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Abstract

Background

Triple-negative breast cancers (TNBCs) display poor prognosis, have a high risk of tumour

recurrence, and exhibit high resistance to drug treatments. Based on their gene expression

profiles, the majority of TNBCs are classified as basal-like breast cancers. Currently, there

are not available widely-accepted prognostic markers to predict outcomes in basal-like sub-

type, so the selection of new prognostic indicators for this BC phenotype represents an

unmet clinical challenge.

Results

Here, we attempted to address this challenging issue by exploiting a bioinformatics pipeline

able to integrate transcriptomic, genomic, epigenomic, and clinical data freely accessible

from public repositories. This pipeline starts from the application of the well-established net-

work-based SWIM methodology on the transcriptomic data to unveil important (switch)

genes in relation with a complex disease of interest. Then, survival and linear regression

analyses are performed to associate the gene expression profiles of the switch genes with

both the patients’ clinical outcome and the disease aggressiveness. This allows us to iden-

tify a prognostic gene signature that in turn is fed to the last step of the pipeline consisting of

an analysis at DNA level, to investigate whether variations in the expression of identified

prognostic switch genes could be related to genetic (copy number variations) or epigenetic

(DNA methylation differences) alterations in their gene loci, or to the activities of transcrip-

tion factors binding to their promoter regions. Finally, changes in the protein expression lev-

els corresponding to the so far identified prognostic switch genes are evaluated by

immunohistochemical staining results taking advantage of the Human Protein Atlas.

Conclusion

The application of the proposed pipeline on the dataset of The Cancer Genome Atlas

(TCGA)-Breast Invasive Carcinoma (BRCA) patients affected by basal-like subtype led to
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an in silico recognition of a basal-like specific gene signature composed of 11 potential prog-

nostic biomarkers to be further investigated.

Introduction

Breast cancer (BC) is the most common female cancer and despite important advances in early

detection and research development, it continues to be the second leading cause of death in

women worldwide [1]. Triple-negative BC (TNBC) accounts for a minority of all diagnosed

BCs (15–20%) [2]. It is a subtype with a heterogeneous nature, defined by the low or absent

expression of estrogen (ER), progesterone (PR) receptors and the lack of expression of the

human epidermal growth factor (EGF) receptor-2 (HER2) receptors [3]. These cancers differ

from other BC subtypes in that they grow and spread faster, have limited treatment options

(typically treated with chemotherapy) and their metastatic pattern spread with a higher likeli-

hood of brain and lung involvement and less frequently with bone lesions. Relapse is common

in TNBC, usually in the first 5 years, leading to the poorest survival outcomes between all BC

subtypes [4]. Currently, there are not available widely-accepted prognostic markers to predict

outcomes in TNBC patients. TNBC is often used as a surrogate for identifying the aggressive

basal-like BC subtype. Although the two patterns share many similarities, biologically they are

not the same, but both are associated with poor clinical outcomes. Therefore, the development

of new prognostic indicators for basal-like subtype represents an unmet clinical challenge that

might be of benefit to the clinical management of this disease. To achieve this goal, we started

from data extracted from our recent computational analysis of BC phenotypes [2]. In that

study, we exploited The Cancer Genome Atlas (TCGA)-Breast Invasive Carcinoma (BRCA)

dataset applying a network-based tool named SWItch Miner (SWIM), which predicts impor-

tant (switch) genes within the co-expression network that regulate disease state transitions. The

transcriptomic profile of BC patients was stratified into BC subtypes according to the well-

established Immunohistochemistry (IHC) (Luminal A, Luminal B, Her2 positive and Triple-

negative) and genetic (PAM50; Luminal A, Luminal B, Her2 positive and Basal-like) classifica-

tion, to identify switch genes shared among four subtypes and those specific for each subtype.

We focused our attention on shared switch genes to identify a common BC disease module

univocally altered in all BC subtypes, leaving for a next deepening the understanding of the

clinical utility of switch genes deregulated in a subtype-specific manner. So, here we focused

our attention on switch genes specific for the most aggressive subtype (basal-like) to screen

which of them, deregulated in BC patients, significantly associated with the survival of basal-

like affected subjects. Correlation analyses were performed, and the results were complemented

with further studies at both DNA and protein level, to investigate whether variations in the

expression of identified prognostic switch genes could be related to genetic (copy number vari-

ations), epigenetic (DNA methylation differences), and transcription factor activities. Also,

changes in the protein expression levels were evaluated by immunohistochemical staining

results taking advantage of the Human Protein Atlas. Overall, our findings led to an in silico
recognition of a basal-like prognostic gene signature composed of 11 genes to be further

investigated.

Results

Study design

In our recent paper [2], we analysed a total of 505 BC subjects (229 Luminal A, 120 Luminal B,

58 HER2-enriched, and 98 Basal-like) and we identified a total of 108 switch genes (S1 Table)
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that were specific for the most aggressive BC subtype, i.e. the basal-like subtype [5–7]. In the

present study, we aim to predict important prognostic biomarkers among these basal-like spe-

cific switch genes. A schematic for our study design is depicted in Fig 1.

