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Abstract: Decision-making in a complex, dynamic, interconnected, and data-intensive industrial
environment can be improved with the assistance of machine-learning techniques. In this work,
a complex instance of industrial assembly line control is formalized and a parallel deep reinforcement
learning approach is presented. We consider an assembly line control problem in which a set of
tasks (e.g., vehicle assembly tasks) needs to be planned and controlled during their execution, with
the aim of optimizing given key performance criteria. Specifically, the aim will be that of planning
the task in order to minimize the total time taken to execute all the tasks (also called cycle time).
Tasks run on workstations in the assembly line. To run, tasks need specific resources. Therefore,
the tackled problem is that of optimally mapping tasks and resources to workstations, and deciding
the optimal execution times of the tasks. In doing so, several constraints need to be respected
(e.g., precedence constraints among the tasks, constraints on needed resources to run tasks, deadlines,
etc.). The proposed approach uses deep reinforcement learning to learn a tasks/resources mapping
policy that is effective in minimizing the resulting cycle time. The proposed method allows us to
explicitly take into account all the constraints, and, once training is complete, can be used in real time
to dynamically control the execution of tasks. Another motivation for the proposed work is in the
ability of the used method to also work in complex scenarios, and in the presence of uncertainties. As
a matter of fact, the use of deep neural networks allows for learning the model of the assembly line
problem, in contrast with, e.g., optimization-based techniques, which require explicitly writing all the
equations of the model of the problem. In order to speed up the training phase, we adopt a learning
scheme in which more agents are trained in parallel. Simulations show that the proposed method can
provide effective real-time decision support to industrial operators for scheduling and rescheduling
activities, achieving the goal of minimizing the total tasks’ execution time.

Keywords: deep reinforcement learning; parallel training; Industry 4.0

1. Introduction

Machine Learning (ML) has emerged as one of the key enablers for improving effi-
ciency and flexibility in industrial processes and represents a pillar of the Industry 4.0
paradigm [1]. In particular, Deep Reinforcement Learning (DRL) has attracted the interest
of scheduling and operational research communities as it allows us to efficiently tackle
large-scale combinatorial optimization problems requiring fast decisions [2,3]. Indeed,
industrial processes are complex, dynamic, cyberphysical systems subject to disturbances
related to uncertainties and delays affecting all the stages of products’ supply chains. Clas-
sic optimal control-based approaches do not provide enough flexibility in the presence of
disturbances or deviations from nominal conditions. On the other hand, after a proper
training phase, DRL techniques allow us to solve complex decision-making problems in
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real time. However, the duration of the said training phase is often very long, and its
reduction represents an important research line in the field of DRL [4,5].

The problem considered in this work consists of controlling industrial assembly lines.
The objective of an assembly line is to perform a given set of tasks (or jobs). Tasks are
processed by workstations which are the machines or areas in which components/products
are created or assembled. The problem of assigning tasks (and resources) to workstations
in an efficient way is known in the literature as the Assembly Line Balancing Problem
(ALBP). ALBPs can be characterized in terms of the factory layout (i.e., the directed graph
modelling the interconnections between workstations), the peculiarities of the products to
be assembled/created or the types of considered constraints. Over the years, the control of
assembly lines has gathered the attention of many researchers, which has translated into a
huge number of scientific articles focusing on a variety of ALBPs instances. This, in turn,
has led to numerous ALBPs’ classification schemes.

A first classification divides the literature into simple and generalized ALBP instances
(SALBP and GALBP, respectively). SALBPs are characterized by strong assumptions about
the nature of the assembly line and the product to be created. Four basic SALBP instances
have been identified [6]. SALBP-F instances consist of deciding if a feasible balance exists given
the number of workstations and the cycle time (i.e., the time required by each workstation
to process tasks). SALBP-1 and SALBP-2 instances minimize the number of workstations
given a fixed cycle time and vice versa, respectively. SALBP-E, finally, simultaneously
minimizes the number of workstations and the cycle time. Over the years, GALBPs have
gained a significant relevance in the industrial world as they allow us to capture more
realistic operational scenarios. In [7], the authors propose a classification of GALBPs based
on tuples (α, β, γ) where α captures the characteristics of tasks’ precedence constraints,
β specifies workstations and assembly line characteristics, and γ captures the different
optimization objectives.

More recent works (e.g., [8,9]), propose a hierarchical classification scheme based
on three characteristics: the number of models of the product to be created, the nature
(deterministic or stochastic) of tasks’ execution times, and the characteristics of the factory
layout (e.g., straight lines, parallel lines and U-shaped lines). With respect to the first
element, single-model APBPs refer to a scenario in which a single product is processed by
workstations. Multimodel ALBPs, instead, refer to a scenario in which multiple products
are created in batches; in other words, a generic workstation can create a single product,
and, after a proper set-up phase, can create a different product. If workstations do not
require such a set-up phase for creating different products, the ALBP instance is referred to
as mixed-model ALBP.

