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Empirical evidence suggests that children with autism spectrum disorder (ASD) show

abnormal behavior during delay eyeblink conditioning. They show a higher conditioned

response learning rate and earlier peak latency of the conditioned response signal. The

neuronal mechanisms underlying this autistic behavioral phenotype are still unclear. Here,

we use a physiologically constrained spiking neuron model of the cerebellar-cortical

system to investigate which features are critical to explaining atypical learning in ASD.

Significantly, the computer simulations run with the model suggest that the higher

conditioned responses learning rate mainly depends on the reduced number of Purkinje

cells. In contrast, the earlier peak latency mainly depends on the hyper-connections of

the cerebellum with sensory and motor cortex. Notably, the model has been validated

by reproducing the behavioral data collected from studies with real children. Overall,

this article is a starting point to understanding the link between the behavioral and

neurobiological basis in ASD learning. At the end of the paper, we discuss how this

knowledge could be critical for devising new treatments.

Keywords: autism, associative learning, hyper-connectivity, system-level neuroscience, spiking neuron models,

cerebellar-cortical circuit, sensory-motor cortex, prefrontal cortex

1. INTRODUCTION

Autism spectrum disorder (ASD) is a neurobiological disorder characterized by difficulties in
social communication and restricted behavioral patterns, often including stereotyped or repetitive
motor movements, inflexible adherence to routines, and ritualized action practices (Lai et al., 2014;
Romanczyk et al., 2016). Further, there may be hyper- or hypo-reactivity to sensory input (Dakin
and Frith, 2005; Robertson and Baron-Cohen, 2017) and unusual learning trajectories (Shah and
Frith, 1993; White et al., 2009; Baron-Cohen and Lombardo, 2017). In this regard, several works
have demonstrated that ASD children show abnormal response on delay eyeblink conditioning
(DEBC) (Sears et al., 1994; Oristaglio et al., 2013; Welsh and Oristaglio, 2016). DEBC is a learning
paradigm consisting of an association between a conditioned stimulus (CS), typically a tone, and
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an overlap unconditioned stimulus (US) eliciting eyelid closure,
such as an air puff to the cornea. After repeated CS-US
pair presentations, conditioned eyelid closure (conditioned
response, CR) occurs as a response to CS. Full eyelid closure
for the CR typically occurs close to the US onset time
(Thompson and Steinmetz, 2009). During DEBC involving
ASD children, the CR learning rate is higher in the ASD
group than the typical development group (Sears et al.,
1994). Additionally, the peak latency, defined as the time
between CS onset and the CR signal maximum, occurs
significantly earlier for the ASD group (Oristaglio et al.,
2013; Welsh and Oristaglio, 2016). The neural mechanisms
underlying this atypical learning behavior are not fully clear.
This article uses an improved version of the physiologically
constrained spiking neuron model of the cerebellar-cortical
circuits recently proposed by Caligiore and Mirino (2020) to
address this issue. The cerebellum is a fundamental processing
unit for various cognitive andmotor tasks (Ivry and Baldo, 1992).
Several studies have demonstrated the importance of the
cerebellum for the acquisition and extinction of CRs in DEBC
sessions (see section 2.2.1). The learning capabilities of the
cerebellum are related to plasticity mechanisms that change
the synaptic weights of connections between different groups
of cells (Mar, 1969; Albus, 1971; Ito, 1997). Notably, this work
wants to underline the crucial role of cerebellar function
from a more complex, systems-level perspective that fully
acknowledges its close interplay with different brain areas
(Caligiore et al., 2017; Lindeman et al., 2021). In particular, the
model aims to demonstrate how two anatomic-physiological
features of the autistic brain are critical to explaining the
abnormal ASD learning path during DEBC. Firstly, the
model reproduces the fewer number of Purkinje cells, often
characterizing the autistic brain (White et al., 2009; Skefos et al.,
2014; Hampson and Blatt, 2015). Secondly, it reproduces the
effects of the cortico-cerebellar hyper-connectivity (Khan et al.,
2015; Oldehinkel et al., 2019) also typically present in the autistic
brain. The computer simulations run with the model show that
the first neural feature is critical to explain the behavioral result
on a higher CR learning rate showed by real ASD children
(Sears et al., 1994). The second feature is instead critical to
explain the results on the earlier peak latency (Oristaglio et al.,
2013; Welsh and Oristaglio, 2016). These results represent a first
step for understanding the relationship between the behavioral
and neurobiological basis of learning in ASD. Notably, this
knowledge could be critical for devising new treatments, as
discussed at the end of the paper.