Prognostic value of basal-like specific switch genes

In order to study the clinical relevance of the basal-like specific switch genes with respect to

the patients’ survival, we exploited their expression profiles to perform the Kaplan-Meier anal-

ysis. We used the RNA-sequencing data available on the TCGA to stratify BC patients in two

groups according to the expression levels of the 108 basal-like specific switch genes. Thus, for

each switch genes, low (high)-expression groups refer to patients with the expression level of

that gene lower (greater) than the median of its expression values across all BC patients. Then,

a log-rank test was performed to assess a statistical significance (p-value) to each gene: the

lower the p-value, the better the separation between the two prognosis groups. Switch genes

with log-rank p-values less than 0.05 were candidate as potential biomarkers for predicting the

survival rate of breast cancer patients. We found a total of 15 basal-like specific switch genes

that were significantly associated (p-values� 0.05) with BC patients’ prognosis. Among them,

11 switch genes (i.e., CENPN, LRP8, DSCC1, CTPS, RCOR2, GINS4, TUBA1C, PRAME,

SLC7A11, CDCA7, GSDMC) appeared to be an unfavourable prognostic gene (Fig 2), suggest-

ing that their higher expression could be associated with poorer BC patients’ overall survival

(OS). The other four switch genes (i.e., NXNL2, PHGR1, LOC389033, C10orf79) appeared as a

favourable prognostic gene since their high expression correlated with a better clinical out-

come (S1 Fig). Hereafter, we focused only on the 11 basal-like specific switch genes whose acti-

vation appeared to be associated with the worst prognosis. Their clinical relevance was also

confirmed using other BC datasets collected in the Kaplan-Meier plotter website [8] (Table 1,

RNA level).

Overexpression of the basal-like prognostic biomarkers

A differential expression analysis showed that the 11 basal-like specific switch genes, whose

unfavourable prognostic value was statistically significant from the previous survival analysis,

were all up-regulated in the basal-like cancer condition compared to the normal condition (S2

Fig). Yet, by performing an ANOVA test and multiple pairwise-comparisons among all the BC

subtypes, we found that each comparison is statistically significant and the expression value of

the 11 basal-like specific switch genes is greater in the basal-like versus the others BC subtypes

and always greater than the median used in the KM survival analysis, leading to an association

between worst prognosis patients (high-expression groups in the KM plots) and basal-like

affected subjects (Fig 3). Taken all together, these findings prompted us to identify these 11

switch genes as potential prognostic biomarkers for basal-like subtype.

To statistically quantify the increasing trend of the median expression values of these 11

switch genes as the phenotype varies from physiological to pathological condition passing

across the different BC subtypes, we exploited a linear regression model, where the index R-

squared estimates the goodness-of-fit. We found that all but one showed a very strong

straight-line relationship (R-squared� 0.7) between their median expression and the tumour

subtypes (Table 1, RNA level), with the CENPN as the first on the list (R-squared = 0.99).

These results were mostly confirmed by performing the same analysis using the pathological

staging of the BC patients affected by PAM50 subtypes (Table 1, RNA level). Indeed, we

observed that 6 basal-like specific switch genes (i.e., CENPN, DSCC1, CTPS, GINS4,

TUBA1C, PRAME) reached an R-squared (rounded to one decimal place)� 0.7 also with

respect to the staging (Table 1, RNA level). The increasing trend of the top-ranked switch
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Fig 1. Study design. The figure depicts the schematic of the methodology applied in this study.

https://doi.org/10.1371/journal.pone.0264024.g001
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Fig 2. Switch genes with an unfavourable prognostic value from the survival analysis on TCGA data. Kaplan-Meier analyzes to evaluate the

correlations between the expression of the basal-like specific switch genes and the OS in TCGA breast invasive carcinoma patients. Low- and high-

expression groups refer to patients with expression levels lower and greater than the 50th percentile, respectively.

https://doi.org/10.1371/journal.pone.0264024.g002
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genes (highest R-squared) both with respect to the subtypes and the staging is depicted in Fig

4a and 4b, respectively.

In order to explore the expression patterns of the proteins encoded by the 11 prognostic

switch genes, we queried the Human Protein Atlas (HPA) that provided representative immu-

nohistochemistry images in BC tissues and normal breast tissues. As expected, we found that

six of these proteins were overexpressed in BC tissues compared to normal breast tissues (Fig 5

and Table 1, Protein level). For the remaining ones, there are pending cancer and normal tis-

sue analysis on the HPA and the immunohistochemistry images are not currently available

(Table 1, Protein level).

Gene regulatory network of the basal-like prognostic biomarkers

To provide some hints on which transcription factors (TFs) could regulate the expression of

the 11 switch genes proposed as prognostic biomarkers for basal-like subtype, we built a gene

regulatory network by combining information on both computationally predicted and experi-

mentally validated TF-target relationships. In particular, we firstly exploited Pscan web tool [9]

to predict TFs putatively able to bind the promoter regions of the selected switch genes. Then,

we filtered the Pscan predictions keeping only the TFs known to physically interact with at

least one switch genes in the human interactome [10]. These TF-target relationships were

finally complemented with those experimentally validated from TRRUST database [11]. The

final gene regulatory network was composed of seven switch genes and twelve TFs, including

well-known TFs that, if deregulated, contribute to neoplastic transformation as MYC, TP53

and NFKB1 (Fig 6a and Table 1, DNA level). Interestingly, among the detected TFs, we found

also four TFs (i.e., TP63, TWIST2, HIC1 and RARA) whose high expression appeared to be

associated with the best prognosis for BC patients (Fig 6b). In accordance with this result, we

observed that these four favourable TFs reached their highest value in the patients affected by

the less aggressive BC subtype, i.e., luminal A (Fig 6c). It is worth noting that the other TFs of

the gene regulatory network, in general, did not show a relevant increasing/decreasing trend

Table 1. Summary of the properties of the basal-like prognostic biomarkers.

