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Abstract: Artificial intelligence (AI) is the field of computer science that aims to build smart devices
performing tasks that currently require human intelligence. Through machine learning (ML), the
deep learning (DL) model is teaching computers to learn by example, something that human beings
are doing naturally. AI is revolutionizing healthcare. Digital pathology is becoming highly assisted by
AI to help researchers in analyzing larger data sets and providing faster and more accurate diagnoses
of prostate cancer lesions. When applied to diagnostic imaging, AI has shown excellent accuracy in
the detection of prostate lesions as well as in the prediction of patient outcomes in terms of survival
and treatment response. The enormous quantity of data coming from the prostate tumor genome
requires fast, reliable and accurate computing power provided by machine learning algorithms.
Radiotherapy is an essential part of the treatment of prostate cancer and it is often difficult to predict
its toxicity for the patients. Artificial intelligence could have a future potential role in predicting how
a patient will react to the therapy side effects. These technologies could provide doctors with better
insights on how to plan radiotherapy treatment. The extension of the capabilities of surgical robots
for more autonomous tasks will allow them to use information from the surgical field, recognize
issues and implement the proper actions without the need for human intervention.
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1. Introduction

Prostate cancer (PCa) is the third most commonly diagnosed cancer worldwide, after
lung and breast cancer and the fifth cause of cancer-specific death in males [1]. Around
191,930 patients will be diagnosed with PCa in 2020 in the United States, with an estimated
33,330 deaths [2]. In the last few years, research was focused on diagnosis, prognosis
and prediction of PCa outcomes taking a leap through the use of Statistics and Artificial
Intelligence (AI). The use of computer-based learning models has become a predominant
area of research in PCa.

Artificial Neural Networks (ANN) have increasingly been used to build advanced
prognostic models for PCa [3]. To train a machine learning model it is enough to acquire
structured datasets including input variables and outcomes, with little knowledge of the
PCa insights. For instance, several novel tools are available for screening and diagnosis
of PCa such as genomics, magnetic resonance imaging (MRI) and biomarkers (exosomes
and molecular imaging). In this scenario, AI may have a pivotal role, first in the interpre-
tation of this enormous amount of data, second in the development of machine learning
algorithms that may help urologists to reduce the number of unnecessary prostate biopsies
without missing the diagnosis of aggressive PCa. Moreover, the use of genomics, AI and
extracellular vesicles [4] (exosomes and cell-free DNA from body fluids), can provide a
more reliable and rapid PCa test [5].

AI is defined as the ability of a computer to perceive the surrounding environment
and make the same decisions as human intellect on an action, all this to reach a certain
goal [6]. Machine learning (ML) is a subfield of AI and implies the creation and deployment
of algorithms to analyze data and its properties and is not given a task specifically based on
certain predefined inputs from the environment. ML techniques can mainly be classified
according to the type of label and feature. For labeling, ML can be classified into three
models such as supervised, unsupervised and reinforcement learning. For features, ML
can be classified into handcrafted or non-handcrafted feature-based techniques [7]. Deep
learning (DL) is a form of ML that enables machine devices (such as computers) to learn
from experience and understand the environment in terms of a hierarchy of concepts.
Computers gather experience in learning and a human does not need to pre-specify all
the data to the computer [8]. Lately, deep convolutional neural networks (DCNNs), a
modified type of AAN, have been proven to have high efficiency when applied to digitized
images, a form of computer aided diagnosis (CAD) analysis. DCNNs allowed the automatic
extraction of imaging features from digitized images in PCa [9] and it is now used to classify
PCa and benign tissues with magnetic resonance imaging (MRI) [10]. In the last few years,
DL has application in image classification, object detection, segmentation [11], the detection
of anatomical and cellular structures, tissue segmentation, device aid on disease diagnosis
and prognosis [12], with a new model emerging, which seems to perform better, called the
massive-training artificial neural network [13]. Clinical decision support systems (CDSSs)
are being developed to provide improvement in decision making. At this moment, reviews
and systematic reviews give limited data on how ML and DL techniques could provide
clinical application based on CDSSs in PCa oncological care [14,15]. Therefore, AI and ML
are still being considered an area of development. A brief explanation and glossary of
technical terms is provided in Table 1.
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Table 1. A glossary of Artificial Intelligence (AI) Terms.

Technical Term Short Definition

Artificial Intelligence (AI) Any technique that enables machines to mimic
human behavior [6]

Artificial Neural Network (AAN)
A mathematical statistical model imitating the
human brain in processing data and creating

patterns used in a decision making process [16]

Machine Learning (ML)
A subset of AI which learns from experience without

being explicitly programmed in order to deliver
specific outputs [17]

Deep Learning (DL)

A subset of ML structured similar to the human
brain processing, using large multiple data sets at

the same time, evaluating and reprocessing multiple
time to reach an output [18]

Convolutional Neural Network (CNN) An AAN that is particularly efficient when applied
to digitized images and pattern recognition [19]

This review focuses on the analysis of the last five years’ published papers on AI and
ML techniques by scrutinizing PubMed, Web of Science and Science Direct, using prostate
cancer, biomarker, genomics, artificial intelligence and artificial neural networks keywords.
We had also included the AI leading studies from later years or data on other diseases. The
goal was to give an overview of the current evidence and future directions of AI in all the
clinical management of prostate cancer patients from the diagnosis to the treatment.

2. AI in Digital Pathology of Prostate Cancer
2.1. Developments in Optical Image Analysis

Since 2010, Pantanowitz et al. [20] have talked about digital imaging and digital
imaging processing. Digital whole histopathological slides are more interactive, easy
to share, involve less preparation time and generate teaching sets (virtual slide boxes).
Telepathology and image analysis by ML, using several algorithms such as computer
assisted image analysis is something that has greater precision than the traditional mi-
croscope. The whole slide imaging, such as slide preservation over time, new handling
of images, telepathology, quality assurance, education and collaborative research make
the ML more easily understandable [21]. With the help of an augmented optical light
microscope that enables the real-time integration of AI, Chen et al. [22] developed and
evaluated deep learning algorithms for the fast identification of PCa. Further studies are
needed to optimize the process.

