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Abstract

Knowledge of the electromagnetic interaction between a beam and the
surrounding vacuum chamber is necessary in order to optimize the
accelerator performance in terms of stored current. Many instability
phenomena may occur in the machine because of the fields produced by
the beam and acting back on itself as in a feedback device. Basically,
these fields produce an extra voltage and energy gain, affecting the
longitudinal dynamics, and a transverse momentum kick which deflects
the beam. In this paper we describe the main features of this interaction
with typical machine components.

1. INTRODUCTION

The so-called "collective effects” are responsible for many phenomena which limit the
performance of an accelerator in terms of beam quality and stored current. The beam travelling
inside a complicated vacuum chamber, induces electromagnetic fields which may affect the
dynamics of the beam itself. An accelerator can be seen therefore as a feedback device, where
any longitudinal or transverse perturbation appearing in the beam distribution may be amplified
(or damped) by the e.m. forces generated by the perturbation itself.

The e.m. fields induced by the beam are referred to as wake fields due to the fact that they
are left mainly behind the travelling charge. In the limit case of a charge moving at the light
velocity, B = 1, the fields can only stay behind the charge because of the causality principle.

The study of the longitudinal and transverse beam dynamics requires the knowledge of
the forces acting on the beam or, alternatively, the change in momentum caused by these e.m.
forces. The longitudinal wake potential (volts) is the voltage gain of a unit trailing charge due
to the fields created by a leading charge. The transverse wake potential (volts) is the transverse
momentum kick experienced by the beam because of the deflecting fields. They are sometimes
confused with the wake functions, defined as the wake potentials per unit charge (volr
/coulomb) defining, therefore, a Green's function for the problem.

When we study the beam dynamics in the time domain, as is usually done for linear accel-
erators, it is convenient to make use of the wake functions or potentials. Conversely the
frequency domain analysis is usually adopted for circular accelerators due to the intrinsic pe-
riodicity. There we need to compute the frequency Fourier transform of the wake function,
which having Ohms units, is called coupling impedance.

In this paper we describe the main features of the electromagnetic fields induced in the
most typical components installed on the beam pipe of an accelerator. In some examples we
make use of numerical codes, reliable tools for the estimate of wake potentials and impedances,
particularly useful in the design of the machine components. On this subject we address the
readers to Ref. [1] where an exhaustive review on the available computer codes is presented.

Methods and techniques for measurements of wake potentials and impedance are described in
Ref. [2].
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2. LONGITUDINAL WAKE FUNCTION AND LOSS FACTOR

2.1 Longitudinal wake function and loss factor of a point charge
Let us consider a charge g, travelling with constant velocity v = B¢ on trajectories parallel

to the axis of a vacuum chamber. Let z, be the longitudinal position and r; the transverse
vector positions (Fig. 1).

 §

Fig. 1 Relevant coordinates system

The electromagnetic fields E and B produced by the charge g, in the structure can be

derived by solving the Maxwell equations satisfying proper boundary conditions. The Lorentz
force acting on a charge g at a given position r, z:

F(r.z,rp,z;; 1)= q[E(r,z,r],z] ;1) +vxB(rzry,z; t)] (1)

has in general field components along and perpendicular to the trajectory. These e.m. fields
affect the dynamics of the charge itself and on any trailing charge as well. Calling 7 the time
delay of the trailing charge with respect to the leading one, at any instant "t" the leading and
trailing charges have longitudinal coordinates z,(t) =vt and z(t) = v(z - T) respectively.

The energy lost by the charge g, is computed as the work done by the longitudinal e.m.
force along the structure:

Uu(r,):—J.F(r,,z,,rj,zl c1)-dz I=EVL 2)

—_—o0

The quantity Uy, accounts for the energy loss in the resistive walls and in the diffracted
fields radiated due to the discontinuities of the vacuum pipe. For a point charge, apart from
particular cases, it is generally positive (energy loss).

The trailing charge also changes its energy under the effect of the fields produced by the
leading one:
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UZ](r,rp'T):_JF(r;Z;r];Z1 N [)dZ N [=—+7T (3)

where the force is calculated on the charge g, on the same path but with a time delay 7. The
quantity Us;; depending on the time delay 7 can be positive (energy loss) or negative (energy
gain). As long as we consider charges moving on trajectories parallel to the z-axis, the
magnetic field cannot change the particle's energy, the product v x B - dz = 0 being identically

zero. Accordingly, the energy gain of Egs. (2) and (3) is computed considering the longitudi-
nal component of the electric field only.

In the above definitions we have considered the integration over an infinite path. Of
course infinite structures do not exist in practice, neither in linac nor in accelerator rings. In real
machine components we may have fields confined in a limited region (for example resonant
fields below the beam-pipe cut off), or propagating into the vacuum chamber. Extension of the
integration path over an infinite pipe is certainly allowed in the former case. In the latter,
definition (3) gives an estimate of the energy gain, which is a good approximation as long as
the field wavelength is short compared to the device length.

A real vacuum chamber is formed by a smooth beam pipe with regular cross section
(circular, rectangular or elliptic) and by various devices such as the RF cavity, the kickers, the
diagnostic components etc. The exact solution of the Maxwell equation for the whole structure
is impossible to obtain, even with the most sophisticated computer codes. Usually, one
analyses a component at a time and sums-up the various effects. This procedure may lead to
inexact estimates at high frequency where interference effects are not negligible.

It has to be underlined that in Egs. (2) and (3) we assume the charge velocity unchanged
during the motion. One can imagine that an external force keeps constant the charge velocity
doing the work computed in Egs. (2,3). In absence of the external force, this work corre-
sponds to the energy loss (or gain) of the charges, provided that the velocity of the charge does
not change significantly. In practice Egs. (2,3) may be used when the relative change of energy
is very small, so that it does not produce an appreciable variation of the relativistic factor f.
This is the case, for instance, of ultra-relativistic charges. Otherwise, one has to introduce the
equations of the dynamics combined to Maxwell equations.

We define loss factor k the energy lost by g, per unit charge squared:

() =224n) gy @

2

!
and longitudinal wake function w,(r;,r,;7) the energy lost by the trailing charge g per unit of
both charges g, and g [3.4,5]:

U2l(r:r1;’z’-)
q,9

Wz(ryrj;’[):

[V/C] (5

The explicit dependence on 8 although omitted, should be borne in mind. We note that
both the wake function and the loss factor have the same units volt/coulomb. Sometimes in the
literature one finds that the quantity w(7) is improperly called wake potential; the wake

function is numerically equal to the potential seen by the charge only when one considers unity
charges.
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In some cases, such as an infinite beam pipe with perfectly conducting or resistive walls,
the e.m. force is constant along the integration path; it is therefore useful to introduce the wake
function per unit length, volt/(coulomb meter), given by:

d r, T
Wz(l‘ r, ) - _ 1 FZ(T,Z,rI,ZI ; [) ; z=2Z,—VT [V/CITI] (6)
dz q:9

which, apart from the sign, is in practice the longitudinal force per unit charge acting on g. In
some other cases where we deal with periodic structures, we rather calculate a wake force per
unit period length.

It is worth noting that in the most cases of interest we deal with structures having par-
ticular symmetric shapes: rectangular, elliptic, circular. Moreover, it is generally verified that
during the machine operation the beam can only be slightly displaced from the axis.
Accordingly the above quantities can be expanded around the axis keeping only few relevant
terms. This multipolar expansion assumes a particular form in case of cylindrical symmetry
and ultra relativistic charges, as will be shown in Sec. 2.6. The dominant term produced by a
charge on the axis is called monopole wake (Fig. 2).

Fig. 2 Leading and trailing charges on the axis of a cavity with cylindrical symmetry

2.2 Beam loading theorem for a point charge

From the above definitions we easily derive that, when the charges travel on the same
trajectory, the loss factor is given by the wake function in the limit of zero distance between g,
and gq. Omitting the radial dependence, one obtains : & = w,(0). This is generally true as long
as f3 <1, however, in the relevant case 8 =1 it has been proved that [3]:

ksz;_OQ )

This property, referred to as the fundamental theorem of the beam loading [3], is a
consequence of the causality principle. In fact, due to the finite propagation velocity of the
induced fields and to the motion of the source charge, the wake function is not symmetric with
respect to the leading charge (Fig. 3a). In the limit case of a charge with light velocity it exists
only in the region 7> 0 (Fig. 3b), showing a discontinuity at the origin.

To prove the theorem, let us consider the wake function produced by a point charge as the
sum of an even and odd function of 7 (Fig. 4):

w,(T)=wi(T)+wl(1) (8)
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Fig. 3 Example of wake functions fora) f<1,and b) =1
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Fig. 4 Even and odd part of the wake of Fig. 3a (8 <1)

It is apparent that only w{(7) may change the energy of the point charge, w§(7) being
zero at 7= 0. Therefore we can say that the loss factor of a point charge is given by:

k=wé(1=0) ®

For =1, we have that w,(7) =0 for7 < 0, because of the causality principle. In this
region the wake vanishes if:

WE(T)= =Wl () 4o
However we have, for 7> 0
WwE(T)=wl (1) b
w,(T)=2we(T)=2wl(1) (12)
Therefore from Eq. (9) we obtain:
k=we(r—0)=2e(E200) (13)

2

=
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We call the reader’s attention to the fact that in general, as long as <1, i.e. in all the
realistic cases, the wake is a continuous function of 7. Therefore, it is more than reasonable to
wonder about the meaning of Eq. (13) that applies only in the unrealistic case f=1. It is easy
to see that although the wake is a continuous function for any realistic value of 3, its shape
approaches more and more the discontinuous curve of Fig. 3 when 8 — 1. In other words,
one could not, in principle, exchange the limits 7— 0 and 8 — 1.

2.2.1 Example: Point-charge wake for a single resonating mode HOM.

As will be shown in Sec. 7.4, a point charge g, passing through a resonant cavity excites

all the resonating modes. In the limit case 8 =1, each mode is schematized by the electric RLC
parallel circuit driven by a point-charge current i (7) = q,0(7):

|

Fig. 5 Scheme of a RLC parallel circuit driven by the current i5(T)

At the time 7 = 0~ we observe that the capacitor is charged with a voltage:

=V _ and V(0+)= w

V(0+) = % e (14)

For ¢ > 0O the system will undergo free oscillations. In particular the voltage V() will be
a solution of differential equation of the circuit:

V(D) +2TV(T)+ 02V (1) =0 15
where:
RC LC
Solving Eq. (15) with the initial conditions (14) and according to the definition (5), one
gets:
-Tt (17)
w,(r):mz € COS(E,‘L')——:li—Sin(E,T)}H(T)
1 wr
where H(7) is the Heaviside function and
(18)
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Using the merit factor of the circuit defined by:

-0 (19)
2T
1  Rw,
Wo = —=
c Q0
T 1
@, ~40%-1
@,=Wr.j1— L
r r 4Q2 (20)

A qualitative behaviour of the wake function is shown in Fig. 6.