In this work, a complex GALBP instance will be considered. More specifically, no as-
sumptions are made on the factory layout nor on the tasks’ precedence constraints. Further-
more, a mixed-model assembly line is considered. The objective of the proposed solution
consists of minimization of the total cycle time. To solve this problem, a DRL framework
has been developed. The proposed DRL framework adopts a parallel training phase to
solve the aforementioned DRL issues. Similarly to what conducted in [10], the proposed
parallel training is based on a shared representation of the environment. As further detailed
in the next sections, each DRL agent proposes a set of candidate actions and then a cen-
tralized control logic combines said actions into a single command which is implemented,
producing a state variation in the environment. Simulations have proven that the adoption
of said control logic allows for the generation of high-quality control actions since the
beginning of the training phase.

The reported research has been carried out in the context of the H2020 SESAME
project [11], coordinated by ArianeGroup. The project aims at increasing European space
access capabilities by exploiting data science. In this context, the optimization of the
integration activities to be performed at the French Guyana Kourou spaceport has been
identified as crucial for addressing the aforementioned issues.
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The remainder of the paper is organized as follows. Section 2 presents a review of the
literature with respect to the considered assembly line problem and parallel/distributed
DRL approaches. Section 3 formalizes the problem from a mathematical viewpoint. Section 4
describes the proposed parallel DRL framework for achieving a faster training phase.
Section 5 presents the numerical simulations, and finally, Section 6 wraps up the presented
work and outlines limitations and future improvements.

2. Related Works and Paper Contributions

As already mentioned, assembly line balancing problems (ALBPs) are combinato-
rial optimization problems consisting of deciding how to distribute a given set of activi-
ties/tasks across a given set of workstations. Said workstations, whose interconnection
defines the so-called factory layout, are the places or machines which, by exploiting the
available resources, allow us to process the tasks to be completed for achieving a given
industrial manufacturing goal.

In [12], the authors present a systematic review of the literature, analysing scientific
articles published from 1990 to 2017. Among other aspects, the authors highlight how
the research lines in this field have evolved. In particular, the study reports that while in
the 1990–2000 period, research activities focused on a single instance of ALBPs (i.e., the
single-ALBP in which a single product is assembled) and on heuristic solution methods,
and after 2000, more attention has been devoted to other ALBPs instances and on meta-
heuristics. In addition, starting from the 2010s, ALBP instances which also consider the
issue of assigning resources (e.g., equipment, workers, raw materials) gathered a significant
relevance. Indeed, the ALBP problem considered in the present work belongs to the latter
research line, since, at each discrete time instant, it simultaneously considers the problem
of assigning tasks and resources to workstations.

A deep review of exact methods and (meta)heuristics developed for the industrial
sector is beyond the scope of this work. For an insight on the different ALBP instances
and relative solution methods, the reader can refer to the following review articles: [8,9,13].
In [14], the authors discuss the application of exact methods, heuristics and machine-
learning techniques for solving combinatorial problems. In particular, the authors point
out that said techniques can be successfully applied for solving small- and medium-sized
problems, while for large-scale problems, DRL techniques should be adopted. Hence, the
remainder of this section is devoted to reviewing the literature with respect to the adoption
of RL (Section 2.1) and DRL (Section 2.2) techniques for addressing ALBPs. Furthermore,
parallel and distributed DRL approaches will also be discussed (Section 2.2.1), since they
provide the baseline of the framework adopted by the solution proposed in this work.

2.1. RL Approaches

In [15], the authors address the (re)scheduling problem for NASA ground operations
by means of ML algorithms in presence of time constraints. The adoption of ML proved
to be useful for reducing the time required to prepare a launch campaign at the Kennedy
spaceport. In particular, the authors train an artificial agent (in charge of solving an ALBP)
by means of a heuristic iterative repair method. In [16], the authors address a similar
problem considering both time and resource constraints. The aim of this work consists of
finding the shortest conflict-free schedule for all the activities. To achieve this, the authors
have adopted a temporal difference Reinforcement Learning (RL) algorithm for training
a neural network in charge of learning how to introduce repair actions into the tasks’
schedule. A RL-based approach for solving a scheduling problem has also been addressed
in [17]. The authors, by exploiting the Open AI Gym toolkit [18], have developed an RL
framework for training an artificial agent, evaluating its performances with respect to
classic operations research problems. In particular, the rewards obtained by the RL agent
are computed based on heuristics, which allows for reducing the computational cost of the
proposed solution. The problem of reducing computational costs of RL-based scheduling
algorithms has been also addressed in [19], in which the authors addressed a real-time
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scheduling problem in the context of earth observation services. The proposed solution
combines the strengths of RL and classic operations research techniques. In particular, by
means of an Markov Decision Process (MDP) formulation of the problem, an RL algorithm
is used to reduce the computational costs associated with the dimensions of the solution
space, while a dynamic programming problem is set up for solving the sequencing and
timing problems. Results show that the combination of the two mentioned techniques
allows for reducing training times and achieving better generalization capabilities. In [20],
the authors address the scheduling problem considering the presence of resources to be
shared by different clients in a data centre. The authors developed a time-varying RL
formulation of the problem and tested the proposed solution on real-time production data
metrics from Google and Alibaba: the simulations proved a significant improvement with
respect to resource usage.

