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Abstract

The use of image-based techniques in structural dynamics is constantly growing

thanks to the decrease in the cost of high-speed cameras and the improvement

in image processing algorithms. Compared to traditional sensors, such as ac-

celerometers or velocimeters, the use of fast cameras for data acquisition allows

the number of measurements points to be significantly increased. However,

this abundance of points, not always lead to an increased accuracy of dam-

age detection algorithms. In this paper, we compare different damage detec-

tion techniques by using modal quantities of a small scale steel frame obtained

from measurements acquired through a high-speed camera with different im-

age processing techniques. The Hybrid Lagrangian Particle Tracking (HLPT)

algorithm and Digital Image Correlation (DIC) are both used to extract dis-

placement measurements from images. The results are compared with those

obtained with seismic class accelerometers which are normally used in the lab

for such an application. Damage localization and intensity have been deter-

mined by using image-based measuremets with the same accuracy obtained by

a more common approach.
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camera, experimental validation, time and frequency domain, mode shape,
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mode curvatures, damage detection

1. Introduction

In the field of Structural Health Monitoring (SHM), vision-based techniques

have emerged as suitable alternative to traditional sensors as they allow multiple

points and contactless measurements [1]. They are non-invasive techniques and

do not have the burden of modifying the dynamics of the structure by adding5

mass or rigidity to it.

The operating principle of every image based dynamic technique is the com-

parison of images taken at different times. The number of frames per second that

can be recorded is a compromise with the sensor accuracy: lower sensor resolu-

tions would allow higher frame rates, thus higher frequencies of vibrations that10

can be detected, but would reduce the spatial resolution of the measurements,

thus the capability of detecting low amplitude vibrations. High resolution sen-

sors can be used to detect motion of a large scale structure, but with frequency

limited to few frames per second. Viceversa, current fast cameras allows the

capturing of images of the oder of 10 megapixel at frequencies of up to 1000 Hz15

[2].

In [3] camera models used in SHM are described and classified in portable,

USB web and industrial cameras. A portable camera (e.g. 1920x1080 resolu-

tion, 60 fps frame rate) can provide high resolution, be equipped with zoom

lens and can be suitably used for close-range measurements. The USB web20

cameras provide high resolution, low frame rate and they are generally used

for close-range measurement since the measurement distance is limited by the

use of embedded lenses. They have fixed resolution and frame rate or multiple

resolution-frame-rate modes (e.g. 1920x1080 resolution, 30 fps; 1080x720 reso-

lution, 30 fps). Among the others, industrial cameras can provide high frame25

rates and high resolution, real-time displacement monitoring and image acqui-

sition for post-processing, they are programmable, controlled by computer and

can use additional lenses for image acquisition. For industrial cameras only the
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maximum frame rate is provided for reference (e.g. 2048x1536 resolution, 120

fps frame rate), but the actual frame rate can be defined by the user. Adjustable30

region of interest and subsampling features allow lower-resolution output for-

mats at much higher frame rates. For instance, in [4] a high-speed camera with

full resolution of 1920x1440 pixels and a frame rate of 500 fps was used to record

the in-plane dynamic behaviors of a two-story frame structure, whereas the 3D

dynamic behavior of a membrane was captured in [5] by three cameras with 1.335

megapixels and 30 fps.

Over the years, different methods have been proposed to identify the dynamic

properties of structures through image based techniques. These methods include

point tracking, edge tracking techniques and image blurring.

One of the first attempt to use recorded images to detect the dynamic move-40

ment of a structure was proposed in [6]. At that time, the hardware capabilities

were limited to 25 fps but spline interpolation was applied to improve the res-

olution of the measurements, assuming a continuous and smooth character of

the dynamic effect.

A point tracking algorithm based on the detection of distinct features was45

used in [7] for structural identification without the need to install markers. In

that work, the corner detection method suggested by Harris and Stephens [8]

was applied to extract the features, whereas the Kanade–Lucas–Tomasi (KLT)

algorithm [9]allowed the tracking.

