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Abstract
Taking the hint from usual parametrization of circle and hyperbola, and inspired by
the pathwork initiated by Cayley and Dixon for the parametrization of the “Fermat”
elliptic curve x3 + y3 = 1, we develop an axiomatic study of what we call “Keplerian
maps”, that is, functionsm(κ)mapping a real interval to a planar curve, whose variable
κ measures twice the signed area swept out by the O-ray when moving from 0 to κ .
Then, given a characterization of k-curves, the images of such maps, we show how
to recover the k-map of a given parametric or algebraic k-curve, by means of suitable
differential problems.

Keywords Generalized trigonometric functions · Keplerian maps · Eulerian
functions · Elliptic integrals · Gauss Hypergeometric function

Mathematics Subject Classification 33B10 · 33B15 · 14H52

1 Introduction

In recent years, there has been widespread interest in the possible generalizations of
the circular functions. These generalizations are divided into two different lines of
thought, depending on the possible fields of application. Some authors, like [7–10,13–
17,22], taking the moves from the definition of the sine function as inverse of the
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arcsine function, introduced by the integral

J (u) :=
∫ u

0
(1 − t2)−1/2dt

(where u is precisely the arc length of the circle), define the function sinp(x), where
p ≥ 1, as the inverse of the function

Jp(u) :=
∫ u

0
(1 − t p)−1/pdt, (1)

and then define the function cosp by placing cosp := sin′
p: in this manner, they get

the identity | sinp |p + | cosp |p = 1. This approach is motivated by some analytical
properties of these functions, since, adding a second parameter q, the functions

Jp,q(u) :=
∫ u

0
(1 − tq)−1/pdt,

are related to the determination of eigenvalues of boundary value problem involving
the p, q-Laplacian (see [13], eq. (3.9)), i.e. for a problem of the form

⎧⎨
⎩

−
(∣∣u′∣∣p−2

)′ = λ |u|q−2 u

u(a) = u(b) = 0.

With such approach, the parameter u in equation (1) loses its geometric meaning.
On the other side, following the work initiated by Cayley and Dixon [1,5,6] related

to Fermat’s cubic, x3 + y3 = 1, generalized by [11] and more recently in [3,18,19,
21,23,24] to Fermat curves with arbitrary exponent, other authors define the function
pair (cosp, sinp) as the unique solution to the initial value problem

{
φ′ = −ψ p−1, φ(0) = 1

ψ ′ = φ p−1, ψ(0) = 0 .
(2)

Such pair of function, as it is easily seen, satisfies the identity sinp
p + cospp = 1.

Although our approach is in line with the latter, we consider the problem from
a more general point of view, that goes well beyond Fermat’s cubic and Dixon’s
elliptic functions. In fact, having realized that the variable of the solution (cosp, sinp)

to problem (2) measures an area, as for trigonometric and hyperbolic functions, we
present a general approach to what we call “Keplerian Trigonometry”, that is, the
study of a wide class of planar curves admitting a (unique!) parametric representation
mC (κ) = cosC (κ) i+ sinC (κ) j, whose components share various properties of usual
trigonometric functions, and the parameter κ measures twice the signed area swept
out by the OP-ray when the point P moves along the curve from the unit point of the
X -axis.
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Keplerian Trigonometry…

Ourwork also includes a section dedicated to a combinatoric version of the problem
with a combinatorics of the nonlinear differential system that takes up the particular
cases of Fermat curves treated in [24].

In conclusion of the article, we apply the theoretical results to a pair of third-degree
(elliptic) plane curves, linked in a similar way to that which connects trigonometric
and hyperbolic functions.

2 Keplerianmaps

An analytic vector function f(s):= fx (s) i+ fy(s) j1, defined on a real interval I , will
be called a planar map, or simply a map, and its image C :=f(I ) will be called a
parametric curve, or p-curve. Obviously, a second map g, defined on the real interval
J , parametrizes the same curveC if, and only if, if there exists a differentiable bijective
function s(t) : J → I such that s′ �= 0 and g(t) = f(s(t)). Note that, by our definition,
every p-curve consists of only one branch.

In order to focus a wide class of maps that behave like the trigonometric map

t(κ):= cos(κ) i + sin(κ) j, (The trigonometric map)

and the hyperbolic map

h(κ):= cosh(κ) i + sinh(κ) j, (The hyperbolic map)

we observe that, in addition to mapping 0 to i, for both of them, the variable is
Keplerian, that is, it renders twice the signed area swept out by the OP-ray when
moving from the unit pointUx of the X -axis to the image of κ . Hence, it seems natural
to consider the class of maps sharing that properties.