2.2. DRL Approaches

In [21], the authors developed a smart scheduling agent using a DRL algorithm.
An interesting characterisc of the proposed approach is its ability to deal with uncertainties
such as random task arrivals and equipment damages. Similarly, in [22], the authors
tackle industrial scheduling problems in presence of uncertainties and propose a DRL
proximal policy optimization algorithm. Many researchers have investigated the adoption
of a deep deterministic policy gradient approach for dealing with problems characterized
by continuous environments. As an example, in [23], the authors developed a deep
deterministic policy gradient algorithm which, in contrast to deep Q network (DQN)
algorithms, can be applied for continuous state and action spaces. The authors proved that
the proposed algorithm performs similarly to state-of-the-art DQN algorithms. A similar
approach has been adopted in [24], where the authors applied a deep deterministic policy
gradient algorithm for solving a scheduling problem. In [25], the authors developed a
graph neural network-based method to solve generic combinatorial optimization problem.
More in detail, the proposed solution adopts an offline DQN-based training phase for
learning optimal policies in simulated environments; at run time, the trained Q-network
is embedded in a modified version of the Monte Carlo tree search method, guaranteeing
more robust solutions. Indeed, the developed approach benefits from the generalization
abilities learned during the offline training phase and the solutions’ robustness obtained by
means of the online tree search.

The literature review performed so far justifies the following statements:

1. ALBPs are in general NP-hard problems which naturally arise in industrial processes;
many instances have been formalized and most of the solutions are instance-driven,
i.e., tailored to the specific use case addressed;

2. Several advanced algorithms have been developed for supporting exact methods;
computational costs’ reduction has also been addressed by means of heuristics and
genetic algorithms; however, with the explosion of exploitable data and the considera-
tion of more complex industrial problems, said improvements are not enough to deal
with more complex ALBP instances;

3. Several ML-based approaches have been proposed and applied to industrial problems;
although RL-based approaches allow us to learn optimal policies also in a model-
free setting, they can be applied to small- and medium-sized problems or to simple
ALBP instances;

4. Large-sized problems and complex ALBP instances can be successfully addressed by
DRL techniques; however, in this context, the duration of the training phase and the
quality of the solutions represent crucial aspects which still need to be investigated.

Due to these considerations, many researchers have focused on developing distributed,
parallel and multiagent DRL approaches for overcoming the limitations highlighted in (δ).
The next subsection will review this latter class of approaches.
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2.2.1. Parallel and Distributed DRL Approaches

In [26], the authors describe a framework in which a number of actor–learners are used
in parallel on a single machine. Since the actor–learners run in parallel on a single multicore
CPU, there is no need to exchange information between several machines. The authors
point out that the adoption of multiple actor–learners in parallel allows us to (i) stabilize
and to (ii) reduce the required time of the training phase. In particular, the adoption of
different exploration strategies allows us to avoid the usage of replay memories adopted,
for example, by the DQN training algorithm. The proposed DRL framework optimizes the
decisions of the DRL controllers by means of an asynchronous gradient descent method.
More in detail, each actor–learner interacts with its own instance of the environment, and
after computing its gradient, updates shared parameters in an asynchronous way. A similar
solution has been presented in [27]: the authors describe a parallel DRL algorithm able
to run on a single machine. Contrary to what was conducted in the above-mentioned
DRL framework, in this work, the parallel DRL algorithms runs on a GPU and not on
a multicore CPU. In particular, the authors developed a parallel advantage actor–critic
algorithm which proved to achieve state-of-art performances on benchmark problems
with a few hours of training. In [28], the authors present a fully distributed actor–critic
architecture for multitask DRL. An interesting characteristic of the proposed solution is
that during the learning phase, the agents share details about their policy and parameters
with their neighbours. In this respect, scalability is guaranteed, as the amount of data to
be exchanged depends only on the number of neighbours and not on the total number
of agents. In [29], the authors developed a multiagent DRL algorithm for minimizing
energy costs associated with heating, ventilation and air-conditioning services in multizone
residential buildings. The proposed solution is based on the idea that each thermal zone is
associated with an agent, which, by interacting with the environment and the other agents,
is able to learn the optimal policy. In this respect, scalability is guaranteed in terms of the
number of thermal zones to be controlled. The authors adopted a multiactor attention critic
approach allowing the agents to learn approximations of both policy and value functions.
In particular, the interaction between the agents is governed by an attention mechanism,
allowing them to consider in a selective way the information coming from the other agents.
Said information is used to update, for each agent, the action-value function. The same
problem has been addressed in [30], where the authors proposed a distributed multiagent
DRL approach. Contrary to what conducted in the previous reviewed article, in this work
the authors propose to train different agents for learning the cooling and heating set points.
Simulations proved the benefits of this approach with respect to centralized and multizone
approaches. Indeed, since the control actions can be divided in two groups (relative to
heating and cooling actions), it makes sense to learn multiple policies for each zone. In the
specific application scenario, this translates into learning a policy for warmer months and a
different one for colder months.