2.2. Differentiation of Cellular Structures and Tissues

Nevertheless, quantitative morphometric features coming from image analysis may
play a pivotal role in the diagnosis of PCa [23]. Some of the features have been included in
automatic classifiers to differentiate stroma, normal glands and malignant tissue in PCa.
With access to large sets of digitized tissue images from tissue microarrays (TMA), at the
National Institutes of Health, Kwak et al. [24] used five different methods to identify cellular
structures and the performance of the multi-view boosting methods. For the differentiation
of cancer from benign tissue, the multi-view boosting classification showed a significantly
higher AUC (area under the curve) (0.98 95% CI 0.97–0.99) compared to the single-view
classifications (p-value < 0.01) and outperformed the single view approach, which will
increase the accuracy, robustness and utility of digital pathology tools analysis of tissues. In
an observational study, Arvaniti et al. [25], on a training dataset of TMAs from 641 patients,
small image patches extracted from benign tissue and PCa annotated regions were used
to train a patch-based classifier. The stratification achieved by the authors’ deep learning
patch model, separated the low-risk and intermediate-risk groups significantly greater than
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the one achieved by either pathologist (Benjamini-Hochberg-BH-corrected two-sample log
rank p-value = 0.098), respectively (BH-corrected two-sample log rank p-values = 0.79
and 0.292) and the model revealed a close inter-observer agreement (with kappa = 0.71 and
0.75) which was seen between two ground truth pathologists (kappa = 0.71).

2.3. Demographic and Histopathology Reports Data

Roffman et al. [26] developed and validated a multiparametric ANN for PCa risk
prediction and stratification. Based on clinical and demographic characteristics, the pre-
histopathological status allowed the model to predict PCa risk. The ANN model yielded
high specificity (89.4%) and low sensitivity (23.2%) for the prediction of prostate cancer
risk. Lenain et al. [27], enlisting histopathological data from 4470 PCa patients, used
different machine learning approaches to analyze the staging information for T(tumor),
N(nodes) and M(metastasis), such as support vector machines (SVM), random forest (RF),
and extreme gradient boosting (XGB). They used for analyzing the ML model performance
model, the precision, recall and F-Score a measure of a model’s accuracy on a dataset [28],
as the metrics and obtained classification of pathology best result for N (F1-Score 0.98) and
M (F1-Score 0.99).

2.4. Whole Slide Image Analysis in Prostate Biopsies (Cancer Detection and Grading) and
Performance Comparison of AI Models and Pathologists

Ström et al. [29] digitized 6682 slides from needle core biopsies of 976 patients and
271 from 93 men outside the study, then trained a DNN, evaluating the prediction of its
presence, its extent and Gleason grade of cancer. The correlation between model and
assigned pathologist was AUC 0.96 to detect cancer and a mean pair wise kappa 0.62 for
assigning Gleason grades. Litjens et al. [30], with the data from 225 glass slides of PCa
biopsies, trained a deep learning CNN, a network that can be applied to every pixel in
a whole slide image, this in order to detect PCa in the biopsy specimens, with an AUC
for the 90th percentile analysis of 0.98 in slide detection cancer. Campanella et al. [31]
evaluated the framework of whole slide images for prostate, with the goal of avoiding
expensive and time-consuming pixel-wise manual annotations, obtaining best results on
the prostate dataset (N = 24,859) with an AUC of 0.989 at 20 times optical magnification
and the automated removal of 75% of slides resulted in no loss in sensitivity. One year
before, Campanella et al. [32], using 12,160 whole slide images, 2424 positive and 9736
negative, trained on the full dataset an AlexNet and a ResNet18 network, and pretrained
on various image models on ImageNet, achieved results with their best model on the
ResNet34 and VGG11-BN of 0.976 and 0.977 AUC, respectively. In PCa classification from
histopathologic images, patch-wise cross-validation and single pathologist lead to biases,
therefore using patient based cross-validation and the opinion of several experts [33,34],
because it is well known that the PCa grading, which is variable with the experience of
urologic pathologist [35], will lead to the better performance of classification methods.
Nagpal et al. [36], trained a DL system on 1557 slides, and compared it to a reference
standard provided by 29 pathology experts (mean accuracy was 0.61 on the validation
dataset), and the model reached a higher diagnostic accuracy of 0.70 (p = 0.002), and is
better leaning for patient stratification risk. A convolutional network analysis (CNN) by
Lucas et al. [37] shows that, with proper training, the CNN can differentiate areas that are
not atypical and malignant areas with an accuracy of 92%, with a sensitivity and specificity
of 90% and 93%, respectively. Lately, Raciti et al. [38] published the results of how an
AI system like Paige Prostate Alpha can influence pathologists during the diagnosis of
PCa on biopsy needle cores. In diagnosing PCa with Paige Prostate Alpha, sensitivity for
all pathologists increased with the AI system (average sensitivity without Paige Prostate
Alpha: 74% ± 11%; with Paige Prostate Alpha: 90% ± 4%). To determine the Gleason
grade groups, they found an increase in average sensitivity with a Paige Prostate Alpha of
20% for Grade group 1, 13% for Grade group 2 and 11% for Grade group 3, allowing the
pathologist to better classify lower grade groups.
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A population-based, diagnostic study aimed to identify PCa by an AI system, training
deep neural network (DNN) can lead to better identification of the malignant from the
benign cores of prostate biopsies (AUC 0·997(95% CI 0.994–0.999) for the independent test
dataset (benign = 910, malignant = 721) and 0·986 (0.972–0.996) for the external validation
dataset (benign = 108, malignant = 222) and further fine tuning of the AI system will allow
for better stratifying Gleason grading groups because they identified that the performance
dropped in cancer length predictions and overall Gleason grading [29].

