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Abstract: This paper presents a novel control system for the participation of plug-in electric vehicles
(PEVs) in the provisioning of ancillary services for frequency regulation, in a way that is transparent
to the driver and harmonized with the smart charging service requirements. Given a power-frequency
droop curve, which specifies how the set of PEVs collectively participate to the provisioning of the
frequency regulation service (we call this curve a “global” droop curve), we propose an algorithm
to compute “local” droop curves (one for each PEV), which are optimized according to the current
status of the PEV and the current progress of the smart recharging session. Once aggregated, the
local droop curves match the global one (so that the PEVs contribute as expected to the provisioning
of the ancillary service). One innovative aspect of the proposed algorithm is that it is specifically
designed to be interoperable with the algorithms that control the PEV recharging process; hence, it is
transparent to the PEV drivers. Simulation results are presented to validate the proposed solution.

Keywords: ancillary services; frequency regulation; plug-in electric vehicles

1. Introduction

In the recent years, the European energy market opened the possibility for third parties
to provide regulation services (e.g., ancillary services). Among these control services, a very
important role for the safe operation of the electricity network is given to the frequency
control services, which aim at maintaining the network frequency in a safe range. Frequency
regulation services are usually provided by traditional generators, through speed droop
controllers that control the mechanical power applied to the rotor shafts based on their
rotation speed. However, it is also possible to control the network frequency with other
kind of generators, like wind farms [1,2] and photovoltaic plants [3]. Moreover, many
papers intercepted the possibility to modulate the energy demand of heavy flexible electric
loads, such as heating, ventilation, and air conditioning systems [4], and thermostatically
controlled loads [5], in order to control network frequency. Among the flexible loads,
PEVs emerged as good candidates for the provision of frequency regulation services,
as their power consumption can be changed remotely by the charging stations, and the
reaction time is very low. Anyway, the power absorbed by a single PEV is not enough to
participate effectively to the ancillary service market, so it is fundamental to aggregate a
set of PEVs and coordinate their action to provide the requested services. The possibility to
aggregate many charging PEVs is becoming easier, due to the mass spreading of PEVs in
the market and thanks to new high-speed/low-latency cellular communication means [6],
which significantly reduce the cost to update the current charging point operator (CPO)
infrastructure to provide frequency regulation services. Indeed, the authors of this paper
proposed a novel architecture [7] that enables CPO charging stations to provide frequency
regulation services over a 5G communication network, exploiting the 5G multi access
edge computing [8] as edge computing node, without violating the time constraints to
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provide this kind of services. The proposed architecture [7], together with the results
coming from this paper, will be implemented in the context of the European H2020 Project
5G-Solutions [9].

The problem of controlling PEVs for frequency regulation services has been studied in
the literature by Yao, Wong, and Schober with focus on a robust control method to estimate
the hourly regulation capacity (i.e., aggregated power margins) of the PEVs [10], or with
a focus on the market bids for the frequency regulation services provided by PEVs [11].
Moreover, Xia et al. studied, in [12], the problem of computing power setpoints for fleets of
PEVs in presence of fluctuating wind generators, using consensus.

In addition, the contribution of PEVs to fast frequency regulation has been studied
in [13], where the frequency droop curves for each PEV cluster are computed using an
improved harmony search algorithm, but without balancing the effort of each PEV based
on its smart charging requirements.

Kuang et al. have studied in [14] the problem of providing frequency regulation by
using dispersed PEVs, while maintaining the target state of charge (SOC) level requested
by the PEV owners, but without changing dynamically over time the control droop curves
to balance the effort among the different PEVs based on the drivers’ requirements.

In [15], the authors provided a hierarchical control scheme to allocate frequency control
effort among the charging PEVs that is able to ensure the final SOC level for the PEVs by
real-time corrections of the allocated frequency control action. Anyway, this approach
does not optimize the effort among the different PEVs, allocating it based on the frequency
regulation capacity of each PEV.

Jia et al. have studied in [16] the problem of load frequency control using PEVs with
inertia uncertainties and time-varying delays, and in particular focusing on the coordi-
nation among PEVs and power plants to provide such frequency control functionalities,
but without considering the integration of smart charging system with load frequency
control, which is one of the focuses of the presented paper.

