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1 Introduction

In this paper we study positive radial solutions for the fully nonlinear Lane
Emden equation driven by Pucci’s extremal operators:

−M±λ,Λ(D2u) = up in Ω (1)

where Ω ⊂ R2 is either the ball BR of radius R > 0, centered at the origin or
the whole plane R2. In the case of the ball we will impose the homogeneous
Dirichlet boundary condition.
We recall that for a C2 function in RN , N ≥ 2, the Pucci’s operators are defined
by:

M+
λ,Λ(D2u) = Λ

∑
µi>0

µi + λ
∑
µi<0

µi

M−λ,Λ(D2u) = λ
∑
µi>0

µi + Λ
∑
µi<0

µi
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where 0 < λ ≤ Λ are the ellipticity constants and µi = µi(D
2u) , i = 1, . . . , N

are the eigenvalues of the hessian matrix D2u. Associated to M±λ,Λ are dimen-

sion like numbers Ñ+ and Ñ− defined as

Ñ+ =
λ

Λ
(N − 1) + 1 and Ñ− =

Λ

λ
(N − 1) + 1 (2)

These numbers allow to give estimates for the exponent p for which existence
or nonexistence of solutions of (1) in BR or RN holds when N ≥ 3 and Ñ+ > 2,
(note that Ñ− is always larger than two if N ≥ 3).

Indeed a first result obtained in [5] shows that if N ≥ 3 and p ≤ Ñ±
Ñ±−2

then

no nontrivial positive viscosity supersolutions of (1) exist in RN . Using this
result, the existence of positive solutions in bounded domains, not necessarily
radial, was proved in [13] for the same range of exponents.

In the radial setting Felmer and Quaas in [9] (see also [10]) provided, for
N ≥ 3 , the existence of critical exponents p∗+ for M+

λ,Λ and p∗− for M−λ,Λ
satisfying

max

{
Ñ+

Ñ+ − 2
,
N + 2

N − 2

}
< p∗+ <

Ñ+ + 2

Ñ+ − 2
(3)

Ñ− + 2

Ñ− − 2
< p∗− <

N + 2

N − 2

which are thresholds for the existence of radial positive solutions of (1) in the
ball or in RN .

More precisely they proved that existence in BR holds if and only if p <
p∗±, while existence in RN holds if and only if p ≥ p∗±. In the last case a
complete classification of the solutions was given, according to the decay at
infinity. Recently, the same kind of results has been obtained in [12] for more
general equations with an alternative proof.

In dimension N=2, the situation for the two operators M+
λ,Λ,M

−
λ,Λ is dif-

ferent. Indeed, by (2) we have that Ñ+ < 2, while Ñ− > 2, for λ < Λ. In the
first case the result of [5] still implies the nonexistence of nontrivial solutions in
RN for the equation (1) for M+

λ,Λ for every p ∈ (0,∞).
As a consequence a positive radial solution of

−M+
λ,ΛD

2u = up in BR

u > 0 in BR

u = 0 on ∂BR

(4)

exists for every 0 < p < ∞ as in [13]. Thus no critical exponent as in (3) can
be defined for M+

λ,Λ, in dimension 2.
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Instead in the case of the operatorM−λ,Λ the number Ñ−− 2 is still positive
which suggests that a critical exponent p∗− as in higher dimensions could exist,
though, any upper bound for it as in (3), could not be given, since N = 2.

In this paper we obtain new results for (1) in R2, but of different kind for
each one of the two operators.

In the case ofM+
λ,Λ, when a unique radial positive solution of (4) in the ball

exists for every p > 1( see Theorem 2.1), we study the asymptotic behavior of
up as p→∞. This is done by analyzing the rescaled function

zp = zp(r) =
p

up(0)
(u(εpr)− up(0)), (5)

for r = |x|, and

ε−2
p = p · up(0)p−1,

as in the semilinear case ([1],[8]). As a byproduct, we obtain the existence of a
radial solution of the ”fully nonlinear Liouville equation” in the plane. As far
as we know, this is the first existence result for this equation.
More precisely we get:

Theorem 1.1. The function zp converges in C2
loc(R2) to a radial function z

which satisfies:

−M+
λ,Λ(D2z)(x) = ez. (6)

Moreover z is negative, radially decreasing and, as a function of |x|, changes
concavity only once at |x| = R0 = 2

√
2λ. Finally:

z(x) = log

(
1

(1 + 1
8λ |x|2)2

)
in BR0

.