2. MODEL

2.1. Simulation Tools
The model was developed using the PyNEST (Eppler et al.,
2009) Python programming language interface of the Neuron
Simulation Tool NEST (Gewaltig and Diesmann, 2007). In
particular, each neuron of the model was modeled through the
iaf _psc_exp NEST function, reproducing the features of a leaky
integrate and fire unit with exponential shaped postsynaptic
currents (Tsodyks et al., 2000). The neuron dynamics are

TABLE 1 | Values of connection weights (w), external current (Ie) and connections

delay parameter (d).

Connection weights External currents Delay parameters (Control/ASD)

wCS−→GR = 500 IeGR = 370 dCS−→GR = 100/50

wCS−→DN = 500 IePC = 380 dCS−→DN = 100/50

wUS−→IO = 100 IeIO = 370 dUS−→IO = 100/50

wIO−→PC = −500 IeDN = 370 dDN−→M1 = 100/50

wIO−→DN = 60 IeM1
= [300, 365]

wPC−→DN = −7 IemPFC = [300, 365]

wDNr−→M1 = 100

wDNp−→mPFC = 50

wNoise−→DN = [0.1, 0.5]

wGRr−→PCr = 5

wGRp−→PCp = 20

wmPFC−→M1 = 0.1

The wNoise−→DN , IeM1 and IemPFC values were randomly chosen in the given range according

to a uniform distribution. Thus, each simulated subject has different values for these

parameters. The wGR−→PC and wmPFC−→M1 values are those initial since GR-PC and

mPFC-M1 connections are plastic.

numerically integrated based on a computation time step of
t = 10m. All arriving and transmitted spikes are limited to
happen in the resulting time grid steps. Overall, the simulation
takes 2,500ms.

Most of the model parameters assume the default values of
the NEST neuron model iaf _psc_exp, reflecting the values of
the related physiological parameters derived from studies with
animals or humans. Table 1 summarizes the parameters related
to the connections between neurons and those critical to simulate
the difference between ASD and control groups. The code of
the model is accessible from this link https://github.com/ctnlab/
cerebellum_autism_DEBC_model.

2.2. Model Architecture and Functioning
Nine neural populations of spiking neurons linked through
excitatory and inhibitory connections formed the model system-
level architecture (Figure 1). Of these, two represent the primary
motor cortex (M1) and themedial prefrontal cortex (mPFC). The
remaining seven neural populations reproduce the functioning of
different parts of the cerebellum. The architecture mainly focuses
on the cerebellar anatomical and physiological features while, for
simplicity, it does not reproduce the thalamocortical dynamics.
Two critical anatomic-physiological components characterize
the model architecture: (i) a system-level organisation through
parallel cerebellar-cortical circuits (see section 2.2.1); (ii) granule
cells subpopulations with different time-sensitivity (see section
2.2.2). Below, we discuss in detail these two features.

2.2.1. Parallel Cerebellar-Cortical Circuits
The cerebellar model builds on well-established spiking neuron
architectures (Antonietti et al., 2018; Geminiani et al., 2018).
In particular, 1536 Granule cells (GR), 48 Inferior olive cells
(IO), 48 Purkinje cells (PC), and 24 Deep cerebellar nuclei (DN)
made it. The input signals go to GR and DN (CS) and IO (US)
through connection weights, respectively, simulating the signal
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FIGURE 1 | Model architecture. The rectangles indicate the cerebellar regions; the circles represent the cerebellar, inferior olive, and cortical neural populations. The

connections linking different areas can be plastic (dashed lines) or fixed (solid lines) or fixed and hyper-connected in ASD model (dotted lines); excitatory (arrows) or

inhibitory (lines ending with a dot). The subscripts “m” and “c” indicate the motor and cognitive pathways, respectively.

preprocessing action of mossy and climbing fibers. In this way,
the spreading of the activation through the cerebellar regions
is only possible if there is some input (CS or US). Otherwise,
all the cerebellar regions are silent and, in turn, mPFC and M1
are quiet too. The number of units within each region makes
the simulations computationally feasible while resembling the
biological ratios (DAngelo et al., 2016). Two parallel cerebellar-
cortical circuits anatomically compose the model (Figure 1),
each containing half of the total number of neurons: the
motor pathway (GRm-PCm-DNm-M1); the cognitive pathway,
including mPFC (GRc-PCc-DNc-mPFC-M1).