In [4] the location of damage in steel frames was conducted using a 500 fps50

camera. First, they determined the best marker positions and shapes for image

processing algorithm, then measured the response of the intact and damaged

structures to forced vibrations. Finally, a damage detection algorithm based

on modes shape differences was applied to evaluate the damage location. In

[10] the problem of inserting markers on the structure was partially solved by55

using a colour laser. Testing were carried out on a beam-like structure in which

target for the image processing algorithm were applied through a laser on both

the damaged and the undamaged structure. The damage detection algorithm

was based on the modal curvature shape extracted from the frequency response
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function with a peak-peaking algorithm.60

Although the use of markers on the structure can improve the results of the

image processing, there are many practical situations in which access to their

free points could be difficult, or the insertion of markers to the structure could

be an issue. In these situations, edge detection algorithms can be used [11],

[2], [12]. These methods require high image resolutions, and high-contrast, thus65

they are especially suited for slender structures. In [13], the edge detection

algorithm was applied to evaluate the dynamics of an entire cable in a bridge

structure, an effort that would have not been feasible by covering the entire

cable with markers. A method for detecting the edge of the cable based on the

wavelet transform on the images was presented in [14], they eventually detect70

the location of the cable failure, and compared the results in terms of natural

frequencies of the cable extracted by the image processing method and the laser

measurement. The Edge detection method was utilized to record vibrations of

a simple two-arc beam for obtaining the dynamic characteristics of the healthy

and damaged structure by Poudel et al. in [15].75

As for the research carried out by McCarthy et al. [16], Image de-blurring

technique was used to monitor small scale laboratory models as well as large

scale test. Such a technique partially alleviate the inherent compromise that

exists when selecting sensors for monitoring of dynamic structures. Instead

of capturing vibrations using very high speed imaging, a high-resolution long-80

exposure photograph is used, in which the localised object image becomes mo-

tion blurred. A specialised image registration algorithm would be necessary to

make measurements from such a motion blurred image. [17], [18]

Compared to other modal analysis techniques, image-based algorithms have

the disadvantage of requiring a high level of expertise to process the acquire data85

with a long processing time compared to traditional sensors for which the data

is often available real-time and onsite. For such a reason a proper comparison of

the different image processing techniques should take into account the processing

time as an additional figure of merit.

A classification of different visual tracking algorithms along with the feature90
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tracked is reported in [19].

The correlation-based template matching (applied in [20]) is based on a tem-

plate, a selected Region Of Interest (ROI), which slides across another image to

search the best matching. Two major types of methods are used to calculate

the similarity between the template and overlapped region of the image for ROI95

matching and they are the sum of squared differences and the cross-correlation

methods. Digital Image Correlation (DIC) also follows these approaches. Un-

like the template matching, DIC first divides the whole image into multiple

sub-regions with grids and uses template matching to calculate the displace-

ment of the sub-region; the displacement in the whole image is obtained with100

interpolation techniques. Usually, in dynamic tests only several markers were

tracked by using DIC to reduce the computation time.

The full field dense optical flow method is used in [21] and it calculates the

optical flow for two images by taking on two assumptions, brightness constancy

and temporal regularity. Optical flow is the velocity estimation of a video and105

it is a vector which points from the initial location to the end location of the

motion. The method based on sparse optical flow at feature points extracts the

feature points from image first and then calculate the optical flow. The feature

points are a small region (e.g. a sub-image with 5x5 pixels) which is a low

sample of target with distinct features (i.e. intensities, gradients in different110

directions, textures). This techique is used in[22].

In this paper, two image analysis algorithms have been used, DIC and Hy-

brid Lagrangian Particle Tracking (HLPT) algorithm, which follow respectively

the approach of the correlation-based template matching and the sparse opti-

cal flow at feature points. Both are applied to the image data acquired during115

an experimental campaign conducted on a 4-dofs small-scale steel frame struc-

ture excited by dynamic actions. The structural response is recorded with ac-

celerometers and with a high-speed camera. The paper [23] reports the direct

comparison of image analysis measurements, obtained with HLPT algorithm,

with acceleration measurements which confirms that the image analysis turned120

out to be sufficiently accurate for structural identification purposes. In this
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work, the comparison between HLPT and DIC is reported and the advantage of

the image-based system, that this a widespread measurement tool, is exploited

in the damage detection problem. The damage is introduced by removing the

two steel bracing located on the third floor.125

The organization of the paper is the following: Section 2 describes the ex-

perimental setup, the two algorithms used to process the images and the com-

parison between these two image analysis results; Section 3 reports the oper-

ational modal analysis results obtained from accelerometer and image-based

measurements; Section 4 is dedicated to the damage detection problem dealt130

with accelerometer and image-based measurements.