In [17], the authors have discussed a demonstration of the provisioning of frequency-
controlled normal operation reserve (one of the primary frequency regulation services in the
Nord Pool energy market) using three PEVs from different manufacturers. Differently from
the present work, the charging setpoints to implement the frequency regulation service are
computed by a central controller, which results in higher response times compared to the
decentralized solution we present.

In [18], a model predictive control scheme to schedule the bidding in frequency
regulation market is proposed, with the aim of maximizing the payment to PEV aggregators,
based on a prediction of the frequency regulation market price built using a seasonal-
autoregressive integral-moving-average model. Though taking into account the current
PEVs SOC level, the EV power schedule is limited to three possible states and, again,
the effort is not balanced among PEVs; moreover the algorithm does not provide droop
curves to be applied by the PEVs in response to frequency deviations.

Finally, in [19], Islam et al. propose a Markov decision process formulation of the
problem of aggregating flexibility from the PEVs for providing frequency regulation ser-
vices. The goal is to maximize the revenue of the aggregator. A possible limitation of this
approach is in its scalability, and in the possibility of having a fine-grained control for each
PEV (due to the use of the state aggregation technique).

The distinctive features of the present paper are: (i) we propose an approach in which
frequency control actions are taken at each charging station based on local droop curves,
which allows for very fast intervention, as required for providing fast frequency regulation.
The parameters of the local droop curves are periodically updated by a central controller,
which allows to equally balance the frequency control effort among the PEVs, while having
a highly scalable scheme, since the central optimization problem is a linear one and is
executed within larger time constraints with respect to the frequency regulation control
loop ones; (ii) the droop curves are computed as to balance the control effort among
the various PEVs, taking into account the smart charging requirements of the different
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users, on available dwelling time, current SOC, and final desired SOC; (iii) the presented
algorithm exploits the availability of edge computing nodes, such as 5G multi-access edge
computing, to reduce, as much as possible, communication latencies with the charging
stations, and with the frequency meter.

In summary, the proposed approach is scalable, it allows for very fast frequency control
action, and it ensures a correct balancing of the control action among the participating PEVs,
by taking into account their individual conditions. Therefore, the algorithm summarizes
the strengths found separately in the different works in literature.

The rest of the paper is structured as follows: Section 2 presents the reference system
architecture and the interaction between traditional smart charging services and frequency
regulation services; Section 3 presents the problem formulation, while Section 4 the pro-
posed algorithm to compute the local droop curves for each charging PEV; Section 5 reports
numerical simulation to validate the proposed algorithm.

2. Reference Scenario and Problem Description

In recent years, the European energy market has moved towards a separation between
the roles of balance responsible party (i.e., the entities which are responsible for electric-
ity network imbalances), and balance service provider (i.e., the entities which provide
balancing services for the electricity network). In this context, the distribution system
operators (DSOs) can rely on the balance service providers for their balancing services [20].
The CPO can, thus, take advantage of this market separation, becoming itself a balance
service provider and providing ancillary services to the power network, by leveraging the
possibility of changing the power setpoint of the charging station in real-time. Anyway,
the CPO cannot participate to the ancillary service market with each separate charging
station, since the power provided by each charging station is not in line with the power
requirements to access to this market; instead, it can participate after aggregating many
(even physically dispersed) charging stations, and so providing balancing services both
at DSO and transmission system operator level. In this context, the authors of this paper
proposed a smart charging solution that can enable fleets of charging PEVs to demand side
management services [21].

Within the same scenario, it is possible, in principle, to provide also frequency regu-
lation services, by leveraging the power margins provided by the smart charging system.
Indeed, most of the time the charging PEVs charge with a power setpoint that is between
zero and the maximum charging power, and so there are power margins both to increase
and to reduce the power adsorbed by the PEVs. These margins can be aggregated and
used to participate to the frequency regulation services.