2.3. Paper Contributions

The main contributions of this work can be summarized as follows:

• A complex ALBP instance envisaging (i) the presence of hard constraints concerning
tasks, resources and workstations and (ii) the need for solving both tasks and resource
assignment problems has been considered;

• A parallel DRL approach for solving the mentioned ALBP has been derived for
reducing the time required by the training phase;

• Given the application sector (integration activities in the aerospace sector), hard con-
straints’ management has been embedded in the decision problem.

3. Problem Formalization
3.1. Assembly Line Balancing Problem

The ALBP instance considered in this work consists of assigning a given set of tasks
τ∈T and resources r∈R to a given set of workstations w∈W . The objective of the proposed
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control algorithm is to minimize the total make span (i.e., the time required to finish all the
tasks) while respecting all the constraints.

Each task τj∈T is characterized in terms of (i) the first discrete time instance in which
it can be processed Sτj , (ii) the latest possible discrete time instant in which it must be
completed Fτj and (iii) the number of discrete time steps required to process it dτj . The set
of resources required to execute a given task τj is denoted with Rτj . Resources can either
be consumables (e.g., energy, water, chemicals, raw materials) or instruments (e.g., tools,
operators, workers with specific). Each workstation wi∈W is characterized in terms of its
processing capabilities, i.e., in terms of the maximum number of tasks that can process in
parallel W̄i.

The considered constraints can be grouped into three classes. Task constraints, TC ,
specifying (i) the latest allowed start time Sτj and finish time Fτj for each task τj and
(ii) dependence relations between tasks. The latter group of task constraints, also referred
to as precedence constraints, allows us to capture the fact that a given task τj1 (i) must be
finished before a given task τj2 can be processed or that (ii) it must start before a given task
τj2 begins or that (iii) it must be finished before a given task τj2 can be finished, or, finally,
that (iv) it must start before a given task τj2 can be finished. These type of constraints are
referred to as Finish to Start (FS), Start to Finish (SF), Finish to Finish (FF) and Start to Finish
(SF) constraints, respectively. Workstation constraints,WC , specifying, for each workstation
wi∈W , (i) which tasks and (ii) the maximum number of tasks that can be processed in
parallel. Finally, resource constraintsRC , specify the type and quantity of resources needed
to execute a given task τj.

3.2. Proposed Markov Decision Process Framework

MDPs represent a useful mathematical framework for formalizing RL problems. In-
deed, MDPs model decision processes in which part of the underlying dynamics is stochas-
tic while part depends on the control actions taken by an agent. More precisely, MDPs are
defined by means of the tuple 〈S ,A, Pa, Ra, γ〉 where S is the state space, A is the action
space, Pa(s, s′) are the transition probabilities specifying the probability of ending in state s′

when, in state s, action a is selected, Ra(s, s′) is the expected reward for taking action a and
going from state s to state s′, and finally, γ∈[0, 1] is the discount factor weighting future
and past rewards. The objective of MDPs consists of identifying the optimal policy π∗,
i.e., a function mapping states to actions, maximizing the cumulative reward function Ra.

Given the MDPs’ framework, it is straightforward to define a RL problem. Indeed, at
each discrete time instant k, the RL agent observes the environment’s state s[k]∈S . Based on
such an observation, the agent interacts with the environment by performing an action
a[k]∈A. As an effect of action a[k], the environment evolves in state s′[k]∈S . By means of
the reward function Ra(s, s′), the agent is able to evaluate the effects of said action and
state transition. The goal of the RL agent is thus to learn the optimal policy π∗ : S → A,
maximizing the cumulative reward

R[k] =
∞

∑
k=0

γkr[k] (1)

As mentioned in Section 3.1, the considered ALBP instance envisages the presence
of several hard constraints. As further described in the next sections, for addressing this
issue before implementing the control actions a feasibility check is performed. If the control
action a[k] proposed by the agent at time k is unfeasible (i.e., if it violates at least one
constraint c ∈

{
TC;WC;RC

}
), the agent obtains a negative reward and must provide a

different action. To avoid infinite loops, the number of tentative actions that the agent can
propose is kept limited.