DNA RNA Protein

TFs CNVs Methylation SWIM KM analysis (log rank p-

value)

model fitting

(index R2)

IHC staining

TRRUST/Pscan/PPI TCGA TCGA TCGA TCGA other datasets subtype stage HPA

CENPN NRF1 amp in BL/del in LumA hypo in BL switch genes 0.02 4.9E-6 0.99 0.96 not available�

LRP8 HIC1 amp in BL/del in LumA - switch genes 0.01 2.4E-4 0.98 0.63� more expressed in BC

DSCC1 HMBOX1 amp in BL - switch genes 0.05 3.5E-8 0.95 0.78 more expressed in BC

CTPS MYC, TWIST1-2, NRF1 amp in BL/del in LumA hypo in BL switch genes 0.01 8.2E-5 0.94 0.72 more expressed in BC

RCOR2 - - - switch genes 0.05 4.3E-3 0.93 0.47� more expressed in BC

GINS4 - - - switch genes 0.04 6.4E-3 0.90 0.68 more expressed in BC

TUBA1C TP53, NFKB1 del in BL - switch genes 0.01 1.3E-6 0.89 0.76 more expressed in BC

PRAME NRF1, SOX9, RARA amp in BL/del in LumA hypo in BL switch genes 0.03 9.9E-6 0.83 0.76 not available�

SLC7A11 - - - switch genes 0.04 0.03 0.80 0.46� not available�

CDCA7 MYC, E2F1 amp in BL - switch genes 0.01 1.3E-4 0.73 0.32� not available�

GSDMC - amp in BL hypo in BL switch genes 0.01 4.9E-4 0.64� 0.05� not available�

Abbreviations: TFs, Transcription Factors; CNVs, Copy Number Variations; KM, Kaplan-Meier; IHC, Immunohistochemistry; PPI, protein-protein interactions;

TCGA, The Cancer Genome Atlas; HPA, Human Protein Atlas; BC, Breast Cancer; BL, Basal-like; LumA, Luminal A; amp, amplified; del, deleted; hypo,

hypomethylated. Asterisk (�) was used to highlight values not satisfying the chosen thresholds as well as not available data.

https://doi.org/10.1371/journal.pone.0264024.t001
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Fig 3. Expression of the switch genes with an unfavourable prognostic value across the PAM50 breast cancer subtypes. Gene

expression levels of the 11 basal-like specific switch genes point out from the Kaplan-Meier survival analysis in TCGA breast invasive

carcinoma patients affected by the four BC subtypes of PAM50 classification. The black dashed line reported in each plot indicates the

median value used in the Kaplan-Meier survival analysis to split the low-expression and high-expression group. One-way ANOVA test

was used to compare the means of the selected genes among the patients’ groups. T-test was used to perform multiple pairwise-

comparisons and statistical significance was indicated by the star symbols (i.e., ns: p> 0.05, �: p� 0.05, ��: p� 0.01, ���: p� 0.001, ����:

p� 0.0001).

https://doi.org/10.1371/journal.pone.0264024.g003
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across the different BC subtypes (Fig 6c), indicating that the overexpression of their target

basal-like specific switch genes maybe not ascribed to their transcriptomic variations but

rather to other genetic and/or epigenetic alterations.

Genomic and epigenomic alterations of the basal-like prognostic

biomarkers

Next, we investigated if the overexpression of the 11 basal-like prognostic biomarkers may

depend on basal-like specific genomic alterations, such as Copy Number Variations (CNVs)

and/or epigenomic alteration such as DNA methylation changes. In particular, we compared

the CNVs and DNA methylation status of these 11 genes in basal-like subtype with respect to

the less aggressive BC subtype, i.e., luminal A.

The CNVs analysis was performed on a total of 317 TCGA-BRCA patients (92 basal-like

and 225 luminal A) for which CNVs data were available. Hierarchical clustering analysis on

this data identified three main clusters and showed a different pattern of amplification and

deletion in the selected genes between basal-like and luminal A patients (Fig 7a). Interestingly,

Cluster 1 appears to be enriched in basal-like samples (64/67, 96%), whereas Cluster 2 (151/

177, 85%) and Cluster 3 (71/73, 97%) are enriched in luminal A samples. Specifically, most of

the basal-like patients belong to Cluster 1 (64/92, 70%; highlighted in dark blue in Fig 7a) and

almost all luminal A belong to Cluster 2 and Cluster 3 (222/225, 99%; highlighted in green in

Fig 7a). Cluster 1 features are mostly related to DSCC1, GSDMC amplifications (> 1 copy

amplification per gene) along with TUBA1C deletion (>1 copy deletion per gene).

Aberrant DNA methylation is another epigenetic alteration that plays a fundamental role in

precipitating the development of a large and diverse number of human cancers [12]. For this

reason, we investigated a potential correlation between DNA methylation patterns and mRNA

expression profiles of the 11 basal-like prognostic biomarkers in basal-like and luminal A

Fig 4. Linear regression model fitting. The median expression of the basal-like prognostic biomarkers is plotted against the phenotype varying from physiological to

pathological condition (a) and against the pathological staging (b). Solid lines represent how the linear model fits the data. We showed, as a representative example, the

results corresponding to the highest values of the model fitting index R-squared: R-squared (rounded to one decimal place)� 0.9 for the subtype (a) and� 0.7 for the

staging (b).

https://doi.org/10.1371/journal.pone.0264024.g004
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patients. The DNA methylation data analysis was performed on a total of 152 TCGA-BRCA

patients (37 basal-like and 152 luminal A) for which DNA methylation data were available.

Hierarchical clustering analysis on this data identified two main clusters and showed a differ-

ent DNA methylation status of the selected genes between basal-like and luminal A patients

(Fig 7b). In particular, Cluster 1 is enriched in basal-like patients (25/37, 68%, highlighted in

dark blue in Fig 7b) and could be associated with a low methylation level especially for

Fig 5. Immunohistochemistry results from the Human Protein Atlas. Representative immunohistochemistry images of the indicated switch genes in

BC tissues and normal breast tissues obtained from the Human Protein Atlas.

https://doi.org/10.1371/journal.pone.0264024.g005
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CENPN, PRAME, GSDMC and CTPS genes (Table 1, DNA level). On the other hand, Cluster

2 is enriched in luminal A patients (98/115, 85%, highlighted in green in Fig 7b).