In another large trial published by Bulten et al. [39], they analyzed 5759 PCa core
biopsies from 1243 patients and trained the deep-learning system to detect Gleason grade.
In the test dataset, the deep-learning system achieved an AUC of 0·990 on determining the
malignancy of a biopsy, on the observer set an AUC of 0.984 and the system outperformed
10 out of 15 pathologists and achieved the same results as the reference standard both for
Grade group 2 or more (AUC 0.978, 0.966–0.988), and a grade group of 3 or more (AUC
0.974, 0.962–0.984). There are also limitations to the system because pathologists can assess
the volume more qualitatively and the system counts the exact area of the individual glands
and the findings of Egevad et al. [40] should be used to improve calibration of AI systems.
Therefore, Bulten et al. [41] published yet other results showing that the limitations can be
addressed if AI is assisting pathologists rather than having a competition in assessing the
performance of either pathologists or AI systems. The list of studies discussing different
types of algorithms used to train the models, which were looking into Gleason grading
of biopsies, TMAs, whole section, the amount of data used and their results are listed in
Table 2.

In summary, all evidence up to this moment shows that the AI systems are in need
of further development to help and assist pathologists to provide an accurate diagnosis.
AI could provide in the future the necessary aid in histopathological diagnosis, especially
in remote areas and health systems that need the expertise of highly trained pathologists.
Before any clinical setting usage of such systems they will have to be approved by health
regulators. The quest for personalized approach in PCa, the quantitative histopathological
diagnosis will have to provide pathologist with new tools to increase the sensitivity and
specificity of more accurate readings of the tissue images and AI seems to provide this
better and faster.
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Table 2. AI studies, type of training in accordance to Gleason grading of biopsies, tissue microarrays (TMAs) and whole section and their results.

Article/Reference Image Type Image Analysis Method Number of Slides or
Patients (N) Task Results

Campanella et al. [31] Whole slide images Multiple instances learning
based, deep learning N = 24,859 slides Automated cancer detection Model achieved AUC over 0.98

Campanella et al. [32] Whole slide images Multiple instances learning
based, deep learning N = 12,160 slides Automated cancer detection Modelachieved an AUC of 0.98 and a false negative

rate of 4.8%

Litjens et al. [30] Whole slide images Deep learning, CNN N = 225 slides Automated cancer detection AUC for the 90th percentile analysis of 0.98 in slide
detection cancer

Arvaniti et al. [25] Tissue microarrays Deep learning, CNN N = 641 patients Automated Gleason grading
Model revealed a close inter-observer agreement (with
kappa = 0.71 and 0.75) which was seen between two

ground truth pathologists (kappa = 0.71).

Lenain et al. [27] Words analization Natural language processing N = 4470 patients Classify free-text pathology reports Classification of pathology best result for N
(F1-Score 0.98) and M (F1-Score 0.99)

Ström et al. [29] Whole slide images Deep learning, CNN N = 6682 slides Automated cancer detection and
Gleason grading

Correlation between model and assigned pathologist
was AUC 0.96 to detect cancer and a mean pair wise

kappa 0.62 for assigning Gleason grades

Nagpal et al. [36] Whole slide images Deep learning, CNN N = 1557 slides Automated Gleason grading Model achieved accuracy of 0.70 compared to 29
pathologists (0.61) on the validation set, p = 0.002

Raciti et al. [38] Whole slide images Paige Prostate Alpha Deep
learning, CNN N = 304 slides Automated cancer detection and

Gleason grading

Diagnosed PCa with Paige Prostate Alpha, sensitivity
for all pathologists increased with the AI system

(average sensitivity without Paige Prostate Alpha:
74% ± 11%; with Paige Prostate Alpha: 90% ± 4%).

An increase in average sensitivity with Paige Prostate
Alpha, of 20% for Grade group 1, 13% for Grade group

2 and 11% for Grade group 3

Bulten et al. [39] Whole slide images Deep learning, CNN N = 1243 patients Automated Gleason grading

Model achieved the same results as the reference
standard both for Grade group 2 or more (AUC 0.978,

0.966–0.988), and grade group of 3 or more (AUC
0.974, 0.962–0.984)

Abbreviations: AUC—area under the curve, Abbreviations: CNN—convolutional neural network, kappa—Cohen’s quadratic kappa statistic, AI—artificial intelligence, PCa—prostate cancer.
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3. AI in Diagnostic Imaging of Prostate Cancer
3.1. ML in MRI Imaging Tools in PCa

Early attempts to fusion pathology with imaging have been performed since 1991 by
Schnall et al. [42], with limited success to correlate radiographic and pathological features.
In 2012, Ward et al. [43] evaluated a technique to perform digital registration of images
from histopathology and in vivo MRI using image-guided specimen slicing based on
strand-shaped fiducial markers. Since 2014, Litjens et al. [44] have used segmentation and
characterization of MRI images using several models (analyzing digital prostate images,
pixels for basic image analysis) represents the base for the more recently discovered and
applied methods. Segmentation of prostate is very important for identifying its deformable
capsule, has application in prostate fusion biopsy, brachytherapy and can be done with
the help of MRI and transrectal ultrasonography (TRUS). In a multi-institutional study,
Gaur et al. [45] have shown that artificial intelligence based detection, improved specificity
combined with PI-RADS (Prostate Imaging-Reporting and Data system) v.2 (version 2)
categorization and they found a sensitivity for the described images for PIRADSv.2 ≥ 3
of 78%. Here, the greatest benefit was seen in the transitional zone (TZ), where it helped
moderately experienced readers to achieve the level of the well experienced radiologists
and help to improve the reading of the transitional zone was of 83.8% sensitivity with
automated detection versus 66.9% with MRI alone [45].

Abdollahi et al. [46] used radiomics based models on T2 weighted images (T2W) that
were more reliable than apparent diffusing coefficient (ADC) in MRI data, as apparent
diffusing coefficient for Gleason score for staging of the disease seems to perform better.
Lately, Dulhanty et al. [47] have used novel radiomics with ADC and computed high-b
value diffusion weighted imaging (CHB-DWI) modalities for prostate cancer diagnosis
with a better performance than a clinical heuristics driven strategy. Another DL based
approach, presented by Aldoj et al. [48], a CNN using different 3D combinations (ADC,
diffusion weighted imaging (DWI), T2 weighted images) with an AUC of 0.91 at 81.2%
sensitivity and 90.5% specificity, compared to a radiologist using PI-RADS v2 [49].