2. Data extraction

2.1. Experimental setup

Experiments have been carried out at the ”Laboratory of Materials and

Structures” of Sapienza, University of Rome (Italy), on a spatial model of a 4-135

story shear type steel (S235) structure with two steel bracings in the inter-story

2-3, indicated as ”undamaged structure” in the following. Its height is 800 mm

(200 mm for each inter-storey), the plan is squared (300x300 mm), the cross

section of columns is rectangular (50x4 mm) and the one of beams is L-shaped

(50x50x4 mm). The damage is introduced by removing the bracings and this is140

indicated as ”damaged structure” in the following. Sand (0.3-0.5 mm diameter)

was sticked on the structure to create the features to be tracked with the HLPT

algorithm and the stochastic pattern to be identified by the DIC algorithm.

Two type of tests were conducted, one with a white noise input (flat in

the range of the structural frequencies, 8-100 Hz) provided at the base of the145

structure by an one-dimensional electrodynamical shaker (Dongling GT700M,

slip plate dimension 700x700x45 mm3), and the other with the structure being

hit at the top floor with an instrumented hammer (PCB Piezotronics Modally

Tuned ICP model, hammer mass 5.5 kg).
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Two acquisition systems were used to record both accelerometric and image-150

based measurements. The accelerometers used in these tests were seismic class

sensors PCB 393A03 and PCB 352C33 with noise density 2µg/
√

Hz in the bang

1-5000 Hz. The second acquisition system includes a video camera and a digital

recorder of IO Industries. The camera is the Flare 12M125xCL, a high resolu-

tion, high-speed area scan camera; the sensor size is 4096x3072, the pixel size155

5.5 µm x 5.5 µm and the frame rate at full resolution is 124 fps (8-bit) and

100 fps (10-bit). For this experiments, the frame rate of the camera was set

to 200 fps with 320x763 pixel the size of the image. The digital recorder is

the CORE2CLPLUS IO DVR, Core 2. The camera is installed in front of the

structure to capture images in the motion plane, as sketched in Fig.1. Further160

details on the experimental setup are reported in [23].

(a) (b) (c)

Figure 1: Experimental setup: a) the steel frame structure mounted on the shaking table; b)
the high-speed camera installed in front of the structure to record motion in the plane (x, z);
c) sketch of the experimental setup and reference system.

2.2. Image analysis techniques

The displacements of feature points were obtained by two algoritms: the

Hybrid Lagrangian Particle Tracking (HLPT) algorithm [24] and the Digital

Image Correlation (DIC) technique [25].165

The HLPT algorithm is based on the solution of the optical flow equation

and selects areas of each image where strong brilliance gradients exist. Such
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areas can be associated to feature points and are good features to track from

frame to frame. The HLPT algorithm consists in two steps: particle detection

and temporal tracking. Through the solution of the image intensity conservation170

equation, a set of positions, associated with the displacement vector predictor,

for which the optimization problem is well-posed, is detected. Those positions

are then associated to the centroid coordinates using two 1D Gaussian functions

built around the integer position of the local maximum of the intensity value of

each detected feature. To identify successive positions of the same particle in175

the next frames the nearest neighbor principle was employed. Among the can-

didates, that with the minimum Eulerian distance from the position determined

with the displacement predictor was selected. However, this method differs from

the ’classical’ nearest neighbor one because the solution of the assignment prob-

lem is strengthened by using the displacement vector predictor; as such, it is180

not erroneously influenced by fast moving particles with respect to the mean

inter-particle distance. For such a reason, HLPT algorithms are often used in

particle hydro-dynamics.

The DIC technique, implemented by using the GOM Correlate software

(www.gom.com), is able to evaluate areas via reference point markers or through185

stochastic image information. In this work, stochastic pattern has been used; the

random distribution of image information ensures that an area, usually called

subset, can be identified as clearly as possible in its local neighborhood because

it is unlikely that a random pattern exists twice in a random neighborhood. The

identification of a subset in several images is called matching. Several functions190

exist to match the subset from one image to another, such as image correlation

or the method of least squares.