We compared the frequency of amplification and deletion events between basal-like and

luminal A, using Fisher’s exact test (S2 Table) and we assessed the levels of methylation of the

11 basal-like prognostic biomarkers in the two groups (Fig 7c). We observed different scenar-

ios of CNV alteration along with DNA methylation status of the 11 basal-like prognostic bio-

markers. CTPS, CENPN and PRAME had a higher frequency of amplification events (> 1

copy amplification per gene) in basal-like, higher frequency of deletion events in luminal A

group (p< 0.05, Fisher exact test) and they are hypomethylated in basal-like patients (Fig 7c).

This first scenario showed the highest concordance between CNV alteration, DNA methyla-

tion levels and mRNA overexpression of these three genes in the basal-like group. Then,

GSDMC is characterized by a higher frequency of amplification events in the basal-like group

Fig 6. Gene regulatory network of the basal-like prognostic biomarkers. a) Network of the regulatory interactions among the identified switch genes and the known

transcription factors (TFs). Light blue nodes represent switch genes; grey nodes represent transcription factors. b) TFs with a statistically significant prognostic value

according to the Kaplan-Meier survival analysis. Kaplan-Meier analyzes to evaluate the correlations between the expression of the TFs and the OS in TCGA breast

invasive carcinoma patients. Low- and high-expression groups refer to patients with expression levels lower and greater than the 50th percentile, respectively. c)

Expression of the TFs in the gene regulatory network across the PAM50 breast cancer subtypes. The black dashed line reported in each plot indicates the median value

used in the Kaplan-Meier survival analysis to split the low-expression and high-expression group. One-way ANOVA test was used to compare the means of the

selected genes among the patients’ groups. T-test was used to perform multiple pairwise-comparisons and statistical significance was indicated by the star symbols (i.e.,

ns: p> 0.05, �: p� 0.05, ��: p� 0.01, ���: p� 0.001, ����: p� 0.0001).

https://doi.org/10.1371/journal.pone.0264024.g006
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(p< 0.05, Fisher exact test) and is hypomethylated in basal-like patients (Fig 7c), probably

overlapping with its mRNA overexpression in the basal-like group. LRP8 is more amplified in

the basal-like group and more deleted in luminal A patients (p< 0.05, Fisher exact test), sup-

porting a putative correlation with its mRNA overexpression in the basal-like group. DSCC1

and CDCA7 had a higher frequency of amplification in basal-like patients (p< 0.05, Fisher

exact test), which could be correlated with their mRNA overexpression in that group. Difficult

to place is the result of TUBA1C, as we found that this gene has a higher frequency of deletion

events in basal-like compared to luminal A group.

Discussion

BC is the neoplasia with the highest incidence and mortality affecting women worldwide [13]

and is routinely analysed for ER, PR and HER2 using IHC-based assessment of protein expres-

sion levels and frequency [14]. This information is both prognostic and predictive, reflecting

critical growth factor signalling dependencies that can be targeted for therapeutic benefit.

Thanks to microarray technology, an intrinsic list of 496 genes used to classify BC into four

Fig 7. Genomic and epigenomic alterations of the basal-like prognostic biomarkers. a) Heatmap with dendrogram representing the unsupervised hierarchical

clustering analysis based on CNVs data of TCGA-BRCA patients. The rows in the heatmap represent the 11 basal-like prognostic biomarkers. The columns

correspond to basal-like and luminal A TCGA-BRCA patients: basal-like are indicated in dark blue and luminal A in green. The cells of the heatmap represent the log2

segment mean value of CNVs (ranging from -1 up to 3.5), for which colour code is indicated in the scale on the right-hand side of the figure. b) Heatmap with

dendrogram representing the unsupervised hierarchical clustering analysis based on DNA methylation data of TCGA-BRCA patients. The rows in the heatmap

represent the 11 basal-like prognostic biomarkers. The columns correspond to basal-like and luminal A TCGA-BRCA patients: basal-like are indicated in dark blue

and luminal A in green. The cells of the heatmap represent beta-value (ranging from 0 to 1) extracted from Illumina 450k normalized data, for which colour code is

indicated in the scale on the right-hand side of the figure. c) Distribution plot of beta-value of CENPN, GSDMC, PRAME and CTPS genes in basal-like and luminal A

patients. Dashed lines represent the mean of beta-values for each patients’ group.

https://doi.org/10.1371/journal.pone.0264024.g007
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molecular subtypes was identified [15, 16]. This makes BC a heterogeneous group of tumours

that are diverse in behaviour, outcome, and response to therapy. Among the four intrinsic

molecular subtypes (Luminal A, Luminal B, HER2 positive and Basal-like), the basal-like has

the worst prognosis as often aggressive and highly recurrent lesions. Basal-like subtype lacks

expression of the ER, PR, and HER2 [17] and histologically shows a high grade, high mitotic

indices, presence of central necrotic or fibrotic zones, pushing borders of invasion, lympho-

cytic infiltrate and atypical medullary features [18]. These features limit therapeutic response

and impact the refractory nature of these tumours [19], thus, basal-like patients have a poor

prognosis and short-term disease-free (DFS) and OS. Then, finding key genes associated with

basal-like subtype aggressiveness would help identify prognostic biomarkers for survivals of

BC patients as well as the most suitable target genes for new anticancer treatments [20].

