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Abstract—In the last two decades, visual data acquisition in
underwater environments has dramatically increased due to the
need to face a wide range of challenges that still require further
research, including site monitoring, seabed anomaly detection,
object detection and classification, and many others. Most of these
activities require frequent data acquisition and processing over
time, even at different altitudes, view angles, and perspectives.
Recent improvements of small-scale Autonomous Underwater
Vehicles (AUVs), in terms of navigation time, automatic con-
trol, and onboard processing, are making these submersible
vehicles particularly suitable for activities as those reported
above. Moreover, thanks to their cableless navigation, limited
size, and agility, small-scale AUVs (hereinafter simply AUVs) can
reach sites otherwise inaccessible with other kinds of underwater
vehicles (e.g., medium and large AUVs). The payload capacity
of current AUVs allows us to equip them with different vision
sensors, including Red Green Blue (RGB) camera and Side
Scan Sonar (SSS). In this context, an open issue remains the
efficient transmission of visual data from AUV through an
underwater acoustic network to allow a remote workstation an
online and/or real-time data processing. In this paper, a data
compression module for the SUNSET platform is presented. The
module is composed of a set of novel algorithms that enables
compression of RGB and SSS information with and without data
loss. The module also implements some novel features, including
progressive compression and Region Of Interest (ROI) selection;
the first used to gradually transmit the image data (e.g., sites
in which the acoustic transmission is a hard task), the second
used to transmit, with higher quality than the rest of the image,
the items contained in a specific area. Exhaustive experiments on
RGB and SSS datasets prove the effectiveness of the presented
module.

Index Terms—SUNSET, data compression, RGB images, Side
Scan Sonar images, lossless, lossy, progressive, AUVs

I. INTRODUCTION

Computer Vision is a well-known field of study that is play-
ing a leading role in a wide range of practical application areas,
including video surveillance, smart environments, robotics,
and many others. Nowadays, indoor and outdoor environments
as well as humanoids, air drones, ground vehicles, and mobile
devices are equipped with different types of cameras (e.g.,
RGB, Time-of-Flight, thermal) that allow us to acquire, even
in distributed camera networks, a huge amount of visual data to
be processed, often in real-time, to accomplish several critical
tasks, such as object tracking and classification [1], change
detection [2], event recognition [3], and so on. Such speed
in the transmission step is possible because these systems

are often cabled by high-speed data transmission wires (e.g.,
twisted pair, coaxial, optical fiber) which allow visual data to
be transferred in real-time. Even when the transmission occurs
in cableless mode, e.g., between an aerial drone and a ground
station, current wireless technologies (e.g., 4G, 5G) allow
visual data to be transferred instantly. Everyday experiences
regarding what just reported above are in the access of image
and video streams by laptops with a wired connection or
smartphones with wireless connection. Moving to underwater
environment, the situation tends to get complicated. This is due
to the fact that standard wireless connections (e.g. Wi-Fi) do
not work, while a cabled approach will limit the execution of
certain tasks to the length of the cable. Usually, in these cases,
acoustic communication is used, but there is still a problem:
the bandwidth. In underwater acoustic communication, the
latter is very limited and it makes very difficult, if not
impossible, to send multimedia data (e.g., pictures and videos)
in real-time o near real-time. For this reason, and to avoid
saturating the available bandwidth, the data to be sent must be
compressed. In this paper, a novel image compression module
designed and implemented in SUNSET Software Defined
Communication Stack (S-SDCS) [4] is presented. The image
compression module is composed of four image compression
modalities. In detail, three algorithms are designed for RGB
images and one for sonar images. The rest of the paper is
structured as follows. In Section II, the current state-of-the-
art in underwater image compression is discussed. In Section
III, the proposed compression algorithms are presented. In
Section IV, the results obtained with the proposed algorithms
are shown. Finally, Section V concludes the paper.

II. RELATED WORK

In recent years, lots of methods were proposed to com-
press underwater images, which can be divided into three
main categories: transform-based methods, compressed sens-
ing methods, and deep learning-based methods. Transform-
based is a class of techniques which are extensively used in
image compression. Linear transforms are involved into the
mapper stages to change the pixels of the original image into
frequency domain coefficients (called transform coefficients).
The Discrete Cosine Transform (DCT) and Discrete Wavelet
Transforms (DWT) are one of the most used transforms in
image compression. Li et al. [5] employed a wavelet-based
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Fig. 1: Example scenario of underwater image compressing.