In the next subsections, the considered ALBP instance will be formalized as an MDP
and thus all the elements of the tuple 〈S ,A, Pa, Ra, γ〉 will be instantiated for the consid-
ered scenario.
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3.2.1. State Space

To capture the dynamics of an assembly line, the state of the environment is defined as

S [k] = SW [k]× ST [k]× SR[k] (2)

where

• SW [k] captures workstations’ states: the generic element sWi [k] ∈ SW [k] represents
the state of the i-th workstation defined as the number of tasks which are in execution
at time k;

• ST [k] captures tasks’ states: the generic element sTj [k] ∈ ST [k] represents the state of
the j-th task defined as the number of discrete time instants dj[k] left for the task to
be finished;

• SR[k] captures resources’ states: the generic element sRi,r[k] ∈ SR[k] represents the
state of resource of type r with respect to the i-th workstation which is defined as the
number of resource units available at the workstation at time k.

3.2.2. Action Space

The agent’s control actions concern the assignment of tasks and resources to worksta-
tions. Hence, the action space A can be defined as

A[k] = AT [k]×AR[k], (3)

where

• AT [k] represents tasks control actions: the generic element aTi,j[k] ∈ AT specifies if

task τj has been assigned to workstation i at time k (aTi,j[k] = 1), or not (aTi,j[k] = 0);

• AR[k] represents resources control actions: the generic element aRi,r[k] ∈ AR specifies
if a unit of resource of type r has been assigned to workstation i at time k (aRi,r[k] = 1),
or not (aRi,r[k] = 0).

3.2.3. Reward Function

The main goal of the proposed ALBP algorithm consists of minimizing the total
make-span Cmax, i.e., the time required to finish all tasks τj ∈ T . For achieving this goal,
we selected the following reward function:

Ra(s, s′) =


2, if a is feasible and ∑

|W|
i=1 ∑

|T |
j=1 aTi,j[k] > 0

0, if a is feasible and ∑
|W|
i=1 ∑

|T |
j=1 aTi,j[k] = 0

−2, if a violates at least one constraint

(4)

Note that with this modelling choice the agent is encouraged to assign tasks to workstations.
Indeed, ∑

|W|
i=1 ∑

|T |
j=1 aTi,j[k] > 0 if and only if at least one task has been assigned. When no

task is assigned, a zero reward is returned to the agent. Finally, when the selected action
leads to the violation of constraints, a negative reward is given to discourage this behaviour.
The behaviour induced by this reward function is in line with the main goal that we aim
to achieve, i.e., the minimization of the total time to complete the tasks. As a matter of
fact, the total completion time is minimized when the workstations work tasks as much as
possible. It will be verified via simulations that this reward function actually leads to the
desired objective.

3.2.4. Policy Function

A typical choice for RL applications consists of choosing an ε-greedy policy based on
the Q-value Function. Said function allows us to evaluate the quality of state–action pairs
under a given policy π, and is defined as
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Qπ(s, a) =

[
∞

∑
t=0

γtrk+t+1|s[k] = s, a[k] = a

]
(5)

where γ is the discount factor mentioned in the previous subsection. In other words, the
Q-value function provides a measure of the rewards that will be obtained when at time k
the state is s[k], the selected action is a[k] and adopted policy is π. As further detailed in the
next section, in this work an Artificial Neural Network (ANN) will be used to approximate
the Q-value function. The ε-greedy policy exploiting the Q-value function can be defined
in the following way:

π(s, a) =

{
arg maxa Qπ(s, a), with probability 1− ε

Random action, with probability ε.
(6)

ε-greedy policies allow us to modulate exploration (of unknown state–action pairs) and
exploitation (of acquired knowledge about given state–action pairs). Balancing these
two phases is of paramount relevance for achieving good performances. Ideally, at the
beginning of the training phase, exploration should be encouraged since the agent received
a feedback only with respect to few state–action pairs. To guarantee exploration, the ε
value should be high. On the contrary, when a significant amount of interactions between
the agent and environment have occurred, it is reasonable to have small values for ε so that
the acquired knowledge can be exploited. To achieve these conflicting objectives, it is a
common choice to let ε change according to the number of training episodes. Let E be the
total number of training episodes, then ε can be defined as

ε(i) = e
i

αE . (7)

where α is a positive constant and i = 1, . . . , E.

4. Proposed DRL Task-Control Algorithm with Parallelized Agents’ Training

DRL techniques consist of the adoption of Neural Networks (NNs) as function ap-
proximators of value and/or policy functions. In this work, a DQN algorithm [31] and a
parallel training approach similar to in [10] have been adopted.

Training is performed over a given number of episodes. An episode is the simulation
of the complete mapping of all the tasks. During every episode, the agents take actions
which modify the environment, resulting in rewards for them (different agents receive, in
general, different rewards, depending on the actions they take). The rewards are stored in a
database, and at the end of each episode, every agent is trained on the database of training
samples collected during the episode, weights of the NN of agents are updated and agents
select a random mini-batch from the memory and a new episode is started again.