These two pathways process the signal with a different time-
sensitivity (see section 2.2.2 below). Moreover, the cognitive
pathway influences the system motor behavior through the
connections linking mPFC to M1. This organization agrees with
data suggesting that the cerebellum is connected with various
parts of the frontoparietal cerebral network through a set of
parallel circuits, channels (Middleton and Strick, 2000; Dum
and Strick, 2003), managing different cortical contents including,

for example, actions or memory patterns (Strick et al., 2009;
Caligiore et al., 2013, 2017). In particular, Bernard et al. (2014)
firstly report a motor network involving the dorsal dentate,
anterior regions of the cerebellum, and the precentral gyrus in
the motor cortex and a cognitive network involving the ventral
dentate, Crus I, and prefrontal cortex. The motor pathway is
essentially involved in DEBC, whereas the cognitive route could
have a modulatory role (McCormick and Thompson, 1984;
Hardiman and Yeo, 1992; Ernst et al., 2016). Moreover, several
data support the influence of the prefrontal region over primary
motor areas (Miyachi et al., 2005; Narayanan and Laubach, 2006;
Nardone et al., 2019). Some works indicate that M1 is weakly
involved in learning during DEBC (Ivkovich and Thompson,
1997), mainly supporting the motor role of the red nucleus
(RD) (Pacheco-Caldern et al., 2012). Other studies show precisely
the opposite, providing ample evidence for the fundamental
role of M1 in modulating CR (Aou et al., 1992; Birt et al.,
2003; Ammann et al., 2016) and the auxiliary function of RD
(Chapman et al., 1988; Anderson and Keifer, 1997). The RN is
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quite rudimentary in humans, likely due to the development of
the corticospinal tract and the pyramidal system (Ulfig and Chan,
2001; Hicks et al., 2012).The model proposed here intends not
to establish which of the two hypotheses is correct but rather
to reproduce the core dynamics present in the ASD cerebellum.
Notably, the model simulated a central mechanism that explains
CR acquisition in DEBC operating within cerebellar circuits
before reaching the brain regions that implement movement.
Therefore, for simplicity, the model presents only the M1
neural population as the cortical target region of the motor
cortico-cerebellar pathway.

2.2.2. Granule Cells Subpopulations With Different

Time-Sensitivity
The model reproduces one of the most remarkable cerebellum
properties: its control in motor operations timing (Mauk and
Buonomano, 2004). For this purpose, the model simulates the
observed cerebellar granular neurons time-sensitivity according
to which different cells are active to varying moments during
conditioned stimuli (Medina et al., 2000). The interplay between
mossy fibers, granule, and Golgi cells supports this process.
According to the time-window matching hypothesis (D’Angelo
and De Zeeuw, 2009), the mossy fibers inputs to the granular
layer are transformed into well-timed spike bursts by intrinsic
granule cell processing. The feedforward Golgi cells inhibition
sets a limit to the duration of such a spike. These activities are
spread over particular fields in the granular layer to generate
ongoing time-windows to control interacting motor domains
properly. The different time-sensitivity of granule cells has
vast implications for associative learning processes operating
within the olivo-cerebellar-cortical system. Indeed, the synaptic
plasticity might favor the activation of specific granule cell
groups concerning particular time windows. The model uses
two temporal kernel functions (Figure 2) to capture the effects
of granule cells time sensitivity on long-term depression (LTD)
processes operating within the parallel fibers.

These functions correlate the past activity of a single granule
cell with each spike from the inferior olive (US) in different ways
to construct predictive dynamic responses during associative
learning. The IO neurons afferent to the PC emit a spike with
t = −0.02 s because the US stimulus has a duration of 20 ms
and finishes with the CS stimulus at t = 0, to comply with
the DEBC paradigm. The "motor" kernel (Figure 2 dashed line)
mainly influences the activity of the GRm-PCm-DNm-M1 path
and supports high CS-US correlation when the stimulus duration
is small (function peak at 150 ms). This kernel function starts
to produce an effect on the input signal 100 ms before IO-spike
arrival, in agreement with the physiological delay suggested by
the biology (Kettner et al., 1997; Ros et al., 2006). By contrast,
the “cognitive” kernel (Figure 2 solid line) mainly modulates the
activity of the GRc-PCc-DNc-mPFC-M1 path and allows high
CS-US correlation when the stimulus duration is more extended
(function peak at 250 ms). These features make the model able
to process stimuli of different duration and address both trace
and delay paradigms (Caligiore andMirino, 2020). The following

FIGURE 2 | Kernel functions used for GR and PC synaptic long term

depression (LTD). Both functions are convolved with the spike train of the

afferent parallel fibers (all spikes emitted for t < 0 sec). This provides a

measure of past parallel fibers activity setting the synapse eligibility to

depression when the inferior olive (IO) neuron afferent to the PC emits a spike

(t = −0.02 sec). Motor and cognitive kernels are respectively indicated with

dashed and solid lines.

equation generates the kernel functions:

K(t) = a · exp

(

−

∣

∣(t + c) · a
∣

∣

b

f

)

· −sin

(

t + c

e

)d

(1)

where a = 15, b = 1.8, d = 0.75, f = 1.3 are parameters used to
both normalize the kernel function and to regulate the strength
of the associative learning processes, e is the Napier number, and
c is a parameter used to control the function translation along
the x-axis (c = 0.1 and c = 0.2, respectively for the motor and
cognitive kernels). The Equation (1) corresponds to a second-
order differential system solution and its rationale to model GR
time sensitivity can be found in Ros et al. (2006), Carrillo et al.
(2008), and Luque et al. (2011). The effects of the different granule
cells time-sensitivity propagate over M1 and mPFC, supporting
these cortical areas functioning at different time-scale, with M1
processing information faster than mPFC (Kiebel et al., 2008).