Figure 1 shows the reference scenario considered in this study, which is based on
the same novel architecture proposed in [7]. A set of PEVs are connected to charging
stations that are remotely monitored and controlled by the CPO backend. The charging
power setpoints actuated by the charging stations are periodically (e.g., every minute
in [21]) computed by smart charging algorithms hosted in the “smart charging module”.
The goal of the smart charging module is to control the PEV recharging in the load area,
in such a way that the PEVs are recharged in compliance with the user preferences (e.g.,
time available for recharging and amount of energy to recharge), and in compliance with
the technical constraints of the grid. Hence, the role of the smart charging module is
to ensure safe (for the vehicle and the grid), efficient (e.g., taking into account battery
degradation), and economical smart charging service to the users. For an example of a
possible implementation of the smart charging module, and the associated smart charging
algorithms, the reader is referred, e.g., to our previous work [22].

The role of the “local droop curves computing module” instead is related with the pro-
visioning of frequency control services. The module hosts a control algorithm which builds
frequency control services by leveraging the flexibility offered by the PEVs. The module
periodically computes and sends to the charging stations one power-frequency droop curve
for each PEV performing smart charging, and agreeing to participate in frequency regula-
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tion. The droop curves are frequency/power curves that, given the current value of the
network frequency, specify the power deviation with respect to the smart charging setpoint,
i.e., how much the charging power setpoint computed by the smart charging module for
the specific vehicle should be increased or decreased at any time, depending on the current
grid frequency value. In absence of the frequency regulation service, the charging station
simply implements the power setpoint it receives periodically from the smart charging
module. When the PEV also participates in the frequency regulation, the charging station
adds or subtracts to the smart charging setpoint a delta of power that is given by the value
of the local droop curve at the current value of the grid frequency (frequency measurement
is communicated to the charging station via 5G). To be able to modulate, in real time, the
power setpoint, as required in this scheme, the charging station needs to be equipped with
a power converter (as in direct current charging stations). As discussed in the following,
the different droop curves are computed in such a way that their total, cumulative effect
follows a desired power-frequency droop curve, as if the PEV fleet was a unique entity
providing frequency regulation services.

The relation among the two modules introduced above will be fully characterized in a
future work. We remark here that each local droop curve is computed on the basis of the
specific parameters of the related charging session. The logic is that the contribution of
each PEV to the frequency regulation should be tuned depending on the current progress
of the charging session, and on the technical characteristics of the PEV. On the other hand,
the implementation of the droop curves by the single PEVs means that a different setpoint
is actuated by the PEV, compared to the one that was computed by the smart charging
module. The effect of this perturbation is compensated by the fact that the smart charging
module periodically recomputes the charging schedules (see, e.g., [22]), so that the new
charging schedule is computed taking into account, and to compensate, the effect of any
possible deviation from the previous schedule caused by the participation of the PEV to the
frequency regulation service (and by any other disturbance affecting the charging process).
The effect of the perturbation on the smart charging session caused by the participation of
the PEV in the frequency regulation service is measured by the smart charging module by
measuring the current state of charge of the PEV, before each re-calculation of the smart
charging setpoint. This scheme ensures that the two services, i.e., the smart charging
service, and the frequency regulation one, can coexist, in a way that is transparent for
the user.

The present works focuses entirely on the discussion of the control algorithm hosted
by the local droop curves computing module. The interaction of this module with the
smart charging module will be fully analyzed in a future publication.

In order to enable the charging stations to provide frequency regulation services,
the system should be able to take a frequency measure and actuate the proper power
setpoint to the PEV (increasing or reducing it based on the frequency deviation) within a
very limited time (in the order of 300 ms, according to the Fast Reserve pilot project of
TERNA [23]), as analyzed in [7]. It is important to notice that this very strict time constraint
has to be guaranteed just for frequency regulation functions, while other smart-charging
functionalities (e.g., the computation of nominal power setpoints) have much larger time
constraints, that are typically in the order of minutes. Installing a frequency meter capable
of the above-mentioned time requirements inside each charging station would imply very
high costs. However, by leveraging the new cellular communication technologies (e.g., 5G),
it is possible to install just one (or few, for redundancy) frequency meter in each load area,
and then spread the information to the other charging stations with negligible delay, thus
matching the strict time requirements for the service.
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Figure 1. Reference System Architecture.

3. Nomenclature and Problem Formulation

In this section, we detail the proposed control algorithm hosted in the “local droop
curves computing module”, which periodically computes the local droop curves (i.e., one
for each charging station), based on the current status of the ongoing charging sessions.
In particular the local droop curves are computed with the same sampling time of the
smart charging signals (e.g., nominal power setpoints for the charging sessions), so in the
order of minutes. First of all, the used nomenclature is introduced.