In the case of the operator M−λ,Λ, we are able to prove that in dimension
N = 2, a critical exponent p∗− having similar features as the one for N ≥ 3
indeed exists and we provide bounds for it.

As mentioned before, to get an upper bound for p∗− is not obvious since the
corresponding estimate in higher dimensions in (3) blows up when N = 2.

We get it through the existence of another relevant exponent, denoted by
p̃−, which is responsible for the existence or lack of periodic orbits for a related
dynamical system that we study, following the approach of [12].

As it will be made clear in Section 3, the periodic orbits of this auxiliary
dynamical system are related to the nonexistence of solutions in the ball, and
possibly allow the existence of entire oscillating radial solutions for (1).

Referring to Definition 3.5 for fast, slow, or pseudo-slow decaying solutions
we state the main result for the operator M−λ,Λ.
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Theorem 1.2 (Critical Exponent). Let the dimension N be two, there are
exponents p∗− and p̃− satisfying:

Ñ− + 2

Ñ− − 2
< p∗− ≤ p̃− ≤

Ñ− + 2

Ñ− − 2
+

4

Ñ− − 2 + λ
Λ (Ñ− − 2)2

(7)

with Ñ− as in (2), such that, considering equation (1) for M−λ,Λ:

i) for p < p∗− there is no nontrivial radial positive solution of problem (1) in
R2, while, for every R > 0 there is a unique positive radial solution in BR.

ii) if p = p∗− there is a unique fast decaying radial positive solution of (1) in
R2

iii) for p∗− < p < p̃− there is a unique positive radial solution of (1) in R2,
which may be either pseudo-slow or slow decaying.

iv) for p > p̃− there is a unique slow decaying solution of (1) in R2

v) for p ≥ p∗− there is no positive radial solution of (1) in BR.

In the case of R2 uniqueness is meant up to scaling.

We recall that, by using the moving plane method, it is proved in [6] that
every positive solution of (1) in the ball BR satisfying u = 0 on ∂BR is radial.
Thus, by Theorem 1.2, we have that such a solution in BR exists if and only if
p < p∗−.

Then, we could study the asymptotic behavior of up, as p ↗ p∗−, to under-
stand the limit profile of these solutions.

As for the higher dimensional case ([2]) we get:

Theorem 1.3. Let N = 2, p∗− as in Theorem 1.2 and ε > 0. Then, for the
solution upε of (1) (for M−λ,Λ) in the ball BR, with pε = p∗− − ε, the following
statements hold:

i) Mε = upε(0)→∞

ii) the rescaled function

uε =
1

upε(0)
upε

(
x

upε(0)
pε−1

2

)

converges up to a subsequence, to a limit function U in C2
loc(R2) where U

is the unique positive solution of:

−M−λ,Λ(D2U)(x) = Up
∗
− in R2

satisfying U(0) = 1
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iii) upε → 0 in C2
loc(B̄R \ {0}).

The proof of the previous theorem is similar to that of [2] for the analogous
results in higher dimension, though the statement iii) could be obtained more
easily analyzing the dynamical system introduced in [12]. Also, the results about
the energy invariance of [2] can be easily extended to the two-dimensional case.

Finally, a classification of solutions of (1) singular at the origin similar to
the one of Theorem 1.8 of [12] follows in the same way, with obvious changes.

We conclude with some remarks about higher dimensions which are related
to our results for N = 2.

First when the dimension N is greater than two, we may consider the case
where Ñ+ as defined in (2) is smaller than two. Then the results of [5] and [13]
still imply that there is, for every p ∈ (1,∞), a unique radial positive solution
up of (4) in the ball BR.

