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Featured Application: Environmentally friendly positive electrode materials for high-capacity
lithium-ion batteries.

Abstract: The replacement of cobalt in the lattice of lithium-rich layered oxides (LRLO) is mandatory
to improve their environmental benignity and reduce costs. In this study, we analyze the impact of
the cobalt removal from the trigonal LRLO lattice on the structural, thermodynamic, and electronic
properties of this material through density functional theory calculations. To mimic disorder in
the transition metal layers, we exploited the special quasi-random structure approach on selected
supercells. The cobalt removal was modeled by the simultaneous substitution with Mn/Ni, thus
leading to a p-doping in the lattice. Our results show that cobalt removal induces (a) larger cell
volumes, originating from expanded distances among stacked planes; (b) a parallel increase of the
layer buckling; (c) an increase of the electronic disorder and of the concentration of Jahn–Teller
defects; and (d) an increase of the thermodynamic stability of the phase. Overall p-doping appears
as a balanced strategy to remove cobalt from LRLO without massively deteriorating the structural
integrity and the electronic properties of LRLO.

Keywords: density functional theory; Li-ion batteries; positive electrodes; lithium-rich layered
oxides; cobalt

1. Introduction

Lithium-ion batteries are a power source widely used for numerous applications,
including electric vehicles (EVs), computer and consumer electronic products, and energy
storage devices for renewable and smart grids [1–4]. Current cathode materials used
in Li-ion batteries, as LiCoO2 and LiM2O4, suffer from lower-than-desired capacity and
structural instability during cycling, which limits their lifetime [5–9].

Over-stoichiometric Li-rich nickel-manganese-cobalt layered oxides (LRLO, lithium-
rich layered oxides) are a family of promising positive electrode materials with a gen-
eral formula Li[LixM1−x]O2 (with M= transition metal blend) characterized by an over-
stoichiometric lithium content, thus implying the simultaneous presence in the same
crystallographic site of a mixture of transition metals and lithium atoms (TM atomic
sites) [7,10–12]. These materials have a sluggish and ambiguous crystal structure [5,13–15],
where two similar layered lattices are integrated [16]. The first structure crystallizes in a
Li2MnO3 monoclinic prototype (mC24, easily rewritten as Li[Li1/3Mn2/3]O2; Li in 2c and 4h
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with y = 0.6606; O in 4i with x = 0.2189 and z = 0.2273, and 8j with x = 0.254 y = 0.32119 and
z = 0.2233; TM in 2b and 4g with y = 0.16708) with a C2/m symmetry, whereas the second
one crystallizes in a α-NaFeO2 -prototype and adopts an R3− m symmetry (hR12, Li in
3b, TM in 3a and O in 6c with x = 0.7458) [17–19]. Both lattices stack a repeated motif
constituted by four parallel layers containing Li, O, TM, and O atomic species (where TM
stands for a blend of transition metal ions and lithium ions), respectively, and differ by
the local mutual arrangements of the TMO6 and LiO6 octahedra, as well as in the layers’
stacking sequence. A full randomization among transition metals and lithium ions on the
TM layers, and stacking faults along the layer-piling direction make the two hR12 and a
mC24 structures indistinguishable [20], thus suggesting that local fluctuations in the defect
concentrations can induce the coexistence of the two symmetries.

Overall, the compresence of hexagonal and monoclinic symmetries in LRLO has been
proved experimentally but an effective phase separation is debatable [17–19]. As an ex-
ample, Jarvis et al. proposed, based on experimental evidence, that Li[Li0.2Mn0.6Ni0.2]O2
is a single-phase hR12 solid solution with a partial long range lithium ordering, leading
to a mC24-like superlattice [21]. On the other hand, Gu et al. proved that the same lay-
ered material with stoichiometry Li[Li0.2Mn0.6Ni0.2]O2 is a nanoscale composite cathode
where hR12 and mC24 domains coexist [22]. An interesting hypothesis has been proven
by Bareño et al., who investigated the long range and local structure of Li1.2Co0.4Mn0.4O2,
suggesting that the LRLO material is constituted by a dendritic microstructure of hR12 and
mC24 phases where Mn4+ and Co3+ are preferentially segregated in monoclinic and hexag-
onal lattices, respectively [16].