Let N be the number of PEVs connected at the generic time k in the load area.
The generic n-th PEV at time k is characterized by:

• The current charging power level Pn,k;
• The maximum and the minimum possible charging power levels, respectively Pmax

n > 0
and Pmin

n (if Pmin
n < 0, the PEV is enabled to discharging);

• The current SOC level xn,k;
• The time left until the end of the charging session, dn,k > 0;

• The error, en,k, between the desired SOC, xre f
n , and the current one, xn,k, i.e., en,k :=

xre f
n − xn,k;

• The power deviation, ∆Pn,k, at time k, for the n-th PEV, due to the participation in the
frequency regulation service. This value is computed from a droop curve.

The proposed algorithm is aimed at optimally coordinating the connected PEVs in the
participation to the provisioning of ancillary services. In more detail, the problem we tackle
is that of optimally define p–f droop curves at single PEV level (which we call local droop
curves ), in such a way that, once combined, they match a given, desired droop curve (the
global droop curve). The global droop curve defines how, collectively, the connected PEVs
should react to frequency mismatches, as if they formed a unique entity participating in
the provisioning of the ancillary service.

Figure 2 displays a general prototype of a global p–f curve. Focusing of the right-
half plane, the parameter ∆ fmin defines the deadband: the power variation is zero if the
deviation of the frequency with respect to the reference frequency value is in the interval
[0, ∆ fmin]. ∆ fmax defines the frequency deviation limit after which the power variation
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saturates. mglobal defines the droop, i.e., the ratio between the variation of the power and
the frequency deviation.

The algorithm presented next recovers the global droop curve as the sum of N local
droop curves. A notable aspect is that the design of each local droop curve takes into
account the current status of the PEV’s recharging process, as explained next.

Δ𝑓𝑚𝑖𝑛

Δ𝑃 Δ𝑓 = m𝑔𝑙𝑜𝑏𝑎𝑙Δ𝑓 + 𝑞𝑔𝑙𝑜𝑏𝑎𝑙

Δ𝑓𝑚𝑎𝑥 Δ𝑓

Δ𝑃𝑚𝑎𝑥

Δ𝑃

𝑞𝑔𝑙𝑜𝑏𝑎𝑙

Δ𝑃𝑚𝑖𝑛

Figure 2. Global droop curve, with associated relevant parameters.

For the design of the local droop curves, we make the following assumption.

Assumption 1 (Shape of local droop curves). Local droop curves have a positive slope, and they
are linear between ∆ fmin and ∆ fmax.

Assumption 1 is included because it is in line with the common design principle of
standard p–f droop curves (the algorithm proposed in this paper could work also with
non-linear droop curves). As implied by Assumption 1, the focus of this paper is on linear
droop curves, i.e., on curves described by the equation:

∆Pn,k(∆ f ) = mn,k∆ f + qn,k. (1)

We focus on linear local droop curves because standard droop curves are linear,
and because working with such type of functions results in a linear optimization problem,
which has low computational complexity.

The algorithm proposed in this paper optimally designs each local droop curve by
selecting the parameters mn,k and qn,k, which are, therefore, the optimization variables
of the problem. The algorithm is presented in the next section. To keep the description
of the algorithm concise, and without loss of generality, we focus our attention on the
design of the portion of the droop curves lying on the right half of the ∆ f /∆P plane
(see Figures 2 and 3). The part of the curve on the left half of the plane is designed in a
similar way.
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Δ𝑓𝑚𝑖𝑛

Δ𝑃𝑛,𝑘 Δ𝑓 = 𝑚𝑛,𝑘Δ𝑓 + 𝑞𝑛,𝑘

Δ𝑓𝑚𝑎𝑥 Δ𝑓

Δ𝑃𝑛,𝑘
𝑚𝑎𝑥 ≔ 𝑚𝑛,𝑘Δ𝑓𝑚𝑎𝑥 + 𝑞𝑛,𝑘

Δ𝑃𝑛

Δ𝑃𝑛,𝑘
𝑚𝑖𝑛 ≔ 𝑚𝑛,𝑘Δ𝑓𝑚𝑖𝑛 + 𝑞𝑛,𝑘

𝑞𝑛,𝑘

𝑃𝑛
𝑚𝑎𝑥 − 𝑃𝑛,𝑘

Figure 3. Local droop curve, with associated relevant parameters.