pre-processing method to remove the visual redundancy, and
adopts a Wavelet Tree-based Wavelet Difference Reduction
(WTWDR) algorithm to remove the spatial redundancy of
underwater color images. Recently, Rubino et al. [6], an
image compression algorithm based on a novel minimal time
parallel DWT algorithm is presented. Another powerful class
of methods is the Compressed Sensing (CS)-based where the
sampling and compressing processes are synchronous instead
of two independent as in the transform-based methods [7]. An
interesting work is proposed in [8], where a new discrete-time
image transmission system that combines compressed sensing
techniques with non-linear mapping as analog joint source-
channel codes is proposed. Another work is presented by Ya-
Qiong et al. [9]. The authors have shown how the use of
Bandlents transform allows saving important information of
the sonar images in compressed-sensing algorithm. The last
class of compression algorithms is the class of deep learning
based methods. Zhuang et al. [10] proposed a novel algorithm
that compresses the image texture and color separately for
reducing the bit-rate. In [11], the authors have proposed a dis-
crete wavelet transform (DWT) based deep learning model for
image compression in Internet-of-Underwater-Things (IoUT).

III. COMPRESSION MODULES

This section presents the image compression module com-
posed of four different compression modalities. First, the three
RGB compression modalities are presented, then the sonar
compression process is discussed. In Figure 1, an example
scenario is depicted. First, the AUV acquires the data to
be compressed. The latter can be a standard RGB image or
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Fig. 2: Logical architecture of the underwater compression and
decompression processes.

sonar data. Subsequently to the acquisition, the compression
is performed allowing the transmission of smaller data in size.
Then, through the underwater channel, the data are sent to a
buoy, which acts as a gateway between the underwater and the
standard wireless network. Next, the compressed data is sent
to the destination (i.e., a boat) by using wireless connection
(e.g., 4G or Wi-Fi). At the destination, the received data are
decompressed and can be analyzed by a human operator. In Fig
2, the compression and decompression pipeline is depicted.

A. RGB Image Compression

In this section, the RGB compression algorithms and the
corresponding parameters are described. In detail, the designed
algorithms can be classified in the following 3 modalities:
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Fig. 3: Images compressed with the classic lossy approach. From the left we have a) the original image, b) the same image
with a compression ratio of 10, c) the same image with a compression ratio of 50, and d) the same image with a compression

ratio of 80.

o Lossless Compression: the original image and the one
obtained from the decompression process are qualitatively
identical, i.e. there is no loss in quality and information;

e Lossy Compression: the original image and the one
obtained from the decompression process differ in quality
and information. The amount of the differences depends
on the used compression parameters;

o Progressive Compression: it is a lossy algorithm with
the capability of providing a preview of the image. This is
done by first sending an image with very few details, and
then improving its quality and information by sending
additional data that will be added to the first received
image. The subsequent sent images are called scan.

For this type of images, the following steps are performed in

the compression process: transformation, quantization, and en-
coding. In the transformation step, the image is pre-processed
for optimizing the compression. In detail, the image can be
downscaled for reducing its size (in terms of bytes) and di-
mensions (in terms of pixels), and it can be mapped to another
color space (e.g., grayscale, HSV, etc.). Then, to ease the next
step, the image is converted in frequency coefficients. In the
quantization step, the less informative frequency coefficients
are removed. This allows to achieve better compression results
in terms of size, and since this step removes information, it is
performed only for lossy algorithms. Finally, the encoding step
is where effectively the image is compressed, obtaining the
data ready to be sent. Concerning the decompression process,
the following steps are involved: decoding, de-quantization



and inverse transformation. The decoding step consists in
reconstructing the original data stream before the encoding
process. Once reconstructed, the data will be used as a starting
point for the decompression. In the de-quantization step, the
frequency coefficients are reconstructed trying to obtain the
same number of coefficients available before the quantization.
However, in lossy compression, the number of the coefficient
will be smaller with respect to the number of coefficients
generated in the compression process. Trivially, this is due to
the fact that in lossy compression there is a loss of the original
information. In the inverse transformation, the coefficients
obtained in the de-quantization step are converted back to
pixels. Subsequently, some post-processing such as super-
resolution (needed to obtain the original dimensions in pixels
of the image) and color reconstruction are performed. At the
end of the decompression process, the image is stored in one of
the common image format chosen by the user, e.g. jpeg, TIFF,
png, and so on. Concerning the compression parameters, the
followings are available:

+ Resize Factor: is the parameter that allows to reduce, in
terms of rows and columns, the size of the image to be
compressed. It is used in the compression process;

o Super-Resolution Factor: is the parameter that allows
to upscale the image. It is used in the decompression
process;

e Color: is the parameter that allows to change the color
space of the image. It is possible to choose between two
color spaces, namely, RGB (composed by 3 channels)
and grayscale (composed by 1 channel);

o Compression Factors: these parameters deal with the
quantization step and modulate the result of the image
reconstruction. The first parameter is the quality, which
can have values in the range [1,100] where 1 is the
worst and 100 is the best, while the second parameter is
the compression ratio, which allows values in the range
[10,100] where 10 consists in a smaller compression and
100 in a full compression.