The two PROSTATEx Challenges were an effort to improve, with the help of CAD,
the classification of clinically significant PCa and the characterization of the Gleason grade
group. The PROSTATEx Challenge involved quantitative image analysis methods to ana-
lyze prostatic lesions, and the PROSTATEx-2 involved quantitative MRI biomarkers for
the determination of Gleason grade group in PCa [50]. As time passed, in 2020, de Vente
et al. [51] characterized another computerized model, involving deep learning regression,
in bi-parametric MRI examination, soft-label ordinal regression improves the performance
of PCa grading and detection from biparametric-MRI over earlier presented methods. A
retrospective analysis [52], using the data collected in 2017 from the PROSTATEx Chal-
lenges, trained a CNN model and the best input achieved in this study was a combination
of T2-weighted images, ADC and DWI, and the results were that an end-to-end training
of the CNN model, with data from different scanners and protocols, can be generalized
and more validation in the future is needed. To minimize the interference of different
MRI scanners and image acquisition protocols, Sunoqrot et al. [53] proposed a model that
uses automatic (dual fat and muscle reference approach), signal intensity normalization to
improve T2-weighted MR images of the prostate using object recognition, and significantly
higher AUC (0.826 vs. 0.769) for the classification of histologically diagnosed peripheral
zone tissues compared to the other methods. Because of the variation between diagnoses
of different radiologist using PIRADS for assessing prostate lesions, a DL was developed
further to help with the characterization of clinically significant PCa, and the results were
that the CNN trained has the similar power as an experienced radiologist [54]. New MRI
techniques are developed to improve the quality and acquisition time of image sequences,
quantitative imaging, computer-aided diagnosis and artificial intelligence (luminal water
imaging -LWI, Restriction spectrum imaging–RSI, vascular, extracellular and restricted
diffusion for cytometry in tumors-VERDICT, hybrid multi-dimensional MRI-(HM-MRI),
MR fingerprinting (MRF), segmented or multi-shot DWI), to better detect, characterize,
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diagnose and predict prognoses for PCa [55]. Many of the examples of algorithms used
have to train to define each zone that is in a spatial label on MRI, to be in accordance with
the Gleason score of each tumor. For sure, spatial annotation at full resolution of the digital
histopathological images will improve the ability of the machine learning techniques to
differentiate normal versus malignant tissues [56].

3.2. ML in TRUS Imaging in PCa

Karimi et al. [33] identified a model that means patch-based training and evaluation
could lead to significant overestimation of a model’s predictive accuracy. The importance
is that patient-based training and evaluation is the only acceptable method for developing
machine learning models in this application. The DL network is trained to extract and to
learn its own features on the basis of the raw image to improve the classification of the
image compared with the ML approach [7].

AI can help by decreasing the time of reader that interprets the data; therefore, there
will be an increase in the performance of radiologists. Applications of AI to prostate
MRI can specifically increase the sensitivity of PCa detection and decrease inter-reader
variability [57].

Compared to the clinical TRUS segmentation, the Zeng at al. [58] method that used
the CNN statistical shape model was able to achieve lower volume matching results in all
prostate regions, but especially at the base and apex. Karimi et al. [59] proposed a new
CNN architecture for prostate clinical target volume segmentation in TRUS images, which
computes multi-scale features directly from the input images, which learns similarities in all
training images, then cross-validated them, and developed a method to improve uncertain
segmentations based on the estimated uncertainty map and the expected shape. Feng
et al. [60] proposed a new method, which extracts features from both the spatial and the
temporal dimensions by performing three-dimensional convolution operations and when
compared to other methods this method achieved a sensitivity of 82.98 ± 6.23, a specificity
of 91.45 ± 6.75 and an accuracy of 90.18 ± 6.62 in PCa detection using contrast enhanced
ultrasonography (CEUS), anti-PSMA (prostate specific membrane antigen) and the non-
targeted blank agent as contrast agents. Wildeboer et al. [61] assessed the potential of
ML B-mode, shear-wave elastography (SWE) and dynamic contrast-enhanced ultrasound
(DCE-US) with a high result compared to contrast velocity with an AUC of 0.75 and 0.90
for PCa and Gleason > 3 + 4.

3.3. Combined MRI and TRUS for ML in Prostate Cancer

Fusion biopsy relies on distant past frames and newly acquired in real time TRUS and
proper segmentation using MRI and TRUS. Moving from state-of-the art techniques that
use the deep CNN in visual recognition tasks and that have superior performance in obtain-
ing reliable images for prostate mapping in brachytherapy techniques [62], Anas et al. [63]
proposed an automatic prostate segmentation technique that incorporates temporal infor-
mation of TRUS images to improve the segmentation accuracy and has the ability to enable
real-time deformable registration and improved biopsy guidance. A CNN was proposed
for the registration of T2-weighted MRI and 3D TRUS volumes of the prostate [64] and then
a hybrid 3D/2D U-Net CNN (the Hybrid 3D/2D U-Net was trained on 3D images and then
completed object detection and segmentation on 2D images) approach to prostate organ
segmentation was described as having good performance in regard to prostate segmen-
tation and volumetric evaluation [65]. Liu et al. [66] recruited 50 confirmed PCa patients
with a Prostate Imaging-Reporting and Data System version 2 (PI-RADS v2) score of 4 or
5. Logistic regression based on the first and strongest enhancement phase (Dataset-FS)
integration; enhanced phases of dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) can lead to the diagnostic ability of the model to predict PCa invasiveness with
a noninvasive accuracy of 0.90. Ishioka et al.’s [67] model of computer-aided diagnosis,
based on a CNN algorithm combined with U-net with ResNet50, showed AUC values in
the two evaluation data sets, 0.645 and, respectively, 0.636, for estimating the designated
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area in which targeted biopsy confirmed the presence of PCa, and AUC values had im-
proved as the DL progressed and they found an improvement in diagnostic accuracy by
lowering the number of patients mistakenly diagnosed as having cancer. The accuracy of
an imaging diagnosis and the improvements related to developments in DL techniques
could further lower the inter and intra-observer variability and make faster learning curves
in reading PCa scoring systems such as PI-RADS. A summary of the included studies and
their different imaging used modalities, combinations and techniques, artificial intelligence
used methods and their performance are listed in Table 3.