2.2.3. Connections
The motor and cognitive pathways have the same cerebellar
anatomical organisation. For each pathway, GR units receive CS
and are connected to PC neurons through the parallel fibers. The
IO neurons process US and project to PC through the climbing
fibers (Thompson and Steinmetz, 2009). Both CS and US are
spike trains generated with the NEST function spike_generator,
setting a spike frequency of 100 spikes per second (sp/s). PC
neurons combine the information coming from both GR and
IO. The DN neurons represent the cerebellar output. This
area receives CS, excitatory signals from IO and inhibitory
connections from PC (Dum and Strick, 2003; DAngelo et al.,
2016). The DN neurons belonging to the motor and cognitive
pathways project, respectively, to M1 and mPFC (Kelly and
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Strick, 2003). Finally, mPFC projects to M1 modulating its
activity (Miyachi et al., 2005). The average firing rate of M1
neurons represents the CR. Aside from the IO-PC connections,
which are “one-to-one,” the connections linking the model areas
are “all-to-all.”

All neurons are stimulated by an external current Ie simulating
the effects of the external signals supplied by other areas not
reproduced in the model (Tsodyks et al., 2000). For each model
area, we set the values of Ie to pre-activate cells avoiding at
the same time too spurious activity covering the effects of
the main signals CS and US. Also, we used a noise signal
(Noise) to stimulate DN neurons, simulating the spurious
effects on neural activation due to the intrinsic neural noise
(Schweighofer et al., 2004). Spike train, generated through a
Poisson process having a given frequency rate, represents the
Noise. This assumption agrees with empirical evidence and
models showing that Poisson processes approximated cortical
spikes temporal distribution (Poznanski, 2011). The NEST
function poisson_generator simulated the Poisson process with
the following parameters: mean firing rate (rate = 2500 sp/s);
time origin of the simulation (origin = 1 ms); beginning of
device application to origin (start = 1 ms); termination of device
application to origin (stop = 2, 500 ms). Within the model nine
synaptic connections are static (CS-GR, CS-DN, US-IO, IO-PC,
IO-DN, PC- DN, DN-M1, and DN-mPFC) (Figure 1, solid or
dot lines) while the other two (GR-PC, mPFC-M1) are plastic
(Figure 1, dashed lines). Table 1 summarizes the Ie values and
the connections parameters used in the model. The Table 1 also
shows the connections delay parameters we used to reproduce
the effects of different connectivity between ASD and the control
group (see section 2.2.5 for more details).

2.2.4. Plasticity Mechanisms
The plasticity rules described below drive the weights change of
the plastic connections during the training sessions, increasing
the weights by long term potentiation (LTP), or decreasing them
by long term depression (LTD). The LTD implemented at the
GR-PC synapses is an associative weight decrease triggered by
spikes from IO (Ito, 2001). The LTD algorithm uses the temporal
kernels shown in the Figure 2, which correlate each spike from
IO (US) with the past activity of GR (CS) (Caligiore et al., 2019a;
Caligiore and Mirino, 2020). The spike train supplied to the
GR-PC afferent connection (all CS spikes emitted for t < 0 s
in the Figure 2) is separately convolved with both motor and
cognitive kernels. In this way, it is possible to have a measure
of past parallel fibers activity that is used to set the synapse
eligibility to depression when the IO neurons afferent to the PC
emit a spike (from t = −0.02 s to t = 0.0 s in the Figure 2).
This rule maximizes learning (LTD) at synaptic sites in which
the input parallel fibers delayed activity positively correlates
with the IO signal. Hence, the kernel functions showed in the
Figure 2 help the cerebellum to acquire the capacity to produce
a predictive output. This feature is critical in associative sensory-
motor paradigms, such as delay or trace eyeblink conditioning.
In this case, indeed, the cerebellum learns to predict the precise
timing between two stimuli, CS and US, and produces a CR
precisely timed to anticipate the US onset (DAngelo et al., 2016).

Non-associative weight increase implements the LTP at the GR-
PC synapses (Lev-Ram et al., 2003). The long term plasticities for
the GR-PC connections are responsible for CR acquisition (LTD)
and extinction (LTP) (Antonietti et al., 2016). Below the equation
regulating the GR-PC LTD and LTP plasticity processes:

1wGRi−→PCj (t) =







































−
∫ tIO
−∞

K(t − x)δGRi (t − x)dx

if PCj is active and t = tIO

α if PCj is active and t 6= tIO

0 otherwise

(2)

where tIO is the time of the last IO spike arrival; K is the integral
kernel function that for learning within the motor pathway has
its peak at 150 ms before tIO, whereas for learning within the
cognitive pathway has its peak at 250 ms before tIO; δGR(t) is the
Dirac function representing the CS spike train on GRi cell; α is
the LTP learning rate set to 0.05.