A W,(T)

Fig. 6 Wake function of a resonant mode

The loss factor, according to the definition (4), can be computed as the energy lost by the
unit charge after its passage through the cavity. Applying the energy conservation law, we can

obtain the energy lost by the charge g, as the e.m. energy initially stored in the capacitor. We
get:

_l_ _ w(T—0)
2C 2 21

k=

which satisfies the beam loading theorem.
In terms of the merit factor Q we get:

22

Ro, (22)

20

2.3 Longitudinal wake function and loss factor of a bunch

k=

The wake function defined in Eq. (5), being generated by a point charge, is a Green
function and allows one to compute the wake produced by any bunch distribution. Let us con-

sider now a bunch of particles moving on a trajectory parallel to the axis, at a distance ry, with
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a longitudinal time distribution function i, (7) such that:

+00

q,= fib(r) dt (23)

-0

The wake function produced by the bunch distribution at a point with time delay 7is
simply given by the convolution of the Green function over the bunch distribution. We
remember that, in practice, the convolution integral is obtained by applying the superposition
principle. We split the distribution into an infinite number of infinitesimal slices and sum up
their wake contributions at the point 7. According to the definitions given so far, the energy
lost by a trailing charge g because of the wake produced by the slice at 7' is:

dU(r,7—1')=q ip(T)w,(r,7— 7')dT’ (24)

Summing up all the effects we get the wake function of a bunch distribution as:

oo

W,(r,7)= uir.7) = S Jib(f')wz(r,f— T')dt
q.,9 q,
—oo (25)

For a bunch travelling with velocity "¢", because of the causality, the above folding integral has
the observation point "7" as uppermost limit.

Once the bunch wake function W, (r, 7) is known, it is straightforward to derive the loss
factor of the charge distribution by applying again the superposition principle, we get:

K(r)= U(zf) :21]— J'Wz(r,r)ib(r) art
1

q, (26)

which depends on the transverse displacement of the bunch.
2.3.1 Example: rectangular bunch distribution exciting a single HOM.

Let us consider a bunch distribution with a simple rectangular shape on the axis at 7 = 0.

ip(T) = %[H(T+T)—H(r—T)] 27)

and compute the wake function of such a charge distribution assuming that it excites a single
HOM in a RF cavity. Further, let us assume that the factor Q is so high that, in the range of
interest, the impulsive wake function can be approximated by:

w,(T) = w,cos(w,T)H(T) (28)

By using the folding integral (25) we get two expressions of the bunch wake for 7 inside
and outside the distribution. Inside the charge distribution, i.e. for -7 < 7<T, we get:
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va(r)=:1§2 Egﬂfgiggilzglzf(zq-rv (29)

It is worth noting that in the limit 7 — 0, the rectangular distribution becomes an
impulsive function (1) =¢q,0(t) and the bunch wake W,(7)— w,(7). In particular it is
interesting to see that:

lim W, (0) = =2 (30)
T—0 2
i.e. looking at the centre of the bunch, one finds that the wake function approaches with
continuity the limit value (7).
The bunch loss factor is obtained from Eq. (26) which gives:

. 2
K =Weo sin(w, T) ‘
2 ( w,T G

~

The "point charge" loss factor is derived from the above expression in the limit 7 — O:

w (32)
k=limK=-—
T—0 2

Therefore, when we consider any bunch distribution, the somewhat "artificial" arguments
presented in Sec. 2.2 are unnecessary, since the loss factor can be computed straightforwardly
from the bunch wake which turns out to be continuous, even in the "point charge” limit.

Finally we find externally to the distribution, i.e. for 72T

sin(w,T)cos(w,T) H

WZ(T)z Wo a)T

(z=T) (33)

It is interesting to note that outside the distribution, the limit for T — 0 and 7 — 0 of Eq. (33)
gives wy,.

2.4 Loss factor and Poynting Vector

The bunch wake function has been defined as the energy loss by a bunch crossing a given
structure. We already said that the non-consistency due to the constant velocity of the bunch
can be avoided assuming an external force acting on the bunch (for instance related to an electric
external potential). Since the kinetic energy of the bunch is constant (constant velocity) the
work done by the external force has to be equal to the energy loss, according to the energy
conservation law. However, it is well known that, any electromagnetic energy loss can be

computed as the flux of the Poynting vector over a closed surface surrounding the sources of
the fields.

The Poynting theorem states that the electromagnetic energy U, stored in a volume V
limited by the surface S can change because of ohmic losses and electromagnetic radiation:
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ou

——aj—’”:—jP-ﬁdS+J.(E-J)dV (34)
S 1%

where 7 is the unity normal to the surface S, Jis the current density, E the electric field and
Pis the Poynting vector defined as:

p=LExs (35)

U

Let us consider now a single charge moving on the axis of a given structure. The current
density is given by:

J(r,z,t):qu@ O(z-vt) (36)
2nr

We choose as surface § a cylinder of infinitesimal radius around the charge trajectory.
Integrating Eq. (34) with respect to the time from — eo to + oo, and noting that in the volume V

Ugl(t = =) =U,,(t =), we get:

szj(EJ)dV: J.dzJP-ﬁdS -
—oo YV -0 S

Making use of (2),(4) and (36) we get for the loss factor:

oo oo

-1 z -1
k=— E(z,z:—)dz=—JdIJ.P-fzdS
q; ’ v q; (38)

oo —e S
2.5 The synchronous fields

When a bunch crosses the various elements installed in the beam pipe, it excites
secondary fields because of induction effects and diffraction phenomena. Some of these fields
are localized around the bunch, as for example the space-charge or the resistive-wall fields,
others are localized in resonant structures like the RF cavity, and others, at high frequency can
propagate within the beam pipe. All these fields interact with the circulating beam.

We want to show that this interaction is such that only the field components synchronous
with the charges can change the charges' energy. In order to prove this statement it is
convenient to express the longitudinal electric field in terms of waves propagating in the z-
direction:

Ez(z,z)zz—lﬂ- de deE?z(a), K)e/ (K2
—eo  —eo (39)

where we have omitted the explicit dependence on (r,r;,z;).
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Fig. 7 DAONE Accumulator vacuum chamber (RF cavity, kicker tanks, bellows)

The longitudinal electric field is given by a superposition of longitudinal waves having
any phase velocity, since @ and x can vary from —eo t0 e=. Among these waves only those
having the same phase velocity of the charge can contribute to the energy gain and therefore to

the wake function. In fact let us put the field expression (39) into the wake function definition
(5), we get:

wz(’c)=:l j Ez(z,r=£+ r)dz jda)e""T deE (o, K)I ~I(x=Ko) g (40)
q v 27rq, e

] —eo —0o

. @ . . . .
with kK, = —. We recognize the impulsive function:
%

1 7 jZ K—K, _
e Je dz—S(K—KO) @1

that allows us to get the following simple expression:
(42)

w,(T) = jE K=K,,0)e"do

1—oo

wherein it is apparent that only those components of the fields propagating with the same phase
velocity as the charge can produce a "surfing” effect. All the others in average do not
contribute.

The result found above deserves a further investigation. In fact we wonder what would
happen if, instead of an infinite structure one would consider a pipe with finite length, say L. It
is easy to see that integration between -L/2 and +L/2 does not give an impulsive function, but:

. L
L ) g, L sinf(x— "023] @3)
7”—L/z 2n (K—Ko)a

which becomes again an impulsive function when L — <. For a finite length L, the "sinc"
function (sin(x)/x) has a maximum at K, = K, and the first zeroat K, = k£ 27 /L.
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For long wavelength, the fields do not propagate being stored within a given device (e.g.
the cavity HOMs). The actual integration path is therefore confined to a limited region, the
fields being evanescently zero above the pipe cut-off. On the other hand, for short wave-
lengths, fields propagate into the beam pipe. There is a contribution of those harmonics that do
not perfectly average to zero their effect on the beam. However, according to Eq. (43) at high
frequencies this contribution is small, so that we can consider an infinite pipe instead of a finite
one, simplifying the calculation of the wake.

2.6 Expansion of the longitudinal wake in cylindrical symmetry

So far we have considered the case of general boundaries, assuming the two charges
moving on any trajectory parallel to the axis. We have already mentioned that in general there is
no restriction on the transverse position of both charges. For simplicity we now consider that
the trajectories are parallel to the axis of a structure with cylindrical symmetry as shown in
Fig. 2. Let (r,,¢,=0,z,) be the coordinates of the leading charge and (7, ¢,z)those of the
trailing one. The density charge g, can be represented as a superposition of multipole moments
in cylindrical coordinates:

pr=0, 2= 500)5(2- ) (44)

1

with z, = Bct. Exploiting the azimuthal periodicity we can write:

p =800 5, 1) 4 cos(me)
27 8} m=0 (45)
with:
_JjLm=0 (46)
O = {2, m#0

According to the above expression the charge can be thought of as a superposition of
charged rings with angular dependence cos(m¢). It easy to see for instance that the monopolar
term with m = 0 describes a charged ring of radius r, with uniform density. In cylindrical
coordinates the e.m. fields created by the distribution (45) can be derived as the sum of
multipole terms as well, showing therefore the same angular dependence. For each term we

can compute the effect of the longitudinal force. The resulting wake function will show the
following form:

W (r rT)= D W, p(r,r;7)
4 1 mgo Z, 1 (47)

W, o (11 T) =W, . (r, 1y T)Cos(mo)
2.7 Radial expansion of the wake function in the limit y — e

The e.m. fields produced by the travelling charge in a vacuum chamber are derived from
the Maxwell equation imposing the boundary conditions at the pipe walls:
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1 0E

VxB = iy 48
X Hod + 2 (48)
VxE= - 28 49)

ot

P

V-E= -
e, (50)
J=pv (S1)

The longitudinal electric field can be thought of as produced by the current sources (the
bunch) and by the currents induced at the walls. Considering only the induced fields, it can be
shown that the Fourier component synchronous with the charges is a solution of the following
equation [6,7]:

2
VZ L _ 7Y - = (52)
.LEZ (ﬁc'}/j Ez 0

In the limit ¥ — °°, i.e. in the case of ultra relativistic charges, we have:
2 (53)
V_LEZ = O

Solved in cylindrical symmetry, the above equation gives the following radial dependence
of the wake function [4,6,7]:

17”—'z,rrz(r’rw' T):rmnm :WTz,m(T) (54)

The monopole term m = 0, does not depend on the radial position of the charges. This
result, applied only to ultra-relativistic charges, allows one to simplify the evaluation of the
wake function by choosing a suitable integration path. Numerical codes [1,25,57,58]
computing the longitudinal monopole wake function of charges with = 1, in structure with
cylindrical symmetry, perform the integration along trajectories at the radius of the beam pipe.
Since the longitudinal electric field vanishes on the pipe surface, the integration is limited to a
shorter path.

We want to underline that the expansion (54) concerns only the secondary fields induced
by the beam. The primary fields produce the so-called space-charge wake effects that show a
different radial dependence, (Sec. 6.3).
2.8 Wake function in accelerator rings

In the case of circular machines, the longitudinal position of the charge is given by the
coordinate 6. We compute the wake function by averaging the azimuthal electric field over a
revolution period T,:

w(T) = —27R(Eg (6,1 + 7)), (55)

Due to the intrinsic periodicity of the e.m. problem, we can expand the longitudinal
electric field of a single charge as:
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Eg(6,1)= jda) S £, (n,)e " (56)

n=—co

which substituted in (55) gives:

VA 0 oo
w(t)=-R J a8 _[dw e/ Eég(n,w)eﬂ@("“w/wo) (57)
-1 — oo n=-—oco

The charge itself can be thought of as a train of charges with a beam current:

ih(T)=q, 25(1—/&0)

k=—o0

Making use of (25) and (55), we have:

W(t)=— [iy(2)w(c—7)dr = 5y w(r—zafkj (58)

1 _oo k=—oo

V4 o0 oo ) o . _
W()=—R [ d6 [ do Y e/ 2H9) S Ey(n, )¢ /O 20)

-7 — 00 k:-oo N=-c0

which, after some mathematics, becomes:

W(T):——zﬂR ZEe(n,nwo)ej”wOT (59)
1 pn=—oco
3. LONGITUDINAL COUPLING IMPEDANCE

3.1 Definitions and properties

In the frequency domain we compute the spectrum of the point charge wake function as:

o

J.wz(r,r,;r) e_ijdTEZ(r,r,;a)) (60)

which being measured in Ohms is called Coupling Impedance. Historically, the coupling
impedance concept was introduced in the early studies of the instabilities arising in the ISR at
CERN [8].