To provide a more precise wording of our aim, it is helpful to define the wedge
operation ∧: R2 × R

2 → R by setting, for every u, v ∈ R
2:

u ∧ v := det

[
ux vx
uy vy

]
.

The scalar u ∧ v measures the signed area of the oriented parallelogram with sides
u, v. The fact of being Keplerian the variable κ of a map f , is expressed by the identity

dκ = f(κ) ∧ f(κ + dκ),

or better, by its equivalent2

f ∧ f ′ = 1.

Here then, the maps of this new class are defined as follows.

1 In this paper, the elements of R2 are presented as column vectors, and the standard basis is denoted by
( i, j).
2 When, as in this case, the variable is left out, the identity holds for every element of the domain of the
function.
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Definition 2.1 A map m : I → R
2, where 0 ∈ I , satisfying the following “Keplerian

analytic axioms”

{
m(0) = i, (AnK 0)
m∧m′ = 1, (AnK 1)

is called a Keplerian map (k-map for short). A k-map m is called upright if the
derivative of its first component vanishes at 0, that is, if m′

x (0) = 0.
The image of a k-map m is called a Keplerian curve or k-curve. �	
In order to emphasise the analogy with trigonometric functions, the components of

the k-map of a given k-curve C are denoted as cosC and sinC , that is, we will set:

mC (κ) = cosC (κ) i + sinC (κ) j .

We will refer to the component sinC as to a sin-partner of cosC , and symmetrically
for the component cosC .

Thanks to the identity (f ∧ f ′)′ = f ′ ∧ f ′ + f ∧ f ′′ = f ∧ f ′′, the Keplerian axioms
can be restated in terms of the second derivative.

Theorem 2.2 A map m : I → R
2, where 0 ∈ I , is a Keplerian map, whenever it

satisfies the following axioms:

⎧⎨
⎩
m(0) = i, (AnK 0)
m∧m′′ = 0, (AnK 2)
m(0) ∧ m′(0) = 1. (AnK 3)

�	
Axiom (AnK 2) states that vectorsm(κ) andm′′(κ) are parallel, so there exists an

analytic function χ(κ) such that m′′(κ) = χ(κ)m(κ), where

χ = χ m∧m′ = m′′ ∧m′ .

Actually, the preceding theorem has the following result as converse.

Theorem 2.3 Let χ : I → R be an analytic function such that 0 ∈ I ; then there exists
exactly one Keplerian map m such that m′′(κ) = χ(κ)m(κ) for every κ ∈ I .

Proof The k-map m is the solution of the problem

⎧⎪⎨
⎪⎩

p′′ = χ p,

p(0) = i,
p(0) ∧ p′(0) = 1.

(3)

�	
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The preceding result is the Keplerian analog of the fundamental theorem of the local
theory of curves; here the function χ plays the role of the curvature: then, it seems to
be consistent to call χ the Keplerian curvature of the curve C .

The following result, whose proof is quite elementary, characterises the k-curves,
by showing how the (unique) k-map associated to a suitable p-curve can be computed
by inverting an integral.

Theorem 2.4 A parametric curve C = f(I ) is a Keplerian curve if, and only if, there
exists s0 ∈ I such that

f(s0) = i,

and, for every s ∈ I :
f(s) ∧ f ′(s) �= 0.

Moreover, the Keplerian map which parametrize C is provided by the map

mC (κ):=f(s(κ)),

where s(κ) is the inverse of the function

κ(s):=
∫ s

s0
f(u) ∧ f ′(u) du.

�	
The preceding result can be restated in terms of elementary geometry, by saying

that a k-curve has a unique branch, it includes the unit point Ux , and every its tangent
line avoids the origin (Figs. 1, 2, 3 and 4).

As an application of the previous result, let us consider the unit circle involute C ,
image of the map

f(t):=(cos t + t sin t) i + (sin t − t cos t) j, t ≥ 0.

We get f ∧ f ′ = t2, then κ = t3/3, t = (3κ)1/3, and mC (κ) = f(3κ)1/3.

3 General identities

For any given k-curve C , we will set tanC := sinC / cosC ; however, we need to
remark that the geometric meaning of the trigonometric tangent function is preserved
only in case of upright k-curves.

As easy consequences of Keplerian axioms, we have the identities

sin′
C (0) = 1, sin′′

C (0) = sinC (0) = 0,

tan′
C (0) = 1, tan′′

C (0) = tanC (0) = 0.