LRLO materials with a variety of compositions can exchange large specific capacity in
lithium half cells (~250 mAh g−1) at high working potentials (3.5–3.9 V vs. Li) [7,10–12], thanks
to the combination of the redox reactions of transition metals, e.g., Mn3+/4+, Ni2+/3+/4+,
Co3+/4+, etc., and the anionic oxo/peroxo redox activity (i.e., (O2

(4−))⁄(O2
(2−))) [23,24].

Unfortunately, the oxygen-mediated lithium exchange mechanism promotes the inevitable
release of gaseous O2 at high potentials [25], and the formation of oxygen vacancies. The
accumulation of these point defects leads to structural distortions upon cycling [26,27], and
to a monotonic decay in the electrode performance [28,29].

A possible way to mitigate the structural rearrangements in LRLO is the incorporation
in the transition metal blend of redox inactive metals, such as Al, Zr, Ti [30–32], or the
substitution Li+ with other alkali cations, e.g., K and Na [33]. Aside from these research
trends, the search of innovative LRLO must tackle the challenge of the reduction of the
cobalt content. In fact, cobalt removal in positive electrode materials for batteries has
been identified by the EU and DOE [34,35] as a key-goal to improve the environmental
benignity of these energy storage device. However, any alteration of the metal blend
in the transition metal layer has inevitable effects on the electronic and crystallographic
structure of the LRLO, as well as on its thermodynamic stability, thus affecting the resulting
battery performance.

Here, we tackle the challenge to investigate the impact of the removal of cobalt
on the electronic, crystallographic, and thermodynamic properties of a Li-rich layered
oxide material with general formula of Li1.2Ni0.2−x/2Mn0.6−x/2CoxO2 by density functional
theory (DFT). We adopted a partially randomized 5 × 2 × 5/3 supercell, built from the
hR12 lattice, to explicitly mimic (a) the full atomic disorder on the TM layers, and (b) the
occurrence of a stacking fault along the hexagonal c-axis to break the local hR12 lattice
symmetry [16]. Our aim is to draw a comprehensive picture of the impact of the p-doping,
indirectly induced by the substitution of cobalt with manganese and nickel, on a realistic
LRLO lattice, without relevant constraints on symmetries.

First principles modeling studies on LRLOs have been reported by Wang et al. [36] and
Lo et al. [37], tackling the role of oxygen vacancies and dopant elements on the electronic
structure and crystal stability of these partially disordered oxides. In both cases, authors
described the transition metal layer using regular alternated motifs among Li/Mn/Co/Ni
atomic species to mimic the metal blend. Here, we adopt a different strategy, by applying
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the special quasi-random structure (SQS) approach to mimic through a cluster expansion
formalism a fully disordered occupancy of the atomic sites in the transition metal layer.
Our method allows a realistic representation of disorder without pre-determined structural
motifs or postulated clustering of similar atomic species. To our knowledge, this is the first
attempt to apply SQS to DFT calculations on LRLOs.

2. Methods

All calculations have been performed with the Vienna Ab-initio Simulation Package
(VASP), which performs periodic ab initio quantum mechanical calculations within the
Kohn–Sham density functional theory (DFT) [38,39] framework, with projector-augmented
wave potentials and plane wave basis sets. We applied the generalized-gradient approxima-
tion (GGA) [40] in the spin polarized case with the exchange-correlation density functional
by Perdew, Burke, and Ernzenhof (PBE) [41].

We used the DFT + U method [42,43], which has been extensively validated for
correcting the large self-interaction error in transition metal oxides [41], caused by the
approximate form of standard exchange-correlation density functional when applied to
strongly localized unpaired electrons, such as in the d manifold of Co, Ni, and Mn. An
effective value of U-J = 4.00 eV has been used for all Co, Ni, and Mn d electrons. This
value is an average between the values of Co, Mn, and Ni, reported from ab-initio UHF
calculations, and has been recently validated by us for LiMO2 layered phases (M = Co, Ni,
Mn) [44–46]. We used a kinetic energy cut-off of 520 eV and Brillouin Zone sampled at the
Gamma point. We optimized the structural parameters of supercells by iteratively relaxing
the ion positions and the cell lattices without any symmetry constraints until the residual
force on each atom was <0.01 eV Å−1. Bader charge analysis [47] was performed on the
all-electron charge density files (the core density was generated from the pseudo-potential
files) [48,49]. Magnetic moments have been obtained as a direct output of the spin polarized
calculations, using the computational routines embed in the VASP code.