Thanks to large international consortia such as The Cancer Genome Atlas (TCGA) [15]

and the International Cancer Genome Consortium (ICGC) [21, 22], significant inroads have

been made characterizing the genomic diversity of BC using next-generation sequencing of

RNA and DNA from human clinical samples. SWIM is a novel promising tool that builds

upon the structural properties of gene co-expression networks to unveil key genes (called

switch genes) likely associated with drastic physiological changes in many biological settings

[23, 24]. Until now, the relevance of switch genes related to an observed phenotype has been

widely assessed through several applications [2, 23, 25–29]. In particular, recently in [2], by

using the transcriptomic profiling of TCGA breast collection [30], we analysed a total of 505

subjects for which PAM50 subtypes were provided (229 Luminal A, 120 Luminal B, 58

HER2-enriched, and 98 Basal-like) and compared their expression profiles with those of nor-

mal samples to identify switch genes associated with the transition between normal condition

and each BC subtype. From this comparative analysis, we found both switch genes shared

among four subtypes and switch genes specific for each subtype. In the study carried out in

[2], we focused on the common switch genes and performed several in silico analysis and in
vitro and ex vivo experiments to highlight molecular signatures shared among all BC subtypes.

However, we believe that the in-depth investigation of the subtype-specific switch genes can

allow us to find novel putative associations between gene functionality and subtype-specific

aggressiveness especially for more aggressive BC subtypes. So, the goal of this study was to

identify among the switch genes specific for basal-like subtype, those linked to a poor progno-

sis. In the wake of our recent study [2], the 108 switch genes found to be basal-like specific

have been analysed for their prognostic abilities, and among them, 15 shown a significant

prognostic role as demonstrated by Kaplan-Maier curves results. Of these, 11 appeared to be

unfavourable prognostic genes (i.e., CTPS, CDCA7, GSDMC, LRP8, TUBA1C, CENPN,

PRAME, SLC7A11, GINS4, DSCC1, RCOR2) as their overexpression was found to be associ-

ated with poorer OS; this result was confirmed using another BC dataset collection (http://

kmplot.com/analysis/). Interestingly, these 11 switch genes showed their highest mRNA over-

expression in the basal-like compared to the other BC subtypes, and this data further strength-

ens the hypothesis that these switch genes could be poor prognostic biomarkers in basal-like

subtype affected patients (Fig 3). After that, by a linear regression model, we found a straight-

line relationship (from 0.7 up to 0.99) among CENPN, LRP8, DSCC1, CTPS, RCOR2,

GINSS4, TUBA1C and PRAME with tumour subtypes and staging, while SLC7A11 and

CDCA7 correlated only with subtypes. No correlation between GSDMC with subtypes and

staging were found. The protein levels of these 11 switches in BC specimens were evaluated by

querying the Human Protein Atlas. IHC results were examined confirming that 6 (CTPS,

LRP8, TUBA1C, DSCC1, GINS4, RCOR2) of the 11 proteins were overexpressed in BC tissues

compared to normal ones. For the remaining proteins, IHC results were not yet available in

the Human Protein Atlas (CDCA7, GSDMC, SLC7A11, PRAME and CENPN), nevertheless,
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the above citations confirmed us that all these switch proteins were overexpressed both in BC

cell lines and tissues. These results led us to suspect their role in the neoplastic transformation.

In fact, data from the literature, follow detailed, give to these molecules a tumorigenic charac-

teristics being found deregulated in different human cancers including TNBC subtype, so as to

make more robust our findings.

CTPS1 (CTP synthase 1) gene, encodes an enzyme responsible for the catalytic conversion

of UTP (uridine triphosphate) to CTP (cytidine triphosphate). This reaction is an important

step in the biosynthesis of phospholipids and nucleic acids. Increased levels of the protein have

been linked to several mammalian cancer types such as sarcoma [31], hepatoma [32, 33] and

leukaemia [33], where the activity of this enzyme is both transformations- and progression-

linked, marking out this enzyme as an important target in the design of chemotherapy. More

important, in vitro experiments performed on BC cell lines demonstrated that CTP depletion

results in a senescence-like growth arrest through activation of p53, whereas cells with mutated

p53 undergo differentiation or apoptotic cell death [34].

LRP8 (LDL receptor-related protein 8) gene, encodes a member of the low-density lipopro-

tein receptor (LDLR) family. A recent study demonstrated that LRP8 was more strongly

expressed in BC without hormone receptor expression (TNBC and HER2 positive) than in

luminal tumours (Luminal A and Luminal B) [35]. Authors found that LRP8 depletion pro-

moted apoptosis, impaired cell proliferation and colony formation suggesting that LRP8 has

tumourigenic properties. These findings were further confirmed by experiments showing that

LRP8 depletion slowed tumour growth in an in vivo xenograft model. Moreover, inhibition of

LRP8 was found to attenuate Wnt/β-catenin signalling to suppress breast cancer stem cells

(BCSCs) enriched in TNBC and responsible for chemoresistance and metastasis [35, 36].

Tubulin alpha-1C chain is a protein that in humans is encoded by the TUBA1C gene.

TUBA1C is a member of the tubulin families and several studies demonstrated that its upregu-

lation promotes oncogenesis and predicts poor prognosis in different tumour types [37, 38].

TUBA1C, TUBA1B and the β-tubulin isoform TUBB were found as isoforms with the highest

expression levels compared to other isoforms in BC cell lines, and TUBA1C and TUBB were

overexpressed in BC tumours compared to the normal breast tissues [39]. Also, the prognostic

role of TUBA1C as a marker linked to the progression of BC was highlighted by [40], it was

associated with lower OS in BC patients [41], and GTSE1 and TUBA1C combined predicted

100% probability of developing TNBC in whites [42].

Recently, overexpression of DSCC1 (DNA replication and sister chromatid cohesion 1) was

found to increase proliferation, invasion and migration of breast carcinoma cells, as well as its

knockdown showed opposite outcomes [43, 44]. Besides, the authors found that DSCC1 could

promote breast carcinoma progression by activating the Wnt/β-catenin signalling and inhibit-

ing p53 protein.