The wake function is derived from the impedance by inverting the Fourier integral:
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w,(r,r;7)= “1“ J'Z(","l;w) e dw
2w

-0

(61)

In the following we shall omit, for simplicity, the radial dependence. Comparison with
Eq. (42) shows that:

27 =
Z(w)=- q—zEZ(K_ Kps @) 62)

The coupling impedance is a complex quantity:
Z(w)=Z(0)+jZi(®) (63)
with Z, (@) and Z;(w) even and odd function of @ respectively. It is easy to prove this

property of the impedance remembering that the wake potential w(t) is a real function of 7. In
fact expanding the exponential in the integral of Eq. (61) we have:

[ Z,(w)cos(wr) - Z;(w)sin(wT)] dw
oo (64)

b3
~N
2
I
‘\’|._a
s
!_.8

where the imaginary part vanishes if:

Zr(a)) = Zr(—w)
Zi(w)=-Z;(-0)

(65)

From Egs. (8,60,64), we recognize that Z,(®) and - Z;(w) are the Fourier transform of
wi () and w?(7) respectively:

Wl (1) = [Z,(w) cos(wr)de
2n e (66)

wl(T) = -7:71; jZi(w) sin(w?)dw

Furthermore, in the particular case of =1, the wake function has to vanish for 7< 0 where

wi(t)=-w?(t). In terms of impedances Eq. (10) becomes:

[Z,(w)cos(wn)dw = [Z;(w) sin(wT)dw 67)

—o0 —o0

which expresses a general relationship between the real and imaginary part of the impedance. It
can be shown that the above relation is equivalent to the Hilbert transform relating the real and
imaginary part of a network impedance. In other words the coupling impedance defined by
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Eq. (60) behaves like a usual circuit impedance only when the causality principle applies,
namely in the limit case of charges travelling with the velocity of light.

Recalling the relation (7) between loss factor and wake potential for a point charge, we
get:

_w,(t—>0%) 1

k — | Z (w)dw
> ﬂ{ (@)

(68)

where we recognize that the real part of the impedance is the power spectrum of the energy loss
of a unit point charge. In general, the complex impedance can be thought of as the complex
power spectrum related to the energy loss.

3.1.1 Example: Impedance of a single HOM in a RF cavity.

Using the wake function expression (17) derived for a single HOM, from the definition
(60) we have:

Z(w)= wéR J' {cos(@, T) "%'Sin(aﬂ:)} e~Ue+DT 4o (69)

r

—o00

R
1+]Q 2_&
[O)3 w

It is easy to verify that the above impedance satisfies the properties (65) and (67).

Z(w)=

(70)

3.2 Bunch losses and wake function from the impedance

Consider a bunch radially displaced and with a charge distribution iy (7), whose Fourier
spectrum is /(). The total bunch wake function W ,(r, 7) and loss factor can be expressed in
terms of Z(®) by transforming the integrals (25) and (26), obtaining:

WD) = o [Z(r@)l(®) e/ do b

2rg,
K(r)=——[Z,(r,o)(o)f do 72

nq’
As an example for a bunch with Gaussian distribution:
_wop)?
I(w)= q, € (73)
the loss factor is given by:

(74)

< 2
K(r)= ljzr(r;w) e do
T
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It is apparent that the loss factor is, in general, a function of the r.m.s. length of the
bunch distribution. It is interesting to note that there exists a general relation, useful in the
measurements, between the frequency dependence of the impedance and the dependence of the
loss factor on the bunch length. For a Gaussian bunch:

Z,(0)< 0 oK < o, @ 75)

3.3 Multipole longitudinal impedance for cylindrical symmetry

In Sec. 2.6 we have seen that the wake function created by a charge on a trajectory paral-
lel to the axis of a device with cylindrical symmetry, can be expanded into a sum of multipolar
terms. The wake expansion used in the impedance definition allows one to express also the
impedance as a multipole expansion:

_ _ (76)
Z(r.r,0;0)= Y Z, (r,r,¢;0)= D Z,,(r,r;@)cos(m)
m=0 m=0

For ultra relativistic charges the radial dependence of the wake function is known,
according to Eq. (54), we have:

Zplr,ry;0) = 1™ 2 (@) 77)

where Z,,(®) has dimensions Q / m>".

4 TRANSVERSE WAKE FUNCTION
4.1 Transverse wake function and loss factor of a point charge

Let us consider now the leading charge transversely displaced with respect to the axis as
shown in Fig. 8. The charge excites in the structure electromagnetic fields which can be ex-
panded in their multipole components (dipole, quadrupole, sextupole etc.) in the transverse
plane. For small transverse displacements the dipole term is of course dominant.

Fig. 8 The leading charge is transversely displaced

The trailing charge g experiences a Lorentz force which has longitudinal and transverse
components. Therefore, it is subject to a transverse momentum kick given by:
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o0

Z
Ma(r.r,; T)= _[FL(r,z,r1,z, st)dz, 1=+t
v

(78)

-o0

the integration, as for the longitudinal case is assumed over an infinite distance. The above
momentum kick, measured in Newzon meter [Nm], depends on the pipe shape and on the
transverse position of both charges. In general, the transverse kick is not parallel to the dis-
placement of the leading charge. In fact a horizontal displacement can lead to both vertical and
horizontal kicks, and the same generally happens for a vertical displacement. Only in the case
of cylindrical symmetry, are the two transverse directions decoupled for a beam on the axis.
The transverse kick per unit of both charges, measured in volt/coulomb [V/C], defines the
transverse wake function:

M, (r,r,;;T
wL(r,r,;’L')z—————z’( %)

[V/C] (79)

9,9

Analogously to the longitudinal case it is useful to define the dipole transverse loss factor
as the amplitude of the transverse momentum kick given to the charge by its own wake per unit
charge:

M
k=) g (80)

1

Usually the dipole component of the transverse kick is the dominant term for ultra-
relativistic charges. This term is proportional to the displacement of the charge g,. For this

particular case we define the transverse dipole wake function as the transverse wake per unit of
transverse displacement:

r w r’r ; T
w(rr, )= __L‘__) [V/Cm] (80)
r
and a transverse loss factor:
kl(r1)= M112(r1) [V/Cm] &
ah

4.2 Transverse wake function and loss factor of a bunch
The transverse wake potential produced by a continuous bunch distribution, transversely

displaced by r, can be obtained by applying the superposition principle; we get:

oo

Wl(r;f)=iJ.wJ_(r;T—I’)ib(f)df [V/C] (82)

-o0

The bunch transverse loss factor [V/C] is:

-5

K .(r)= —I—J.WL(r; 1) iy (T)dT

-oo

(83)
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and the transverse wake and loss factor per unit displacement are:

Wi(r; T) = ..W.L(rr; T) (84)
K_L(r) = _KJ.r(r) (85)

measured in volt/(coulomb meter).
4.3 Relationship between longitudinal and transverse wake functions

Let us consider, for simplicity, a charge which moving with constant velocity v along the
z-axis, through an e.m. field. It will experience an e.m. force with components:

F, =qE,
F, =q(E, —vBy)

F¢ :C](Ed) +VBr)

(86)

The Maxwell equations give:

JE, _9E, | JB,

ar 9z or (87)
10E, _JdE, B,

rde 9 o

from the above relationships, in a moving frame { = z - vz, we derive:

v.Fr, =

L z=8—é’ (88)

The moving frame has as origin of the axis the position of the leading charge (z = vt —
£ =0), while on the trailing charge we have { = -v7. Since we are considering the force on the
trailing charge, derivation with respect to { can be substituted with derivation with respect to T:

10
—;E:-WL(r,rl;f)= VL‘,WZ("JI;T) [V/Cm] (89)

The transverse operator V| applies on r, the transverse coordinates of the trailing charge. The
above relation is often referred to as the "Panofsky-Wenzel" theorem [9].

If the leading charge is slightly displaced from the axis, we can expand the rhs of (89)
retaining only the first-order term [10}:

w,(r,r;T) = w,(r,0;7) + [Vl,r1 wz(r,rl;‘c)] . +0(r, )2 (90)

rn=
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where V Lr, 1s the gradient operator acting on the transverse coordinates r, of the leading
charge. From (89) we get:

10
—;'a—’rwl (r,rl; T) = VL’,{WZ(",O; T) + [V_L,rl wZ(r’rl; T)],l=0 ) rl} (91)

The first term in the brackets is a "monopole” contribution to the transverse impedance which
disappears for a particular symmetric geometry (circular, rectangular, elliptic). The latter is the
dipole transverse impedance, which, in the linear approximation, is obtained from the
longitudinal wake expression w,(r,r,,; 7)by applying twice the transverse gradient operator to
r,and r:

1

—;b—%wi (rv Ty T) = V_L,r[V.L.q WZ(r’rl;T)]rl =0 " (92)

For instance, in Cartesian and cylindrical coordinates, the transverse operator becomes:

2° o* 0? 1 2
_|Jxdx, Ixoy, vV v - oror,  r drd¢,
Lr ' 1 (92 82 L’ L.y 1 82 1 32
dydx, dydy, r door, 7r—1_ d9d9, 93)

It is worth noting that in general, after the application of the matrix (93) to the vector r,,
the transverse dipole wake is not necessarily directed along the offset of the driving charge.

4.4 Mode expansion in cylindrical symmetry

As for the longitudinal case, the transverse wake can be expresses as a superposition of
multipole terms [11]:

w (rr;7)= EWLm(r,rl;T) ©4)
m=0

For y — e, making use of the expressions (47), (54) and (89), we get:

(95)

%w“" (rr;T)=-cmw,,, (7)™ {cos(mdb)? - sin(m¢)¢}

The transverse dipole term m = 1 is proportional to the transverse displacement of the
leading charge while it does not depend on the transverse position of the trailing one. It is easy
to show that in cylindrical coordinates the dipole transverse force is directed along the offset of
the leading charge:

J —
Ewu (rr;t)=-c w, (D) r, (96)
where, we remember that, w, , is the amplitude of the dipole longitudinal wake measured in
V/(C m2). The same result is obtained by applying Eq. (92).
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5. TRANSVERSE COUPLING IMPEDANCE

5.1 Definitions and properties

The Fourier transform of the transverse wake function in the frequency domain times the
imaginary unity defines the transverse coupling impedance:

o0

jjwl(r,rz,'r) e_jdeEZl(r,rz;w) [Q] ©7

-0

Historically, the imaginary constant was introduced in order to make the transverse
impedance play the same role as the longitudinal one in the beam stability theory. Since the
transverse dynamics is dominated by the dipole transverse wake, we can define the transverse
dipole impedance normalized to r, as:

Z (r,r,;w)

r

Z.(r,r,;0)= [Q/m] 98)

it has ohm/meter units. Conversely, the transverse wake is obtained from the inverse Fourier
transform of the transverse impedance:

Z (r,r,,m) e/ dw 9

'———.8

. J
Wi(",rz,f)=:)—n_

;

5.2 Relationship between longitudinal and transverse impedances

The Fourier transform of (89) gives the dipole transverse impedance on terms of the
longitudinal one:

Z (rrio)= =V Zirrio)  (Q) (100)
w

The transverse dipole impedance for an arbitrary shape, according to Eq. (92) is:

.
Z (rrywy= =V [V, Znrse) o (101)

rp=

In cylindrical symmetry, applying (96) or (92) to Egs. (76) we get:

Z, (rr o)= Z(w)r, [Q] (102)

c
w

6. UNIFORM BOUNDARIES
6.1 General properties

In this section we start the analysis of the wake fields and impedances for some relevant
cases: charge in the free space and in a beam pipe with uniform cross section. Fields and
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potentials for these cases have a common feature: they travel together with the charge. In other
words, the field map does not change during the charge flight, as long as the trajectory is
parallel to the pipe axis.