The structures of four Li-rich layered oxides with the general formula Li1.2Ni0.2−x/
2Mn0.6−x/2CoxO2 and different Co contents (i.e., x = 0.12, 0.08, 0.04, and 0, namely
LNMC12, LNMC08, LNMC04, and LNM) have been built starting from the hR12 pro-
totype unit cell, and using a 5 × 2 × 5/3 supercell. The final supercell contains 200 atoms
(Li50(Li10Ni10Mn30)O100 for the LNM stoichiometry) stacked in 20 layers, obtained by
5 repetitions along the c-axis of the stacking of a Li/O/TM/O parallel planes motif. Li and
O planes are constituted only by oxygen and lithium atoms, respectively, whereas in TM
planes there is the simultaneous presence of nickel, manganese, cobalt, and lithium atoms.
The four modeled supercells with different Co contents are shown in Figure 1. The tables
with atomic positions and the supercell unit axes matrix are reported in the Supplementary
Information (SI), Tables S1–S3.

To model transition metal disorder in multicomponent TM layers in the LNM supercell,
we have adopted the special quasi-random structure (SQS) approach [50,51]: this method
allows for the modeling of a random solid solution in a supercell of the desired size
by mimicking random correlation functions up through nearest-neighbor, next-nearest-
neighbor interactions, and so on. The SQS method relies on the cluster expansion (CE)
formalism proposed by Mayer [52]. We used the ATAT suite (alloy-theoretic automated
toolkit) that exploits an SQS-based algorithm in search for a fully randomized distribution
of Ni, Mn, and Li ions in the TM layers within the LNM supercell [53].

Starting from the fully randomized LNM lattice (Li50(Li10Ni10Mn30)O100), the other
supercells with different Co contents have been obtained by point doping: (LNMC4) 2 Co
to replace 1 Ni and 1 Mn (Li50(Li10Ni9Mn29Co2)O100); (LNMC8) 4 Co to replace 2 Ni
and 2 Mn (Li50(Li10Ni8Mn28Co4)O100); and (LNMC12) 6 Co to replace 3 Ni and 3 Mn
(Li50(Li10Ni7Mn27Co6)O100), respectively. To identify the most stable supercell for each
cobalt concentration, among the innumerable possible structures, we compared the energy
stability of selected configurations. As an example, we discuss the identification of the
LNMC4 minimal energy supercell.
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Figure 1. Optimized geometry and volume structures supercell 5× 2× 5/3 containing 200 atoms. On
the left, Li1.2Ni0.14Mn0.54Co0.12O2 (LNMC12). In the middle, Li1.2Ni0.16Mn0.56Co0.08O2 (LNMC08),
and Li1.2Ni0.18Mn0.58Co0.04O2 (LNMC04). On the right Li1.2Ni0.2Mn0.6O2 (LNM). Color code: Li
light green; LiTM orange; Ni grey; Mn purple; Co light blue; and O red.

The randomized LNM supercell has been fully relaxed to its energy minimum with
respect to cell parameters and atomic positions. As a first step, we have built three
LNMC4 supercell configurations by point substitution of Mn/Ni pairs, where cobalt atoms
are near (two Co on the same TM layer), intermediate (two Co on subsequent TM layers), or
diluted (two Co on TM layers separated by a Li layer), as shown in Figure S1 of the SI. We
have compared the near-intermediate-diluted configurations relative stabilities by running
full self-consistent field relaxations of the electron densities. Once established the energetic
similarity of the diluted and intermediate configurations, we have discarded the near
configuration that is less stable. As a second step, we have compared the relative stability
of all inequivalent diluted and intermediate configurations, with respect to the local six
vicinal atoms on the TM layer surrounding each cobalt substituent (i.e., Mn, Ni, or Li atoms
in various amounts, depending on the randomization), as shown in the SI, Figure S2. The
configuration with the minimal energy has been adopted and further relaxed in respect
with cell parameters and atomic positions. Following a similar method, we identified the
lowest energy configuration for LNMC08 and LNMC12.