In particular, the approach we use to treat the two dimensional problem may
be immediately applied in this setting producing results analogous to those of
Theorem 1.1. Thus we get solutions of the Liouville equation (6) in some higher
dimensions. Note that even for the semilinear case, where the Pucci operator
M+

λ,Λ is replaced by the Laplacian the corresponding equation (6) has different
features according to the dimension (see [7], [11] and references therein). It
would be interesting to investigate problem (6) in the fully nonlinear setting in
all dimensions and also for the operator M−λ,Λ.

Concerning the operator M−λ,Λ, the approach we have used in Section 3
to estimate p∗− as in (7) can also be used in higher dimensions to have an
estimate of the critical exponent from above better than the one given in (3)
and to determine the existence of oscillating solutions. This will be done in a
forthcoming paper.

The paper is organized as follows. In Section 2 we study the equation (1)
for the operator M+

λ,Λ proving Theorem 1.1. Section 3 is devoted to the Pucci

Operator M−λ,Λ. After recalling several preliminaries about an associated dy-
namical system we prove a result on the nonexistence of periodic orbits for such
a system. This allows to prove Theorem 1.2. We end Section 3 with the proof
of Theorem 1.3.

2 The Problem for M+

2.1 A Preliminary Result

For p > 1, we consider the Dirichlet problem (4) and recall known results for it.

Theorem 2.1. For every p > 1 the problem (4) admits a unique solution up
which is radial, i.e, with an abuse of notation, up(x) = up(|x|) for |x| = r ∈
[0, R]. Furthermore up satisfies:

i) up(0) = maxup

ii) up is strictly decreasing

5



iii) up changes concavity only once at a point yp and is concave around the
origin.

Proof. The existence of a positive solution of (4) for every p > 1 derives from
the nonexistence of solutions of the analogous equation in R2 (see [5]). Indeed
if entire solutions do not exist, then apriori estimates hold which allow to prove
the existence of a solution of (4) as in [13].

The radial symmetry of up and i)-ii) have been proved in [6] by the mov-
ing plane method. The uniqueness follows by the invariance by scaling of the
equation and the uniqueness of the initial value problem for the corresponding
ODE.

Finally, iii) can be proved exactly as in [10, Lemma 3.1] using the Emden-
Fowler analysis.

Remark 2.2. The uniqueness of the radius yp where u′′(r) = 0 can be obtained
also as in [12] analyzing the flow induced by an associated dynamical system.
This method also works in dimension two, and we will use it to study the problem
for M−λ,Λ.

2.2 Asymptotic behavior of rescaled solutions

In this section we prove Theorem 1.1.
We are interested in the asymptotic behavior of the solution up when the

exponent p goes to +∞.
Recalling that the parameter ε is defined by

ε−2
p = p · up(0)p−1

we prove the following preliminary result.

Lemma 2.3. It holds :
lim

p→+∞
ε−2
p = +∞

Proof. The proof is based on the fact that up(0)p−1 does not converge to 0.
Assume otherwise, then for p sufficiently big, we have:

up(0)p−1 < λ1(M+
λ,Λ, BR)

where λ1(M+
λ,Λ, BR) is the first eigenvalue of the Pucci operator on BR with

homogeneous Dirichlet boundary conditions.
In particular, this implies that


−M+

λ,Λ(D2up)(x) = up(x)p < λ1(M+
λ,Λ, BR) · u in BR

up > 0 in BR

up = 0 on ∂BR
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This is a contradiction with the characterization of the first eigenvalue.
Therefore we conclude that lim

p→∞
p · up(0)p−1 =∞.

Proposition 2.4. The rescaled function zp defined in (5) converges in C2
loc(R2),

up to a subsequence, to a solution z of the Liouville equation (6).