4. Proposed Local Droop Curves Design Algorithm

The design of the generic local droop curve (1) must respect constraints related to
the shape of the local curve, and others related to the shape of the global droop curve. It
must also respect certain limitations imposed by the current status of the charging sessions,
as explained next.

4.1. Local Droop Curve Design Constraints

Figure 3 displays in gray the “design space” in which the generic n-th local droop
curve can be drown.

The following constraints for each local curve are included.

0 ≤ ∆Pmin
n,k := mn,k∆ fmin + qn,k ≤ Pmax

n − Pn,k, (2)

0 ≤ ∆Pmax
n,k := mn,k∆ fmax + qn,k ≤ Pmax

n − Pn,k. (3)

The above two constraints state that, respectively, at ∆ fmin and ∆ fmax, the power
increase for the single PEV must be between zero (i.e., corresponding to a null contribution
to the frequency regulation services, and, therefore, having no impact on the current
charging power level), and the maximum possible increase in charging power, i.e., Pmax

n −
Pn,k, which takes into account the current charging level, Pn,k, and the maximum possible
one, Pmax

n . Notice however that (3) alone is not sufficient, since the maximum power
increase might be affected also by the current SOC. For example, the maximum power
increase for a vehicle that is fully charged is zero. For this reason, the following constraint
is added:

Pn,k + ∆Pmax
n,k ≤

xmax
n − xn,k

T
. (4)

Equation (4) states that the maximum power increment is limited by the maximum
energy that can be charged into the battery in the unit of time. T is the sampling time of
the algorithms, i.e., every T seconds the local droop curves are re-computed.

Given the focus on linear droop curves, (2)–(4) ensure that the contribution of the
single PEV is always feasible, also considering the current status of the charging session.

Next, in line with Assumption 1, local droop curves must have a positive slope, i.e.,

mn,k ≥ 0. (5)

This, of course, also implies that ∆Pmin
n,k ≤ ∆Pmax

n,k .
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4.2. Global Droop Curve Design Constraints

The p–f droop curve arising from the superimposition of the local droop curves can
be written as

∆P(∆ f ) = mk∆ f + qk, (6)

where

mk =
N

∑
n=1

mn,k, qk =
N

∑
n=1

qn,k. (7)

The following additional constrains are included to ensure that the superimposition
of the local droop curves matches the desired global droop curve:

mk = mglobal , (8)

qk = qglobal . (9)

4.3. Target Function

In the above subsections, we have presented the constraints that must be respected
in the selection of the parameters mn,k and qn,k, in order for the deriving local curves and
global curve to be feasible d-f droop curves. In the following, we present the formulation
of the proposed target function, to ensure that the parameters mn,k and qn,k are selected
in an optimal way, according to the current status of the charging session of the PEVs
participating in the provisioning of the ancillary service. The proposed target function to
be minimized is:

Jk =
N

∑
n=1
−α1ek(∆Pmin

n,k +∆Pmax
n,k ) + α2dk(∆Pmin

n,k +∆Pmax
n,k )+α3mmax

k +α4∆Pmaxr
k +α5∆Pminr

k , (10)

where α1, . . . , α5 ∈ [0, 1] are such that ∑5
i=1 αi = 1, and mmax

k , ∆Pmaxr
k , ∆Pminr

k , are auxiliary
variables such that:

mn,k ≤ mmax
k , mmax

k ≥ 0, (11)

∆Pmax
n,k

Pmax
n − Pn,k

≤ ∆Pmaxr
k ∀n ∈ N, (12)

∆Pmin
n,k

Pmax
n − Pn,k

≤ ∆Pminr
k ∀n ∈ N. (13)

Coefficients α1, . . . , α5 can be used to weight the terms of the objective function. It is
easy to see from (10) and (11) that, at the optimum, mmax

k is equal to the maximum value of
mn,k, for i = 1, . . . , N. Hence, the inclusion of this term in (10) has the goal of minimizing
the maximum value of mn,k, i.e., of balancing the effort of the participation in the ancillary
service provisioning among the PEVs, aiming to avoid that some vehicles are assigned
steep droop curves (i.e., high values of mn,k). The last two terms in (10), similarly to mn,k,
contribute to spread the effort between the vehicles, by minimizing the maximum share
of the available power margin that each vehicle contributes to frequency regulation (see
(12) and (13)).

