4x4 + [D
(F)
3x3x2 −D(S)3x3x2]

4x4x4
. (F1)

In Fig. 6, we restricted the original path of the experiment (the
same as in Fig. 13) to the Γ-A direction. We include the Γ-K path
dispersion in Fig. 14. In ice XI, we have two inequivalent Γ-K paths
originated by the presence of the hydrogen sublattice that overturns
the perfect equivalence we would obtain in the presence of oxygens
alone.

The projection of the first Brillouin zone of ice XI in the plane
is reported in the inset of Fig. 14(a). We show the planar reciprocal

FIG. 14. Phonon dispersion in the SSCHA framework with the inclusion of the bub-
ble term in the self-energy correction in the static limit for D2O ice at T = 140 K and
P = 0.05 GPa. (a) Phonon dispersion along the three nonequivalent ΓK directions
compared to the experimental measurement (blue circles).55 The three K points
and the projection in the plane of the first Brillouin Zone are shown in the inset. (b)
Comparison of the experiment with the average of the phonon dispersion along
the three ΓK directions (red solid lines).
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vectors, {b⃗1, b⃗2}, and the three K points. Notably, the three K points
are actually equivalent (the phonon frequencies are the same), but
the modes along the path connecting Γ and K are not.

We average the three dispersion and compared the average with
the experiment in Fig. 14(b). The matching between theory and
experiment is very good.

APPENDIX G: COMBINATION MODES

Figure 13 reveals the presence features in the spectral func-
tion that are absent in the phonon DOS. As discussed in Sec. III D,
this hints the occurrence of combination modes originated by
phonon–phonon interactions.

We can dissect the interaction between phonon bands to unveil
which modes originate these satellite peaks in the spectral function
(see Appendix A for further details).

We report the results for H2O ice at T = 200 K, but the same
also holds in deuterated ice (whose spectral function and DOS at
T = 140 K and P = 0.05 GPa are in Fig. 15). We show in Fig. 16 that
the first combination mode, occurring for ω ∈ [2250, 2800] cm−1,
is originated from the interaction between the libration and bend-
ing bands, as the peak appears only if we account for their recip-
rocal interaction. If we account only for librational or bending
modes in the calculations, the peak vanishes. The residual mismatch
in the low-frequency tail with the full spectral function reveals a
non-negligible contribution of the other phonon branches (mainly
translations).

The overtone at twice the stretching frequency is analyzed in
Fig. 17. The perfect matching between the full spectral function and
the same computed only considering stretching modes unveils how
this peak is entirely generated by stretching modes interacting with
themselves, without a significative contribution of other phonon
branches. It is, in fact, the overtone of the stretching modes.

FIG. 15. Comparison of the density of states and spectral function at Γ. D2O ice at
T = 140 K and P = 0.05 GPa. The spectral function (black solid line) and DOS (red
dashed line) are shown. The DOS is computed by using the SSCHA dynamical
matrix at equilibrium without the inclusion of the self-energy term and by adding
an artificial smearing factor of 20 cm−1. The blue arrows indicate the combination
modes and anharmonic overtones.

FIG. 16. Spectral function of H2O ice at T = 200 K in the energy range of the
first combination mode at Γ. A comparison between the full spectral function (solid
black line) and that obtained by selecting only the interaction between the librations
and the bending band (red dashed line) is provided. Spectral functions obtained
through the interaction of bending band with themselves (green dotted-dashed
line) and librations with themselves (blue dotted line) are shown too.

FIG. 17. Spectral function of H2O ice at T = 200 K in the energy range of the sec-
ond combination mode at Γ. The full spectral function (solid black line) is compared
to that obtained by selecting only the interaction of the stretching band with itself
(red dashed line).
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