Considering a charge with velocity v = B¢ Z we may write:

oV 1 oV
—_2Z =-————z-grad_LV (103)

E=-grad V +f* > .

where the scalar potential V(r, ¢,z -vz) is the solution of the equation:

1%V p
—_ == 104
y? 9z° £ (104)

ViV +

satisfying the boundary conditions. The Laplacian operator V2 is applied to the transverse
coordinates, p is the charge density. The longitudinal wake potential per unit length is given
by:

MEOD_ Lp o (105)
0z q

V4
[="+7
v

One can see from Eq. (104) that in the ultra relativistic limit y — oo, fields can be derived
in the static approximation.

6.2 Relativistic charge in free space

A point charge moving with constant velocity vz in free space generates fields which are
solutions of the Maxwell equations (48, 51). The fields can be derived applying the Lorentz
transform to the static field created by the charge in the rest frame. Because of the symmetry,
we have the fields [12]:

E(r,z,z):4q }’[r+(z-v[)z]3
w et (106)
Birony=BixErz) o
.

where the n vector is directed from the charge to the observation point. The magnetic field has
only the azimuthal component B,,. It is well known that at high energies, because of the

relativistic contraction, the fields are mainly confined inside a region with an opening angle 1/y

and perpendicular to the trajectory. The longitudinal field £, vanishes as 1/ y?, while E, and
B are proportional to .

Ez(r:O,z=£+fj:—_g——; (108)
v 4re,(Byet)
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E,(r,r:ij= L —a (109)
v) 4me,r

z\_9Z, ¥
B J=— =179 /1 110
d’(” v) 4m r? (110)

Because of the field's confinement within an angular region of the order of 1/, at a given
distance r from the charge, the fields can be thought of as generated by a relativistic charge
distribution with line density A. In the stationary approximation, applying the Gauss law at a
cylindrical surface of radius 7, we find an effective charge density 4 = gy /r. The singularities

at 7=0 and r=0 can be removed by considering a charge with longitudinal and radial
distribution.

According to the definition (6), since a test charge on the axis would experience a
repulsive force independently of its position, the longitudinal wake function per unit length is
an odd function of 7. The corresponding impedance is purely imaginary. Because of the lack
of interest, we do not derive the explicit expressions of the wake and impedance. However, it
Is interesting to compute the amount of e.m. energy stored in a region outside a tube of radius
b:

3n(r »
Ulr2b)y=—| 2 111
(rzb) lé(bj}’moc (111)

where r, is the classic radius and m, is the rest mass of an electron. The e.m. energy is
proportional to the kinetic energy of the charge.

\W o,

|

L

Fig. 9 Electric field lines of an ultra-relativistic charge in free space (qualitative behaviour)
6.3 Cylindrical pipe with perfectly conducting walls

The fields produced by a point charge travelling inside a perfectly conducting cylindrical
pipe are found from the scalar potential V(r,¢,z-vt) solution of the Maxwell equation (48,51),
with homogeneous boundary conditions at the pipe wall r =b (Fig. 10).

Using the density charge (44), in cylindrical coordinates we can express the scalar po-
tential as sum of multipole terms [10]:
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Fig. 10 Point charge inside a perfectly conducting cylindrical pipe

o0

V(r,(j),z—vt):—?-l— Y. cos(me) [V, (r.r,, k)™ (112)
LT

m=0 —oo

where we made use of the Fourier transform from the z-space to the wave number domain x.

Each Fourier component Vm( r,r,,K) is obtained by solving the differential equation (104) and
imposing the boundary conditions at the pipe walls [10]. We get:

1n(§7)

~ I L A St A SR T
V. (rr,kK)=—2 mee
2 K enlen - P K e s

where &=« /By, and [, K, are the modified Bessel functions.

The longitudinal coupling impedance per unit length, using (103) and (105), is given by:

O0Z,(r.r, @)  —jo [ w)
n® Vol rory = — (114)
oz C](C,B'}’)Z m ! ,BC

6.3.1 Monopole longitudinal impedance m =0, r <ry

&Zmz()z —jwzo
oz 2me(By)

[,(&r)
- ARA T I 115
{Ko(én) [o(éb)Ko(ib)} o(&7) (115)

Where Z, =+/u, /€, =1/cg, is the impedance of the vacuum. The behaviour of the

above term, purely imaginary, as function of ¢b is shown in Fig. 11. We note that in the

region ¢ b<<1, the impedance per unit length grows linearly, and does not depend on the radial
position of the trailing charge:

82171:(): _ijO ln(i) (116)
dz 2me(By) \b

For ¢ b>>1, the impedance shows an exponential roll off.
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Fig. 11 Monopole space charge impedance versus &b

It is apparent that the impedance (116) does not satisfy the radial dependence (77) found
in the high energy limit. In fact this term is called Space Charge Impedance, and kept distinct
from the forces related to the secondary fields induced at the pipe walls. In the literature, it is
usually presented as the space charge monopole term due to a disk of radius a, centered on the

pipe axis. Integrating the impedance expression (116) over the charge distribution 0 <r, < a,

for ¢ b<<l, we get:
dz 4mc(By) a

Using the above expression in the inverse Fourier transform, we get in the limit y — oo
the wake function per unit length:

IW, -0 1 (bﬂ )
z=0 — 1+21n| — | |=—6(z- 118
Jz 4”8072[ i VY1 P> (z=v) (118

6.3.2 Simple physical approach for ¥ — °

We have seen in Sec. 6.1 that at high energies one can solve Maxwell's equations in the
static approximation. Accordingly we derive the fields produced by a charged cylinder of
radius a, with longitudinal distribution 4(z—vr), moving with light velocity inside a perfectly
conducting cylinder (Fig. 12).

Fig. 12 On axis cylindrical bunch of radius "a"
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For ultra relativistic charges, according to (103) and (104), the fields are derived by
applying the Gauss and Ampere laws; we get :

[(z—vr) T

2 7 rea (119)
pe, «a
E (rz—vt)= Ce
{(z—=vr) 1 . r>a
2pe, r
l(z—zvt)Zo 7 ree (120)
Be(r,z—vr)= = p a
! (z—v)Z, 1 . r>a
2p r

The scalar potential is obtained integrating the radial field (119) from the disk centre
(r = 0) to the pipe radius (r = b); we get:

A 2 .
Vir,z=vi)= M{l —(ij + 21:{9)} (121)
4rne, a a
And the wake function per unitlength at r =0, 1 = 2 + 1 becomes:
1%
Mmmg LV __ 1 {1 +zm(2)] oA (z=vi) (122)
dz gy’ dz  4me,y’q a Jz

which reproduces Eq. (118) for a point'charge with density A(z —vt)=qgd(z-vt).
6.3.3 Dipole longitudinal impedance m=1,r<r,

The dipole impedance per unit length is:

e —jwe 1, (&r)
m=1 _ o A BATY < I 123
oz 2m(ﬁy)2{K1(érl) 1,(£b) 1(51’)] ((&r)cos(9) (123)

In the limit ¢ b << 1 the dipole impedance is proportional to the transverse displacement
of the charge:

0Z,,-. —jwZ 11
m=1 = o —_—— 124
oz 4mc(bg)’ [ }rl o) (29

rf b?

6.3.4 Dipole transverse impedance &b << 1

Applying the relationship (102) between dipole transverse and longitudinal impedances,
and noting that:

V. [rcos(¢)] = Fcos(9) - psin(¢) =7, (125)
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we get the transverse dipole impedance per unit length and per unit transverse displacement:

azi..‘(a))E_l_le,l(w): —JjZ, _1___1_? [Q/m2) (126)
dz r,  dz 2By | rt B!

The same result could be obtained applying Eq. (102), recognizing in (124) the dipole
term Z,,_, introduced in Eq. (76):

0Z,., -jwz, 1 1
met _ o |1 1 127
0z 4rc(By)? [rf bz} (129

Notice that according to the standard symbols, also the dipole term can be obtained in
terms of the radius of a cylindrical beam by putting r, = a in Eqgs. (124,126,127).

6.4 Elliptic pipe with perfectly conducting walls

The impedance expression Eqs. (116), (117), (126) and (127) have been extended to the
case of an elliptic pipe [13] in the ultra-relativistic limit. An equivalent radius beq is introduced

for both longitudinal and transverse cases as function of the elliptic parameter:

h—b

- (128)
h+b

(7:

where 4 and b are the pipe half-width and half-height respectively. The longitudinal
equivalent radius normalized to b is reported in Fig. 13. We see that when A >> b the curve
approaches the parallel plates case with b, =4b/ 7. In Fig. 14 the transverse equivalent
radius is reported as a function of g for both horizontal and vertical oscillations.

6.5 Pipe with lossy walls

When we consider a pipe with resistive wall of infinite thickness, the Maxwell equations
have to be solved both in the pipe space and in the material with finite conductivity ¢ where the
fourth Maxwell equation becomes:

Vsze/.t%—E+uGE+upv (129)
1

Continuity of tangent magnetic field and normal electric field at the wall surface allows us
to derive the e.m. fields components. The problem of a cylindrical pipe has been solved in the

ultra-relativistic limit [14] and for any value of the parameter £b [13]. Extension to the elliptic
pipe is found in Ref. [15] in the ultra-relativistic limit. More recently the impedance for an
arbitrary cross section has been developed [16,17] in the same approximation. Here we present
the results for the most relevant cases: circular, rectangular and elliptic pipes.

The longitudinal impedance has the general expression:

Oy _ 1+ lwZ, F (130)
0z 2nb \ 2co
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Fig. 13 Normalized ( beq/b )2 for horizontal (h) and vertical (v) oscillations

where F is a form factor depending on the pipe cross section, and b is the half-height of the
pipe cross section (b is the radius in the circular case). The inverse Fourier transform of
Eq. (130) gives the wake function:

Mom=0 __p_1 \/ Zo 4 (131)
o0z 4rb \ nco

The above expression, being derived from a static approximation, fails at distances very
close to the charge. At very short distances the wake changes sign as shown in Fig. 15.