Regarding the learning processes modulating the value of the
PFC-M1 connection weights, if activation of mPFC is detected
0.04 s before the activity of M1, then increases the value of
the connection weights between the mPFC-M1 synapses (LTP)
(Sjöström et al., 2001; Nevian and Sakmann, 2006). In this way,
we assume that the spike in mPFC contributes to generating
the spike on M1. Otherwise, there is LTD. Below the equation
regulating these learning mechanisms:

1wmPFCi−→M1j =



















































β if M1j is active

and tmPFCi ∈ [tM1j − 0.04, tM1j ]

γ if M1j is active

and tmPFCi 6∈ [tM1j − 0.04, tM1j ]

0 otherwise

(3)

For each simulated subject, β and γ are randomly chosen
according to a uniform distribution, respectively, in the [0.2, 0.5]
and in the [−0.015,−0.035] ranges; tmPFCi and tM1j are the
time of the spike occurring, respectively, within the mPFCi and
M1j cells.

Before associative learning, the weights of the GR-PC
connections have positive values. In this case, a CS produces
a great activity within PC layers, which generates a strong
inhibition of DN units. During associative learning, the LTD
process gradually reduces inhibition from PC to DN (Ishikawa
et al., 2014). The consequent DN activity, in turn, contributes
to obtain a greater activation of M1 (motor pathway) producing
CR, and of mPFC (cognitive pathway). The GR-PC LTD
(Equation 2) is responsible for CR acquisition, whereas the
mPFC-M1 LTP (Equation 3) makes the influence of mPFC on
M1 activity stronger after each training session (see section 3.3
for more details).
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2.2.5. Modeling Differences Between ASD Group and

Control Group
The ASD group consists of computational models that diverge
from the models used to simulate the control group in two
features: (i) reduced number of Purkinje cells (Whitney et al.,
2009; Skefos et al., 2014; Hampson and Blatt, 2015) and (ii) hyper-
connectivity of the cerebellum with sensory and motor cortex
(Khan et al., 2015; Oldehinkel et al., 2019). To computationally
reproduce (i), we reduced the PC number of both pathways from
a population of 48 units to one of 30 units. This reduction rate
agrees with literature indicating that autistic brains show 24–
50% fewer of Purkinje cells (Fatemi et al., 2002). To simulate (ii),
we modulated the signal transmission speed by tuning a delay
parameter connecting different neural populations. We assumed
that the hyper-connected connections have a lower delay in signal
transmission. Thus, to reproduce the ASD hyper-connection of
the cerebellum with sensory and motor cortex, we reduced the
delay parameter from 100 to 50ms (seeTable 1). The connections
involved in the hyper-connectivity of the cerebellumwith sensory
and motor cortex are CS-GRm, CS-GRc, CS-DNm, CS-DNc,
US-IO, and DNm-M1.

2.3. Training Protocols
We used DEBC protocols with 10 training sessions. Each training
session consists of three trials. Each trial starts just after the
previous one ends. Similarly, each training session begins just
after the last one ends. Standard training trials consist of 300 ms
CS with 20 ms US final overlapping. The delay protocol allows
controlling if the model reproduces behavioral data about the CR
learning rate, which is higher in the ASD group than in the typical
development group, and the CR peak latency of the ASD group
that occurs significantly earlier than those of the control group.

Two groups of 15 simulated children each were trained using
the protocol described above. One represents the "control group"
formed by healthy children models; the other represents the
"autistic group" formed instead bymodels with a reduced number
of Purkinje cells and hyper-connectivity of the cerebellum with
sensory and motor cortex (see section 2.2.5).

The model simulates different children using various NEST
random number generator seeds to produce different noise
signal values and different model parameters whose values were
randomly drawn from a uniform distribution (see Table 1).
The model generates data comparable to those drawn from
experiments with real children devised by Sears et al. (1994),
Oristaglio et al. (2013), and Welsh and Oristaglio (2016). These
data are relevant because they provide the first report of abnormal
conditioned response on DEBC in ASD.

3. RESULTS

This section shows the data obtained through the simulations
run with the model and aiming at: (i) reproducing the main
results on a higher CR learning rate and faster timing-response
(Peak Latency - PL) obtained with real ASD children involved
in DEBC experiments (Sears et al., 1994; Oristaglio et al., 2013;
Welsh and Oristaglio, 2016); (ii) understanding the system-level
neural mechanisms underlying such results.