The algorithms used to process the high-speed camera images return the

trajectories of feature points (stochastic pattern), created by attaching sand

on beams and columns surfaces. Different points have been sampled along the195

whole structure obtaining many more measurement points than the accelerom-

eter system acquisition. The comparison between the two image analysis tech-

niques is showed in Fig.2 for a test in which the structure is excited through
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an hammer and in Fig.3 for which a shaker test is considered. The results

are compared in terms of displacement time histories of fourth floor (DOF 4),200

as reported in Fig.2a,b and Fig.3a,b, Power Spectral Density (PSD) depicted

in Fig.2c an Fig.3c, and mode shapes identified from the image-based signals

showed in Fig.2d an Fig.3d. Furthermore, in Tab.1 a computational time com-

parison is reported; the image analyses have been performed on a Corei7-8th

Gen Intel® CPU laptop, with 16GB memory.205

Although the results of the feature extraction are practically the same either

in terms of time series or power spectra, the DIC algorithm was 2 times faster

on the laptop computer used for the test. Therefore, all the subsequent analyses

are carried out with DIC data.

Table 1: Image analysis computational time carried out on a Corei7-8th Gen Intel® CPU
laptop, with 16GB memory.

Test duration Feature points tracking duration
HLPT DIC

Shaker test 110 s 5 h 2 h
Hammer test 14 s 2 h 1 h

3. Image based operational modal analysis210

Operational modal analysis (OMA) allows to describe structural dynamics in

real operating conditions with unknown excitation. The advantages and draw-

backs of such output-only techniques are discussed in [26] where they are applied

to extract useful information from rapid dynamic testing of seismically damaged

complex buildings. Different procedures, such as Enhanced Frequency Domain215

Decomposition (EFFD), Eigensystem Realization Algorithm (ERA), Stochastic

Subspace Identification (SSI), and Time-Frequency Instantaneous Estimators

(TFIE), for identifying both modal and physical models for output-only modal

identification are discussed in [27] and their performance are evaluated with the

ambient vibration response of a three-dimensional frame structure.220
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Figure 2: Results of the hammer test executed on the damaged structure obtained with
HLPT (red) and DIC algorithm (blue): (a) Displacement time histories of the fourth floor;
(b) Displacement envelope; (c) Power Spectral Density (PSD); (d) Mode shapes.
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Figure 3: Results of the white noise test executed on the damaged structure obtained with
HLPT (red) and DIC algorithm (blue): (a) Displacement time histories of the fourth floor;
(b) Displacement envelope; (c) Power Spectral Density (PSD); (d) Mode shapes.
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In our work, modal properties of the structure in the undamaged and dam-

aged configuration have been extracted by the Frequency Domain Decompo-

sition (FDD)[28] and Stochastic Subspace Identification (SSI) [29] techniques

applied to the results of the white-noise shaker test.

These analysis were conducted by using the displacements of 24 feature225

points shown in Fig.4 obtained with the DIC algorithm. In addition, 4 ac-

celerometer, one at each floor, were used as comparison.

(a) (b)

Figure 4: Two image samples acquired through the Flare camera. The blue and red dots
indicate, respectively, the measurement points extracted in the undamaged and damage con-
figuration of the structure.

The natural frequencies identified with these techniques are listed in Tab.2

for both undamaged and damaged structure. Fig. 5 reports the mode shapes

identified with FDD and Fig.6 reports the stabilization diagrams obtained by230

applying SSI. The natural frequencies identified with SSI from the accelerograms

and the image based displacements differ by less than 3% and the ones identified

with FDD differ by less than 1%; the image-based mode shapes evaluation

is more accurate than the accelerometric one thanks to the higher number of
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measurement points available.235

Table 2: Modal frequencies extracted through SSI and FDD techniques and from acceleration
and displacement measurements.

Undamaged structure Damaged structure

Acceleration Displacement Acceleration Displacement

Mode SSI FDD SSI FDD SSI FDD SSI FDD
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 16,7 17,3 17,2 17,2 14,6 14,9 15,1 14,9
2 53,8 54,9 54,9 55,0 42,9 43,9 43,5 43,58
3 71,5 72,9 72,8 72,9 69,5 71,0 70,8 71,1
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Figure 5: Mode shapes extracted through the FDD technique from acceleration (a) and dis-
placement (b) measurements.