The transverse dipole resistive wall impedance is:

L_p 1t

dz r, oz “2mb’ 2,0 F, [€2/m?] (132)
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wy (1)

Fig. 15 Qualitative behaviour of the longitudinal wake of a lossy pipe

where F| is the transverse form factor for vertical and horizontal oscillations. The transverse
wake is:

aw; ,(7) _ LdWL,/(f) - F 1 {CZO % [V/im2C] (133)
dz r dz ta*\ ro

6.5.1 Circular beam pipe

For a circular pipe, F =1 and F| =1, the longitudinal monopole impedance is:

&Zm:() - 1+] COZO (134)
0z 2nb \ 2co

and for the transverse dipole impedance is:

L, 1+
Jz 27h®

z,5 (135)

Simple physical approach:

In the simple case of cylindrical symmetry, according to Sec. 2.4 and 3.1, the
longitudinal impedance can be computed as the complex power spectrum related to the energy
flowing into the lossy walls. For materials with a high conductivity, the fields inside the pipe
are almost the same as in the perfect conductor case (perturbative approach). In the frequency
domain we have:

q_Z_O_ e_jkz
2mr (136)

¥ =4 ik
Ho(a))- 27r ©

E(w)=
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The continuity conditions at the boundary r = b requires that the magnetic field I:1¢
component inside the material surface is the same as outside. Inside the wall the field is

sustained by a surface current flowing into the z-direction. The electric field E, is related to
H by the Leontovich condition:

E,(0)=ZHy(w) (137)
where:

7, = 1% (138)
(o)
gives:

is the intrinsic impedance of the lossy material. The flux of the Poynting vector at the pipe wall

92,y

L=27mb7,
Z

Ayl =5t 12 - asy
2nb  2co

6.5.2 Rectangular cross section.

For a rectangular beam pipe with half-width 4 and half-height b, putting A = b/ h, the
form factor F for the longitudinal impedance is :

F(Z,):j[ i —1_ S

1
A S E——— 140
cosh?[ X +A"§ h? nh e
odd 214 odd cos 2

The form factor for the dipole transverse impedance in the x-direction:

i n® n (141)
F (i)=- _ 433 - -
X(/) 8 n§1. ginhz(ﬂ)+ Z

) 22

odd

The function F(4) is simply obtained from Eq. (141) by moving the factor A3 to the
first sum in the brackets:

n

+y (142)
n=l, Slnhz(ﬁz> n=2 Coshz(ﬂ&.j
odd 24 2

bis — n’ - z
F(l)==— Y
ever£

The behaviour of F(1), F () and F,(A) for the rectangular pipe is presented in
Fig. 16 as a function of the parameter 7.
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Fig. 16 Form factors for a rectangular pipe

In the limit case of a pair of parallel plates A — 0, we have:
2 2

Fo0)=1, F(0)= —2%, F(0)=75

6.5.3 Elliptical beam pipe

For a beam pipe with an elliptical cross-section, major axis 2a and minor axis 2b, the
form factor is given as a function of the elliptic parameter u, related to the parameter g by:

-2u,

g=e
We get:

sinh(u,) 7 Gu,, a)do

Flu,)=
27 o +fsinh?(u,)+sin’(a)

where
m Cos(2Zmox)

=7 -
Glip,0)=2 3, (-1) cosh(2mu,)

m=—1

The transverse form factor in the x and y directions is:

sinh®(u,) 7 G, (U, 00)dex

ar \/sinhz(uo) +sin’(a)

Frylu,)=
with

cos[(2m+ 1]

=23 (-D"(2
G, (u,,a)=2 Z( D7@2m~+1) cosh[(Zm + Du,]

m=()

(143)

(144)

(145)

(146)
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. _, oo L sin[2m+ )] 147
y Uy, 0X) m§=:0( @mrl) sinh[(Zm + Du, ] o

A graph of the numerical values of F(u,), F x,y(U,) for the elliptical pipe is presented in
Fig. 17 as a function of the elliptic parameter 7.

1 x
o8-\ 7o FTTT 3
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Fig. 17 F(u,).,and Fx,y(uo) as function of g

7. NON-UNIFORM BOUNDARIES

7.1 General properties

The uniform boundary cases described in the previous section allows one to estimate the
effect of smooth pieces of the vacuum chamber on the beam dynamics. Usually we mainly
worry about the resistive-wall impedance, which produces a shift of the transverse tunes and
drives the head-tail and multibunch instabilities. The pipe is, however, interrupted by many
devices installed on the machine, RF cavities, diagnostics, wigglers, cross-section jumps etc.

Unlike the uniform boundary case, the discontinuities in the vacuum chamber are sources
of radiated fields which do not travel with the charge. We observe several consequences:
excitation of resonant HOMs in resonant structures, new configuration of the self field (after a

jump in the cross section), propagation of e.m. fields at frequencies above the cut-off of the
beam pipe [18].

As an example, in Fig. 18 we show the case of a relativistic point charge crossing a hole
1n an infinite perfectly conducting plane.

The diffraction is caused by the primary fields which, impinging on the hole edge,
produce secondary scattered fields propagating at the light velocity. The distance for the

radiated fields to catch up the charge itself is = 9. A test charge travelling a distance et
(B =1) behind will be reached by the same fields at 7 = (b* — ¢>72) / (2¢71).

Another basic feature of the diffraction effects concerns the frequency bandwidth of the
power spectrum. Despite the point-like nature of the charge, the primary fields exciting the

edge have an effective size Ot = b/7y. The diffraction excitation has a power spectrum

extending up to a "radiation cut off frequency" wggfi_oﬁ: =cy /b above which there is an

exponential roll off.
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Fig. 18 Relativistic charge passing through a hole of radius

The geometry of Fig. 18 has been extensively studied [19]. An ultra-relativistic charge
passing through the hole loses the energy:

U, =2U(r2b)= Eg(rfjmocz (148)

It is interesting to note that the energy loss is twice as much as given by Eq. (111), i.e.
the amount of energy stored outside thé tube of radius ». This feature has been found also for
other geometries (such as the step discontinuity): an ultra-relativistic point charge deposits the
same amount of energy in rebuilding the self field as in the radiated fields. This result, in
general, can be explained as the typical phenomenon occurring in the charge or discharge of a
capacitor.

At low frequencies the longitudinal impedance is [20]:

Z(w) = Zzgﬁ{log(itgj—ﬁ+in} (149)

7.2 A step transition

Let us consider an abrupt change in the cross section of a circular beam pipe from a radius
b to radius 4 (Fig. 19). When the charge crosses the vacuum-chamber discontinuity
secondary fields are scattered at the sharp edges. The total fields, "primary" plus "secondary”
diffracted fields, are such as to restore the boundary condition at the pipe walls. This problem
has been treated by several authors with numerical and analytical techniques [21,22]. An exact
analytical solution has been found for a discontinuity made of two coaxial circular pipes for
which both longitudinal and transverse dipole impedances have been derived [23,24]. Here we
will report the main relevant results and features.

We will distinguish two cases: a particle exiting into a beam pipe of a bigger radius,
"step-out” case, and a particle entering a narrowing pipe, "step-in" case. Theoretical results
show that the impedance is mostly resistive in the step-out case with a big contribution at high
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Fig. 19 Step discontinuity in the beam pipe

frequencies above cut off, while in the step-in case the impedance is low, vanishing at high
frequencies. In Fig. 20 we show examples of impedances for the step-in and step-out
problems, as derived with the computer code ABCI [25].

7,10 | Z.(0]
150 ] T s T 200 T T !
STEP-IN STEP-OUT
100 — - 150 _

_J IGHz] 1 | ] f(GH]
0 20 20 60 80 100 G 200 40 60 80 100

Fig. 20 Longitudinal impedances of a step-in and step-out discontinuity

The impedances have a resonant behaviour just after the beam pipe cut-off and reaches a
constant asymptouc value at high frequencies. The asymptotic behaviour of the real part of the
impedance is:

zZo4, ~ %—m(%) and Z".q~0 (150)

Such different results are explained by recognizing two main effects contributing to the
energy loss. In the step out case, when the charge crosses the discontinuity, the self field
restoring the boundary conditions has to fill the extra space b < r < d between the two pipes,

while diffracted fields propagate into the pipes. Both these effects lead to an energy loss that
can be put as:

k™ =Ub<r<d)+E,, (151)
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where E,,, is the energy radiated at the edges and U(b < r < d)is the energy necessary to fill
the region b<r<d.

In the step-in case, the radiated energy is reflected back with respect to the particle motion
without changing its kinetic energy.

Gk =—Ub <r<d)+E,gy (152)

For a point charge, since the radiated energy is taken out of the energy "missing" in the
smaller radius pipe: E,,; = U(b<r <d), we have:

2, 0ut

kK" ~2U(b<r<d

qz. (b<r<ad) (153)
qkln~0

We remember that for a real bunch both U(b<r <d) and E,;; depend on the bunch

length. In particular, if the bunch spectrum does not cover significantly the frequency region
above the pipe cut-off, there is no radiation.

In Fig. 21 we show the dependence of the loss factor on the bunch-length for the step-in
and step-out cases, for a step with b=2 cm and d =4 cm. In this case we find that a long
bunch loses energy in the step-out, but would regain the same amount of energy in a symmetric
step-in. Therefore, if a long bunch crosses a pipe enlargement formed by a step-out and step-in
sequence with same radii, the total energy loss is almost zero; in this case the wake function
inside the bunch is an odd function and the impedance practically inductive.
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Fig. 21 Example of step-in and step-out loss factor versus bunch length

The dipole longitudinal and transverse impedance for a discontinuous coaxial pipe has
been derived in [24]. The model allows for an exact solution of the e.m. problem, and

furnishes simple expressions of the impedance at high frequencies that can be used also for real
step transitions:
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zo4 ~ -—%[— - %}rrl cos(¢)  [Q] (154)

The high frequency transverse dipole impedance for the step out case is:

, _ 1 cZ 1 1].
ZJ_'1 = —;I—Z‘L’l = 27[200) [?—?} r, [Q/m] (155)

Simple physical approach.

To complete this section we find it worth while to show that the asymptotic expressions
(150) can be derived in with a simple physical approach. We compute the energy
Ub<r<d):

U(b<r<d)=sOJ-Efa’V (156)
|4

For ultra-relativistic charges in a cylindrical pipe, the fields are almost the same as in the
free space:

E, ~ —ﬁ—(lj (157)

2mre,r\b

Integration (156) gives:

2
Ub<r<d)~ zﬁln(gJ(—Cl)
27 bA b

2 8]
q /s bA b

(158)

Remembering that 0,5 =(b/y) is the effective charge size and that as far as ko is

inversely proportional to the size, we can expect that Z,(w) is a constant function of frequency
(see the discussion in 3.2). Now, applying the definition (72) and considering the spectrum of
a bunch with rectangular distribution, we get for a constant impedance:

sin®(w0 5 [26) 1= Zi(@) .
w =
(Cl)O'eﬁf/zC)2 O-q_‘f/c

K =ijz,(a)) (159)
o

From the comparison (158) and (159) the expected result follows.