3.1. Higher CR learning rate on DEBC in
ASD
We first tested the ability of the groups to acquire CRs during
the DEBC task. For each training session, the CR Rate (%) was
computed according to the following equation:

CR Rate (%) =
< FRM1 > ×100

FRM1max

(4)

where < FRM1 > and FRM1max are, respectively, the average and
the maximum M1 firing rates. These values are calculated in a
separated "test phase" at the beginning of each training session,
where there is only the CS signal in the system. In the test phase,
CR is computed in the [0, 450] ms time interval for the control
group and in the [0, 400] ms time interval for the ASD group.
This choice of using two different time intervals was made to
accurately capture the firing rate related to the CR and not to
other stimuli produced by the noise.

Figure 3 shows the behavior acquired by the two groups
during DEBC tasks. In particular, it compares the average CR rate
of each subject of the control and ASD groups. Like the results
obtained through experiments involving real subjects (Sears et al.,
1994), even with the model, the percentage of CRs is higher in the
ASD group than in the control group.

The model suggests that the neural mechanism mainly
contributing to obtain this behavioral result is the reduced
number of PC in ASD. In this respect, Figure 4 suggests that a
reduced number of PC leads to reduced DN inhibition, which
shows an early higher activation for ASD (fewer learning sessions
are sufficient to obtain the DN disinhibition). Consequently,
earlier disinhibition of DN causes an earlier activation ofM1 and,
in essence, an increase in the percentage of CR in fewer sessions
in ASD (see Equation 4).The difference of DN activation between
the two groups vanishes and even changes direction after PC
learning, favoring the control group to recover the CR expression
gap. Notably, another critical mechanism in CR expression is the
increase in weight between mPFC and M1, which plays a role in
the variation in CR expression after PC learning (see section 3.3).

3.2. Anticipatory Peak Latency on DEBC in
ASD
The simulations run with the model show that the CR peak
latency values are lower for the simulated ASD group (Figure 5).
We obtained the peak latency (PL) by averaging the time when
the maximum value of the M1 firing rate occurs (tFRM1 ) over
the time steps (n) included in a specific time window, which is
[0, 550] ms for the control group and [0, 450] ms for the ASD
group. We use two different time intervals to accurately reflect
the timing of the M1 firing rate related to the CR and not to
other stimuli generated by the noise. Below the equation used to
calculate the peak latency:

PL =

∑n
i=0 tFRM1

n
(5)

The result showed on Figure 5 agrees with data collected with
real ASD and control subjects (Sears et al., 1994; Oristaglio et al.,
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FIGURE 3 | Acquisition of conditioned response during DEBC by simulation. Data obtained with groups of 15 simulated subjects over 10 training sessions. We

compared the CR of subjects of the two groups, as the average of each session. The distribution does not respect the assumptions for the use of parametric tests.

Applying the Mann-Whitney U-test to all sessions, the difference is significant for all sessions except for session 9. Respectively p < 0.001 for sessions from 1 to 6;

p = 0.005 for session 7; p = 0.030 for session 8; p = 0.067 for session 9; p = 0.021 for session 10. Note that since we have two sets of non-parametric sample

data, we use the Mann-Whitney U-test to test the null hypothesis without correction for multiple comparisons.

FIGURE 4 | Average max firing rate of dentate nuclei (both DNm and DNc) (DN < MaxFR >) during DEBC. Data obtained with groups of 15 simulated subjects over

10 training sessions. We compared DN < MaxFR > of subjects of the two groups, as the average of each session. The distribution does not respect the assumptions

for the use of parametric tests. Applying the Mann-Whitney U test to all sessions, the difference is significant for all sessions p < 0.001.
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2013; Welsh and Oristaglio, 2016) and indicates that CR signal
reaches the peak faster for the simulated ASD group with the
same training trial.

The model suggests that the neural mechanism contributing
to this behavioral result is the hyper-connectivity between the
cerebellum and sensory-motor network in ASD. In this respect,
Figure 6 shows that this hyper-connectivity leads to fast DN
disinhibition. Consequently, earlier disinhibition of DN causes
an earlier activation of M1 and, in essence, lower CR peak latency
values in the simulated ASD group.