Moreover, it is worthwhile to note that a k-curve C is a upright one if, and only if,
cos′C (0) = 0. Again, from (AnK 2)we get immediately the following identities, which
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Fig. 1 A keplerian curve

Fig. 2 A non keplerian curve

Fig. 3 The Keplerian parameter
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Fig. 4 The unit circle involute

generalize well-known relations of circular and hyperbolic functions:

tanC (κ) = sinC (κ)

cosC (κ)
= sin′′

C (κ)

cos′′C (κ)
,

tan′
C (κ) = 1

cos2C (κ)
,

tanC (κ) =
∫ κ

0

1

cos2C (u)
du,

sinC (κ) = cosC (κ)

∫ κ

0

1

cos2C (u)
du.

By the last identity, every analytic function x(t), with x(0) = 1, has exactly one sin-
partner; on the contrary, any analytic function y(t), with y(0) = 0, y′(0) = 1, y′′(0) =
0, admitting a cos-partner x(t), has all functions x(t)+μy(t) as additional cos-partner.
Obviously, “monogamy” is restored when the search of partnership is restricted to
upright cos-partners.

By axiom (AnK 1), any point P := mC (κ) of the curve C belongs to the line
sin′

C (κ) x − cos′C (κ) y = 1, which turns to be the tangent line to C at P , intersecting
the X -axis at 1/ sin′

C (κ) and the Y -axis at −1/ cos′C (κ). By this fact, we are led to
define the secant and cosecant functions for the k-curve C by setting

secC (κ) := 1

sin′
C (κ)

,

cscC (κ) := − 1

cos′C (κ)
.

Remark that for the circle and the hyperbola such definitions return the usual secant
and cosecant functions.
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Finally, we remark that if C is a closed k-curve, its k-map is a periodic function,
whose fundamental period �C is twice the area πC of the region bounded by C .

4 The arithmetic axioms—formal Keplerianmaps

The analytic Keplerian axiom has a useful arithmetic counterpart.

Theorem 4.1 (The Arithmetic Keplerian Axioms) An analytic vector function

f(t):= ∑
i xi

t i
i ! i + ∑

i yi
t i
i ! j is a Keplerian map if, and only if, the following iden-

tities hold:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
i+ j=h
h≥2

( j − i)

(
h

i

)
xi y j = 0,

x0 = y1 = 1,

y0 = y2 = 0 .

(ArK)

Proof Let f(t) ∧ f ′(t) = ∑
i wi

t i
i ! ; then, for every h ∈ N, we have:

wh = D h(x(t)y′(t) − x ′(t)y(t)
)∣∣∣
t=0

=
∑

i+ j=h

(
h

i

)(
xi y j+1 − xi+1 y j

)

=
∑

i+ j=h

h + 1 − i

h + 1

(
h + 1

i

)
xi y j+1 −

∑
i+ j=h

h + 1 − j

h + 1

(
h + 1

i

)
xi+1 y j

= 1

h + 1

∑
i+ j=h+1

( j − i)

(
h + 1

i

)
xi y j ,

and the statement follows immediately. �	
This new dress of the Keplerian Axioms evokes the opportunity to neglect conver-

gence problems, by enlarging our concern to pairs of formal (exponential) series; to
do that, we define a formal Keplerian map as an ordered pair

f(t) :=
(∑

i

xi
t i

i ! ,
∑
i

yi
t i

i !

)
,

satisfying the Arithmetic Keplerian Axioms.
The following statement is an immediate outcome of Theorem 4.1.

Corollary 4.2 Let f(t) :=
(∑

i xi
t i
i ! ,

∑
i yi

t i
i !
)
be a formal k-map; then, the following

identities hold:

yh = 1

h

∑
i+ j=h
0 �= j �=h

(i − j)

(
h

i

)
xi y j , for every h ≥ 2, (4)
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and, for every h ≥ 3:

xh−1 = 1

h(h − 2)

∑
i+ j=h
0 �= j �=1

( j − i)

(
h

i

)
xi y j , for every h ≥ 3. (5)

�	
Identity (4) allow us to compute the unique sin-partner y(t) of any formal series

x(t) with x0 = 1; note that in any case will be y2 = 0. Similarly, identity (5) can
be employed to compute a cos-partner x(t) of any sequence y(t), with y0 = 0, y1 =
1, y2 = 0, only after the choice of x1 ∈ R.