4. Damage Identification

The focus of this section is the use of the results of the image-based OMA

in damage detection procedures. To tackle this problem, several techniques will

be compared both in the time and in the frequency domains and the results will

allow to highlight advantages and disadvantages of each techniques in terms of240

accuracy in determining damage location and damage intensity. For example,

in [30] two approaches have been used for the monitoring of dynamic systems.

Both are based on stochastic subspace identification and take the statistical un-

certainties into account. One approach requires a statistical damage indicator
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Figure 6: Stochastic Subspace Identification (SSI): stabilization diagrams for undamaged and
damaged structure from acceleration (a,c) and displacement (b,d) measurements.

to automatically evaluate changes in the structural response without comput-245

ing any modal parameters and the other approach requires modal parameter

and their confidence intervals estimate. Also in our work, the methods used

are classified in two main categories: dynamic response-based and modal-based

techniques. The first techniques are based on the analysis of the dynamic re-

sponse of structure in the time domain (e. g. displacements and accelerations),250

and they allow a real time assessment of structural conditions; the second ones

require the identification of modal properties (frequencies and mode shapes) of

structures (frequency domain).

14



4.1. Damage Location

As previously described, the determination of the position of damage in the255

structure can be pursued by methods belonging to the cited categories. Both

approaches are followed to evidence the effects in the studied case of measure-

ments derived by image processing.

4.1.1. Techniques based on the dynamic response in the time domain

In some cases, as for example during seismic events, it is essential to identify260

in real-time possible modifications of the structural response due to occurrence

of damages. Therefore, time-based identification methods have been investi-

gated by several researchers ([31], [32]) as they do not require prolonged ac-

quisition time. These techniques make use of the response under excitation in

order to identify structural damages. Dynamic measurements include structural265

displacements, accelerations, or strains. In this context, the use of high-speed

camera offers the advantage of a direct measurement of displacement without

the need of integrating twice the acceleration to obtain a direct measurement

of the displacement. Based on displacement measurements, an effective damage

index is the inter-storey drift, i.e. the difference between deflections of two adja-270

cent floors. This measure has been previously employed to estimate the overall

damage of a building during earthquake-like induced vibrations (see [33]). The

inter-storey drift can be evaluated following three approaches: the maximum

absolute storey deflection, the storey deflection when the maximum deflection

at top level occurs, and the total maximum storey drift at each level considering275

all time-steps. [34]

In the present paper, all three approaches were evaluated but the second

gave the most accurate results and so is described in the following. Let tmax

the time instant at which the maximum displacement at the top floor occurs.

The corresponding deflection of undamaged and damaged structures is shown280

in Fig.7.

At each measurement point i, the inter-storey drift di (Fig.8a) is evaluated
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Figure 7: Time-based damage identification methods: (a)area of the structure, evidenced in
green, interested by the damage; (b) maximun deflection of the structure recorded at t = tmax.

by:

di = ui − ui−1 for i = 2, ..., N and d1 = u1 (1)

where ui is the displacement at measurement point i (the deflection of the

structure) at t = tmax and N is the number of the measurement points, e.g.,

N = 24 for image processing data. The damage can be localized on the points

i which maximizes the Drift Variation (DV) defined as:

DV(i) =
ddi − dui
dui

(2)

where dui and ddi are the inter-storey drift of the undamaged and damaged

structure respectively. The results in Fig. 8b shows that the highest values of

the DV are located at an height between 400÷600 mm which actually coincides

with the inter-storey 2-3 where the steel bracings were removed.285

The large amount of measurement points made available through the image

analysis technique allowed us to evaluate the curvature of the deflection pro-

file (Fig. 8c) of the structure and to use the Curvature Variation (CV) as an
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additional damage index. As such, we have defined:

CV(i) =
χd
i − χu

i

χu
i

, i = 1, ..., N (3)

as the difference between the second derivative of the deflection for the undam-

aged χu
i and damaged χd

i specimen.

Fig.8d shows also the CV is localized in the region where damage occurred.

However, when compared to DV the damage is concentrated on a narrow region.