Proof. A simple computation gives for x ∈ BR/εp :

D2zp(x) =
p

up(0)
· ε2
p ·D2up(εp · x)

Therefore,

M+
λ,Λ(D2zp)(x) =

p

up(0)
· ε2
p · M+

λ,Λ(D2up)(εp · x)

Since up is a solution to Problem (4), we get

M+
λ,Λ(D2zp)(x) =

−p
up(0)

· ε2
pu
p
p(εp · x) = −

(
1 +

zp
p

)p
Since zp is nonpositive and has a maximum at 0, where zp(0) = 0, then −zp

is a nonnegative solution of

−M−λ,Λ(D2(−zp))(x) = −
(

1 +
zp(x)

p

)p
= fp(x) ∈ [−1, 0] in BR/εp (8)

Applying the Harnack inequality given by Theorem 4.3 in [3] we get that zp is
locally uniformly bounded.

We proceed by using the Cα and C2,α estimates given in [3] again to get the
existence of α(λ,Λ) and C(Λ, λ,R1) such that

sup
BR1/4

[zp]Cα ≤ C.

Since

[
1 +

zp
p

]
Cα
≤ [zp]Cα .

It follows that

sup
BR1/8

|zp|C2,α ≤ C(Λ, λ,R1).

Thus from the Arzela-Ascoli theorem there is a subsequence zpk which, for

every α′ < α locally converges to a limit function z in C2,α′ in BR2 , for a
sufficiently small R2. Since R1 is arbitrary, the convergence holds locally over
the whole plane.
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2.3 The fully nonlinear Liouville equation

In the previous section, we have shown that, up to a subsequence, the radial
functions zp converge to a function z which solves (6) which is a fully nonlinear
version of the Liouville equation. Now we proceed in describing such a function
in particular proving that z changes concavity only once.

Proof of Theorem 1.1. The convergence of the rescaled function zp is just
the statement of Proposition 2.4. Hence the existence of a radial solution z of
(6) which is negative and decreasing is deduced by that. Now we show that the
limit function z changes concavity only once. Thus we consider the only radius
yp where up changes concavity ( iii) of Theorem 2.1 ).

After passing to a subsequence, such that lim
p→∞

yp
εp

exists, we consider the

three possible cases:

1. lim
p→∞

yp
εp

=∞.

2. lim
p→∞

yp
εp

= 0.

3. lim
p→∞

yp
εp

= R0, 0 < R0 <∞.

Case 1: Since lim
p→∞

yp
εp

=∞, the limit equation being satisfied by z is{
−λ∆z = ez in R2

z(0) = 0,
(9)

because z is concave and decreasing on the whole space. From the classification
of solution of the Liouville equation by Chen-Li [4], we know that the solution
of (9) is:

z(x) = log

(
1

(1 + 1
8λ |x|2)2

)
. (10)

We conclude that Case 1 is not possible since such a solution is not concave
in the whole space.

Case 2: Since lim
p→∞

yp
εp

= 0, the limit ODE being satisfied by z(x) = z(|x|) is{
−Λz′′(r)− λ z

′(r)
r = ez(r) in (0,∞)

z(0) = 0,
(11)

and z is a nonpositive, decreasing and convex function.
First observe that we may rewrite the above equations as

−(r
λ
Λϕ′(r))′ =

rλ/Λ

Λ
eϕ(r) r ∈ (0,∞).
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Integrating between 0 and r since z is negative so that ez ≤ 1 we obtain:

rλ/Λ (z′(r)) =

∫ r

0

−sλ/Λ

Λ
ez(s)ds ≥ −1

Λ
r1+ λ

Λ
Λ

λ+ Λ
.

Dividing by rλ/Λ we obtain

0 ≥ z′(r) ≥ −1

λ+ Λ
· r,

and taking the limit as r goes to zero we get z′(0) = 0. In particular this implies
that z is positive around the origin since z(0) = 0, z′(0) = 0 and z is convex.
This contradicts the fact that z is negative.

Case 3: Since lim
p→∞

yp
εp

= R0, the limit equations being satisfied by z(x) =

z(|x|) are 
−λz′′(r)− λ z

′(r)
r = ez(r) in (0, R0)

−Λz′′(r)− λ z
′(r)
r = ez(r) in (R0,∞)

z(0) = 0

z′′(R0) = 0,

(12)

and z is a nonpositive, decreasing function, concave in (0, R0) and convex in
(R0,∞).