B. Sonar Image Compression

As for RGB images, the sonar compression is composed of a
compression and decompression process, which are described
subsequently.

Regarding the compression process, in the sonar module,
a further step in image acquisition is needed. In detail, the
majority of sonar devices output data in raw format, which
mainly has two problems. The first is that the raw data
is usually sent in packets, which contain several data, e.g.
header, control bits, etc., that increase uselessly the size of
the packets. The second problem is that raw format is not
human-readable, thus a human operator cannot directly work
with the received data. So, the first step of the compression of
sonar images consists in converting sonar raw data in a human-
readable image. Then, the following steps are performed:
image transformation and compression. Concerning the image
transformation, it is the same step as the RGB images. In fact,

it consists of downscaling the image so that the dimensions,
in terms of pixels, are smaller than the original image.

Regarding the compression step, is composed of the fol-
lowing processes. First, the resized image is converted in the
YC,C, color space. For this type of image, we found that
this color space allows to obtain higher compression ratios.
Subsequently, the Near-Zero Symbol Coding is used to convert
the pixels value in binary notation. Then, the Meta-Adaptive
Near-zero Integer Arithmetic Coding (MANIAC), which is a
modified version of the well-known Context-adaptive binary
arithmetic coding (CABAC), to compress the binary repre-
sentation of the pixels. At this point, the sonar image is
compressed and ready to be sent over the communication
channel.

Concerning the decompression of sonar images, the first
operation consists of reverting the binary image back to the
YC,C, color space version. This is done by taking the image in
Near-Zero Symbol Coding and applying the MANIAC inverse
transformation. The second operation consists in changing the
color space back to the original, namely the RGB. At this
point, the decompression process is terminated but a further
step may be needed. In detail sonar images, differently from
the ones acquired with a standard camera, present a very
high number of rows. This is due to the fact that the sonar
acquires several time instants, generating a map of the seabed.
This means that to achieve fast transmission of sonar images,
the latter may be split into several smaller images and then
recomposed at the destination. Hence, the further step consists
of recomposing the several sonar images with the aim of
obtaining the original image.

Also for the sonar compression module, some parameters
can be set:

o Resize Factor: as for RGB images, is the parameter that
allows to reduce, in terms of rows and columns, the
size of the image to be compressed. It is used in the
compression process;

o Compression Factor: is the parameter that deals with
the quantity of compression. The higher the value, the
more the image will be compressed, resulting in a smaller
image (in bytes) but also with a lower quality. When set
to 0, lossless compression is performed.

C. ROI Transmission

After that a received image has been analyzed by a human
operator, the latter can request to the acquiring device a
specific part of the received image at a higher quality in order
to perform a more precise analysis. In detail, the operator
draws a bounding box around the part of the image that is
considered relevant. This process is performed through the
Graphical User Interface (GUI) of the system. Then, the device
used by the operator sends the bounding box data, i.e. top-left
corner, width and height, to the device that has performed the
acquisition. At this point, the acquiring device extracts from
the original image the portion selected by the operator through
the bounding box, performs the compression and sends back



TABLE I: Average PSNR, SSIM and size in bytes for standard compression approach.

Compression Ratio = 10
PSNR SSIM Size
30db 70% 6662

PSNR
28.3db

Compression Ratio = 50
SSIM
60 %

Compression Ratio = 80
PSNR SSIM  Size
27.7db  55% 1719
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2576
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Fig. 4: Images compressed with the progressive approach. From the left, we have a) the original image, b) the first scan, c)

the second scan d) the third scan and e) the last scan.

to the operator the new image, which contains the requested
data at a higher resolution.

IV. EXPERIMENTS

In this section, the results obtained with the proposed
algorithms are discussed. Firstly, the results concerning RGB
images are presented, then results regarding sonar images are
discussed. Notice that, since the lossless compression will
provide the same image as the original, only lossy approaches
will be discussed. For testing RGB compression algorithms,
the dataset provided by Humanant Singh Lab' has been used.
It is composed of several images acquired from underwater
environments related to fisheries, coral reef ecology, and
other applications. For these experiments, we use a subset
of this dataset composed of 50 underwater images having a
resolution of 1280X1024 pixels. As a measure for the quality
of the decompressed images, both Peak Signal To Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) are
used. For sonar images, the dataset available at [12] has been
used. Due to the high noise present in this type of images,
measure quality such as PSNR and SSIM cannot be used.
Instead, qualitative results are presented.