4.1.2. Techniques based on modal properties in the frequency domain290

Damage indices based on the use of mode shapes have attracted a great deal

of attention since the early eighties. The basic concept is to identify and locate

damage by relying on changes, between damaged and undamaged state, of mode

shapes or their derivatives. The accuracy in mode shape estimate made possible

by large number of measurement points available through DIC favours modal295

shapes and modal curvatures based identification techniques.

To this purpose, the RD (Relative Difference) index [35], based on the com-

parison between the undamaged φuij and damaged φdij modal shapes is intro-

duced as:

RD(ij) =
φuij − φdij
φuij

, i = 1, ..., N j = 1, ..., L (4)

where L is the number of identified modes and N the number of measurement

points. The damage is identified at those location where RD overcomes a certain

threshold. In this formulation, the mass is taken known and the mode shapes

are normalized to unity with respect to the mass matrix (ΦTM Φ = I).300

Another damage indicator widely used in literature is the COMAC (COor-

dinate Modal Assurance Criteria) [36] defined by:

COMAC(i) =

(∑L
j=1 |φdij φuij |

)2
∑L

j=1

(
φdij
)2 ∑L

j=1

(
φuij
)2 (5)
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Figure 8: Time-based damage identification methods: (a) inter-storey drift at t = tmax; (b)
inter-storey Drift Variation at t = tmax; (c) curvature at t = tmax;(d) Curvature Variation at
t = tmax.
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where again the mode shapes are normalized to mass. Differently from RD, the

damage occurs in correspondence of those inidces where the COMAC is lower.

In Fig.9 both the RD and COMAC indices are evaluated for the mode shapes

obtained for the acceleration data (N = 4) and the displacement data (N = 24).

When considering the RD index, acceleration and displacement data gave the305

similar results only for the first mode for which the maxima are obtained at the

same location (see the blue and the red bars in Fig.9a). For the second and

third mode the maximum absolute value of RD evaluated with displacement

measurements is located in the range 600÷700 mm, while the maximum values

of RD evaluated with acceleration measurements are in the range 350÷600 mm.310

In all cases, RD index failed to provide a clear indication of the damage position.

The minimum values of COMAC are in the range 350 ÷ 600 for acceleration

measurements while for the displacement ones there are three local minima in

the range 350 ÷ 800 where also two maxima appear. It is noted that the large

number of measurement points offered by image analysis does not provide any315

significant advantage in terms of damage localization when compared to the few

measurement points of the acceleration data.
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Figure 9: Relative Difference (a,b,c) and COordinate Modal Assurance Criteria (d) evaluated
with acceleration (blue) and displacement (red) measurements.

Another parameter often evaluated in damage detection algorithm is the

Curvature Variation (CV) of the mode shape profiles. Maximum CV are located

in the damage region whereas RD are often spread all over the structure; for320

this reason CV are often considered a superior damage indicator. In Fig.10 is

reported the CV of the mode shape profiles. The highest values of the CV are

located in the range 400÷ 600 mm for the mode shapes 1 and 2, while the CV
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of mode shape 3 has high values in the range 400÷800 mm. Yet in all cases, the

maximum variations is obtained in the damaged region at least for lower order325

modes. For higher modes, CV have spurious peaks which have to be filtered out

([37], [38]).
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Figure 10: Modal curvature-based approach applied to displacement measurements: Curva-
ture Variation of mode 1 (a), mode 2 (b), mode 3 (c). In blue the undamaged state and in
red the damaged one.

For shear buildings, a specific identification procedure was proposed in [39]

and [40]. This approach makes use the damage-induced deflections estimated by

modal flexibility from ambient vibration measurements. This method consists

in three steps. The first one is the evaluation of the modal flexibility Gm from

natural frequencies and mass-normalized mode shapes; the second step consists

in the evaluation of the deflection profile under a positive shear inspection load

(u = Gm f, where u is the displacement vector corresponding to the positive

shear inspection load vector f = {1}). The last step is the damage localization

using the damage-induced deflections. As showed in [39], the damage-induced

deflections, which occurs at the damaged floor [39]. The following index Z,

based on a statistical approach, is utilized:

Z(i) =
ddi − dui
σ(dui )

for i = 1, ..., N (6)
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where ddi is the inter-story drift of damaged structure, dui is the undamaged

inter-story drift, dui and σ(dui ) are the mean value and the standard deviation of

dui . The damage localization is performed using the condition Z(i) > ZThreshold.330

Fig.11 shows the Z-index for both acceleration and displacement measure-

ments. The signals recorded during the test performed on the undamaged struc-

ture was divided in 10 intervals; at each interval, natural frequencies, mode

shapes and deflection profile under a positive shear inspection were evaluated.