As depicted in Figure 1, at each discrete time k in a given episode, a set of N agents
receive an observation of the environment o[k]. Based on said observation, each agent
proposes a control action a∗i [k] by following an ε-greedy policy, as described in Equation (6).
For guaranteeing that only feasible actions are implemented, each action a∗i [k] is checked
against the set of constraints 〈TC;WC;RC〉. If such a feasibility check fails, the agents
receive a negative reward r̃i and suggest a different action. To avoid infinite loops, the
number of attempts that an agent is allowed to perform is kept limited; if an agent fails
to find a feasible solution then its control action is forced to be do nothing (i.e., do not
assign tasks nor resources). After each agent has computed its control action a∗i [k], a central
control logic combines them. For this purpose, it is checked whether some of the control
actions are in conflict. Indeed, it may happen that two agents assign the same task to
different workstations. In this case, based on an ε-greedy policy, the central control logic
decides which one of the two control actions can be implemented. Based on the decision
of the central control logic, the agents receive an additional reward R̄ for encouraging
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nonconflicting actions. After this second set of feasibility checks, the joint control action
A∗[k] is implemented and a common reward r[k + 1] is provided to the agents.

Figure 1. Parallel DRL with hard constraints’ management.

In the next subsections, the structure of the agents’ neural networks are detailed.

Agents’ Neural Network Structure

At the generic time k, the state of the environment (defined as in (2)) is observed, and
the observations are stored in a vector, Sobs

k ∈ RW+T+WR, which is the input of the agents’
neural networks.

Sobs
k = col(sw,obs

k , st,obs
k , sr,obs

k ) (8)

where sw,obs
k , st,obs

k , and sr,obs
k are, respectively, the vectors of the current (at time k) observa-

tions of state of the workstations, the state of the tasks, and the state of the resources (col(·)
is the operation of vertical concatenation of vectors).

The vector of the observations of the current state of the workstations is structured as:

sw,obs
k = col(sw,obs

k,1 , . . . , sw,obs
k,W ), (9)

where the generic element sw,obs
k,w , w = 1, . . . , W, is a binary vector of length T. The generic

element of position t in sw,obs
k,w is equal to one if and only if from the observation it is

determined that task t is currently running at workstation w.
The vector of the observations of the current state of the tasks coincides with ST [k],

as defined in Section 3.2.1 (ST [k] is already a vector).
The vector of the observations of the current state of the resources is structured as:

sr,obs
k = col(sr,obs

k,1 , . . . , sr,obs
k,W ), (10)
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where the generic element sr,obs
k,w , w = 1, . . . , W, is a binary vector of length R. The generic

element of position r in sr,obs
k,w is equal to the amount of resource type r observed at worksta-

tion w at time k. In conclusion, the dimension of the input layer (i.e., the number of nodes
composing it) is:

|Sobs
k | = |s

w,obs
k |+ |st,obs

k |+ |sr,obs
k | = WT + T + WR (11)

The output layer of the NN contains the actions decided by the DQN agent. The output layer
is structured into two parts, one concerning the action of assigning tasks to workstations,
and the other concerning the assignment of resources to workstations. Therefore, the output
vector, Aout

k ∈ RW(T+R), is:
Aout

k = col(at,out
k , ar,out

k ), (12)

where, the vector at,out
k concerning the actions of the current state of the workstations is

structured as:
at,out

k = col(at,out
k,1 , . . . , at,out

k,T ), (13)

where the generic element at,out
k,t , t = 1, . . . , T, is a vector of length W, whose generic entry

w relates to the assignment of task t to workstation w. Specifically, the value of the element
of position w in sw,obs

k,t , represents the expected reward that the actor receives, taking that
action at time k, and then following the policy in the following times.

Element ar,out
k in (12) is built similarly, and concerns the actions of assigning resources

to workstations. Element ar,out
k is structured as:

ar,out
k = col(ar,out

k,1 , . . . , ar,out
k,R ), (14)

where the generic element ar,out
k,r , r = 1, . . . , R, is a vector of length W. The value of the

element of position w in sw,obs
k,r , represents the expected reward that agent receives if it

assigns resource r to workstation w, and thereafter follows the policy.
In the next section, we discuss the proposed DQN control strategy used to select,

at every time k, the actual actions to be implemented, from the examination of the values
returned by the NN in the output layer.

In conclusion, the dimension of the output layer is:

|Aout
k | = |a

t,out
k |+ |ar,out

k | = WT + WR. (15)

5. Simulations

In this section, we present numerical simulations to validate the proposed method.
We propose a set of simulations of increasing complexity, as follows:

1. Scenario 1. We evaluate the performance of the algorithm for the problem of schedul-
ing a set of tasks on a given number of workstations, considering the following
constraints: the precedence constraints among the tasks must be respected, all tasks
must finish before a given deadline and workstations can work any of the tasks, but
only one at any given time;

2. Scenario 2. It is the same as Scenario 1, but in addition constraints on resources
needed by the tasks to execute are also considered. In addition, the algorithm needs
to provide an optimized schedule of resource assignment to the workstations, aiming
at minimizing the assignment of resources (i.e., the algorithm should assign only the
needed resources, when needed).