As in the previous case, we may repeat the same procedure by exchanging
Λ by λ and obtain that z′(0) = 0.

Therefore z satisfies the following initial boundary value problem
−λz′′(r)− λ z

′(r)
r = ez(r) in (0, R0)

z(0) = 0

z′(0) = 0

(13)

Since such a problem admits only one solution it must be given by

z(r) = log

(
1

(1 + 1
8λr

2)2

)
Note that the above function changes concavity only once in R+ at 2 ·

√
2 · λ.

Therefore R0 = 2 ·
√

2 · λ. In particular, due to the fact that z is C2
loc(R2), we

obtain the following:

� z(R0) = −2 · ln 2

� z′(R0) = − 1√
2λ
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Then by (12) z satisfies this other initial value problem
Λz′′(r)− λ z

′(r)
r = ez(r) in (R0,+∞)

z(R0) = −2 · ln 2

z′(R0) = − 1√
2λ

(14)

There is only one solution to problem (14) and therefore we obtain that z is
given by gluing the solutions of the two initial boundary value problems (13)
and (14).

3 The Problem for M−

We consider the problem

{
−M−λ,Λ(D2u)(x) = u(x)p in Ω

u > 0 in Ω
(15)

where Ω is either R2 or the ball BR, centered at the origin, with radius R > 0.
In the last case we assume:

u = 0 on ∂Ω (16)

The first step to study the above problem is understanding whether a critical
exponent for the existence of solutions of (15) can be defined or not.

To this aim we are going to use the approach of [12] which involves an
auxiliary dynamical system. Thus we start by introducing it together with
some preliminary results from [12].

3.1 Preliminaries on a Dynamical System

Since we are interested in radial solutions to (15) we write u = u(r) = u(|x|) as
an expression of u in radial coordinates. The eigenvalues of D2u are the simple

eigenvalue u′′(r) and u′(r)
r which has multiplicity (N − 1) (see [9]).

Thus u satisfies a corresponding ODE from which it is easy to deduce that u
is decreasing as long as it is positive, concave in an interval (0, τ0) and changes
concavity at least once (see [9] or [12])

Hence (15) can be written as:

u′′ = M(−Λr−1u′ − up), (17)

where

M(s) =

{
s
Λ if s ≤ 0
s
λ if s > 0

, (18)
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Next we introduce the following auxiliary functions:

X(t) = −ru
′(r)

u(r)
, Z(t) = −ru(r)p

u′(r)
for t = ln r (19)

whenever u(r) 6= 0, u′(r) 6= 0

Since u > 0 and u′ < 0 , we have that the above quantities belong to the
first quadrant of the (X,Z) plane.

In the new variables, the equation (17) becomes the following autonomous
dynamical system

(
Ẋ, Ż

)
= F (X,Z) = (f(X,Z), g(X,Z)) (20)

where the dot · stands for derivation with respect to t and f, g are given by:

f(X,Z) =

{
X(X + Z

Λ ) if (X,Z) ∈ R+

X(X − (Ñ− − 2) + Z
λ ) if (X,Z) ∈ R−

g(X,Z) =

{
Z(2− pX − Z

Λ ) if (X,Z) ∈ R+

Z(Ñ− − pX − Z
λ ) if (X,Z) ∈ R−

where the regions R+ and R− are:

R+ = {(X,Z) |Z > Λ} (21)

R− = {(X,Z) | 0 < Z < Λ} (22)

Note that whenever (X(t), Z(t)) belongs to the line

` = {(X,Z |Z = Λ)} (23)

then the corresponding solution u of (17) satisfies u′′ = 0. Hence R+ and R−

represent, in terms of the new variables (X,Z), the regions of concavity and
convexity of u, respectively.

Other important sets which are relevant to study the dynamics induced by
(20) are:

`1 = {(X,Z) |Z = λ(Ñ− − 2−X)} (24)

which is the set where Ẋ = 0, and

`2 = {(X,Z) ∈ R+ |Z = Λ(2− pX)} ∪ {(X,Z) ∈ R− |Z = λ(Ñ− − pX)} (25)

which is the set where Ż = 0.
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Then we need to consider the stationary points for (20) and their classifica-
tion.