As an application, let us compute the sin-partner y(t) of the function x(t):=1+a tn
n! ;

Theorem 4.1 forces the identities

y1 = 1,

yn+1 = (n − 1)a,

yi = 0 whenever i �=1 (mod n),

y( j+1)n+1 = −a

(
( j − 1)n + 1

)
n!

(
( j + 1)n

)!
( jn + 1)! y jn+1 .

The series y(t) can be now redrafted as follows:

y(t) =
∑
j≥0

y jn+1
t jn+1

( jn + 1)!

=
∑
j≥0

(−n + 1)(
( j − 1)n + 1

) ( jn)!
(n!) j (−a) j

t jn+1

( jn + 1)!

= t
∑
j≥0

(−n + 1)(
( j − 1)n + 1

) j !
( jn + 1)

(−atn/n!) j
j ! .

As the ratio r( j) of two consecutive coefficients in the last series is the rational
function r( j) = ( j + 1

n − 1)( j + 1)/( j + 1
n + 1), we infer that such series is the

Gauss hypergeometric function

y(t) = t 2F1

(
1
n − 1, 1
1
n + 1

∣∣∣∣∣ − a
tn

n!

)
.

5 Finding the k-map of an algebraic curve

Our purpose is now to extend the preceding ideas to algebraic curves. Obviously, in
this case, too, we must narrow our attention to Keplerian algebraic curves, that is, to
algebraic curves containing the point Ux , whose tangent lines avoid the origin; this
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second condition is equivalent to claim that for every point P:=(x, y) in C vectors
OP and ∇ f are not perpendicular, that is: x fx + y fy �= 0.

The following theorem characterises k-algebraic curves and shows that the unique
k-map of a given k-algebraic curve is the solution of a first-order differential problem.

Theorem 5.1 Let the function f : R2 → R satisfy conditions f (1, 0) = 0 and x fx +
y fy �= 0; then the algebraic curve C := {(x, y) ∈ R

2 | f (x, y) = 0} is Keplerian,
and its k-map is the solution mC of the differential system

⎧⎪⎪⎨
⎪⎪⎩
x ′ = − fy

x fx + y fy
, x(0) = 1,

y′ = fx
x fx + y fy

, y(0) = 0.
(6)

Proof Conditions on f ensure that C is a Keplerian curve.
The solution p(t) = x(t) i + y(t) j of system (6) is a k-map, as p(0) = i, and

p ∧ p′ = 1.
Moreover, we have f

(
x(0), y(0)

) = 0 and d f
dt = fx

dx
dt + fy

d y
dt = 0, hence, for

every t in a suitable neighbourhood of 0, it is f
(
x(t), y(t)

) = 0, and p = mC . �	
Differentiating the system (6), and after some elementary calculus, we obtain a

second rule for computing the k-map of a k-algebraic curve.

Theorem 5.2 The k-map of a Keplerian algebraic curve C := {(x, y) ∈ R
2 |

f (x, y) = 0} is the solution of the second-order problem

{
x ′′ = − f�x, x(0) = 1

y′′ = − f�y, y(0) = 0, y′(0) = 1,

where

f�:= fxx f 2y − 2 fxy fx fy + fyy f 2x
(x fx + y fy)3

=
[ − fy fx ][ fxx fxy

fxy fyy

][ − fy
fx

]
(x fx + y fy)3

.

�	
Note that the function− f� is precisely theKeplerian curvature ofC and the numerator
is called offline hessian.

5.1 p-algebraic curves

When the curveC has equation f (x, y) = 1, where f is the irreducible homogeneous
polynomial

f (x, y):=
p∑

i=0

fi x
p−i yi f0 = 1,
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we have x fx + y fy = p , and the system (6) becomes

{
x ′ = − 1

p fy x(0) = 1,

y′ = 1
p fx y(0) = 0,

(7)

showing that the derivatives of x = cosC and y = sinC are the homogeneous poly-
nomials

x ′ = − 1
p

p∑
i=1

i fi x
p−i yi−1,

y′ = 1
p

p−1∑
i=0

(p − i) fi x
p−i−1yi ,

of degree p − 13. By repeatedly differentiating, we obtain the following theorem.