In every scenario, we consider a batch of 15 tasks to be scheduled, on two workstations.
The precedence constraints among the tasks are displayed in Figure 2 (tasks that are not
displayed do not have precedence constraints). Without loss of generality, we consider
all dependencies to be of the finish-to-start type, the most common one. Hence, in the
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graph, an arrow from a generic task τi to a generic task τj means that τi must finish before
τj can start.

Figure 2. Precedence constraints for task execution.

5.1. Experimental Setup

Simulations are performed on an Intel(R) Core(TM) i5-10210U CPU @ 2.11 GHz,
16.0 GB RAM, 64 bit processor with Windows 10. The simulation environment has been
coded in Python, using PyTorch libraries for the implementation of the deep RL agent.
The tool openAI gym is used to develop the assembly line environment [18]. For the deep
RL agents, we considered the following parameters:

• The NN implemented inside each DQN agent is a dense, two-layer network with
24 neurons in each layer, with re-LU activation functions;

• Adam optimizer is used [32];
• The learning rate is α = 0.001;
• The discount factor is γ = 0.9;
• A memory size of 2000 samples is selected;
• The minibatch size is 256 samples;
• Learning is performed over 10,000 episodes.

Figure 3 displays how the parameter ε varies episode after episode, following (7).
In the first episodes, high values of ε encourage exploration. As the agent progresses in
learning the optimal policy, ε decreased to favour exploitation of the acquired knowledge.

Figure 3. Plot of ε parameter.
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5.2. Scenario 1

Figure 4 illustrates the total reward collected from the environment at every episode.
The agents were trained over 10,000 episodes and simulation results are described below.
From the Figure 4, we can empirically check that the proposed DQN algorithm converges
after about 6000 episodes of training. The training process over 10,000 episodes took 2460 s.

Figure 4. Scenario 1: Total observed reward at each training episode.

Figure 5 displays the evolution of the total make-span observed in every episode.
As the learning progresses, the make-span decreases, and it converges to the minimum
value of 48 time intervals. In Figure 5, there are spikes in the observed value of the make-
span at some points, when the agents explore random actions. Exploration becomes less
and less frequent from one episode to the other, because ε, the exploration rate, decreases,
as reported in Figure 3.

Figure 5. Scenario 1: Observed make-span at each training episode.

We can see also from Figure 5 that in some early episodes, the observed make-span is
lower than the optimal one found after learning has converged. This is because in these
early episodes, the stopping criterion on the maximum possible number of iterations within
a single episode is reached, and the episode is terminated before all the tasks are assigned,
so that the observed make-span refers only to a portion of the total number of tasks.

The Gantt charts in Figure 6 and in Figure 7 illustrate, respectively, the placement of
resources and the scheduling of tasks on workstation, as suggested by the trained agents.
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Figure 6. Scenario 1: level of resource at the workstations.

Figure 7. Scenario 1: Tasks’ assignment—trained agents.

It is possible to check from the Gantt charts that actually there is no alternative feasible
plan of resource and task assignment that results in a lower make-span, which confirms
that the agents have learned the optimal scheduling policy for the problem.

5.3. Scenario 2

In this scenario, resource constraints are also considered, in addition to the ones already
considered in Scenario 1. The agents are again trained over 10,000 episodes. Figure 8
displays the total reward collected from the environment and Figure 9 illustrates the total
make-span at every episode. In Figure 9, there are again spikes in the observed value
of the make-span at some points, when the agents explore random actions. Exploration
becomes less and less frequent from one episode to the other, because ε, the exploration
rate, decreases, as reported in Figure 3.

We can see in some early episodes that the observed make-span is again lower than
the optimal one found after learning has converged, for the same reasons as above.

Figure 8. Scenario 2: Total observed reward at each training episode.
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Figure 9. Scenario 2: Observed make-span at each training episode.

Figures 10 and 11 report, respectively, the optimal assignment of resources and tasks
to workstations.

Figure 10. Scenario 2: level of resource at the workstations

Figure 11. Scenario 2: Tasks’ assignment—trained agents.

5.4. Comparison with State-of-the-Art Approaches

We compare the proposed algorithm with a heuristic solution for task scheduling,
and with an optimization-based algorithm implementing a Model Predictive Control
(MPC) scheme for task control. These are two popular solutions in assembly line control.
The comparison is performed based on Scenario 2 above. The main key performance indicators
of interest for the comparison are:

• The total time to complete the tasks (cycle time). This gives a measure of how good
the algorithm is in optimizing the tasks’ execution;

• The execution time of the algorithm. This tells us how fast the algorithm is in com-
puting the tasks’ scheduling. This is important, especially when there is the need to
update the scheduling in real time (e.g., due to faults).