We recall that for p ≤ Ñ−
Ñ−−2

is already known that there exists a positive

solution of (15) with Dirichlet boundary conditions in the ball BR ([13]).
Therefore, to determine the critical exponent for M−λ,Λ only the values of p

larger than Ñ−
Ñ−−2

are important, hence, we just state all is needed for p > Ñ−
Ñ−−2

.

Proposition 3.1. The ODE system (20) admits the following stationary points:

i) N0 = (0, 2Λ) which is a saddle point.

ii) A0 = (Ñ− − 2, 0) which is a saddle point.

iii) M0 =
(

2
p−1 , λ(Ñ− − 2− 2

p−1 )
)

which is a source for Ñ−
Ñ−−2

< p < Ñ−+2

Ñ−−2
, a

center for p = Ñ−+2

Ñ−−2
, a sink for p > Ñ−+2

Ñ−−2

iv) O = (0, 0) which is a saddle point.

The stationary points and the direction of the vector field F on the relevant
sets for (20) are displayed in Figure 1.

3.2 Periodic Orbits

For the sequel it is important to see for which range of the exponent p there are
no periodic orbits of (20).

Theorem 3.2. Let 0 < λ ≤ Λ. Then for the system (20) it holds:

i) no periodic orbits exist if 1 < p < Ñ−+2

Ñ−−2
.

ii) there exists po > max{3, Ñ−+2

Ñ−−2
} such that for p > po there is no periodic

orbit.

Proof. The statement i) was already proved in Proposition 2.10 of [12]. We
include the proof here for the reader’s convenience.

Note that a periodic orbit must necessarily contain a stationary point in its
interior. In our case, the only one which can be in it is the point M0. Moreover
by the direction of the vector field F (see (20)) on the lines L1 = {(X,Z) |Z =
2Λ} and L2 = {(X,Z) |X = Ñ− − 2} we deduce that no periodic orbit can
intersect them. Hence, a periodic orbit must be contained in [0, Ñ−−2]×[0, 2Λ].

Consider ϕ(X,Z) = XαZβ , where α = 2
p−1 and β = 3−p

p−1 . Set Φ(X,Z) =

∂X(ϕf) + ∂Z(ϕg), with f and g as in (20), i.e

Φ(X,Z) =

{
XαZβ 4

p−1 if (X,Z) ∈ R+

−XαZβ p(Ñ−−2)−(Ñ−+2)
p−1 if (X,Z) ∈ R−
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Suppose there is a periodic orbit which encloses a region D. It follows from
the Green’s area formula that:

0 =

∫
∂D

ϕ{fdZ − gdX} =

∫
D

ΦdXdZ =

∫
R+∩D

ΦdXdZ +

∫
R−∩D

ΦdXdZ,

where the first equality holds since dX = fdt and dZ = gdt.

From this it follows that for p 6= Ñ−+2

Ñ−−2
, any periodic orbit must intersect both

regions R+, R−.

It is clear that, for p satisfying 1 < p < Ñ−+2

Ñ−−2
, Φ is positive and the above

identity is a contradiction. Hence i) holds.
Now assume p > 3 (which implies that β < 0). In the region R+, we

have Λ < Z < 2Λ, which implies Zβ < Λβ . Also, in R−, 0 < Z < Λ, hence
−Zβ < −Λβ . Hence the following bound holds:

0 =

∫
R+∩D

ΦdXdZ +

∫
R−∩D

ΦdXdZ ≤

4Λβ

p− 1

∫
R+∩D

XαdXdZ − p(Ñ− − 2)− (Ñ− + 2)

p− 1
Λβ
∫
R−∩D

XαdXdZ (26)

In order to conclude the proof it is sufficient to check that the ratio of the

areas | R
+∩D|
|R−∩D| 9 ∞ as p goes to infinity. Indeed if this holds, taking the limit

as p goes to infinity we get a contradiction and the result follows.
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Figure 1: Indicative of the flow for p > Ñ−
Ñ−−2