3. Results
3.1. Crystal Structures of Cobalt Doped LRLO

Despite the absence of constraints during structural relaxations, all supercells keep
the hexagonal symmetry without any distortion and the layered structure, in line with the
experimental evidence [54–57]. Thus, starting from each optimized supercell, we evaluated
the hexagonal hR12-apparent lattice parameters for all cobalt concentrations, using the
[5 × 2 × 5/3]−1 inverse supercell transformation.

In the Table 1, we compare the calculated values with those available in the literature
(reported in parentheses) [54]. The cell parameters agree within 1.5%, with respect to
experiments for both LNM and LNMC4 stoichiometries, thus confirming the accuracy of
our modeling.

Overall, the substitution of cobalt in the supercell leads to an isotropic expansion of
both a and c cell parameters, and, therefore, of the cell volume: this trend is in excellent
quantitative agreement with the available experimental literature [55,56]. Remarkably,
the volume increase observed passing from LNMC12 to LNMC8 and LNMC4 does not
occur in passing from LNMC4 to the Co-free LNM supercell, where a slight cell volume
shrinking of −0.06% is observed. Despite the LNMC4 stoichiometry having been studied
for application in Li-ion batteries [57], we lack an experimental confirmation of this last
structural peculiarity.
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Table 1. Hexagonal hR12-reduced cell parameters of the optimized supercells. Available experimental
literature values are reported in parentheses [54,56,58].

Supercells

LNMC12 LNMC08 LNMC04 LNM

a (Å) 2.893 2.902
(2.874) 2.907 2.907

(2.893)

c (Å) 14.430 14.477
(14.28) 14.500 14.498

(14.292)

V (Å3/f.u.) 34.87 35.21
(34.24) 35.38 35.36

(34.72)
α = β (◦) 90 90 90 90
γ (◦) 120 120 120 120
a/c 0.200 0.200 0.200 0.200

Focusing on the alteration of the layers stacking with the cobalt content, we evaluated
the changes in the O-(Li)-O and O-(TM)-O, oxygen-oxygen interlayer average distance,
and the out-of-plane corrugations of the various atomic planes.

The O-(TM)-O distances are 2.142, 2.147, 2.151, and 2.151 Å for the LNMC12, LNMC8,
LNMC4, and LNM compositions, respectively, whereas the corresponding O-(Li)-O are
2.671, 2.678, 2.685, and 2.682 Å. Thus, both O-(Li)-O and O-(TM)-O interlayer mean dis-
tances increase in parallel with the substitution of Co and p-doping of the lattice. The
O-(TM)-O expansion can be an indirect clue to the increase of the Ni2+/Ni3+/Mn3+ con-
centrations originating from the larger Ni content, and a possible presence of Jahn–Teller
defects (see below for more details); in fact, all these ions are larger than Mn4+ and Co3+ [59].
On the other hand, the origin of the expansion of the O-(Li)-O distance is less clear. Overall,
this effect is expected to be beneficial for the transport of Li+ ions across the layer, thanks to
the less effective coordination originating from the longer (and weaker) Li-O bonds, while
removing Co from the lattice.

Turning to the buckling of the atomic layers, these inevitable corrugations are due
to the heterogeneity and fluctuation of the local composition. To evaluate the structural
disorder emerging at atomic level in the LRLO structures, we calculated the displacement
factors, σ2 for all fractional atomic position, with respect to a 5 × 2 × 5/3 supercell built
from the ordered LiCoO2 hR12 lattice. We considered the following equation:

σ2 =
∑N

i = 1[(xi − x′ i)]
2 + [(yi − y′ i)]

2 + [(zi − z′ i)]
2

N
(1)

where (xi yi zi) are the fractional coordinates of each atomic species in the site i within
the supercells of the LNMC12, LNMC08, LNMC04, and LNM structures; (x′i y′i z′i) are
the fractional coordinates of the same atomic site i in the ordered LiCoO2 supercell; and
N is the total number of atoms with the same atomic identity. The displacement factor
is an evaluation of the mean buckling of the layers, with respect to the perfectly planar
arrangement in the LICoO2 lattice. We have calculated mean values of σ2 for Li, LiTM
(lithium ions in the TM layer), Ni, Mn, Co, and O for each composition, as shown in
Figure 2.