5.4.1. MPC for Task Execution Control

We implemented the MPC algorithm proposed in our previous work [33], which con-
trols the allocation of tasks and resources to the workstations in discrete time, with sampling
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time of T seconds. The MPC logic foresees that, every T seconds, an optimization problem
is built and solved, to decide the best allocation of resources and tasks to workstations,
while respecting all the applicable constraints. The target function of the MPC algorithm
is designed to achieve the minimization of the cycle time. The MPC algorithm has been
implemented in Julia 1.7 (https://julialang.org/, accessed on 21 December 2021), and the
optimization problem solved using the solver Gurobi (https://www.gurobi.com/, accessed
on 21 December 2021).

The average detected solving time of the MPC algorithm was 21.2 s, which compares
with an almost instantaneous running time (0.046 s) of the trained agents of the algorithm
proposed in this paper. This gap is expected to be much larger in larger scenarios, with
higher number of tasks, resources and workstations. Additionally, the solving time of the
MPC algorithm increases further when the sampling time is decreased (in this simulation,
we considered for the MPC algorithm a sampling time T = 15 min). Due to its almost in-
stantaneous speed, the proposed deep RL approach is more usable in real-time applications,
for example, when there is the need to reschedule tasks in real time.

The total time to complete the tasks resulting from the MPC algorithm is 46 time steps
(compared to a cycle time of 48 time steps resulting from the proposed RL approach).

5.4.2. Shortest Processing Time Heuristic

In the following, Scenario 2 is solved by using the Shortest Processing Time (SPT)
heuristic, which is one of the heuristics often used in practice to derive simple and effective
task scheduling. This heuristic gives precedence in the execution to the tasks with the
shortest processing time. The assumptions used in SPT are the following ones:

• In the assignment problem, if both workstations are free, priority is given to worksta-
tions’ IDs;

• In the assignment problem, if two or more tasks have the same processing time,
priority is given to tasks’ IDs.

The rule repeatedly tries to send in execution first the tasks with shortest execution
time, after all the constraints are verified to be satisfied.

The heuristic has negligible computing times. Figure 12 reports the resulting tasks’
Gantt chart. The total time to complete the tasks is 52 time steps.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
W1
W2

13 6
3715981210

14111542

Figure 12. Scenario 2: Task scheduling resulting from SPT heuristic.

In conclusion, the MPC provides solutions that are characterized by the minimum
total time to execute the tasks. This is achieved at the expense of the computational
complexity, and the complexity of the control architecture (the approach requires to build
and solve an optimization problem, and a detailed modelling of the problem). On the contrary,
simple heuristics, such as the SPT one, require no computational complexity and modelling
effort, at the expense of achieving a suboptimal solution, often far from the optimal one.
The proposed approach presents the benefits of both the optimization-based approaches
and the heuristics, being characterized by low computational complexity required to
execute it in real time, low complexity of the control architecture and reduced modelling
effort, and good optimization of the cycle time (achieving a value that is intermediate
between the optimal one, achieved by MPC, and the one achieved by the heuristics). In
conclusion, the RL approaches such as the one presented in this paper, which are made
more powerful and scalable by the use of neural networks, can be integrated and can
benefit from the ongoing Industry 4.0 digitalization trend (especially in the training phase,
thanks to the digital twin concept), and appear as a very promising solution for making the
assembly lines more agile and able to optimally react, in real time, to disruption, that could
otherwise seriously impair the productivity of the factory.

https://julialang.org/
https://www.gurobi.com/
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6. Conclusions

This paper has discussed a deep RL-based algorithm for optimal scheduling and con-
trol of tasks’ and resources’ assignment to workstations in an assembly line. The algorithm
returns an optimal schedule for the allocation of tasks and resources to workstations in the
presence of constraints. The main objective is to minimize the overall cycle time, and to
minimize the amount of resources circulating in the assembly line. In contrast with the
standard optimization-based approaches from operational research, the proposed approach
is able to learn the optimal policy during a training process, which can be run on a digital
twin model of the assembly line (the simulation environment in this paper was developed
by using openAI gym [18]). Furthermore, the proposed method is scalable, and after
training is completed, can be used for decision support to the scheduling operators in real
time, with negligible computation times. This can also prove very useful in the scenario of
replanning after an adverse event, such as unexpected delays, faults, etc.

The proposed deep RL approach solves the problem of dimensionality that impairs
classical, tabular RL methods (a huge number of states and actions). A parallel training
approach for the agents was used, which further reduces the training times, since more
than one agent simultaneously take action and learn from the environment observation.
The proposed multiagent RL approach generates promising results in terms of minimization
of the makespan, which demonstrates the feasibility of the proposed method.

Future work will primarily concern the introduction of more operational constraints
of the tasks within the model of the complete assembly line. Then, we will work on the
components of the decision-making process such as the state and the reward. The state
will be extended to include additional information available within an assembly line. This
information will then be used for the design of more complex reward functions that can
better coordinate the activity of the agents. Therefore, different reward functions will be
designed based on different performance indicators.
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