The first and the second terms in (10) instead are included to take into account also
the current status of the charging session of each PEV, and, specifically, to give priority to
the PEVs with a larger SOC error (the first term–notice the minus sign), and the ones with
a smaller remaining charging time (the second term). The local droop curves associated
to these PEVs, will have more pronounced slope and/or a higher power at ∆ fmin. As a
result, they will contribute more to the provisioning of the ancillary service, which will
help them in reaching earlier the desired SOC level. Notice that, when the SOC error ek is
negative (i.e., the current SOC is higher than the reference), then the PEV will contribute
less to the provisioning of the service, which is a consistent behavior. Finally, recall that,
for the sake of brevity, we focused in the paper in the design of the right-half part of the
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droop curves. The design of the left-half part of the curve, also in terms of the choice of the
target function, can be carried out with similar considerations.

5. Numerical Tests

Simulations have been performed in Julia [24], version 1.6.0, on an standard computer
(3.3 GHz, I7 processor with 16 GB RAM). The simulation scenario is as follows. We
consider a charging load area that participates to the frequency regulation service. We
assume that the charging sessions active in the load area are enough to provide the required
power-frequency curve, i.e., that the composition algorithm presented in Section 4 admits
a solution.

In the following, two simulation scenarios are discussed, to validated the proposed
approach:

1. Scenario 1: we run the algorithm in a balanced scenario, i.e., considering a set of
charging sessions that are homogeneous in terms of power margin flexibility, SOC
error, and charging time availability;

2. Scenario 2: we run the algorithm in a scenario in which the charging sessions have
different power margins, different SOC errors, and time flexibility.

The two scenarios are meant to show that, from one side, the algorithm is able to come
up with a fair and balanced assignment of local droop curves among the participating
PEVs while, on the other hand, taking always in consideration the real time SOC and time
flexibility status of the participating PEVs, as determined by the respective charging session
status, controlled by smart charging algorithms.

5.1. Scenario 1: Local Droop Curves Assignment in a Balanced Scenario

The first set of simulations is aimed to show how the algorithm is able to design local
droop curves that result in a balanced distribution of the regulation effort, among the
participating PEVs. To this end, we consider 3 active charging sessions, characterized by
the same dwelling time and SOC error. The distinguishing attribute between the sessions
is the available margin of power, ∆Pmax

n,k , which reflects:

• The possible presence of different charging technologies in the load area, i.e., the fact
that the charging sessions are characterized in general by different maximum power,
depending on the charging technology;

• The presence of smart charging sessions, i.e., the fact that the charging sessions happen
at different charging levels, which are in general different from the maximum possible
charging level.

Indeed, the algorithm must be able to work in presence of smart charging sessions
ongoing at different charging levels.

The first simulation in this scenario shows the case in which the charging sessions are
characterized by the same power margin. Specifically, the charging sessions are character-
ized by a maximum charging power of 150 kW, and by a common charging setpoint of
100 kW, resulting in a power margin of 50 kW. The global droop curve, for over frequency
events, is characterized by a maximum power deviation of 105 kW (70% of the available
power margin of 150 kW), and by a frequency range [∆ fmin, ∆ fmax] = [500, 1500] mHz.
In correspondence with the minimum of the bandwidth, the given global droop curve is
characterized by a power deviation of 10 kW. Figure 4 shows the result of the algorithm.
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Figure 4. Scenario 1, balanced conditions: resulting local and global droop curves.