All atomic species in LRLO supercells show large and similar displacements compared
to LiCoO2, ranging between 0.0029 and 0.00023. In particular, whereas the oxygen displace-
ment is almost constant and insensitive with changes in the cobalt content, differences are
observed for all other metals. The reduction of the cobalt content from LNMC12 to LNM in-
creases the displacement of the Li+ ions in the lithium layers of approximately 600%, and in
the TM layers (+770%). Similar increases are observed also for Ni (+594%) and Mn (+450%).
On passing, it is interesting to observe that passing from LNMC4 to LNM the bucking of
all atomic species seems to slightly decrease. Therefore, the LNMC4 composition shows
the mostly buckled layers among all supercells.
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In summary, the removal of cobalt and the simultaneous p-doping of the LRLO lattice
induce larger cell volumes, originating from expanded distances among stacked planes,
and a parallel increase of the layer buckling.

Turning to the interatomic bonds, we analyzed the distances between transition metals
and the first neighbor’s oxygen atoms dM-O: all transition metals are surrounded by six
oxygen atoms, forming distorted octahedra. The distribution of the M-O (M = Ni, Mn, and
Co) bond distances is shown in Figure 3 in the form of Pair Distribution Functions (PDFs).
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Qualitatively PDFs are similar for all compositions, being that MnO6 octahedra very
close in dimensions to the CoO6, whereas NiO6 octahedra are larger. The reduction of the
cobalt content from LNMC12 to LNM leads to a slight monotonic increase in the Mn-O
bond distances, from 1.949 Å to 1.951 Å, as well as a slight decrease for Ni-O, from 2.058 Å
to 2.048 Å. It is remarkable to observe that the reduction of cobalt in the structure occurs
in parallel with the sparse elongation/compression of few Ni-O and Mn-O bonds. This
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may be a clue of the appearance/increase of Jahn–Teller distortions in the LRLO lattices
induced by the substitution of Co with a blend of Mn/Ni (see below for more details and
discussions in the electronic structure section) [60].

3.2. Electronic Structure of the LRLOs

The electronic structures in terms of density of states for LNMC12, LNMC08, LNMC04,
and LNM are shown in Figure 4.
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Figure 4. Atomic orbital projected density of states of LNMC12 (upper panel), LNMC08 (up-
per/middle panel), LNMC04 (middle/bottom panel), which presents a 0-bangap, and LNM
(bottom panel).

First, we can observe a similar metallic character for all Co-containing compositions,
whereas the LNM Co-free supercell shows a 0-bandgap character. This change in the
electronic structure induced by the complete removal of cobalt from the LRLO lattice agrees
with the enhancement of the electronic conductivity obtained by Co doping reported in the
literature [61].

Second, a strong hybridization of Ni d states and Mn d states at the Fermi energy
with the p-states of the oxygen anions is observed for all supercells, being that the energy
distribution of the Ni states is highly distorted by the reduction in the cobalt content.

The analysis of the magnetic moments of the metals allows us to shed light on the
oxidation states in the lattices. The mean magnetic moments are:

• Co sites: 0.00 µB, for LNMC12, LNMC08, and LNMC04;
• Ni sites of 1.649 µB, 1.609 µB, 1.521 µB, 1.489 µB for LNMC12, LNMC08, LNMC04, and

LNM respectively;
• Mn sites of 3.199 µB, 3.216 µB, 3.236 µB, 3.239 µB for LNMC12, LNMC08, LNMC04,

and LNM respectively.