7.3 Taper

If one uses long gradual tapers instead of the abrupt step transitions the total energy loss
may be drastically reduced. Indeed, the infinitely long taper reduces the radiated energy E,,4
to zero. For a point charge we have:
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ou Ub<r<d) 1

P e __koul
taper qz - 2 step
(160)
in Ub<r<ad) 1 ow
ktaper - C]2 = '"';kstep

It means that in the limit of long tapers the loss factor of a taper-out reaches half the value
of the loss factor for a step-out. There may be even an energy gain for the taper-in case. It
must be considered, however, that in a vacuum chamber of a circular accelerator there are taper-
in and taper-out transitions. As it can be easily seen, long symmetric tapers reduce total losses
practically to zero:

k= k!?zbger + kzigper ~0 (161)

Certainly, we can not use infinitely-long tapers in an accelerator design. In [18] it is

shown that for a short bunch of rms length o the dependence of the longitudinal loss factor of a
one-sided taper on its angle can be approximated by the formula:

2 i md
K= 207:3’2[ 5 }mb (162)
where
- . (o)
n = mm{l, Z;ig——b)i} (163)

For a symmetric taper, 7; / 2 is replaced by 7. So, the condition:

>1 (164)

can be considered as an approximate criterion to choose a reasonable taper length. We should
say here that the formula (162) is valid for short bunches when the main contribution to the
losses comes from the high-frequency impedance and the diffraction model [18,26] can be
applied. Because of that we advise the reader to use numerical codes in order to check the
criterion (164) for any particular case. As an example, we show in Fig. 22 the loss factor
versus the taper length g for a tapered-out structure passing from b=2cmtod =4 cm. One
can see that the loss factors for a bunch of 0.5 cm and 1.0 cm computed by the code ABCI,
approach an asymptotic value corresponding to the case of no radiation, at a value of g such that

7, =1. For the 3 cm bunch length the whole bunch spectrum lies below the beam pipe cut-off
and no radiation occurs.

7.4 Single-cell cavity

Cross-section variations in an accelerator vacuum chamber can create resonant cavities.
Part of the fields excited in the cavities is entrapped reflecting back and forth generating the
resonant modes. Above cut-off the amplitudes of the resonance drops because of the energy
leakage into the vacuum chamber, the resonances overlap leading to the smooth, "broad-band"
impedance.
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Fig. 22 Loss factor of a tapered discontinuity

A typical cavity impedance is shown in Fig. 23. At the frequencies below @, a real high-
Q cavity has many sharp resonances. In a RF cavity the fundamental one is used to supply
energy to the beam; all the others are "parasitic” modes (higher-order modes - HOM) which
subtract energy from the beam. Above cut-off the resonances are broadened.

T T T f T '

Z, | Z;
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0 1 2 3 4 0 1 2 3 4

Fig. 23 Typical impedance spectrum for a cavity with attached tubes

7.4.1 Monopole HOM (longitudinal)

In Sec. 2.2.1 we have found the wake potential of a single HOM. Following the results

(47) of Sec. 2.8 for cylindrical symmetry, we can write the longitudinal wake of a monopole
HOM (m = 0) as:

T
w, o (r,r; T) =2k, (1,7, )e—ro{cos(c_oor) - E—OSin(EOT)]H(T) (165)
el
with T,=—¢ | @2 =a@ -1} (166)

20,
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In Sec. 2.9 we have also found that in the ultra-relativistic limit the monopole longitudinal
wake does not depend on the radial displacement of both leading and trailing charges (54).

This result is conveniently exploited in the numerical codes where the loss factor k,(r,r,) is

computed at the pipe radius, thus limiting the calculation of the energy loss over a definite and
limited path:

2
ko(r’rl) = kO(b) = woRo — |V0(b)|

1
20, 2U, (167)

where V,(b) is the voltage gain computed at r =b and U, is the average energy stored in the

HOM.

Applying the Fourier transform to (165) we get the longitudinal impedance of a monopole
resonant HOM:

Z(w) = R, (168)
1+1Q0(ﬂ—&]
0w, o

It is interesting to note that the shunt impedance is also defined as:

2
1%
R,= i_o(ﬂ)l__TZ (169)
Pod
where P,; is the power dissipated at the cavity wall or in any damping device (loops,

waveguides etc.), and T is the transit-time factor defined as the ratio between the accelerating
voltage seen by a travelling charge and the voltage at the gap:

T=—p ! jgz g, (170)

JEZ dz
gap

gap

which takes into account the time evolution of the fields during the cavity crossing. The transit-
time factor approaches unity at low frequencies (wavelength much bigger than the gap).

In the low frequency limit @ — 0 the impedance is purely inductive. In case of n HOMs
we have:

R
Z(w) = ij{Q; }z jeoL 171

7.4.2 Dipole HOM (longitudinal)

The wake potential of a single dipole (m = 1) HOM for cylindrical symmetry is given by:

w,,(rrT)=2cos(@k (r,r) e~ {cos('&)’l T)— _—;1— sin(®, 7)}H( T) (172)

1
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with T, = o =w’ —T? (173)

—L
20,

The dipole wake potential in the ultra-relativistic limit is proportional to the transverse
displacements of both charges. Therefore, we may scale the loss factor computed at the pipe
radius as:

rry

k (r,r,) =k (b) B2 (174)
wR V,of
k(b)=— - 1 175
1 (b) 20, o, (175)
R rr
Z(r,r;0)= ! —-cos(¢) (176)
o o |b
o2
o, o

7.4.3 Dipole HOM (transverse)

The general relationship between transverse and longitudinal wake functions makes it
possible to obtain the transverse dipole wake function (96):

2c

w, (rr;T)=r = k,(bye TiTsin(@, T)H(T) (177
1
The transverse impedance (102) is:
R
2
Z (r,r;w)= (i) b r, (178)
= A w )
I+ ]Q} - T
w
sometimes expressed as:
— R/
Z (riro)= (ﬂ) = r (179)
1.1 w ) w a)l
1+ jQ — ==+
w
with
RJ’_‘I - _CR]2 :E)_x_RiJRMEL (180)
w,b c

The quantities R, and R; , are derivable from the output data of numerical codes like
URMEL.
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7.4.2 High-frequency case

The high-frequency impedance is mainly due to the interaction of the charges with the
fields diffracted at the cavity-pipe edge. When the bunch length is much smaller than the beam
pipe radius, the high frequency contribution to energy loss and impedance can be dominant.
Numerical calculations require significant time to find the wake potentials of very short
bunches, therefore an analytical analysis of the high-frequency behaviour of the impedance
(short-range wake potential) becomes necessary. Methods of diffraction theory are used to
calculate the impedance at the high frequencies, @ >> ¢ / b. For a pill-box cavity of length g

radius d, Fig. 24, and with side pipes of radius b the diffraction model gives [27,28,29]:

V4

Lo | 8¢ 181
J 2nb N wr ( )

Z(w)=(1-j)

Fig. 24 Relevant parameters for a pill box with attached tubes

The formula is valid for the region of parameters where g << kb? (a 'cavity regime').

For the region of parameters g >> kd? the diffraction model of [26] gives the same impedance
as found for a "step™:

Z(a))=£0—1n£ (182)
T b

In the transition region of parameters kb* << g << kd?

Z gc
Z(w)=="%%In— 183
(@) 277:na)b2 (183)

The transition from the cavity to the step regime is explained by the transition from the
Fresnel diffraction for the cavity to the Fraunhofer diffraction for the step. It was shown that
the transition from one regime to another occurs when:

2go

=82 -1 (184)
(d-b)

n:

The cavity regime is reached when the parameter ) << 1. In the opposite case, >> 1,
the regime of a step is fulfilled.

For a short Gaussian bunch, for which ¢ << b, the high frequency tail of the impedance
mainly contributes to the energy loss. In this case the longitudinal and transverse loss factors
are given by:
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K = 2o r(lj £ r(i)=3.6256.
ar’y 4N\ 7o 4 (185)
Z,c+Tgo

K, =%e

T4 B

Simple physical approach

The high-frequency behaviour of the impedance and loss factor is qualitatively explained
by the features of the fields diffracted at the cavity edges [30]. Consider a bunch of charge ¢q
and rms size o passing a pill-box cavity (Fig. 24). The field excited by the head of the bunch
and diffracted by the left edge, touches the bunch tail if:

L2290 i 1=+8+ 22 - (186)
c Be

When the bunch leaves the cavity, for z = g, the self-field has been perturbed in the

shadow region with § ~ 4/20g. The bunch has to rebuild the field in this region in order to

restore the boundary condition in the rhs beam pipe. The e.m. energy removed in the
shadowed region of Fig. 24 is:

2 b
v~—L | ar (187)
AnE, 0 "5 T
if 6 << b:
¢ 8__q° 208 (188)
dne,c b 4ne, 6 b
thus giving:
5
k=Y-_1 |2 (189)

q _47I£0b (o)

Note that the condition § << b implies also that ¢ << b (g is comparable with b) and
most of the bunch spectrum lies well above the beam pipe cut-off frequency. As far as the loss

factor is inversely proportional to the bunch length the impedance scales as 1/ Vo . For a point
charge the effective bunch length is b/y giving the scaling for the loss factor £ ~ \/;

7.5 Periodic RF structure

An array of periodic cavities shows an impedance spectrum similar to the single-cell
cavity below the cut-off frequencies. Many sharp resonant modes appear in the impedance
spectrum corresponding to the normal modes of the single cavities but also to the coupled
modes between cells, as in a system of coupled oscillators. Above cut-off, however, the broad

impedance decays at high frequencies with the asymptotic law @™ [31,32]. A qualitative
picture of the diffraction phenomenon at the basis of such behaviour is given in [30].
Basically, the energy refilling becomes much less in a periodic structure, since the self-field has
no time to be rebuild from one cell to the next. The transition from the single-cell regime to the
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periodic-structure regime has also been studied [33]. For a structure of M rf cells of period d

and iris radius b, we have the transition from the single-cell regime to the periodic-structure
regime at the frequency:

cMd
W, = 2

(190)

above which the impedance follows the single-cell asymptotic behaviour @™, Tt is worth

noting that in the periodic structure, the asymptotic decay »™'* makes the loss factor
independent from the bunch length and from the energy. Similar expressions have been found
for the case of a charge passing through an array of holes in infinite planes, reproducing the
same diffraction phenomenon [34,35].

7.6 Small discontinuities

In a real vacuum chamber there are many small discontinuities such as shallow cavities,
tapers, masks, bellows, etc. In spite of the small size, their overall contribution to the inductive
impedance, up to rather high frequencies, cannot be neglected. These elements give the main
contribution to the longitudinal inductive impedance responsible for the potential-well bunch-
lengthening process.

At low frequencies a satisfactory estimate of the inductive impedance Z(®) = jwL can
be obtained by applying Faraday's law in the static approximation. However, it has been
shown that one can get more accurate results taking into account a correction factor coming
from distortion of the electric field at the chamber discontinuity [36]. Here we do not discuss

the method used by authors, but reproduce helpful expression for the impedance of some
typical discontinuities shown in Fig. 25.