Let P1 = (x1,Λ), P2 = (x2,Λ) be two points where the orbit intersects the
concavity line `, note that since P = ( 1

p ,Λ) is the only point where Ż is zero,

this implies the uniqueness of P1, P2. Since Ẋ > 0 in R+, it follows that R+∩D
is contained in the rectangle Q1 = [x1, x2]× [Λ, 2Λ]. Also since Ẋ > 0 above the
line `1 defined in (24) the rectangle Q2 = [x1, x2]× [λ(Ñ− − 2),Λ] is contained
in R− ∩D.

Therefore

|R+ ∩D|
|R− ∩D|

≤ (x2 − x1)Λ

(x2 − x1)(Λ− λ(Ñ− − 2))
=

Λ

Λ− λ(Ñ− − 2)
.

Therefore the right hand side cannot converge to +∞ as p → ∞, so the
existence of po satisfying ii) is guaranteed.
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Define p̃− = inf

{
p ∈ (

Ñ− + 2

Ñ− − 2
,∞) | @ periodic orbits ∀p′ > p

}
(27)

Theorem 3.3 (Bound for p̃−). It holds:

Ñ− + 2

Ñ− − 2
≤ p̃− ≤

Ñ− + 2

Ñ− − 2
+

4

Ñ− − 2 + λ
Λ (Ñ− − 2)2

.

Proof. If p > 3 and a periodic orbit exists, then, going back to (26), it holds:

0 ≤ 4Λβ

p− 1

∫
R+∩D

XαdXdZ − p(Ñ− − 2)− (Ñ− + 2)

p− 1
Λβ
∫
R−∩D

XαdXdZ

Considering the rectangles Q1 and Q2 defined in the proof of Theorem 3.2,
we have:

∫
R+∩D

XαdXdZ ≤
∫
Q1

XαdXdZ ≤ Λ

Λ− λ(Ñ− − 2)

∫
Q2

XαdXdZ ≤

Λ

Λ− λ(Ñ− − 2)

∫
R−∩D

XαdXdZ

Therefore

0 ≤

(
Λ

Λ− λ(Ñ− − 2)
· 4Λβ

p− 1
− p(Ñ− − 2)− (Ñ− + 2)

p− 1
Λβ

)∫
R−∩D

XαdXdZ

Observing that the term in brackets is negative whenever p > Ñ−+2

Ñ−−2
+

4
Ñ−−2− λΛ (Ñ−−2)2

, which is greater than 3, we get (3.3).

3.3 Critical exponent

We recall that for an orbit τ of the dynamical system (20) the set of limit points
of τ(t), as t→ −∞, is usually called α-limit and denoted by α(τ). Analogously
it is defined the ω-limit ω(τ) at +∞. With the same proofs as in [12] we have

Lemma 3.4. For every p > 1, any regular solution of (17) satisfying the initial
conditions: up(0) = γ > 0 , u′p(0) = 0, corresponds to the unique trajectory Γp
of (20) whose α-limit is the stationary point N0. Moreover:

i) if up = up(r) is positive ∀r ∈ (0,+∞) then Γp is bounded and remains in

the rectangle (0, Ñ− − 2)× (0, 2Λ), for all time.
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ii) if there exists Rp such that up(Rp) = 0 and up > 0 in (0, Rp), then the
corresponding trajectory Γp = (Xp, Zp) blows up in finite time T , in partic-
ular:

lim
t→T

Xp(t) = +∞ lim
t→T

Zp(t) = 0

and there exists t1 < T such that Xp(t1) = Ñ− − 2.

Proof. See Proposition 2.1, Proposition 3.6 and Proposition 3.9 of [12].

We prove now a crucial result about nonexistence of solutions for the problem
(15) in the ball. It is the keypoint to define and estimate the critical exponent.

Theorem 3.5. For p > p̃−, defined in (27), there are no solutions of (15) in
the ball.