Theorem 5.3 Let the C :={ f (x, y) = 1} where f is the irreducible homogeneous
polynomial

f (x, y):=
p∑

i=0

fi x
p−i yi f0 = 1;

then, the nth derivatives of x = cosC and y = sinC are homogeneous polynomials
of degree n(p− 2)+ 1 in variables x, y. Furthermore, for every natural m, n, we will
have

(xm yn)′ = 1
p

p∑
i=0

(n(p − i) − mi) fi x
m+p−i−1yn+i−1. (8)

�	
Let us now define the theN×NmatrixMcosC by settingMcosC (0, i):=δ0,i and by

neatly arranging in the nth row the coefficients of the nth derivative of cosC ; then, the
coefficients of Maclaurin series of cosC are the entries in the 0th column of McosC ,
which can be recursively computed by the inverse of the law in identity (8). Analogous
arguments hold for the matrix MsinC , defined by settingMsinC (0, i):=δ1,i .

6 Some applications

6.1 A“dumpy” cubic

As an instance of application of preceding equations, let us consider the smooth cubic
D of cartesian equation

x3 + 3xy2 − 1 = 0.

3 For the Fermat curve Fp , system (7) becomes x ′ = −y p−1, y′ = x p−1, whose solution, when p = 3,
is the pair of the so-called Dixonian functions cm, sm [1,5,6,11,19].

123



A. Gambini et al.

Fig. 5 The curve x3 + 3xy2 = 1

Table 1 First coefficients of cosD and sinD

c0 = 1c2 = −2c4 = 16c6 = −320 c8 = 12 160c10 = −742 400 c12 = 66457600 c14 = −8 202 444 800

s1 = 1s3 = −2s5 = 40s7 = −1040s9 = 52 480s11 = −3 872 000s13 = 411136000s15 = −58 479 872 000

Such k-curve is projectively closed and symmetric with respect to the X-axis4: conse-

quently, cosD κ=: ∑i ci
κ i

i ! is an even function, while sinD κ=: ∑i si
κ i

i ! is odd (Figs.

5 and 6). The flexes ofD are the points
( 3√2

2 ,± 3√2
2

)
and the improper point of Y-axis;

the inflectional tangent lines are x = 0 and x ± y = 3
√
2.

In our case, system (7) becomes

{
x ′ = −2xy, x(0) = 1,

y′ = x2 + y2, y(0) = 0,
(9)

from which we can derive that coefficients ci , si are integers; moreover, the building
rule for both matrices McosD and MsinD is

M(m, n) = (3n − 2m − 3)M(m − 1, n − 1) + (n + 1)M(m − 1, n + 1).

The following table shows some coefficients ci , si (Table 1), drawn from McosD ,
MsinD , computed by means of a common spreadsheet5.

4 Actually, the curve D is the image of the Fermat cubic x3 + y3 = 1 under the rotation of angle −π/2 ,
followed by the homothety of factor 2−1/6.
5 Actually, in order to find c2i and s2i−1, only

(i+1
2

) − 1 cells of each matrix must be previously filled, so
that, for small i those coefficients can be computed “by hand”.
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Now, let usfindan analytic expressionof the cosine component cosD : differentiating
the first equation in (9), and using the identity x3 + 3xy2 = 1, we obtain the initial
value problem ⎧⎨

⎩
x ′′ = 2

3

(
1 − 4x3

)
,

x(0) = 1, x ′(0) = 0.
(10)

Integrating (10), we obtain the inverse cosine:

κ(x) =
√
3

2

∫ 1

x

du√
u − u4

. (11)

Observe that condition 0 < x ≤ 1 ensures that cosine is real valued. Using entry
259.50 page 134 of [4], the integral in (11) can be computed, obtaining

κ(x) = 4
√
3 K(sin π

12 ) −
4
√
3

2
F

(
arcos

(
1−(

√
3+1)x

1+(
√
3−1)x

)
, sin π

12

)
, (12)

the complete and incomplete elliptic integral of first kind. Inverting, we can solve for
x in (12) and obtain

cosD (κ) = x(κ) =
√
3 + 1√

3 + 2 − cn(κ)

1 + cn(κ)

2
, (13)

where for short we introduce:

cn(u):= cn
(

2
4√3

u, sin π
12

)
.

Function sinD is obtained using the first equation in (9):

sinD (κ) = y(κ) = −1

2

x ′(κ)

x(κ)

= 4
√
3

√
3 + 1√

3 + 2 − cn(κ)

sn(κ)dn(κ)

1 + cn(κ)
, (14)

where we define:

sn(u):= sn
(

2
4√3

u, sin π
12

)
, dn(u):= dn

(
2
4√3

u, sin π
12

)
,

and lastly:

tanD (κ) = 2 4
√
3

sn(κ)dn(κ)(
1 + cn(κ)

)2 .
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Fig. 6 cosD and sinD

Being the curve D projectively closed, its k-map mD is periodic: with some
advanced calculus it can be proven that the period is

�D = 2πD = 4
∫ 1

0

√
1 − x3

3x
dx = 1

3
√
2
B

( 1
3 ,

1
3

)
.