Fig. 25 Examples of vacuum chamber discontinuities
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7.5.1 Shallow cavity (Fig. 25a)

The low-frequency impedance of the small, short pill-box (g < ) is given by:

N/ g2
Z(w)= jo—2—| gh—-*— 191
(@)= 2ﬂbc[g an (19
For the opposite extreme, g >> h, but still g <b:
Z h? (2fcg) )
Z(w)= jo—=, 2 In| —={+1 (192)
(@)= Zﬂzbc( h

When the length g of the pill-box is greater than the pipe radius b, the pill-box can be

considered as composed of two independent steps each giving the following contribution to the
impedance:

2
Z(w) = jo-2ol [Zln(zzb)+ 1) (193)

The transverse impedance of the shallow cavity, if the assumption (g,4) <b is valid, is
given by :

232
. g [d°=b
Z, =j7,~5| —— (194)
L= oﬂbz(dz-%sz
where d=b+ h.
7.5.2 Shallow trapezoid (Fig. 25b)

For a long shallow trapezoid ( g >> k) the impedance of a single sloping step (taper) with
the slope angle € = v has the form:

h

Z h? b 3 T 1
Z(w)= jor—=2 Inzmvl ==2cotavi+=——y—y(v)——cotAV—— 195
(w)=j zﬂzbc[nn’ ( cotrm ) 5 y—w(Vv) 5 <0 ZV] (195)

where y = 0.5772... is Euler's constant, y(V) is the "psi" function and the transition is
assumed to be short compared to the chamber radius, i.e. its length [ = Acot 7v << b.

7.5.3 Shallow iris (Fig. 25¢)

Two extreme cases can be considered for the iris geometry. When g >> h the impedance

of the iris coincides with that of a shallow cavity. For the case of a thin (or deep) iris g <<h
the expression for the longitudinal impedance takes the form:

Y P L) _ } 196
Z(w) jw4bc{h + n[Zln(Sng/h) 3] (196)
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6.5.4 Discontinuities of a triangular shape (Fig. 25d.e)

A short discontinuity of a triangular-shaped cross section with height # and base g
(g << h) has the following low-frequency impedance:

. Z g2
= 2 - 197
Z(w)=jo 4mbc (g n J (15D

The impedance of a triangular iris is given by:

Z(w)= jw—Z—O[hz +—2ﬁ}1(1—1n2)} (198)
4bc b4

For the case of shallow triangular perturbations, 4 << g <b, both the enlargement and
iris have the same inductive impedance, independent of g:

27 h*In2

Z(w)=jow
(@)= n2bc

(199)

7.7 Elements of beam diagnostics

Each accelerator has numerous diagnostic elements such as button pick-ups, strip-line
beam position monitors, etc.. Impedance calculation of such elements is a rather difficult task.
Being inserted into a vacuum chamber a diagnostic element breaks the vacuum chamber
symmetry and one has to analyze the interaction of a bunch with a complicated 3-dimensional
structure.

Numerical solution of the problem is also not a simple task. Usually, sizes of the
diagnostics element are small. This demands a very fine mesh, and so large computation time.
Moreover, the image currents induced in the elements flow into the external circuits. The
correct simulation of this external load appears to need additional analytical efforts or the use
recently developed sophisticated numenical codes.

The method which allows an analytical treatment of the impedance at low frequencies,
@ << ,,1s based on the electrical approach:

— the 3D geometry is substituted by an equivalent circuit consisting of concentrated radio-
technical elements and transmission lines;

— methods of electric circuits and theory of transmission lines are used to find currents and
voltages in the circuit elements;

— in the case of a matched load, the coupling impedance is defined by considering the power
lost by a bunch to be equal to that dissipated in the load. Some other consideration can be
taken into account to relate the beam-coupling impedance with the currents and voltages in
the circuit elements.

Here we will closely follow the treatment of [39] in order to illustrate the method. Let us
consider a strip-line pick-up of the length / covering the azimuthal angle ¢ (see Fig. 26).
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Fig. 26 Strip line pick-up

The strip plate together with the vacuum-chamber wall create a transmission line of the
characteristic impedance Z,. If the transmission line is terminated by a matching resistance Z;

at each end, one can draw the equivalent scheme Fig. 27 where i, (1) is the fraction of the

image current intercepted by the strip plate:

0= 2= Jit0)

with i, (7) the beam current.

_D
y,(oT D ii‘b/z H @Tl S

Z

Fig. 27 Equivalent circuit for a strip line

In the absence of a dielectric the signal velocity in the transmission line is equal to that of
light. Moreover, as can be seen from the equivalent scheme, the strip-line monitor possesses

directional property for the relativistic particle with B~ ¢. In fact the signal appears only across
the upstream port (with respect to the beam velocity):

V()= %(%)[ib(z) - ib(z - zciﬂ (200

In turn, only a fraction ¢ / 2 7 of the total image current "sees” the potential difference,

since the average potential seen by a beam is:
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V(1) = V(z)(%) (201)

Applying the definition of the impedance as a response for the sinusoidal current
perturbation, we have:

2
Z(co)=Zs(2£7r—) [sinz(Kl)+jsin(Kl)cos(Kl)] (202)

The same result for the real impedance has been derived by considering the real power
dissipated in the upstream termination as the power lost by a bunch [38]. The imaginary part
was found by Hilbert transform.

The transverse impedance of a pair of symmetric strip-lines matched at both ends has
been found in [39]. In the direction perpendicular to the strip-lines:

2
_ ¢ 4 X Z(O))

where Z(w) is the longitudinal impedance of that pair of strip-lines. A particle shifted with
respect to the system axis in the direction parallel to the strips does not experience any

transverse kick and the transverse impedance in the direction Z, (@) = 0.

The same method gives for a strip-line forming a transmission line with the beam pipe
with characteristic impedance Z, and terminated at the center by Z; the following longitudinal
impedance [39]:

-~

: , |
Z(w)= zs(i) (1- jxl)1-e7) (204)
2r
where [ is again the strip length and ¢ is the azimuthal angle characterizing the fraction of the
image current intercepted by the strip plate.

The longitudinal coupling impedance of a small button-like pickup of a radius r terminated
through a coaxial cable of the characteristic impedance Z, by a resistance R = Z; is {40]:

o)

Z(w):(&j _elon {-‘iﬂ} (205)
@, {1+(w/w1)“] 0
with
1 2bc
W = R_C and 0)2 = 7‘

where b is the beamn pipe radius, C is the capacitance between the button and the beam-pipe wall

which is roughly estimated as: C ~ eom’z / & for & << b being the gap between the wall and
the button.
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Many examples can be found in the literature on the subject. However, we should say
that the high-frequency behaviour of the diagnostics elements has not been satisfactorily
investigated yet. One of the major problems in further investigations are the high-frequency
resonances that can be excited in the structures formed by a diagnostics element and beam pipe
walls. Some of these resonances can be associated with standing waves, which do not
dissipate their power in the external terminations [41]. Obviously, the high-frequency
resonances will give some additional inductive contribution to the low-frequency impedance.

7.8 Holes and slots in the vacuum chamber

In order to reduce the coupling impedance due to pumping volumes, shielding screens
with a number of holes or slots are used. The number of such holes and slots may be large in
an accelerator and their contribution to the impedance have to be estimated. Itis obvious that
because of the absence of axial symmetry a numerical solution of the problem is essentially
three dimensional. This implies very time-consuming computations even in the case of a
simplified model.

The method which allows analytical calculation of the impedance at low frequencies is
based on the Bethe theory of diffraction by a small hole [42]. According to the theory, the
small hole is excited by the incident electromagnetic waves created by a given current
perturbation. Then, the diffracted fields can be obtained by replacing the hole by effective
surface "magnetic” currents, which are necessary to satisfy the boundary conditions on the
hole. The coupling impedance is found by integrating the fields along the beam trajectory. At
low frequencies, @ << ¢ / b, in the case of a small hole of radius 4 << b the impedance can be
calculated in terms of hole polarizability [43,44]. For a circular hole it gives:

zZ, k

Z(w)= jo—% —=
(@)= 672 cb*

(206)

As far as a single hole introduces the axial asymmetry, the transverse impedance depends
on the angle between the beam-offset and the direction to the hole:

3
ZL(a))szO;zl#a, cos 8 (207)

where a, is the unit vector to the hole and 8 is the azimuthal angle between the direction and
the beam-offset.

It is worth noting that, for the number of holes M = 3 uniformly spaced in one cross
section, the restoration of the axial symmetry occurs in a sense that the transverse kick is in the
direction of the beam transverse displacement, and the resulting impedance does not depend on
the azimuthal positions of the holes:

3

with r, being the unit vector in the direction of the beam displacement. The coupling

impedance of the circular hole falls with wall thickness ¢, reaching 56% of the value (206) for
t/h > 2 [44].

The real part of the hole impedance, responsible for the energy losses, is usually
neglected because it is much smaller than the imaginary impedance. Itis given by [43]):
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52 ( wh\* h?
Z (o)== =] = 209
(@) 54753(6] b? (209)

The same method gives simple analytical expressions for the impedance of a small
longitudinal, elongated, elliptical slot of width w and length / such as w <<1 << b:

CZ w4 j
Z(w)= j L 2¥W [ 2y 210
(@) ]967rcb21(nw @10
Z,(w)=j2e ﬁ(lnﬂ—l)a 211)
= e o )

Analytical results are available also for the small transverse narrow elliptical slot with
w << | << b, cutting the wall image currents [45]:

7, o r?

=) —_—
967 ¢ bz(ln(ﬂ)—lj
w
13
24,7rb4[1n(ﬂ) - 1)
w

More discussion on the small-slot impedance calculations and estimates can be found
in [46].

Z(w) 212)

Z_;_(CO) = jzo

a, cos 8 (213)

When the sizes of slots and holes are comparable or larger than the beam-pipe radius the
static solution to the problem is no longer valid. In that case analytical solutions are known for
two particular cases of a long narrow slot and a narrow gap.

It is clear from the physical point of view that the narrow (w << b) long (I >> b) slot
distorts the fields inside a vacuum chamber only by the slot ends. Because of that the
impedance should not depend on the length of such a slot. Indeed, according to the
perturbation method [47] the impedance of a narrow, long (but finite) rectangular slot is a
constant for wl / ¢ >> 1:

2
Z,w

ARt lrepere:

(214)

The impedance for the case of narrow transverse gap of width g << b separating two

pieces of the infinite beam pipe has been derived in Ref. [48]. In the case wg / ¢ << the
longitudinal impedance of the gap is capacitive:

Z,c

Z(w)=—j
)=~ b In(1667 8)

(215)

We should note here that, for a beam pipe of a general cross section, in order to reduce
the coupling impedance it is preferable to distribute holes in places where fields created by a
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bunch are minimal, for example, in corners [45]. In particular, for a rectangular beam pipe of
width a and height b the longitudinal impedance of a hole situated on the lateral side
(x4 = *a/2) and displaced by y; from the horizontal plane of symmetry (lysl < b/2) is
proportional to:

2
Zw)~| T cos(2m+1)my, / b 216)
o0 COSh2m+1)mx, / b

As can be easily seen, the closer to the corner (lysl — b/2) the smaller impedance we have.
This is certainly valid for small holes.

Discussions on possible coherent effects of many holes can be found in [49,50]. We just
mention that the coherence can be destroyed using non-uniform hole spacing.

8. BROAD-BAND IMPEDANCE MODELS

The impedance of an accelerator is usually a very complicated function of frequency with
many sharp peaks. This complexity of the impedance makes an analytical treatment almost
impossible. However, in the study of the single-bunch dynamics, one finds that the wake
potentials over the bunch length is of main interest. This implies that, in the frequency domain,
the bunch can not resolve the details of the sharp resonances and it rather experiences an
average effect (the peaks are smeared out). In order to demonstrate this we calculate the wake
potentials created by a bunch passing through a cavity, by means of the ABCI code.