The algorithm determines the optimal distribution as an equal allocation of droop
curves between the charging session. The target droop curve is identified in the plot with
the red-dashed line, instead the resultant droop curve is represented by the black-dotted
line. Figure 4 shows that the sum of the local curves matches exactly the target global one.
The presence of the last term in the cost function determines an exact balancing of the
frequency regulation service among the charging sessions, i.e., leading to identical local
droop curves. Figure 5 shows the percentage of maximum usage of the power margin
of each vehicle, i.e., the ratio between the value of the local droop curve corresponding
to the frequency deviation ∆ fmax and the available margin of power. This plot confirms
what already discussed: the algorithm distributes the effort in order to assign the same
maximum relative usage to each vehicle’s power margin, in this case 70%.
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Figure 5. Scenario 1, balanced conditions: fraction of the maximum PEV power margin used for
each PEV.

Typically, in smart charging, different charging power set-points are assigned to each
charging session. As explained, this leads to different power margins, i.e., different levels of
maximum contribution that could be provided by each PEV. This unbalance is considered
by the proposed algorithm during the composition of the local droop curves. This is shown
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in the next simulation, which assumes three charging sessions characterized by different
power margins, as summarized in Table 1.

Table 1. Charging sessions.

PEV ID Pn,k [kW] Pmax
n [kW] ek [%] dk [%]

1 75 150 10 10
2 50 100 10 10
3 25 50 10 10

The global droop curve that has to be composed is characterized by a a maximum
droop value of 75 kW, i.e., 50% of the overall available margins. Note that all the charging
sessions are performed at the 50% of maximum power, so they are characterized by different
absolute power margins, ∆Pn,k, but by the same percentage margin.

Figure 6 displays the droop curves assigned to each vehicle.
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Figure 6. Scenario 1, different power margins: resulting local and global droop curves (request of
50% of the overall power margins).

The algorithm allocates the curves in order to distribute the relative effort equally
between the sessions. Figure 7 highlights the equal distribution.
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Figure 7. Scenario 1, different power margins: fraction of the maximum PEV power margin used for
each PEV (request of 50% of the overall power margins).
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It is interesting to see the result of the same simulation, when the overall maximum
power deviation increases. The same simulation is now performed with a maximum global
droop curve value of 105 kW, i.e., 70% of available margins. The increased request of power
could be accomplished using the same strategy as before, so splitting the effort equally
between the sessions. This strategy does not consider the fact that an equal distribution
of power margins will impose a steeper droop curves to the sessions with larger margins,
with a negative impact on the battery system. A steeper curve means a more aggressive
response of the battery system to the frequency variations, with the consequently stress on
power electronics and its effects on the battery temperature and cells health. The strategy
presented in this work instead takes into account also the curve slope mn,k and the intercept
qn,k. As a result, the system distributes the additional effort needed to reach the new
target droop curve less equally (Figure 8) but fair distributes the power electronics stress
(Figure 9).
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Figure 8. Scenario 1, different power margins: fraction of the maximum PEV power margin used for
each PEV (request of 70% of the overall power margins).
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Figure 9. Scenario 1, different power margins: resulting local and global droop curves (request of
70% of the overall power margins).

5.2. Scenario 2: Local Droop Curves Assignment in an Unbalanced Scenario

The interconnection between the smart charging and the frequency regulation service
is completed by considering the charging preferences expressed by the driver, i.e., the
desired final state of charge and the charging time. Summarizing what already discussed
about the target function (10), the algorithm gives a priority in the assignment of droop
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curves to the PEVs with a greater state of charge error and/or a shorter dwelling time (i.e.,
to those PEVs that will benefit from an increase in the charging rate).

The simulations presented below (Figures 10 and 11) will illustrate the capability of
the designed algorithm to link the droop curve assignment with the charging status and
the user preferences.

The balanced scenario is now re-proposed, but this time with different state of charge
errors and dwelling times for the three PEVs. Table 2 summarizes the charging session
status at the time when the proposed algorithm for allocating local droop curves is run.

PEV 1 is characterized by the greater SOC error, followed by PEV 2. The algorithm
recognizes this condition and prioritizes the assignment of power to these two vehicles.
The prioritization is in turn weighted by the respective SOC error.

Table 2. Charging sessions.