3.3. Brain Mechanisms Underlying ASD
Behavior and mPFC Involvement in DEBC
Figure 7 shows the effects on the neural activity of the two
brain features characterizing the autistic phenotype. First, the
lower number of PC in ASD influences the earlier greater
activation of DN (see Figure 4) and consequently the earlier
greater activation of M1, from which is calculated the CR (see
Equation 4). Comparing the activation times of the two groups,
we can also see an earlier (and greater) activation in those of
the ASD group, particularly in M1, from which is calculated the
peak latency (see Equation 5). For these neural dynamics, in the
ASD group, the percentage of CRs is higher, and the CR signal
reaches the peak faster than the control group. For both ASD
and control groups, Figure 7 also shows that after a few sessions
(Figures 7A,C), the LTD processes lead to getting a tangible
inhibition of only the PCm belonging to the motor pathway. In
contrast, the PCc of the cognitive pathway becomes inhibited
only with the progression of learning (Figures 7B,D). The M1
activity is initially mainly supported by the motor pathway and
then also by the cognitive path. Thus, mPFC (cognitive path)
exerts only a modulatory influence on the M1 activity only
after a few repetitions and not from the beginning. In this
way, the model suggests possible neural dynamics underlying
the involvement of PFC in associative learning processes found
in empirical experiments (Nardone et al., 2019). The model
also suggests that the neural processes supporting the mPFC
involvement in DEBC could be influenced by both the greater
functional connectivity betweenDN andmPFC (simulated by the
lower DNc-mPFC delay parameter) and the reduced connectivity
with M1 (simulated by the higher DNm-M1 delay parameter)
(Allen et al., 2005; Habas, 2010; Bostan et al., 2013).

4. DISCUSSION

The simulations run with the model show that the autistic brain
features reproduced by the model, namely the reduced number
of Purkinje cells and the hyper-connectivity of the cerebellum
with sensory and motor cortex, are critical to explaining the
experimental data about DEBC learning in ASD. In particular,
the higher ASD CR learning rate found from real children study
(Sears et al., 1994) and replicated by the computational model
(Figure 3) could be due to a reduced number of Purkinje cells.
The consequence of this loss is more powerful disinhibition
of the dentate nucleus (Figures 4, 7), which in turn facilitates
the associative learning processes along the motor pathway of

the model in ASD. Note how the associative learning processes
operating within the cognitive pathway and mainly involving
the mPFC-M1 circuits, critically contributes to the gradual
improvement of CR acquisition for both ASD and control
groups. Therefore, the cognitive pathway becomesmore involved
with learning, as shown in the Figure 7. Interestingly, this latter
result agrees with recent data supporting the involvement of
PFC in DEBC (Nardone et al., 2019) and suggests a possible
neural mechanism on how PFC could contribute to associative
learning processes.

The result about lower peak latency found in experiments with
real children (Sears et al., 1994; Oristaglio et al., 2013; Welsh
and Oristaglio, 2016) and reproduced by the model (Figure 5)
mainly depends on the hyper-connection of the cerebellum with
sensory and motor cortex. In the model, the effects of this
hyper-connection are reproduced manipulating the connection
delay parameter, affecting the signal transmission speed between
different neural populations. There is a higher transmission rate
in the connections between the areas where CS and US originate
and the cerebellum, so the latter receives sensory input earlier in
the ASD group than in the control group (Figure 6). Similarly,
the hyper-connectivity between the dentate nucleus belonging to
themotor pathway and themotor area allows a fastM1 uploading
in the ASD group compared to the control group.

Building on these results, newmethodologies could be devised
to act on these neural processes, for example, to manipulate
the degree of hyper-connectivity. In this respect, transcranial
magnetic stimulation (Demirtas-Tatlidede et al., 2013) or
transcranial direct current stimulation (D’Urso et al., 2015) can
be applied as therapeutic modalities in ASD subjects to reduce the
effects of hyper-connectivity and to modulate synaptic plasticity.
Besides, hyper-connectivity could be manipulated through drug
treatments, such as Memantine, NMDA receptor antagonist, that
have already tested in ASD to restore the imbalance between
excitation and inhibition (Ghaleiha et al., 2013; Uzunova et al.,
2014). All of these methodologies could be incorporated into
future versions of the model to test their effectiveness.

4.1. Related Works
Several theories underlying ASD have been formulated over the
years (Fakhoury, 2015), and some of them support our model
(Belmonte et al., 2004; Baron-Cohen et al., 2009; Markram and
Markram, 2010). Our hypothesis is in line with the numerous
studies related to the abnormal cerebellum (Hampson and Blatt,
2015) and its hyper-connectivity with the sensory and motor
cortex in ASD (Khan et al., 2015; Oldehinkel et al., 2019).

ASD subjects could show deficits in long-range
connectivity with cortical sites, producing, in turn,
impairments in cognitive functions coordination
(Courchesne, 1997; Fatemi et al., 2002; Verly et al., 2014). Recent
genetic (Gharani et al., 2004) and MRI-behavior correlation
(Akshoomoff et al., 2004; Kates et al., 2004) studies suggest
that cerebellar abnormality may play a more central role in
ASD than previously thought. The reduction in Purkinje
cell numbers would release the deep cerebellar nuclei from
inhibition, producing abnormally strong physical connectivity
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FIGURE 5 | Peak latency response during DEBC by simulation. Data obtained with groups of 15 simulated subjects over 10 training sessions. We compared the PL

of subjects of the two groups, as the average of each session. The distribution does not respect the assumptions for the use of parametric tests. Applying the

Mann-Whitney U-test to all sessions, the difference is significant for all sessions p < 0.001.