The longitudinal impedance is found by Fourier transform of the wake potentials. As is
clearly seen in Figs. 28 and 29, if one is interested in the shorter-range part of the wake the
resonant impedance peaks are transformed into the smoother and broader impedance.

r [m] -Wz/[Wzimax
0.09 T 1 T 14 T T
i
l
05°f 7]
0.06 - 4
] L 0
0.03+ -
-0.5 7]
0 | | z [m] 1 ! 1 s [m]
0 0.08 0.16 0.24 0.3z 0 1 2 3

Fig. 28 Pill-box cavity with tubes and wake function for co,;=3 cm

Therefore, the actual impedance can be replaced by some "broad-band-model
impedance”, which usually is characterized by a small number of parameters, allowing
analytical evaluation of stability limits or growth rates of single bunch instabilities.
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Fig. 29 Broad-band impedance: FFT of the wake function over 3 m (solid line);
FFT of the wake function over 30 cm (dashed line).

8.1 Broad-band-resonator model

The reduced frequency resolution has been the main justification for using the broad-
band-resonator model [51], historically being introduced first.

The actual impedance is replaced by that of a single-mode cavity with a low quality factor
Q:

Rs (217)

RN R))
1+ /O ———L
w,
So, only three parameters, the shunt impedance R, angular resonant frequency @,, quality
factor O, are necessary to describe the impedance frequency behaviour.

Z(w)=

For long bunches a cavity shunt impedance Rq is estimated by averaging the resistive part

of the parasitic resonance (which can be measured by means of the perturbation method, or-
estimated by computer codes) to give the same energy loss as the whole cavity. Each resonance
contributes with only half the area of its spectrum.

The quality factor is usually taken as Q = 1, while the resonant frequency
W, = Wcuroff = 2.4(c/b), i. e. frequency cut-off of the cavity iris of the radius b. These
choices are somewhat arbitrary and are satisfactory only for the case of long bunches, when the
whole bunch spectrum lies within the beam-pipe cut-off. As an example, let us consider again
the cavity of Fig. 28. We find that the effective impedance calculated as the Fourier ransform
of the wake over 30 cm distance behind the bunch head is approximated reasonably well by the
broad-band-resonator impedance with R, = 138 ©Q, Q =1 and f, = 2.2 GHz (which is close
to the four-off = 2.5 GHz of the considered cavity) (Fig. 30).

The parameters of the broad-band resonator can be found by measurements, for example,
by measuring bunch lengthening in an accelerator. At the project stage these three parameters
can be evaluated by comparing the loss factor dependence on the bunch length K or wake
potentials along the bunch W,(7), calculated numerically, with those corresponding 10 the
broad-band resonator.
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Fig. 30 FFT of the wake function over 30 ¢cm (solid). Broad-band-resonator impedance
(dashed)

For the example in Fig. 30 we got @ =1, R = 138Q and f, = 2.2 GHz. However, the
broad-band resonator model has some disadvantages which can become important for the
extremely short or very long bunches.

Asymptotic frequency dependence of the broad-band-resonator impedance is ™2, while
analytical study shows that the real part of the impedance decreases with frequency as o V/?

for a cavity with attached tubes and as w™>?for an array of periodic cavities. This leads to
incorrect energy loss estimate in the model, especially for very short bunches when the main
contribution to the total energy loss is given by the high-frequency tail of the longitudinal
impedance.

For very long bunches, according to the broad-band-resonator model, the loss factor
decreases with the third power of the bunch length, while numerical calculations with the time
domain codes shows that the loss factor of realistic vacuum-chamber elements drops much

more quickly, in an exponential fashion, with increasing ¢ for long bunches with Gaussian
distribution.

8.2 Hofmann-Zotter impedance model

Two pairs of the broad-band-impedance models were proposed by A. Hofmann and
B. Zotter [52] to overcome the limitations of the broad band resonator model in the high-
frequency and low-frequency regions. Both can be adjusted to have either @'1/2 or 372
asymptotic behaviour of the real part of the impedance at high frequencies. In the low-
frequency region, for the first pair of the impedance models the real part increases as @? and,
for the special choice of the model parameters, as @* providing faster decrease of the loss factor
with bunch length (073) than in the broad-band-resonator model. The second improved
impedance model yields even more rapid decrease of the loss factor with bunch length, having
an exponential character for very long bunches.

8.2.1 The first improved impedance model

The expression for the impedance model 1a) is:
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1 [ 2 o? 1 [ 2 o? 2 (218)
Z(x)=R| =, - + iRl =] + e
( ) [u u+1 x2+a2:| J |:u u—1 xz-i-oz2 x}

X=—, u=vNx"+1, o=—= 219)

where:

The frequencies @,, @, and the shunt impedance R are chosen to fit the impedance of a

particular structure. For very high frequencies, the asymptotic behaviour of the impedance is
given by:

2—-Q
X

Z,(x)~ x> Z(x) (220)

At low frequencies:

Z (x) ~ (Lz—isz, Z.(x) ~(—1——§jx (221)

o 8 a 4

For a special choice o = V8/5 the real part of the impedance increases as @* providing a
fast decrease of the loss factor with bunch length ~ 5. In order to provide the high frequency-
asymptotic behaviour w/? a different model was proposed:

2 2
u-+1 o u—1 ox
Z(x)=R —-— - JR — (222
( ) l: u\/i x“+a2} / I:u\ff x2+a2} )
with:

=2 =21, a2 (223)

a) w,

At low frequencies the impedance has the following behaviour:

Z,(x)~ (—17 - gsz, Zi(x) ~ (L— l)x (224)

o 8 o 2

8.2.2 The second improved impedance model

While the first impedance model describes well high frequency behaviour, it still can not
supply an exponential fall-off of the loss factor with bunch length for long Gaussian bunches.
In order to obtain this the real part of the impedance should vanish completely below a certain
"cut-off" frequency (as in a realistic structure where the impedance is zero below the lowest
mode). The second model impedances are chosen to satisfy this condition.

In one of these models, 2a, the real impedance is given by the expression:

Z.(x)=R i

-1
—XIT; > 1 (225)
Z,(x)=0;, |x|<1
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It has a maximum at x = @/@; = 4/3 and becomes proportional to w2 at high frequencies.
The Hilbert transform gives the impedance imaginary part:

Z(x)= R [\/l+x—\/1—x—x]; x| <1

X2 (226)
Z(x)= ;&2[\/1 +x - x]; Ix|>1

A similar impedance model (2b) has an asymptotic decrease of the real part proportional
to the inverse-square-root frequency at high frequencies. The real part is given by:

z (=rY= sy

Ei (227)
Z,(x)=0; |x|<1

which has a maximum at x = 2. The expression for the imaginary part is:

Zi(x)=£[2—x/1+x-«/1—x]; x| <1
x (228)
Zi(x)=§[2—\/1+x]; x> 1

The loss factor for both models, 2a and 2b, can be easily obtained by numerical

integration. It drops exponentially with bunch length for the two models for long Gaussian
bunches.

8.3 Heifets-Bane impedance model

Recently, a new broad-band impedance model was proposed by S. Heifets [53] as the
further development of K. Bane's approach used in his analysis of the impedance of the SLC
damping ring [54,55]. The longitudinal impedance is described phenomenologically by
expansion over Vo

o i (229)
Z(w)= joL+ R+ (1+ jsign(w)) |a)|B+1—151££w—)Z +

This model has been used to estimate the broad-band impedance for the SLAC B-factory

and for the DA®NE main rings (P-factory) [56]. Such an impedance model has two attractive
features:

— First, the different terms of the expansion have a clear physical interpretation, describing
correctly particular impedance-generating elements.

- Second, expressions for wake-fields and loss factors can be easily found analytically,
simplifying the fitting procedure to extract the model parameters.

The first term of the expansion represents a low frequency inductive impedance. This
impedance is typical for tapers, shielded bellows and vacuum ports, small discontinuities such
as slots, shallow cavities in flanges, shallow collimators and so on. Often, these elements give
the main contribution to the impedance, leading to the excess bunch lengthening as in the case
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of SLC damping rings. For the small discontinuities the impedance remains inductive up to
rather high frequencies.

The wake function for a Gaussian bunch corresponding to the inductive term is given by:

2
Lt 1{ 7
W (t)=———= S 230
(7) (—27[0_237(13{ Z(Grj } (230)
It has a minimum (maximum) at 7= -0{+0¢):

_ L
min

W e ——
27re03

max =~W 231)

The plot of -W,(7)/IW.lmax which is suitable to compare with TBCI [57] or ABCI [25]
code results for azimuthally symmetric structures or MAFIA [58] for 3D structures is shown in
Fig. 31.
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Fig. 31 Normalized inductive wake functions: inductive and resistive
Equation (231) makes it straightforward to extract the inductance L from numerical
results. The loss factor for the inductive impedance is zero. An example of a shallow cavity
and corresponding wake are shown in Fig. 32.

The wake-field for the resistive term Z{®) = R is:

2
WZ(T)z——'\/%O' exp{—%(;’[—) } (232)

The ratio -W,(7)/IW,imax is shown in Fig. 33. In storage rings such a wake is expected
for deep cavities for bunches with length comparable with the beam-pipe radius. Figure 33
reproduces an example of a wake for the SLC damping ring cavity [55].
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Fig. 33 Deep cavity and wake function for cor=1.4cm
For good resistors the expression for the loss factor has a simple form:
R
K{o.)= (233)
()= 3 e

The third term has the structure of the resistive-wall impedance with the following wake-
function (see Fig. 34 a):

312
_Bd
403

W,(7)

2
where 1 = (21 J
GT

are the modified Bessel functions of fractional order. Applying the loss factor definition we
have:

{Lspa(m) = 1ya ()= Lypa(m) £ 3ya(m)}e 77 (234)

and the * sign corresponds to positive and negative "7, respectively. [y
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B TI'@3/4
K(O-T)z;[_o—ﬁ—/-f(—2_2 (235)

where 1'(3/4)/2 = 0.6127....

The fourth term in (229) has the same dependence on w as the impedance of a cavity with
attached tubes at high frequencies:

Z(w) = Q___MZC (236)
||

The wake-function corresponding to the impedance is given by:

i -
Wz(f)=Eﬁ\/—{hm(n)ilw(n)}e (237)

where the = sign stands for positive and negative "7". The function -W,(7)/IW_lnax is shown
in Fig. 34b.
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Fig. 34 Normalized wake functions corresponding to the cases:

1—Jsign(w) 5

left) (1+jsign(w))jolB right) ch
Using (26) we obtain the expression for the loss factor:

B T(3/4)

K(o:)=—=

(238)
noy 2

with I'(1/4)/2 = 1.8128...

The parameters L, R, B, Zc of the broad-band model are extracted from TBCI, ABCI or
MAFIA results by fitting the numerical functions W(7) and K(0¢) to the above analytical
expressions. In Fig. 35 we show an example of a wake function for a cavity with attached
tubes where the high frequency behaviour is dominant.



388

1 [m] -Wz/IWzlmax
0‘4 ! T ] 1 ] , /]\ . T
)/ ', charge density
0 3+ — 0.5 /I \\ 1
Vi \
// ) \
0.2 - k ] 0 < N
0.1 - -4 05 —
wake function
z [m] s [m]
0 | ! | | -1 ] |
005 005 015 025 035 045 0 0.05 0.1 0.15 0.2

Fig. 35 Cavity with attached tubes and wake function for coy=2 cm
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