Then, the mean value and the standard deviation of dui were computed, by335

considering the undamaged state data as a training data set.

The maximum values of the Z index occur in the range 400÷600 mm of the

height of the structure that corresponds to the zone where the steel bracings

have been removed. Both measurements return a good estimate of damage

localization but thanks to the larger number of measurement points provided340

by image analysis it is possible to assess that the damage affects all the zone

between 400 and 600 mm, while with the acceleration acquisition system it is

possible to individuate only one point affected by damage (corresponding to the

sensor on the third floor).
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Figure 11: Modal flexibility-based approach applied to acceleration (a, b, c) and displacement
(d, e, f) measurements: deflection (a,d), inter-storey drift (b,e), Z index (c,f). In blue the
undamaged state and in red the damaged one.

In Fig.12 is reported the CV of the deflection profile obtained with the345

modal-flexibility approach. The highest values of the CV are located in the

range 400÷ 600 mm for the case of deflection profile.

Consequently, the CV damage index is more accurate if applied to the actual

deflection profile for an assigned instant of time (Fig.??d) and to the deflection

profile obtained with the modal flexibility approach (Fig.12c), rather than to350

the mode shapes profile (Fig.10).
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Figure 12: Modal flexibility-based approach applied to displacement measurements: deflection
(a), Curvature Variation of the deflection profile (b), Curvature Variation in time (c). In blue
the undamaged state and in red the damaged one.

In order to give an overview of the effectiveness of each damage index a

summary of the results is presented in Tab.3. The indices which correctly locate

the damage position are indicated with the check mark ”
√

”, whereas those with

a ”x” did not provide the correct result. The symbol ”-” is used when it was not355

possible to calculate the indicator with that type of measurements. The direct

displacement measurements allow to use techniques based on the deformation

of the structure at a certain instant of time and those based on the variation

of curvature. The RD and COMAC indices give better results in the case of

accelerometric measurements, while the drift-based indices are able to localize360

the damage both by accelerometric and displacement measurements but with

the latter a more accurate localization was obtained.

4.2. Damage Intensity

The methods described in the previous section allow the localization of dam-

age. In this section, those results are used to solve the inverse problem related to365

the esimate of the damage intensity. Such an approach requires numerical model

of the structure and a comparison between its undamaged and damaged state; as
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Table 3: Summary and comparison of the results of damage location indicators.

Accelerations Displacements

Techniques based on the dynamic response in the time domain

Deflection profile at t = tmax -
√

. Inter-storey Drift Variation (DV) -
√

. Curvature Variation (CV) -
√

Techniques based on modal properties in the frequency domain

Mode shapes
√ √

. Relative Difference (RD)
√

x
. Coordinate Modal Assurance Crit. (COMAC)

√
x

. Curvature Variation (CV) -
√

Modal flexibility-based approach
√ √

. Inter-storey drift variation (Z index)
√ √

. Curvature Variation (CV) -
√

such, two numerical models of the shear-type frame structure have been imple-

mented, a 4-DOFs and a 24-DOFs modal model (Fig.13) to assess the damage

intensity by using, respectively, accelerometer and image-based measurements.370

The first model was obtained by recognizing 4 significant DOFs in the structure,

which are the 4 horizontal translations of each floor for the shear-type frame; the

second model was implemented with 24 DOFs that correspond to 6 nodes for

each floor (5 on the column and 1 in correspondence with the beam), in analogy

to the displacement measurement points. These models were used to evaluate375

the natural frequencies fj and to extract the corresponding mode shapes.
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Figure 13: The shear-type frame structure in the undamaged configuration, the 4-DOFs and
24-DOFs model.

After identifying the location of the damage by selecting the area where the

indices reported in the previous section exceed a fixed threshold, the damage is

introduced in the model with a stiffness reduction of the elements which are sit-

uated in the localization area. The stiffness kdi of the element i interested by the

damage can be expressed in relation to the stiffness of the element undamaged,

kui , as follows:

kdi = (1− a) kui , i = 1, ..., n (7)

where a is the damage intensity, i.e. 0 ≤ a < 1 and n is the number of the

elements (n = 4 for 4-DOFs model, n = 24 for 24-DOFs model).