FIGURE 6 | Average timing firing rate of dentate nuclei (both DNm and DNc) during DEBC. Data obtained with groups of 15 simulated subjects over 10 training

sessions. We compared the DN timing firing rate of subjects of the two groups, as the average of each session. The distribution does not respect the assumptions for

the use of parametric tests. Applying the Mann-Whitney U-test to all sessions, the difference is significant for all sessions p < 0.001.
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FIGURE 7 | Neurons activation during DEBC simulation. Data obtained during session 2 (A,C) and session 6 (B,D), respectively by the control group (A,B) and the

ASD group (C,D).The comparison between (A,B) and (C,D) shows robust and rapid activation of M1 in the ASD group rather than in the control group.

and potentially abnormally weak computational connectivity
along the cerebello-cortical circuit (Belmonte et al., 2004).

Our model agrees with the Intense World Theory (Markram
and Markram, 2010), suggesting that hyper-sensitivity could
result from a processing difference at various sensory levels. This
difference could include the density or sensitivity of sensory
receptors, inhibitory and exhibitory neurotransmitter imbalance,
or neural processing speed. Besides, Belmonte and colleagues
suggested that local range neural overconnectivity in posterior,
sensory parts of the cerebral cortex are responsible for the
hyper-sensoriality in people with ASD (Belmonte et al., 2004).
Studies investigating the sensory profile have revealed sensory
abnormalities in over 90% of children with ASD (Kern et al.,
2006; Leekam et al., 2007; Tomchek and Dunn, 2007).
Furthermore, numerous studies report abnormal perception in
ASD in different sensory channels (Bertone et al., 2003; Cascio
et al., 2008; Jrvinen-Pasley et al., 2008). In particular, ASD

showed hyper-sensitivity to vibrotactile stimulation in the tactile
modality (Blakemore et al., 2006) and superior pitch processing
in the auditory modality (Mottron et al., 1999; Bonnel et al.,
2003). In addition, recent works support the imbalance of
excitation and inhibition in the neocortex in ASD (Hussman,
2001; Casanova et al., 2003; Rubenstein and Merzenich, 2003),
with excitation winning over inhibition. In particular, suppressed
GABAergic inhibition and increased glutamatergic excitation
(Uzunova et al., 2016).

The model proposed here does not reproduce some aspects,
such as some neurotransmitter modulatory action (Goris et al.,
2020) and the imbalance of excitation and inhibition in the
neocortex (Hussman, 2001; Casanova et al., 2003). By contrast,
the model successfully captures the evidence on the crucial role of
the cerebellum and altered sensoriality in ASD and demonstrates
that these features are critical to investigate abnormal EBC
behavior in ASD.
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5. CONCLUSION

Building on a computational modeling approach, this work
proposes that two anatomic-physiological features of the autistic
cerebellar-cortical network, the fewer number of Purkinje cells
(Whitney et al., 2009; Skefos et al., 2014; Hampson and
Blatt, 2015), and the hyper-connectivity between the cerebellum
and sensory-motor network (Khan et al., 2015; Oldehinkel
et al., 2019), are critical to explaining the neural mechanisms
underlying the ASD abnormal behavior in DEBC. In more
detail, the simulated subjects behavior is consistent with the
experimental observations in real subjects (Sears et al., 1994;
Oristaglio et al., 2013; Welsh and Oristaglio, 2016). Moreover,
the biological plausibility of model allowed us to formulate
hypotheses on the low-level neural mechanisms underlying
DEBC and to explore the relationships between ASD brain
neuroanatomy and altered behavior.

Notwithstanding these positive features, future works could
improve the model in several ways. Among these, the
introduction of more complex neuromodulatory mechanisms
could provide additional information about the detailed
neurobiological processes underlying ASD. In other words, an
enhanced version of the model could directly simulate the
action of noradrenaline, dopamine and acetylcholine (Lawson
et al., 2017), manipulating, for example, the responsiveness of
their associated receptors (Caligiore et al., 2019b). We can also
investigate the role of the environment in ASD learning. In
this respect, behavioral results show that performance in volatile
environments is lower in participants with more autistic traits
(Goris et al., 2020). Finally, the system-level hypothesis proposed
by the model could be tested through new experiments. For
example, it could be devised an experiment to compare the
behavior of three groups: typical development, low and high
functioning ASD children involved in DEBC and trace eyeblink
conditioning (TEBC) tasks. In this way, it could be possible to

investigate changes in the timing performance of CR acquired
during trace and delay eyeblink conditioning in subgroups of
ASD children. This investigation could be useful in studying the
differences in response timing between ASD subgroups during
DEBC and understanding why autistic functioning does not
diverge from that of the control group during TEBC (Oristaglio
et al., 2013; Welsh and Oristaglio, 2016).
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