PRAME nuclear receptor transcriptional regulator gene encodes an antigen that is prefer-

entially expressed in human melanomas. The approved mutual link between BC and mela-

noma conditions emphasized the idea of utilizing this marker for targeting BC progression as

well. Indeed, this protein was found to be involved in BC growth and metastasis and promote

epithelial-to-mesenchymal transition in TNBC [45–47], suggesting that PRAME could serve

as a prognostic biomarker and/or therapeutic target in TNBC.

Cancer cell requires excess nutrients to meet their biosynthetic and bioenergetics needs and

to maintain appropriate redox balance. Glucose and glutamine are important nutrients sup-

porting cancer cell survival. SLC7A11 (solute carrier family 7 member 11) gene encodes a

member of a heteromeric, sodium-independent, anionic amino acid transport system that is

highly specific for cysteine and glutamate; imports extracellular cystine coupled to the efflux of

intracellular glutamate. SLC7A11 expression can be induced under various stress conditions,
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likely as an adaptive response to enable cells to restore redox homeostasis and maintain sur-

vival under stress conditions [48]. The upregulation of SLC7A11 was found correlated with a

poor response to treatment in different cancers including breast [49]. Recent evidence support

that cancer cells upregulate SLC7A11 expression through diverse mechanisms to enhance

their antioxidant defence and to suppress ferroptosis, a key tumour suppression mechanism

[50].

The gasdermin (GSDM) superfamily consist of several molecules involved in cell pyropto-

sis. Recently, various studies have revealed the dysfunction and abnormal expression of the

GSDM family in multiple human cancers, implying the potential roles in tumorigenesis.

GSDMC (gasdermin C), a member of GSDM superfamily was found to promote cell prolifera-

tion in colorectal cancer [51], and high expression of GSDMC in BC [52] and lung adenocarci-

noma [53] correlates with poor survival.

CDCA7 (cell division cycle associated 7), was found to be elevated in various types of

human cancer, including colon, lung, prostate and breast cancers [54], suggesting that this

protein might play an important role in the development of cancer. Interestingly, CDCA7 is a

DNA-binding protein and regulates the gene expression of the tumour-promoting effect of c-

Myc and E2F1. Recently the role of CDCA7 in TNBC subtype has been partially clarified and

authors found that high expression of CDCA7 was associated with metastatic relapse status

and predicted poorer disease-free survival in patients with TNBC via transcriptionally upregu-

lating the expression of EZH2 [55].

Centromere proteins (CENPs), which comprise 18 subtypes, are related dynamically to

association and dissociation during mitosis with microtubule regulation. Among the CNPs,

the protein encoded by CENPN (centromere protein N) gene, binds directly to the centro-

mere-targeting domain of CENP-A. CENP-N depletion causes down-regulation of several

CENPs and is considered essential for making a new centromere. Other functions of CENP-N,

including its deregulation in BC are unclear, except the study that associated elevated expres-

sion of this protein with significantly increased mortality and risk of recurrence in BC smokers

in contrast with non-smokers BC subjects [56].

RCOR2 (REST corepressor 2) is a protein-coding gene. Gene Ontology (GO) annotations

related to this gene include DNA-binding transcription factor activity and transcription core-

pressor activity. To date, its involvement in the growth and progression of BC was not yet bee

investigated.

GINS4 is a subunit of the GINS complex (GINS1, GINS2, GINS3, and GINS4 subunits)

involved in the initiation and progression of DNA replication [57]. GINS4 was found highly

expressed in lung, bladder and colorectal cancers, and its downregulation in the bladder and

colorectal cancers inhibits growth and cell cycle and accelerate cell apoptosis progression in
vitro as well as inhibits tumorigenesis in vivo [58, 59]. As for RCOR2 protein, GINS4 involve-

ment in the growth and progression of BC was not yet bee investigated.

Based on these findings, we felt compelled to understand which regulatory events might

be responsible for their upregulation in basal-like subtype. So, we investigated whether the

deregulated expression of the selected switch genes could be related to the activity of known

transcription factors, copy number variation and DNA methylation. The construction of a

gene regulatory network showed how these switch genes interact with several TFs known to

be altered in cancer condition (MYC, TP53 and NFKB1), including in TNBC [60–62]. Never-

theless, we did not expect, but we were not surprised, that some of the identified TFs (TP63,

TWIST2, HIC1 and RARA) were overexpressed in luminal A rather than in basal-like

patients. So, being found also linked to a better prognosis, these results bring us to the

hypothesis that these TFs could not be involved in the basal-like switch genes activation.

Interestingly, we found that for most of the 11 switch genes their overexpression seems to be
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ascribed to genetic and/or epigenetic alterations. Indeed, we found that CTPS, CENPN,

PRAME and GSDMC were found both hypomethylated and amplified in basal-like subtype

as well as, except for GSDMC, also deleted in luminal A subtype; together these results are

strongly in line with their expression data alterations found in the basal-like subtype. In the

same way, also DSCC1 and CDCA7 were found amplified in basal-like, and CNVs profiles

analysis demonstrated that the copy number amplification of two switch genes, DSCC1 and

GSDMC, clustered for basal-like patients. Results on TUBA1C were somewhat controversial

as this gene was found to be amplified in luminal A subtype and no genetic or epigenetic

changes were found in basal-like subtype; for this switch gene seems that neither amplifica-

tion nor methylation status is responsible for its overexpression in the basal-like subtype.

Taken together these data enrich the pathophysiological and prognostic role of these genes in

BC basal-like subtype.

Limitations of the study

The first limitation of this study is that it is based on gene expression data and, it would need

further deepening at the protein level as soon as proteomic data will be available on large scale

for the disease covered in this analysis. However, even if the cause-effect relationship cannot

be directly inferred by expression data, correlation networks may highlight disease co-modu-

lated genes that are functionally coordinated in response to an external stimulus, implying that

they may be part of the same complexes or pathways, and may influence each other or maybe

influenced by the same underlying mechanism(s).