Proof. We recall that p̃− ≥ Ñ−+2

Ñ−−2
. Assume that there is a solution of (15) in

the ball for some p > p̃−. Then we would have a trajectory Γp = Γp(t) =
(Xp(t), Zp(t)) starting from N0 such that Γp blows up in finite time, after in-

tersecting the line L1 = {(X,Z) |X = Ñ− − 2} (see Lemma 3.4). On the other
hand, if we consider the unique trajectory τp whose ω-limit is A0 (which is a

saddle point for p > Ñ−
Ñ−−2

) and backtrack it we should be in either one of the

following cases:

a) α(τp) is a stationary point or a periodic orbit around M0.

b) τp blows up backward.

The case a) is not possible. Indeed M0 is a sink and no periodic orbit exists for
p > p̃−, by definition (27). Moreover N0 cannot be the α-limit of τp because N0

is a nondegenerate saddle point, so that, only the trajectory Γp starts from N0

and ω(Γp) is not A0 since Γp blows up in finite time.
Also case b) is not possible because τp is necessarily bounded because it stays
in the regions enclosed by the X axis, Z axis, the orbit Γp and the line L2 from
which any orbit can only exit in forward time (by the direction of the vector
field on L2), see Figure 2.
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Figure 2:

Thus we have a contradiction which implies that Γp cannot correspond to a
solution in the ball.

Then we consider the set:

C = {p > 1 | a solution of (15) in BR exists.} (28)

and we observe that C is nonempty since we have already remarked that for

p ∈ (1, Ñ−
Ñ−−2

] (15) has a solution in BR.

So as in [12] we define:

p∗− = sup C < ∞ (29)

and call it the critical exponent for M−λ,Λ.
Before proving Theorem 1.2 we recall the following definitions.

Definition 3.6. Let up be a radial solution of (15) in R2 and α = 2
p−1 . Then

up is said to be:

i) fast decaying if there exists c > 0 such that lim
r→∞

rÑ−−2u(r) = c.

ii) slow decaying if there exists c > 0 such that lim
r→∞

rαu(r) = c.

iii) pseudo slow decaying if there exist constants 0 < c1 < c2 such that

c1 = lim inf
r→∞

rαu(r) < lim sup
r→∞

rαu(r) = c2

.
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As shown in [12] in terms of the dynamical system (20), a fast decaying, slow
decaying or pseudo-slow decaying solution corresponds to an orbit Γp such that
ω(Γp) = A0, or M0 or a periodic orbit around M0 respectively.

All the proprieties of the number p∗− stated in Theorem 1.2 can be proved in
the same way as in [12]. We give some indications for the reader’s convenience.

Proof of Theorem 1.2. It is not difficult to see that p∗− ≥
Ñ−+2

Ñ−−2
because we

already know that for p ≤ Ñ−
Ñ−−2

a solution of (15) in BR exists. Moreover for

p ∈ ( Ñ−
Ñ−−2

, Ñ−+2

Ñ−−2
), M0 is a source, so if the trajectory Γp starting from N0 does

not blow up in finite time, producing so a solution in the ball, ω(Γp) should
be the stationary point A0, because no periodic orbits exist, by Theorem 3.2.
However ω(Γp) cannot be A0, otherwise, the region bounded by Γp and the
X and Z axis would be an invariant region containing the point M0 and the
trajectories starting at M0 would have no limit points to reach in forward time.

The proof that p∗− 6=
Ñ−+2

Ñ−−2
is more delicate and can be carried out as in [12]

(see Theorem 5.2 and Theorem 4.7 therein). The fact that p∗− ≤ p̃− comes from
Theorem 3.5, therefore using Theorem 3.3 we complete the estimate (7).

The proprieties iv) and v) derive from the definitions of p̃− and p∗−. In
particular we stress that for p > p̃− there are no periodic orbits so the only
possibility is that the regular trajectory Γp starting at N0 converges to M0

which means that the corresponding solution up of (17) is slow decaying.
Finally i), ii) and iii) come from the proprieties of the critical exponent

p∗−, which can be proved exactly as in [12], see Theorem 5.2, Theorem 4.7,
Proposition 4.2 and Corollary 4.4.
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