Magnetic moments confirm the qualitative results obtained by PDOS.
The magnetic moments suggest that all Co ions are in 3+ oxidation state in low

spin (LS) electronic configuration, t2g
6 (|↑↓|↑↓|↑↓|) eg

0 (| | |) in all supercells. On the
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contrary, the monotonic reduction of the magnetic moments of Ni ions in parallel with the
Co substitution suggests a decrease in the concentration of nickel ions in the 2+ oxidation
states in the LS electronic configuration t2g

6 (|↑↓|↑↓|↑↓|) eg
2 (|↑ |↑|), and an increase in

the fraction of nickel ions in the 3+ oxidation state in the LS electronic configuration, t2g
6

(|↑↓|↑↓|↑↓|) eg
1 (|↑ | | ). In parallel, an analogue increase in the magnetic moment on

Mn is the clue of the decrease in the concentration of manganese ions in the 4+ oxidation
state in the HS electronic configuration, t2g

3 (|↑ |↑ |↑|) eg
0 (| | |), and an increase in the

fraction of manganese ions in the 3+ oxidation state in the HS electronic configuration, t2g
3

(|↑ |↑ |↑ |) eg
1 (|↑ | |). The molar fractions of 3+ ions are shown in the SI (Table S5) for

all compositions. Previous experimental X-ray absorption analysis of the oxidation states
of Mn and Ni for the same LMN Co-free composition agrees with our evaluations, thus
confirming the contemporary presence of Ni3+, Ni2+, Mn3+, and Mn4+ in the structure [62].
This analysis is also confirmed by the computed Bader charges show in Figure S4 in the
SI, that confirm the increase of the Ni3+ and Mn3+ concentrations in parallel with the
Co substitution.

Due to their electronic configurations, Ni3+ and Mn3+ are Jahn–Teller ions (JT) [60].
The representation of selected CoO6, NiO6, and MnO6 octahedra is shown in Figure 5,
where the JT distortions are highlighted. Co3+ ions are not JT ions, and therefore all CoO6
bond distortions are induced by the different chemical environment of TM-layers.
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Ni3+ and Mn3+ are in an octahedral coordination, and therefore the eg orbitals emerge
as a combination between dz2/dx2−y2 and oxygen p orbitals. In both (Ni3+)O6 and
(Mn3+)O6 octahedra, the partial occupancy of the eg orbitals leads to alterations in the
oxygen-metal bond lengths: usually, the axial bond length increases, whereas the four equa-
torial bond lengths decrease [63]. Our calculations correctly highlight the JT-distortions in
the LNMC12, LNMC08, LNMC04, and LNM structures.
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It is remarkable to observe the four times larger JT distortion concentration in the
Co-free LNM lattice, compared to the LNMC12 one (Table S5 of the SI). Apparently, cobalt
ions act as electronic disorder “modulators”, and their substitution induces an increase in
local octahedral distortions due to JT defects. According to literature, the increase of JT
distortions hinders the lattice stability during the lithiation and de-lithiation process, as
they can facilitate phase segregations and structural transitions [64–66]. In this respect, the
n-doping strategy here proposed is unable to fully suppress the JT disorder induced by
the Co removal. However, as far as we know, this is the first ever reported quantitative
evaluation of the JT distortions occurring upon Co substitution in LRLO lattices, and is a
benchmark for further studies.

3.3. Phase Stability of LRLO

The thermodynamic stability of the LRLO supercells have been evaluated by calcu-
lating the energy of formation from the ternary ordered Li-metal oxides. Considering a
generic LRLO material with stoichiometry Li1.2Ni0.2−x/2Mn0.6−x/2CoxO2, we evaluated
the thermodynamics of the following general reaction for the four supercells:

2
5 Li2MnO3 +

(
1
5 −

x
2

)
LiMnO2 +

(
1
5 −

x
2

)
LiNiO2 + xLiCoO2 → Li1.2Ni0.2− x

2
Mn0.6− x

2
CoxO2 (2)

The corresponding equation for the formation energy at 0K, ∆formE0K, of a an LRLO
with fixed x and general formula Li1.2Ni0.2−x/2Mn0.6−x/2CoxO2 (LNMCx) is given by
Equation (3):

∆formE0K(2) = Etot,LNMCx − (0.4 Etot,Li2MnO3+ 0.2 − x/2 Etot,LiMnO2 + 0.2 − x/2 Etot,LiNiO2 + x Etot,LiCoO2) (3)

where x is the stoichiometric coefficient (0.12, 0.08, 0.04, and 0), and Etot values are the
electronic total energies calculated at the DFT+U level of each species. The thermodynamic
properties of Li2MnO3, LiMnO2, LiCoO2, and LiNiO2 have been evaluated by us in a
previous work at the same level of theory [46]. We can approximate formation energy at 0K
with the standard formation enthalpy at 0 K, i.e., ∆formE0K ∆form H◦0K. This approximation,
i.e., we neglect the variation of the zero-point vibrational contributions, is expected to
be small, since it is given by the algebraic difference between zero-point energies of the
product and reagents, as defined in Equation (2).