A further limitation of this study is that our entire results should be validated by using

another independent dataset. However, the proposed bioinformatics pipeline requires a huge

quantity of transcriptomic, genomic, epigenomic, and clinical data related to patients affected

by different breast cancer subtypes and, currently, TCGA is the only free repository providing

simultaneously all this information for the same patient cohort.

Lastly, it would have been very interesting to correlate the expression of the 11 genes consti-

tuting the basal-like gene signature with the Ki-67 labeling index (Ki-67LI), defined as the per-

centage of Ki-67 antigen positive cells. Indeed, Ki-67LI is commonly used as proliferation

marker and it has frequently been associated with the clinical outcome of TNBC patients [63,

64]. Unfortunately, TCGA does not provide this index among the clinical data of the patients

affected by breast cancer.

Conclusions

In conclusion, our study showed that 11 basal-like specific switch genes are overexpressed in

BC tissues compared to normal counterpart and associated with BC patients prognosis acting

as unfavourable prognostic markers. Also, their highest expression was found in the basal-like

subtype and this overexpression could be putatively related to genetic and epigenetic alter-

ations as well as the action of important transcription factors. Taken together, these results

turn on a beam of light on CTPS, CDCA7, GSDMC, LRP8, TUBA1C, CENPN, PRAME,

SLC7A11, GINS4, DSCC1 and RCOR2 that can constituite a gene signature to evaluate the

prognosis of basal-like breast cancer patients independently from the therapeutic intervention.

It is worth to stress that our study has a purely computational nature and experimental valida-

tions would be necessary to investigate the actual role of the identified genes in the framework

of basal-like breast cancer. However, we belive that our findings could provide advancements

in the ongoing effort to identify specific prognostic biomarkers for basal-like subtype in order

to improve the clinical management of this disease.
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Methods

The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) is a comprehensive project born in 2006 from the joint

effort between the National Cancer Institute and the National Human Genome Research Insti-

tute to improve diagnosis methods and treatments against cancers [30]. This project molecu-

larly characterized over 20,000 primary cancer and matched normal samples spanning 33

cancer types and, in the last years, generated over 2.5 petabytes of genomic, epigenomic, tran-

scriptomic, and proteomic data. All this data, which has already lead to improvements in our

ability to diagnose, treat, and prevent cancer, will remain publicly available for anyone in the

research community to use. In this study, we exploited TCGA to obtain transcriptomic, clini-

copathological, Copy Number Variations (CNVs) data referring to patients affected by breast

invasive carcinoma. Male samples, as well as samples undergoing a neoadjuvant treatment,

were removed from the cohort under study.

The Human Protein Atlas

The Human Protein Atlas is a research program initiated in 2003 to map all the human pro-

teins in cells, tissues and organs using an integration of various omics technologies, including

antibody-based imaging, mass spectrometry-based proteomics, transcriptomics and systems

biology [65]. All the data in the knowledge resource is open access to allow scientists both in

academia and industry to freely access the data for exploration of the human proteome. In this

study, the Human Protein Atlas website (https://www.proteinatlas.org) was leveraged to iden-

tify tumour-type specific proteins expression patterns and to perform immunohistochemistry

image a direct comparison of the protein expression of selected prognostic indicators between

normal and tumour breast tissues.

SWIM software

SWIM (SWitchMiner) is a new methodology that considers differentially expressed genes

within the co-expression network framework to predict important genes affected by a disease

of interest, and combines this information with a structured network of correlated patterns.

Considering the topological properties of the nodes and assessing their functional roles

according to their ability to convey information within and between modules in the network,

SWIM identifies a small pool of genes (known as switch genes) that are associated with intrigu-

ing patterns of molecular co-abundance and play a crucial role in the observed phenotype

(transitions) [23]. SWIM is a freely available software developed in MATLAB that implements

a series of well-defined steps described in details in the Supplementary Information of [23].

Up to now, SWIM has sparked a widespread interest within the scientific community thanks

to the promising results obtained through its application in a broad range of phenotype-spe-

cific scenarios, spanning from complex diseases to grapevine berry maturation [23, 25–28, 66].

Kaplan-Meier survival analysis

To analyze the correlation between the expression level of the 108 basal-like specific switch

genes and patient overall survival (OS) and therefore to evaluate their prognostic value, we

used the RNA-sequencing data from TCGA to split the entire cohort of BC patients (1049

samples) into two groups (called low-expression and high-expression group) according to

the upper and lower expression quartile. In particular, low- and high-expression groups

refer to patients with expression levels of the given switch gene lower and greater than the

50th percentile (i.e., median), respectively. For each patient cohort, the cumulative survival
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rates were computed for each switch gene according to the Kaplan-Meier (KM) method [67]

on the clinical metadata provided by TCGA. For each switch gene, the survival outcomes of

the two patients groups were compared by the log-rank test. Switch genes with log-rank p-

values less than 0.05 were suggested as candidate prognostic biomarkers. In particular, the

lower the p-value, the better the separation between the two prognosis groups. If the group

of patients with high expression of the selected prognostic gene has a higher observed event

than expected event (worst prognosis), it is defined as an unfavourable prognostic gene; oth-

erwise, if its high expression is associated with the best prognosis, it is a favourable prognos-

tic gene.

To confirm the prognostic value of the basal-like specific switch genes points out from the

KM survival analysis on the TCGA breast invasive carcinoma patients, we performed the KM

analysis on different breast cancer dataset. To do this, we exploited the Kaplan-Meier plotter

website (http://kmplot.com/analysis/), which integrates gene expression data and OS informa-

tion downloaded from GEO, EGA and TCGA for several types of cancer [68]. We ran Kaplan-

Meier plotter by considering the entire breast cancer database including 7,830 unique samples

from 55 independent affymetrix datasets [69] and by dividing patients into high and low

expression group based on the auto selected best cuttoff computed between the lower and

upper quartiles of switch genes expression.