Table 3. Different imaging modalities and techniques, AI method and performance and combination of imaging modalities.

Article/Reference Imaging
Modality Imaging Technique AI Method Performance

Litjens et al. [44] MRI T2W, PD, DWI, DCE RFC AUC 0.89

Gaur et al. [45] MRI T2W, DWI, DCE, ADC RFC

Benefit in TZ for moderately-experienced readers at
PI-RADSv2 < 3 (84% vs mpMRI-alone 67%, p = 0.055),

and PI-RADSv2 ≥ 3, CAD improved patient-level
specificity (72%) compared to mpMRI-alone (45%,

p < 0.001).

Zeng et al. [58] MRI,
TRUS T2W, B-mode CNN Reduction in the segmentation error at base and apex,

5–10% reduction in aRVD.

Karimi et al. [59] TRUS B-mode CNN CNN method outperformed other methods in DSC,
HD p = 0.01

Feng et al. [60] TRUS CEUS CNN
Sensitivity of 82.98 ± 6.23, specificity of 91.45 ± 6.75

and accuracy of 90.18 ± 6.62 compared to
other methods

Wildeboer et al. [61] TRUS B-mode, SWE, CEUS RFC AUC 0.90 for PCa and Gleason >3 + 4, outperforming
contrast velocity

Hu et al. [64] MRI,
TRUS T2W, 3D B-mode GMM

Median target registration error of 3.6 mm on
landmark centroids and a median Dice of 0.87 on

prostate glands

Liu et al. [66] MRI T1W, T2W, DWI, DCE SVM, RF, RFC, DT, KNN KNN—best predict efficacy
AUC-0.88; accuracy-0.85

Ishioka et al. [67] MRI T2W CNN AUC 0.645 estimating the designated area in which
targeted biopsy confirmed the presence of PCa

Abdollahi et al. [46] MRI T2W, ADC CNN

For GS prediction, T2 W radiomic models more
predictive (mean AUC 0.739) than ADC models

(mean AUC 0.70). For stage prediction, ADC models
higher prediction performance (mean AUC 0.675)

Aldoj et al. [48] MRI T2W, ADC, DWI CNN AUC of 0.91 at 81.2% sensitivity and 90.5% specificity,
compared to radiologist using PI-RADS v2

de Vente et al. [51] MRI T2W, ADC, DWI CNN
Voxel-wise weighted kappa of 0.446 ± 0.082 and a
Dice similarity coefficient for segmenting clinically

significant cancer of 0.370 ± 0.046, above ProstateX-2

Sunoqrot et al. [53] MRI T2W CNN
Healthy vs. malignant classification also improved
significantly (p < 0.001) in peripheral (AUC 0.826 vs.

0.769) and transition (AUC 0.743 vs. 0.678) zones.

Abbreviations: RFC—random forest classifiers, DSC—dice similarity coefficient, HD—Hausdorff Distance, GMM—gaussian mixture model,
CEUS—contrast enhanced ultrasonography, PD—proton density imaging, SWE—shear wave elastography, ADC—apparent diffusing
coefficient, T2W—T2 weighted imaging, T1W—T1 weighted imaging, DWI—diffusion weighted imaging, DCE—dynamic enhanced
contrast imaging, SVM—support vector machine, RF—random forest, DT—decision tree, KNN—K-nearest neighbor.

4. AI in Prostate Cancer Genomics

In order to predict individual outcomes in patients with PCa, there is an increased
interest in the genomics of PCa and how the alterations in the PCa genome can change
the individual evolution of his PCa [68]. In the last five years there has been a scarcity of
scientific data in terms of genetic research, with an increase in the last few years.
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4.1. ML Approach in mRNA, miRNA and SNPs (Single Nucleotide Polymorphisms)

A few data are available from 2016, when Bertoli et al. [69], using a meta-analysis
approach, identified through an ML approach a group of 29 miRNAs that can be used for
diagnostic purposes and a group of 7 miRNAs that may have prognostic abilities. MacInnis
et al. used a novel analysis method, back in 2016, with the dependency of association on
the number of Top Hits, that identified 14 regions associated with PCa using a conventional
logistic regression analysis of individual single-nucleotide polymorphisms [70]. Decipher
uses a random forest algorithm to predict PCa metastatic disease [7,71]. Another study of
Lee et al. [72] used ML (pre-conditioned random forest regression) and bioinformatics tools
to assess, on genome based study, the conditions that appear after radiotherapy and to
predict late toxicity, resulting in a statistically significant prediction model (p = 0.01), only for
weak stream. DNA methylation markers have been identified as having diagnostic ability.

4.2. ML in Gene Expression and Gene Activity

Hou et al. [73] used a genetic algorithm optimized artificial neural network to establish
a diagnostic model that showed good results for the diagnosis (AUC = 0.953) and prognosis
(AUC of 5 years overall survival time = 0.808) of PCa. Liu et al. [74] identified 12 CpG (cyto-
sine and guanine on a genome) site markers and 13 promoter markers, using a deep neural
network model, from an initial pool of 139,422 CpG sites, and the promoter methylation
data contained 15,316 promoters and applied three machine learning strategies (moderated
t-statistics, LASSO, and random-forest).This might further be used for liquid biopsy of
cancers. Lately, Hamzeh et al. [75] used a combination of efficient machine learning meth-
ods (Support Vector Machine (SVM)-Radial basis function kernel (SVM-RBF), Naive Bayes,
Random Forest) to analyze gene activity and to identify the genes for the presence of PCa
(on one side or both sides). The highest accuracy and precision for the different classifiers
came from the SVM-RBF classifier, which was able to separate the different locations by
an accuracy of 99% and found genes (HLA-DMB and EIF4G2) that are correlated with
PCa progression. de la Calle et al. [76] aimed to predict the recurrence and progression of
PCa based on biomarker analysis from 648 samples (424 tumors, 224 normal tissue) using
tissue micro assays anti Ki-67, anti ERG (erythroblast transformation-specific related gene)
antibodies through an AI algorithm, having 100% identification of ERG positive tumors.
Genomics is playing an important role in the outcome of PCa patients. Genes could be
identified through ML as candidate biomarkers or with a potential diagnostic role but for
the future, great computational power will be required to increase the receiver operating
characteristics in prognostic for the individual patient, through fused data streams. At this
point, the scarcity of studies to report on fused data streams is linked to the challenges with
the study of genomics. Further studies linked to data fused streams are required to identify
the best ML methods, or to improve the existing ones, to tackle the challenges in clinical
application of AI in genomics. A summarization of the discussed studies are imbedded in
Table 4.