For each LRLO, we also evaluated the configurational entropy Sconf for the four
LNMCx stoichiometries following Equation (4):

Sconf,LNMCx = R ((0.2 − x/2)ln(0.2 − x/2) + x ln(x) + (0.6 − x/2) ln(0.6 − x/2) + 0.2 ln (0.2)) (4)

where R is the gas constant. Being that the structures of the Li2MnO3, LiMnO2, LiCoO2,
and LiNiO2 ternary oxides constituted fully ordered lattices, the corresponding config-
urational entropies are null. As a consequence, the configurational entropy variation
of reactions (2), i.e., ∆rSconf,LNMCx, are equal to the configurational entropies of the four
LNMCx lattices. By considering the third law of thermodynamics, we can calculate the
standard entropy of formation reactions (2) at 0K with the corresponding variation of the
configurational entropy:

∆formS◦0K(E2) ≈ ∆rSconf,LNMCx = S◦conf,LNMCx (5)

Starting from the here derived standard enthalpy of formation and standard en-
tropy of formation at 0 K for the LNMCx phases from the ternary ordered oxides (see
Equation (2)), we have estimated the corresponding standard Gibbs energy of forma-
tion at 298 K ∆formG◦298K(2), by the usual equation ∆G = ∆H − T∆S. The estimate of
the ∆formG◦298K(2) neglects the possible contribution of thermal effects on entropies and
enthalpies: this is an unavoidable approximation in the view of the lack of reliable experi-
mental collections of the heat capacities in the 0–298 K temperature range for all phases.
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The calculated ∆formH◦0K, ∆formS◦0K and ∆formG◦298K for all stoichiometries are listed
in Table 2: Gibbs free energy of formation of all LRLO are reported in the SI (Table S6) as a
function of the temperature.

Table 2. Thermodynamic data for the LNMC12, LNMC08, LNMC04, and LNM phases.

Phases

LNMC12 LNMC08 LNMC04 LNM

∆formH◦0K/eV at−1 −0.040 −0.044 −0.054 −0.079
∆formS◦0K /eV at−1 K−1 1.02·10−4 9.9·10−5 9.3·10−5 8.2·10−5

∆formG◦298K/eV at−1 −0.070 −0.073 −0.082 −0.103

The formation Gibbs energies of the LRLO phases are more negative while decreasing
Co content, despite the parallel increase in the structural disorder, i.e., atomic displacement,
and electronic disorder, i.e., large concentration of JT defects. This trend is driven by
enthalpy and is likely due to the formation of stronger chemical bonds in the structure,
whereas the stabilization from the configurational entropy unavoidably decreases while
reducing the amount of cobalt. Thus, the p-doping of the LRLO lattice, induced by
the simultaneous substitution of Co atoms with Mn and Ni, alters the stability of the
disordered lattice.

To shed further light on the LNMCx phase diagram, we evaluated the excess standard
Gibbs energy of formation of the intermediate phases using the data in Table S6. The
excess standard Gibbs energy of formation at temperature T for the phase j containing x
moles of Co in the Li1.2Ni0.2−x/2Mn0.6−x/2CoxO2 formula (∆excessGo

T(jx)) is defined by the
Equation (6):

∆excessGo
T(jx) = ∆ f Go

T(jx)−
x

0.12
∆ f Go

T(LNMC12)− 0.12− x
0.12

∆ f Go
T(LNM) (6)

The ∆excessGo
T(jx) represents the relative thermodynamic stability of the LNMC08 and

LNMC04 phases, compared to mixtures of LNM and LNMC12. The values of the ∆excessGo
T(jx)

are shown in the form of a thermodynamic phase diagram in the Figure 6 for four different
temperatures, namely 298.15, 500, 1000, and 1500 K.
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Remarkably, the ∆excessGo
T(jx) is positive at all temperatures for both LNMC08 and

LNMC04; this trend suggests that the formation of a single phase LRLO in this composition
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range is thermodynamically unfavorable. In fact, both LNMC08 and LNMC04 lattices are
thermodynamically less stable compared to a balanced mixture of LNM and LNMC12. As
a consequence, both LNMC08 and LNMC04 are expected to undergo to a phase separation
reaction driven by the larger stability of LNMC12 and LNM phases. On passing we
underline that the phase separation reaction is less favorable at high temperatures.