PEV ID Pn,k [kW] Pmax
n [kW] ek [%] dk [%]

1 150 100 80 10
2 150 100 40 10
3 150 100 30 10
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Figure 10. Scenario 2 balanced margins and unbalanced SOC errors: resulting local and global droop
curves (request of 70% of the overall power margins).
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Figure 11. Scenario 2 balanced margins and unbalanced SOC errors: fraction of the maximum PEV
power margin used for each PEV (request of 70% of the overall power margins).
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The SOC error is one of the two charging preferences taken into account in the droop
curve assignment. In the above simulation, the dwelling time was the same for the three
PEVs. Figures 12 and 13 show the case in which the PEVs 1 charging session, characterized
by a SOC error of 80%, is also characterized by a remaining dwelling time of 50%. In this
case, the SOC error prioritization is compensated by the available dwelling time, so the
algorithm identifies as optimal strategy to equal distribute the effort between the vehicles.
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Figure 12. Scenario 2 balanced margins and unbalanced SOC errors and dwelling times: resulting
local and global droop curves (request of 70% of the overall power margins).
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Figure 13. Scenario 2 balanced margins and unbalanced SOC errors and dwelling times: fraction of
the maximum PEV power margin used for each PEV (request of 70% of the overall power margins).

5.3. Notes on the Computational Complexity of the Algorithm

The optimization problem associated to the proposed algorithm is linear, with contin-
uous variables. This is the category of optimization problems that is the most consolidated
in the literature, and for which efficient and well established optimization algorithms exist.
The optimization problem was built in Julia and solved with Gurobi 9.1 [25].

Quadratic cost functions could be also used for this kind of problem, as they are an
efficient choice in terms of effort distribution (e.g., the third term in the objective function
could be replaced by the term α3m2

n,k, and similarly the last two terms). However, quadratic
problems are more complex, and require more computational resources than linear ones.

Considering that this algorithm is designed to work in conjunction with a smart charg-
ing system that updates the charging set points with a rate of minutes, and considering
the amount of power needed for the participation to the frequency regulation services
(e.g., in Italy, the Pilot Project fast reserve requires at least 5 MW of aggregated power [23]),
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we have to face the issue of finding the solution of a large scale optimization problem
in a short amount of time. For this reason, we decided to opt for a linear formulation.
To test the scalability of the proposed algorithm, several simulation have been performed,
considering scenarios of various dimension. Figure 14 reports the result of local droop
curves computation in a scenario with 1000 PEVs participating in the frequency regu-
lation. This simulation does not consider a specific charging technology, the maximum
charging and discharging power rates for a generic charging session are randomly chosen,
respectively, between 0 kW and 150 kW, and −150 kW and 0 kW. Additionally, the user
preferences are assigned randomly. The simulation shows how the proposed algorithm
assigns different droop curves considering the current load area requirements (70% of
the maximum available aggregated power margin), and the charging sessions status (the
result is a uniform distribution of droop curves with no particular clustering). As already
mentioned, being the problem linear with continuous variables, very low computational
time was observed in various experiments, always between 1 and 1.3 s.

Figure 14. Simulation with 1000 PEVs.

Finally, the algorithm was tested with 100,000 contemporary charging sessions. The so-
lution time was always between 30 and 50 s, which is acceptable, in view of integrating the
proposed algorithm with the smart charging algorithm.

6. Conclusions

This paper has presented a novel control algorithm for enabling the participation of
smart charging plug-in electric vehicles (PEVs) to the provisioning of frequency regulation
services. This has a positive value for the grid, providing an additional source of flexibility
to ensure grid stability, and for the PEV drivers as well, providing to them an additional
stream of revenues, which will lower the cost of ownership of the PEVs. The proposed
algorithm computes local frequency–power droop curves, one for each active charging
session. These curves specify how the charging power setpoint should be changed in
real time, in response to frequency deviations from the nominal value. The local curves
computation takes into account the real time status of the charging sessions (in terms of
time left until the end of the charging session, current SOC, and energy left to charge),
which is fundamental to ensure that the frequency regulation service is interdependent
and harmonized with the smart charging service, and thus transparent to the PEV user.
The superimposition of the local droop curves has to match a desired load area droop
curve, which specify how the PEVs in the load area should collectively react to a frequency
deviation. In this way, the aggregate of PEVs can provide frequency regulation services to
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the market. Numerical simulations have shown that the proposed algorithm is effective
in assigning local droop curves in a fair way, which takes into account the different status
of the charging sessions. Additionally, the algorithm scales well, and is able to cope with
aggregates of tens of thousands of PEVs.
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