Table 4. AI and machine learning (ML) techniques used to identify alterations in human genome correlating in prostate
cancer (PCa), usefulness radiotherapy and in prostate cancer surgery.

Genomics Article/Reference Genomics Analized/Image Feature AI Method Performance

Bertoli et al. [69] miRNA SVM
Diagnostic 29 miRNA AUC 0.989 ± 0.016
Prognostic signatures 7 miRNA best AUC

74.7% (CI 95%): 73.28–76.11

Karnes et al. [71] mRNA expression, 22 genes RF AUC 0.79, 5 years metastasis free survival after
surgery

Lee et al. [72] Single nucleotide polymorphisms Preconditioned random forest
regression AUC 0.70 (CI95%, 0.54–0.86, p = 0.01)



Diagnostics 2021, 11, 354 11 of 20

Table 4. Cont.

Genomics Article/Reference Genomics Analized/Image Feature AI Method Performance

Hou et al. [73] Gene expression GA-AAN
AUC 0.953 for diagnosis

AUC 0.808 for prognosis (5 year overall
survival)

Liu et al. [74] DNA methylation markers CNN, moderated t-statistics, LASSO,
and RF

CpG markers 100% sensitivity and promoter
markers 92%

Hamzeh et al. [75] Gene activity SVM-Radial basis function kernel-
SVM-RBF, Naive Bayes, RF

Highest accuracy and precision: SVM-RBF
classifier

Accuracy 99%
HLA-DMB and EIF4G2 correlated with PCa

progression

Shiradkar et al. [77]

Radiomics MRI based
Multimodal co-registration scheme to

map the prostate
Radiomics based dose plan on MRI for

brachytherapy and on CT for EBRT

Machine learning classifier- QDA
Reduction in dosage in radiomics based focal

therapy compared to whole gland in EBRT and
brachytherapy

Lei et al. [78] TRUS 3D V-Net CNN
Deeply supervised V-Net

DSC 0.92 ± 0.03
HD 0.94 ± 1.55 mm

MSD 0.60 ± 0.23 mm
RMSD 0.90 ± 0.38 mm

Nouranian et al. [79] TRUS, CTV, PTV Joint sparse dictionary
learning approach

Correlation between CTV and PTV= 16.28 ±
2.39%V err in estimation of PTV from CTV

(single label model (TRUS/PTV) higher error vs
multilable approach (p < 0.01)

Karimi et al. [59] TRUS CNN DSC = 93.9 + /−3.5%, HD = 2.7 ± 2.3 mm
(p = 0.01compared to other methods)

Nicolae et al. [80] LDR treatment plan CNN

Planning time for the ML algorithm= 0.84 ±
0.57 min compared to 17.88 ± 8.76 min for the

expert planner (p = 0.020)
Pre-implant plans were dosimetrically

equivalent to the BT plans; the average prostate
V150% was 4% lower for ML plans (p = 0.002);

Sanders et al. [81] Seed localization performance
=computing the RMSE Sliding-window CNN algorithm Slightly increased the run-time

Surgery Article/Reference Image Features AI Method Performance

Sarikaya et al. [82] Instrument detection and localization
in robotic assisted surgery images CNNEnd-to-end deep learning

Improves the accuracy and reduces the
computation time for detection in each frame

AP = 91%
Training time = 7.22 h

Computation time = 0.103 s, each frame

Hung et al. [83] Automated performance data ML algorithms Bimanual dexterity = an ideal surgical skill

Abbreviations: RF—random forest, GA-AAN—genetic algorithm artificial neural network, RNA—Ribonucleic acid, DNA—
deoxyribonucleic acid, SVM—support vector machine, AUC—area under the curve, CNN—convolutional neural network, SVM-RBF—
Radial Basis Function Support Vector Machine, MRI—magnetic resonance imaging, CT—computed tomography, TRUS—transrectal
ultrasonography, QDA—Ribonucleic acid, EBRT—deoxyribonucleic acid, DSC—Dice Similarity Coefficient, HD—Hausdorff distance,
MSD—Mean surface distance, RMSD—Residual mean surface distance, CTV—clinical target volume, PTV—planning target volume,
ML—Machine Learning, BT—Brachytherapist, RMSE—root mean square error, AP—average precision.

5. AI in Prostate Cancer Treatment
5.1. AI in Prostate Cancer Radiotherapy
5.1.1. MRI Based ML Approach for Treatment of PCa

The artificial intelligence and machine learning techniques described for imaging
different types of cancers can be extended to treatment planning that involves radiotherapy.
For brachytherapy and external beam radiation therapy (EBRT), radiomics-based detection
of cancerous patches described in MRI were transferred on to a computed tomography
(CT) scan for EBRT, using a texture feature enabled machine learning classifier, to achieve
a deformable map to accurately predict the cancer lesions [77]. For treatment planning,
using a deep attention U-Net network that integrates attention gates and deep supervision,
Dong et al. [84] compared models with or without deep attention algorithms. Compared to
CT, deep attention networks a synthetic MRI (sMRI), especially developed for soft tissues,
which obtained better results in volume overlapping, better surface matching and better
center and volume matching, probably offering better PCa radiotherapy treatment planning.
Savenje et al. [85] investigated the feasibility of the clinical use of organs at risk of auto-
segmentation based on CNN DeepMedic and V-net, using MRI images and the qualitative
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analysis showed that delineation from DeepMedic required fewer adaptations and less
time for the delineation procedure, therefore it is important for the optimization of clinical
workflow. In an effort to investigate the accuracy of dose calculations in PCa radiotherapy,
Shafai-Erfani et al. [86] used a CNN algorithm, random forest, from synthetic CT images
generated from MRI images. Quantitative results showed no significant differences in
dose volume histogram and planning target volumes, showing that in the future ML-MRI
methods could generate synthetic CT images from MRI and could probably eliminate CT
acquisition and eliminate its radiation toxicity.