It is important to underline that the formation of single phase LRLO with LNMC08,
LNMC04 or similar compositions has been proven in recent experimental reports [54,56,58,67].
In this respect, we can speculate that, despite the unfavorable thermodynamics, the forma-
tion of single-phase metastable lattices is likely driven by crystal growth kinetics and the
formation of defects (e.g., stacking faults, antisites, dislocations). In particular, extended
defectivities can easily alter the overall thermodynamics thus extending the complexity of
these systems.

On passing, it is important to underline that our thermodynamic evaluations of the
fully lithiated LRLO do not necessarily imply a parallel landscape in the thermodynamic
properties of de-lithiated phases. In this respect, thermodynamic studies about the stability
of LRLO upon de-lithiation are necessary to fully understand the interplay between Co
removal and battery performance.

4. Conclusions

In this work, we have investigated using firsts principles methods based on DFT, four
TM oxide layered materials with a general stoichiometry Li1.2Ni0.2−x/2Mn0.6−x/2CoxO2,
considering different Co contents: LNMC12, LNMC08, LNMC04, and LNM with x = 0.12,
0.08, 0.04, and 0, respectively. We have addressed structural, electronic, and thermodynamic
properties for each material to describe the impact of Co substitution by Mn/Ni and the
parallel p-doping of the lattice. Our analysis describes in detail the structural features of all
compositions, their relative stabilities, and their electronic properties, in terms of band gap,
oxidation state of the transition metal and JT distortion. The obtained description of the
bonding and structural properties of the modelled structures is in good agreement with
the available experimental literature.

Overall, reduction in the Co content in the LRLO lattice on the one hand leads to an
expansion of the structures due to the greater electronic distortions. This structural effect
can promote the mobility of lithium ions, thanks to the weaker coordination. However, the
number of electronic states at the Fermi level decreases, possibly negatively impacting the
electronic conductivity. These trends occur in parallel with the alteration of the thermody-
namic stability of the lattices, while removing cobalt. In this view, the p-doping strategy
provided by the Mn/Ni simultaneous incorporation appears as a balanced way to remove
cobalt from the lattice without massively degrading the structural and electronic properties
of the LRLO.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112210545/s1, Figure S1: Different Co distribution in different layers: diluted in which
Co atoms are separated by two Li-layers and one TM-layer; intermediate, in which Co atoms are
separated by one Li-layers; near, in which Co atoms are in same TM-layer. On the left a qualitative
energy diagram of ∆E between diluted, intermediate and near distribution. Figure S2: Different
Co configuration for diluted and intermediate distribution, considering Co chemical environments.
Table S1: Fractional Coordinate of LNM. Table S2: Fractional Coordinate of LNMC04. Table S3:
Fractional Coordinate of LNMC08. Table S4: Fractional Coordinate of LNMC12. Figure S3: Pair
Distribution Function (PDF) of LNMC12 (upper panel), LNMC08 (middle panel), LNMC04 (middle
panel) and LNM (bottom panel) for Li-O bond distances. Table S5: Mole fraction of JT distortions with
respect to: all TMs (χJT), Ni ions (χNi3+ ) and Mn ions (χMn3+ ) for LNMC12, LNMC08, LNMC04 and
LNM. Figure S4: Accumulative differences of Bader charges of Ni and Mn, considering the variation
from LNMC12 to LNM; negative ∆q implicates a reduction (Mn4+ →Mn3+), positive ∆q implicates
an oxidation (Ni2+ → Ni3+). Table S6: Gibbs energy of formation (∆formG◦298K/kJ mol at−1) of the
LRLO as a function of the temperature.
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