A. Results on Standard Compression Approach

Concerning the lossy modality, in Fig 3 some results on
different seabed images are shown. In detail, we have the

Thttps://web.whoi.edu/singh/underwater-imaging/datasets/

original image at the leftmost position, while we have the
image compressed with a compression ratio of 10, 50, and
80, respectively, on the subsequent columns. For the quality
parameter, in the first row it is set at 10, for the second row
it is set at 30, while for the last row it is set to 50. As
expected, by increasing the compression ratio the quality of
the image decreases. Let us consider the rightmost image of
the first row, which is the one with the highest compression
ratio. Despite it is possible to see that something is present
in the acquired scene, it is not possible to discern what it has
effectively acquired. By considering the same rightmost image
at the second and third rows, the situation is slightly better
due to the higher quality parameter value but there are still
several artifacts that make it difficult to understand what type
of object has been acquired. In Table I, the average PSNR,
SSIM, and sizes of the images are reported. In the performed
experiments, we have found a very large gap between the size
of the images compressed with a compression ratio set at 10
and the compression ratio set at 80. In some cases, such as
the one of the third image (i.e. the third row of the table)
we obtain a dimension in bytes smaller by 77.91%, which
is impressive. However, the visual quality of the compressed
images is strongly affected by this amount of compression.
Hence, the right trade-off between quality and bytes size must
be carefully chosen.



TABLE II: Average PSNR, SSIM and size in bytes of the images relative to the progressive approach.

Scan 1 Scan 2
PSNR SSIM Size PSNR SSIM  Size
27.2db 47% 1117  288db  60.7% 1766

Scan 3 Scan 4
PSNR SSIM Size PSNR SSIM Size
29db 64% 629 29db 64% 164
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Fig. 5: Example of a sonar image compressed with several compression ratios: a) original image, b) compression = 10%, c)
compression = 20%, d) compression = 30%, e) compression = 50%, f) compression = 70%, g) compression = 85% and h)

compression = 95%.

B. Results on Progressive Compression Approach

Regarding the progressive approach, in Fig 4 some examples
of the obtained results are shown. For the first image, the used
parameters for quality and compression ratio are, respectively,
80 and 10. For the second image, instead, the used quality and
compression ratio values are 80 and 50. As it is possible to see,
the first scan sent to the destination (Figs 4b) and c)) presents
very low detail. This is due to the fact that the first scan is
intended as a preview of the image. In detail, if the human
operator finds something relevant within the preview image,
he can ask the system the subsequent scans to improve the
quality of the received image for having a better overview of
the situation. This approach allows to always use the minimum
amount of bandwidth available, since the several scans are
smaller with respect to sending a whole compressed image, as
shown in Table II.

The advantages of using the progressive approach are
twofold. The first is that, as already stated, the used bandwidth
is less with respect to the standard compression approach. The
second approach is that the received image, after the reception
of all the scans, will have a higher quality with respect to the
one compressed with the standard approach.

C. Sonar Image Compression

Finally, in Fig 5 an example of compression of sonar image
is depicted. As it is possible to see, for this type of image is
possible to use higher compression ratios with respect to RGB
images. This is mainly due to two reasons. The first is that
sonar images are one channel images. This means that there
is less information to compress, allowing to achieve better
results in size. The second is that in sonar images there is a
large amount of noise, meaning that most of the information
lost during the compression is probably noise. Notice that
we are still investigating this last point, and the assumption

has been made on the basis of the performed experiments.
In Table III, the size of the sonar image compressed with
several compression ratios are reported. By considering the
highest compression ratio, i.e. 95%, the size of the original
image has been decreased by the 76.63%, which is again an
impressive result. Differently from RGB images, the quality
of the compressed images is (visually) higher. This is due
to the fact that, with respect to RGB images, sonar images
contain less information, making the decompression process
easier. Notice that this is true only if the sonar image is not
downscaled before the compression. If this is the case, the
quality of the decompressed image will be affected. In fact, by
reducing the image dimensions in terms of rows and columns,
some information will inevitably be lost.

V. CONCLUSIONS

In this paper, a novel module for the S-SDCS able to
perform the compression of images is presented. The module
consists of three modalities for the compression of RGB
images and one algorithm for the compression of sonar
images. The three RGB compression algorithms fall in the
following three categories: lossless, lossy, and progressive.
The lossless approach provides a decompressed image equal
to the original, but with a relevant size in terms of bytes
and with high transmission time. The lossy approach provides
a compressed image with a smaller size in bytes at the
expense of the quality. The progressive approach provides a
compressed image progressively, allowing to reduce the used
bandwidth during the transmission and to have a decompressed
image of better quality with respect to the lossy approach.
Regarding sonar image compression, only lossless and lossy
approaches can be used for the compression. Experiments on
underwater RGB and sonar datasets highlight the effectiveness
of the designed algorithms.



TABLE III: Size in bytes of the compressed sonar images at different compression ratios.

Original Image  compression = 10%  compression = 20%  compression = 30%

1.07 MB 980 KB 782 KB 695 KB

compression = 50%
494 KB

compression = 70%
385 KB

compression = 85%
295 KB

compression = 95%
250 KB
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