5.1.2. ML Approach in TRUS Studies for Treatment of PCa

For brachytherapy, ultrasound studies on prostate segmentation, a deeply supervised
deep learning-based approach [78], an efficient learning-based multi-label segmentation
algorithm [79] and an estimation of model uncertainty and use of prior shape information
to significantly improve the performance of CNN-based medical image segmentation meth-
ods [59], show clinical feasibility in terms of accuracy compared to manual segmentation
of the prostate and potential benefit for clinical applications that can help clinicians for
training and decision support for intraoperative planning or targeted biopsy. This includes
from evaluating ML algorithms for treatment planning in prostate brachytherapy with
expected improvement in prostate low dose rate treatment plans to lower planning time
and resources [80], to the use of quantitative susceptibility mapping and unsupervised
machine learning to accurate and robust manner to localize the radioactive seeds [87], to
the implementation of a sliding-window convolutional neural network for radioactive
seed identification in MRI-assisted radiosurgery. This is to improve seed identification [81]
and the radiation dose calculations using CNN models to help improve the speed of those
calculations [88–90]. The outcomes of toxicity following radiotherapy were assessed by
Isaksson et al. [91] in a review of PCa radiotherapy treatment in terms of genitourinary
and gastrointestinal toxicity, and the publications screened only a few that showed better
performance than classical models. By adding more features when training the model (the
use of statin drugs and PSA (Prostate Specific Antigen) level prior to intensity, modulated
radiotherapy was found to be strongly related to the toxicity outcome. DL based methods
will be able to calculate the radio-therapeutic dose with accuracy and efficiency and this
will have an important role for real time radiotherapy. In the future, DL will be a valuable
asset in many different aspects for both patients and clinicians. A summary of studies can
be found in Table 4.

5.2. AI in Prostate Cancer Surgery

Robotic assisted platforms for prostate surgery (e.g., radical prostatectomy) already
use artificial intelligence through machine learning based methods [92]. Some of the
potential applications of ML in surgical robotics are automation of the surgical operation,
saving the best strategies of high volume surgeons, training surgeons, classification and
standardization of surgical procedures, safe interaction between environment and surgical
robots and safe interaction between surgeons and surgical robots [93]. If we look into
the future, automatizing the surgical procedure is a real desire. The complexity of an
autonomous system that can perform surgical interventions is very high and there is a need
to cover all aspects of a surgical procedure and to develop a system that can transfer the
surgical skills toward automated execution. Sarikaya et al. [82] proposed in 2017 an end-to-
end deep learning approach for instrument detection and localization in robotic assisted
surgery images. By using a CNN processing stream and multimodal convolutional network,
they demonstrated that the proposed model is better than similar approaches, but the
process is still slow in computing all images and could represent a basis for further studies.
The research on how open radical prostatectomy and robotic assisted radical prostatectomy
influences the emotions of patients in the two treatment groups was assessed with Patient
Reported Information Multidimensional Exploration version2, from the online discussions
of patients in different support groups to automated identification and intelligent analysis



Diagnostics 2021, 11, 354 13 of 20

of emotions [94]. The biochemical recurrence was analyzed in patients following robotic
radical assisted prostatectomy using three supervised ML algorithms and multiple training
variables, with the result that ML techniques can produce accurate disease predictability in
all three models, which is better than traditional statistical regression [95]. Hung at al. [83]
used a da Vinci system recorder to collect automated performance data, adding them to
ML algorithms, and found that bimanual dexterity is an ideal surgical skill and camera
manipulation strongly correlates with surgeon expertise and good outcomes. Goldenberg
at al. [7] developed a system that uses a computer controlled TRUS transducer in the
rectum and tracks the surgical instrument tips and the real time MRI and TRUS images.
These images enable the visualization of suspected lesions in real time. AI uses software
for imaging in real time, intraoperative modifications and this will require a team effort
between regulatory authorities and the research and development of manufacturers of
the equipment to better implement the technology in the future, to provide better clinical
outcomes for the patients. A list of analyzed papers is integrated in Table 4.

6. Limitations and Future Perspectives

The evidence at this time, highlighted in the present papers, points out that AI could
advance pathology, imaging, genomics and surgery through how we understand AI and
its advantages. Now AI is still developing and advancing. The time to train an AI system
is high and it is not possible without human intervention. Some of the tasks of AI can
surprisingly match, in some perspectives, the performance of experts but still limitations
and challenges remain [41]. Regulation is mandatory for every test that will be introduced
in clinical practice. The latest regulatory papers in the European Union and the United
States of America will undergo certification beyond self-validation and certification studies
to prove the reproducible result of the test and to avoid its nonreproducible risk [96,97].

One of the challenges is how these AI ML models will join clinical practice. How the
leading researchers will put into practice a model that can predict PCa, diagnosing it with
histopathological or with imaging methods, remains a challenge [98].