On the other hand, identities (13) and (14) ensure that the period can also be given in
terms of complete elliptic integral of first kind, as

�D = 2 4
√
3 K

(
sin π

12

)
,

in accordance with the fact that sin π
12 is a singular modulus (see [20]).

Both the component of mD are elliptic functions: then, their second (complex)
period can be computed by starting from the classical periodicity relations for Jacobi
elliptic functions (see [2] page 39):

sn(u + 2i K′) = sn u,

cn(u + 2K+2i K′) = cn u,

dn(u + 4i K′) = dn u,

where, as usual, K′(k) = K(k′) = K(
√
1 − k2). Thus, the second period is

�′
D = 4

√
3

(
K(sin π

12 ) + i K(cos π
12 )

);
finally, by virtue of the singular modulus relation

K(cos π
12 ) = √

3 K(sin π
12 ),
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Fig. 7 The curve x3 −3xy2 = 1

we get

�′
D = 1 + i

√
3

2
2 4
√
3 K(sin π

12 ) = eiπ/3 �D .

In closure, the complete lattice 
D of periods of mD is


D = Z�D ⊕ Z eiπ/3 �D .

6.2 The Humbert cubic

As a second example, let us now study the Keplerian smooth cubic H of equation

x3 − 3xy2 − 1 = 0.

This cubic was studied by M.G. Humbert, in [12], Sect. 44 Eq. (7), who provided a
parametrization in terms of Weierstrass ℘ function (Fig. 7).

The curveH , also projectively closed, has symmetry axes y = 0, x = ±
√
3
3 y; its

inflexion points are improper, with x = 0, y = ±
√
3
3 x , as inflexional lines6.

In this case, system (7), becomes

{
x ′ = 2xy, x(0) = 1,

y′ = x2 − y2, y(0) = 0.

6 Although C-projectively equivalent, the curvesH andD are notR-projectively equivalent, as shown by
the different arrangement of their inflexional tangents.
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By implementing the same process followed in the preceding case, we can find the
following analytic expression of the k-map mH

cosH (κ) =
√
3 − 1√

3 − 2 + cn(κ)

1 + cn(κ)

2
(15)

sinH (κ) = 4
√
3

√
3 − 1√

3 − 2 + cn(κ)

sn(κ)dn(κ)

1 + cn(κ)
, (16)

where

cn(u) := cn
(

2
4√3

u, cos π
12

)
,

sn(u) := sn
(

2
4√3

u, cos π
12

)
,

dn(u) := dn
(

2
4√3

u, cos π
12

)
.

Identities (15) and (16) ensure that the map mH is periodic, with period

�H = 2 4
√
3 K

(
cos π

12

) = √
3�D .

By considering that H is projectively closed, we can claim that the period of its k-
map must equal twelve times the area of the region bounded by the curve and the lines
x = 0 and y = 1√

3
x ; more precisely, accordingly to the fact that cos π

12 is a singular
modulus,

�H = 12

⎛
⎝ 1

2
√
3

+
∫ ∞

1

(
1√
3
x −

√
x3 − 1

3x

)
dx

⎞
⎠ =

√
3

2
B

( 1
3 ,

1
6

)
.

Also in this case, the components of mH are both elliptic functions, with complex
period

�′
H =

√
3 + i

2

2
4
√
3
K(cos π

12 )

= eiπ/6�D .

Setting now [
�′′

H
�′′′

H

]
:=

[−1 2
−1 1

][
�H
�′

H

]
,

we realize that �′′
H and �′′′

H generate the complete lattice 
H of periods of mH :


H = Z�′′
H ⊕ Z�′′′

H .
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But, in addition, the identity [
�′′

H
�′′′

H

]
= i

[
�D
�′

D

]

proves that the lattice 
H is congruent to 
D , via the rotation by π/2.

7 A final remark

All arguments outlined in these pages can apply for a wider class of parametric curves,
by leaving out axiom (AnK 0). Actually, that axiom simply succeeds to exhibit the
“ trigonometric” behaviour of a k-map, by displaying m(0) = i: its removal must be
remedied by giving the role of m(0) to a point picked at will in the assigned curve.
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