The estimate of the parameter a constitutes the assessment of the damage

intensity. An optimal estimate of this parameter can be obtained by minimizing380

an objective function based on the sum of difference between numerical ∆fj(a)

and experimental ∆fej frequencies variation from undamaged to damaged state,

i.e.,

G(a) =

L∑
j=1

(
∆fj(a)

fuj
− ∆fej

fuej

)2

(8)

where L denotes the number of the identified modes, ∆fj(a) = fuj − fdj (a) and

∆fej = fuej − fdej .385

The G function is calculated in Fig.14 for experimental frequencies obtained

from accelerometer and image-based measurements after having identified the
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location of the damage with the methods previously presented. The actual

damage intensity is represented with a vertical dashed line. In this figure, they

are classified differently from the classification of the previous section. In Fig.14a390

is reported the objective function coming from a pre-localization of the damage

based on drift variation: DV at tmax (Fig.8b) and Z index from modal flexibility-

based approach (Fig.11c,f). In Fig.14b the pre-localization is obtained with

curvature variation indices: CV at tmax (Fig.8d), CV of mode shapes Fig.10 and

CV from modal flexibility-based approach (Fig.12b). Fig.14c,d report the results395

coming from a damage located with COMAC (Fig.9d) and RD (Fig.9a,b,c)

index, respectively.

These results show that the only the damage indices based on drift variation

(14a) allow to obtain a good assessment of damage intensity: only in this case,

in fact, the value of the parameter a that minimize of G(a) coincides with the400

actual value of the a (indicated by the dashed line). In all other cases, the

stiffness reduction is underestimated by at least 15%.

5. Conclusions

In this work, two vision-based techniques were used to measure the dynamic

displacements of a small-scale frame structure and to extract its modal proper-405

ties. The advantages of the image-based techniques were exploited in a damage

detection problem, in which the damage was introduced by removing the two

steel bracing located on the third floor of the frame. The damage intensity was

assessed by solving the inverse problem formulated in terms of either displace-

ment or accelerations.410

The results showed that the increased number of points available by image

analysis allow a more accurate assessment damage position, both for techniques

based on the dynamic response in time domain and on modal properties in

the frequency domain. The vision-based monitoring allows to use techniques

which are not applicable to the measurements coming from the accelerometer415

based acquisition system, such as the techniques applied to the deformation
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Figure 14: The objective function G(a) calculated with experimental frequencies obtained
from accelerometer (Acc) and image-based (Disp) measurements after identifying the location
of the damage with different methods, based on drift variation (a), curvature variation (b),
COMAC (c) and RD (d).
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of the structure at a certain instant of time, because with image analysis we

obtained direct displacement measurements, and those based on curvature vari-

ation thanks to the high number of measurement points. Other techniques were

applied both to accelerometric and displacement measurements. Among them,420

the Z index evaluated with the modal flexibility-based approach is able to local-

ize the damage with both data but with the image analysis data a more accurate

localization was obtained. Only the RD and COMAC indices give better results

in the case of accelerometric measurements; in this case the high number of

sampling points in the images returns several false positive.425

The damage intensity was assessed with a procedure based on the pre-

localization of the damage and on the definition of an inverse problem, which

requires the implementation of a numerical model of the structure. The dam-

age intensity has been estimated by minimizing an objective function based on

the sum of difference between numerical and experimental frequencies varia-430

tion from undamaged to damaged state. The results show that, among all the

techniques used for damage localization, only two (Z index and DV ) allow to

achieve a good assessment of damage intensity. This is due to the good estimate

of damage position obtained with these indices which are based both on drift

variation. Z index was be applied to both accelerometer and image-based mea-435

surements and allowed to estimate damage intensity with the same accuracy.

Whereas it was possible to apply DV only to image-based data which are direct

displacement measurements.

In conclusion, in the damage localization task, the image analysis data al-

lowed to obtain better results in terms of accuracy and in term of quantity of440

techniques usable; in the damage intensity task, the advantages of the image

data reside in the higher quantity of techniques usable.
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