It is estimated that in the future there will be commercially available tools to predict
PCa, or to grade PCa with the aid of AI. But presently, an AI method is limited by small
data sets, and for the models to have a broader impact, they will have to have very large
and representative data sets and images. Fine tuning a DL method, standardizing and
controlling the process to improve the model, would further reduce errors through the
generalization of a process. Some of the limitations that will have to be surpassed are
related to the costs of digitalizing images, software and hardware acquisition, the need to
show pathologists that AI is safe and can be applied to large cohorts and to set a threshold
at which an AI model is performing at least as well as the pathologist, which is a multi-view
approach to identifying cancerous tissue and differentiating it from benign tissue. Deep
learning methods seem to be the most appropriate models to be applied in histopathology,
especially through image data sets analysis and classification (amount of slides, pixels,
image digitalization). For the future it will be very interesting to see whether, in image
slide analysis of morphometric features, images will correlate with radiological methods
and proteomics. For sure, future studies will show the extent of this possible association.
DCNN or DNN is the state of the art method that had achieved great accuracy in terms
of classification in medical imaging [29]. But present studies cannot recommend AI in
pathology in a clinical setting. Algorithms used for radiological imaging are focused on
registration, segmentation and radiomics, and the trend to automatization is on. The
actual methods that were studied had shown little advancements on how to deliver the
information to the physician. Most of the papers presented are focused on segmentation,
acquisition of images, the quality of picture obtained and in the future, transfer adaptation
techniques and supervision will be of great importance [99]. Currently, algorithms analyze
the lesions and require manual training of the models. The current methods try to color code
the lesions and transparency to low probabilities and are the most advanced in automatic
visualization [100]. The targeted biopsy still poses a challenge in accuracy. Movements,
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prostate image deformation and poor alignment lead to errors. An integrated system that
allows real-time imaging and biopsy will limit the underdiagnoses [101]. AI and deep
learning techniques will have the ability to change the inter- and intra-observer variability
and the limitations given by the interpretation of scoring systems, such as PIRADS, from
less experienced physicians [99]. Further research is mandatory to obtain better prediction
of malignancies in PCa images, to accurately biopsy those lesions and to properly diagnose
clinically significant PCa.

The diagnosis and prognosis of PCa has been guided by PSA as a biomarker. In the
last ten years there have been numerous biomarkers identified with potential use in clinical
practice. Those biomarkers’ potential for diagnoses and the prediction of prognosis will
have to be integrated in a clinical setting. An ANN can play an important role in analyzing
biomarkers such as KI-67 and ERG antibodies [14,76]. There is the potential that AI will
provide fast and possibly more reliable identification and validation of biomarkers in PCa.

Radiotherapy and AI is based on the capacity of systems to provide better MRI
and TRUS images with proper segmentation and shaping of organ boundaries in order
to provide the therapeutic dose for prostate, in both EBRT and brachytherapy. There
are studies that used ML to develop methods to better localize radioactive seeds [81,87],
using CNNs to calculate the right dose. DL based methods will be able to calculate the
radio-therapeutic dose with accuracy and efficiency in order to reduce toxicity [91]. AI
techniques will need future studies to better identify anatomical regions for radiotherapy,
better radioactive seed implantation to cover the lesions, and dose calculations to reduce
radiotherapy related toxicity.

AI software is becoming more attractive, especially for ML algorithms in the con-
struction of 3D models, which could be integrated in augmented reality and virtual reality
systems for surgical purposes. Still, obtaining new technologies to perform automatic
intraoperative image overlapping is an area of development [92]. An ML that will predict
surgical movements, along with visualization in real time of the organ localization of
tumors, is a field that needs further research and it could be of great use to surgeons in the
future.

Overall, the AI methods trained to provide assistance to clinicians have to have clinical
applications. They will have to be adapted to be easily understood and used by physicians.
They will have to perform at least as well the experts in their fields of pathology, imaging,
radiotherapy and surgery to be accepted by clinicians as of benefit to their patients. They
will to be approved by regulatory agencies across the world and this will not be an easy
task. There is a need for further studies to validate AI ML methods for clinical use.

7. Conclusions

In PCa, artificial intelligence and ANN algorithms (especially DCNNs) are promis-
ing for diagnosis and playing a predictive role in the prognoses of the disease. With
sparse evidence, the need for further studies is real. The potential for diagnostic imaging,
histopathology, genomics and treatment can hold great promise for the future and can
improve the individualization of the disease and therefore improve patient outcomes in
a more personalized fashion. The potential of AI in prostate cancer surgery will boost
training and surgery performance for the future, both in terms of improvement outcomes
for the patients, and also for the benefit of training and assessing surgical skills.
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Abbreviations

Acronyms Description
AAN Artificial neural networks
ADC Apparent diffusing coefficient
AI Artificial intelligence
anti-PSMA Prostate specific membrane antigen
AUC Area under the curve
B-mode Brightness mode
CAD Computer aided diagnosis
CDSSs Clinical decision support systems
CEUS Contrast enhanced ultrasonography
CEUS Contrast enhanced ultrasonography
CHB-DWI Computed high-b value diffusion weighted imaging
CNN Convolutional neural network
CpG Cytosine and guanine on a genome
CT Computed Tomography
Dataset-FS First and strongest enhancement phase
DCE Dynamic contrast-enhanced
DCE-US Dynamic contrast-enhanced ultrasound
DCNN Deep convolutional neural network
DL Deep learning
DNA Deoxyribonucleic acid
DT Decision Tree
DWI Diffusion weighted imaging
EBRT External beam radiation therapy
GA-AAN Genetic algorithm artificial neural network

Hybrid 3D/2D U-Net CNN
The Hybrid 3D/2D U-Net trained on 3D images and then
completed object detection and segmentation on 2D images)

KNN K-nearest neighbor
LASSO Least absolute shrinkage and selection operator
LWI Luminal water imaging
ML Machine learning
MRF MR fingerprinting
MRI Magnetic resonance imaging
PCa Prostate cancer
PI-RADS Prostate Imaging-Reporting and Data system
PSA Prostate Specific Antigen
RF Random forest
RFC Random forest classifiers
RNA Ribonucleic acid
RSI Restriction spectrum imaging
SVM Support vector machines
SVM-RBF SVM-Radial basis function kernel
SWE Shear-wave elastography
TMA Tissue microarrays
TRUS Transrectal ultrasound
TZ Tranzitional zone
XGB Extreme gradient boosting
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