Statistical methods

The one-way analysis of variance (ANOVA) is an extension of independent two-samples t-test

for comparing means in a situation where there are more than two groups. In one-way

ANOVA, the data is organized into several groups based on one single grouping variable (also

called factor variable). In this study, the one-way ANOVA test was used to compare the means

of selected genes in patients grouped based on the PAM50 breast cancer subtypes. A p-value�

0.05 indicated that at least two groups significantly differ from each other and multiple pair-

wise-comparisons exploiting the t-test method were performed to identify which ones.

Gene regulatory network

The gene regulatory network of the selected switch genes was constructed by integrating infor-

mation from Pscan [9], TRRUST [11] and the human interactome (i.e., that is the network of

all physical interactions within a cell, from protein-protein to regulatory protein–DNA and

metabolic interactions [70]).

Pscan is a web tool designed to computationally predict TF-target regulatory relationships

[9]. In particular, it scans the sequence of the promoter regions from an input gene list with

motifs describing the binding specificity of known transcription factors and assesses which

motifs are significantly over-or under-represented, suggesting which transcription factors

could be common regulators of the input genes. In this study, the promoter regions were iden-

tified as the genomic regions spanning from -450 to +50 nucleotides to transcription start sites

and the TF binding profiles were retrieved from JASPAR 2018 database [71].

TRRUST is a freely available and manually curated database containing 8,444 TF-target reg-

ulatory relationships of 800 human transcription factors. These relationships have been

derived from PubMed articles describing small-scale experimental studies of transcriptional

regulations by using a sentence-based text mining approach [11].

The human interactome, also called protein-protein interaction (PPI) network, was down-

loaded from Cheng and coauthors [10], where the authors assembled their in-house systematic

human interactome with 15 commonly used databases with several types of experimental evi-

dences (e.g., binary PPIs from three-dimensional protein structures; literature-curated PPIs
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identified by affinity purification followed by mass spectrometry, Y2H, and/or literature-

derived low-throughput experiments; signalling networks from literature-derived low-

throughput experiments; kinase-substrate interactions from literature-derived low-throughput

and high-throughput experiments). This version of the interactome is composed of 217,160

protein-protein interactions connecting 15,970 unique proteins.

Copy Number Variations (CNVs) data analysis

Copy Number Variations (CNVs) data of TCGA-BRCA project were retrieved from TCGA

repository and reported contiguous chromosome regions with log2 ratio segment means in a

tab-delimited format. To obtain segment means values of CNVs of the selected genes for the

enrolled patients, we employed GISTIC 2.0 software [72]. Gistic’s parameters used in this

study are the following:

-b “path file; -seg “filename”; -refgene refgenefiles/hg19.UCSC.add_miR.140312.refgene.mat;
-mk genome.info.6.0_hg19.na31_minus_frequent_nan_probes_sorted_2.1.txt; -maxspace
2000; -ta 0.3; -td 0.3; -js 4;-qvt 0.01; -conf 0.99; -genegistic 1; -armpeel 1; -savegene 1.

The hierarchical clustering analysis was performed by using “Canberra” as clustering dis-

tance and “ward.D2” as clustering method. The association between the CNVs status of the

selected genes and the BC subtypes was evaluated using Fisher’s exact test.

DNA methylation data analysis

DNA methylation data of TCGA-BRCA project were retrieved by Firehorse TCGA GDAC

browser (https://gdac.broadinstitute.org/). The methylation data were acquired by the Illu-

mina 450K array, which measures the level of methylation as a beta value for more than 450

000 CpG sites on the Illumina chip. The data contained information for about 485 578 CpG

sites. To make available and pre-process methylation data in R environment, we used minfi

package [73]. Pre-processing was performed using an in-house R scripts that eliminated

probes with no methylation level detectable, removed all known single-nucleotide polymor-

phism (SNP)-associated CpG sites, associated CpG sites with known genes and matched

patients and genes selected in our study. The hierarchical clustering analysis was performed by

using “Euclidean” as clustering distance and “ward.D2” as clustering method.

Supporting information

S1 Fig. Switch genes with a favourable prognostic value from the survival analysis on

TCGA data. Kaplan-Meier analyzes to evaluate the correlations between the expression of the

basal-like specific switch genes and the OS in TCGA breast invasive carcinoma patients. Low-

and high-expression groups refer to patients with expression levels lower and greater than the

50th percentile, respectively.

(PNG)

S2 Fig. Expression of the switch genes with an unfavourable prognostic value in TCGA

basal-like tumour tissues and adjacent normal tissues. Gene expression levels of the 11

basal-like specific switch genes point out from the Kaplan-Meier survival analysis in basal-like

and normal samples available from TCGA repository. T-test was used to compare the means

of the selected genes between the two sample groups (Normal and Tumour) and statistical sig-

nificance was indicated by the star symbols (i.e., ns: p> 0.05, �: p� 0.05, ��: p� 0.01, ���:
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p� 0.001, ����: p� 0.0001).

(PNG)

S1 Table. Basal-like specific switch genes. The table is composed of two separated sheets. The

first sheet reports the complete list of 108 switch genes found to be specific for basal-like breast

cancer subtype. The second sheet reports the complete list of 11 switch gene whose activation

was found to be associated with the worst prognosis from the KM survival analysis on the

TCGA breast invasive carcinoma patients.

(XLSX)

S2 Table. CNVs results. The table reports the results of the CNVs data analysis for the 11

basal-like prognostic biomarkers.

(XLSX)
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